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Preface

The first edition of this book appeared in 1993, and it could be assumed, wrongly, that
its time has passed as 24 years have now elapsed. It is true that all the original authors
apart from myself have retired but, in the intervening years the text has been regularly
updated and we have now reached the fifth edition. The words of my colleague and
predecessor as editor, Professor Glyn James, still ring true. Here is an excerpt from his
preface to the fourth edition (2011):

Throughout the course of history, engineering and mathematics have developed in
parallel. All branches of engineering depend on mathematics for their description and
there has been a steady flow of ideas and problems from engineering that has stimu-
lated and sometimes initiated branches of mathematics. Thus, it is vital that engineer-
ing students receive a thorough grounding in mathematics, with the treatment related
to their interests and problems. As with the previous editions, this has been the moti-
vation for the production of this latest edition — a companion text to the fifth edition
of Modern Engineering Mathematics, this being designed to provide a first-level core
studies course in mathematics for undergraduate programmes in all engineering dis-
ciplines. Building on the foundations laid in the companion text, this book gives an
extensive treatment of some of the more advanced areas of mathematics that have
applications in various fields of engineering, particularly as tools for computer-based
system modelling, analysis and design. Feedback, from users of the previous edi-
tions, on subject content has been highly positive indicating that it is sufficiently
broad to provide the necessary second-level, or optional, studies for most engineering
programmes, where in each case a selection of the material may be made. Whilst
designed primarily for use by engineering students, it is believed that the book is also
suitable for use by students of applied mathematics and the physical sciences.

Although the pace of the book is at a somewhat more advanced level than the com-
panion text, the philosophy of learning by doing is retained with continuing emphasis
on the development of students’ ability to use mathematics with understanding to
solve engineering problems. Recognizing the increasing importance of mathematical
modelling in engineering practice, many of the worked examples and exercises incor-
porate mathematical models that are designed both to provide relevance and to rein-
force the role of mathematics in various branches of engineering. In addition, each
chapter contains specific sections on engineering applications, and these form an
ideal framework for individual, or group, study assignments, thereby helping to rein-
force the skills of mathematical modelling, which are seen as essential if engineers
are to tackle the increasingly complex systems they are being called upon to analyse
and design. The importance of numerical methods in problem solving is also recog-
nized, and its treatment is integrated with the analytical work throughout the book.
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The position of software use is an important aspect of engineering education. The deci-
sion has been taken to use mainly MATLAB but also MAPLE. Students are encouraged
to make intelligent use of software and, where appropriate, codes are included, but there
is a health warning. The pace of technology shows little signs of lessening, and so in
the space of six years, the likely time lapse before a new edition of this text, it is prob-
able that software will continue to be updated, probably annually. There is therefore a
real risk that much coding though correct and working at the time of publication could
be broken by these updates. Therefore, in this edition the decision has been made not
to over-emphasise specific code but to direct students to the companion website or to
general principles instead. The software packages, particularly MAPLE, have become
easier to use without the need for programming skills. Much is menu driven these days.
Here’s more from Glyn on the subject that is still true:

Much of the feedback from users relates to the role and use of software packages,
particularly symbolic algebra packages. Without making it an essential requirement
the authors have attempted to highlight throughout the text situations where the user
could make effective use of software. This also applies to exercises and, indeed, a
limited number have been introduced for which the use of such a package is essential.
Whilst any appropriate piece of software can be used, the authors recommend the use
of MATLAB and/or MAPLE. In this edition reference to the use of these two
packages is made throughout the text, with commands or codes introduced and
illustrated. When indicated, students are strongly recommended to use these
packages to check their solutions to exercises. This is not only to help develop
proficiency in their use, but also to enable students to appreciate the necessity of
having a sound knowledge of the underpinning mathematics if such packages are to
be used effectively. Throughout the book two icons are used:

e An open screen indicates that the use of a software package would be useful
(e.g. for checking solutions) but not essential.

o A closed screen indicates that the use of a software package is essential or
highly desirable.

Specific changes in this fifth edition are an improvement in many of the diagrams, tak-
ing advantage of present day software, and modernization of the examples and lan-
guage. Also, the chapter on Applied Probability and Statistics has been significantly
modernized by interfacing the presentation with the very powerful software package R.
Simply search for ‘R Software’ and it is a free download. I have been much aided in
getting this edition ready for publication by my hardworking colleagues Matthew, Tim
and Julian who have joined the editorial team.
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1.1

1.2

Introduction

In this chapter we turn our attention again to matrices, first considered in Chapter 5
of Modern Engineering Mathematics (MEM), and their applications in engineering.
At the outset of the chapter we review the basic results of matrix algebra and briefly
introduce vector spaces.

As the reader will be aware, matrices are arrays of real or complex numbers, and
have a special, but not exclusive, relationship with systems of linear equations. Such
systems occur quite naturally in the process of numerical solution of ordinary differ-
ential equations used to model everyday engineering processes. In Chapter 9 we shall
see that they also occur in numerical methods for the solution of partial differential
equations, for example those modelling the flow of a fluid or the transfer of heat.
Systems of linear first-order differential equations with constant coefficients are at the
core of the state-space representation of linear system models. Identification, analy-
sis and indeed design of such systems can conveniently be performed in the state-
space representation, with this form assuming a particular importance in the case of
multivariable systems.

In all these areas it is convenient to use a matrix representation for the systems under
consideration, since this allows the system model to be manipulated following the rules
of matrix algebra. A particularly valuable type of manipulation is simplification in some
sense. Such a simplification process is an example of a system transformation, carried
out by the process of matrix multiplication. At the heart of many transformations are
the eigenvalues and eigenvectors of a square matrix. In addition to providing the means
by which simplifying transformations can be deduced, system eigenvalues provide vital
information on system stability, fundamental frequencies, speed of decay and long-term
system behaviour. For this reason, we devote a substantial amount of space to the
process of their calculation, both by hand and by numerical means when necessary. Our
treatment of numerical methods is intended to be purely indicative rather than complete,
because a comprehensive matrix algebra computational tool kit, such as MATLAB, is
now part of the essential armoury of all serious users of mathematics.

In addition to developing the use of matrix algebra techniques, we also demonstrate
the techniques and applications of matrix analysis, focusing on the state-space system model
widely used in control and systems engineering. Here we encounter the idea of a function
of a matrix, in particular the matrix exponential, and we see again the role of the
eigenvalues in its calculation. This edition also includes a section on singular value
decomposition and the pseudo inverse, together with a brief section on Lyapunov stability
of linear systems using quadratic forms.

Review of matrix algebra

This section contains a summary of the definitions and properties associated with matrices
and determinants. A full account can be found in chapters of MEM or elsewhere. It is
assumed that readers, prior to embarking on this chapter, have a fairly thorough under-
standing of the material summarized in this section.
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1.2.1 Definitions

1.2.2

(a)

(b)

()

(d)
(e)

)

An array of real numbers

ay dp dp ayy,

dy  dyp  dxp Ay
A =

aml amZ am3 amn

is called an m X n matrix with m rows and n columns. The g, is referred to as the
(ij)th element and denotes the element in the ith row and jth column. If m = n
then A is called a square matrix of order n. If the matrix has one column or one
row then it is called a column vector or a row vector respectively.

In a square matrix A of order n the diagonal containing the elements a,,, a,, . . . ,
a,, is called the principal or leading diagonal. The sum of the elements in this
diagonal is called the trace of A, that is

trace A = Zn: a;

i=1

A diagonal matrix is a square matrix that has its only non-zero elements along the
leading diagonal. A special case of a diagonal matrix is the unit or identity matrix /
for whicha;, =ap=---=a,,=1.

A zero or null matrix 0 is a matrix with every element zero.

The transposed matrix A" is the matrix A with rows and columns interchanged,
its 7, jth element being a;,

A square matrix A is called a symmetric matrix if A" = A. It is called skew
symmetric if A" = -A.

Basic operations on matrices

In what follows the matrices A, B and C are assumed to have the i, jth elements a;, b,

i

and c; respectively.

Equality

The matrices A and B are equal, that is A = B, if they are of the same order m X n

and

a;=b;, 1sism, 1sjsn

Multiplication by a scalar

If Ais a scalar then the matrix AA has elements Aa,.
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Addition

We can only add an m X n matrix A to another m X n matrix B and the elements of the
sum A + B are

a;+by, 1s<ism 1sjsn

ij»

Properties of addition

(i) commutative law: A+ B=B+ A

(ii) associative law: (A+B)+C=A+(B+0C)
(iii) distributive law: MA + B)= 1A + AB, A scalar

Matrix multiplication

If A is an m X p matrix and B a p X n matrix then we define the product C = AB as the
m X n matrix with elements

)4
c;= agby, i=1,2,...,m; j=1,2,...,n
k=1

Properties of multiplication

(i) The commutative law is not satisfied in general; that is, in general AB # BA.
Order does matter and we distinguish between AB and BA by the terminology:
pre-multiplication of B by A to form AB and post-multiplication of B by A to
form BA.

(i) Associative law: A(BC) = (AB)C
(iii) If Ais a scalar then
(1A)B=A(1B) = 1AB
(iv) Distributive law over addition:
(A+B)C=AC+BC AB+C)=AB+AC
Note the importance of maintaining order of multiplication as in property (7).

(v) If Ais an m X n matrix and if /, and [, are the unit matrices of order m and n
respectively then

ILA=Al=A

Properties of the transpose

If A" is the transposed matrix of A then
i A+B)'=A"+BT

(i) (AH'=A

(iiiy (AB)"=B'A"
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1.2.3

1.24

Determinants

The determinant of a square n X n matrix A is denoted by det A or |A|.

If we take a determinant of a matrix and delete row i and column j then the deter-
minant remaining is called the minor M of the (ij)th element. In general we can take
any row i (or column) and evaluate an n X n determinant | A | as

IA1=3" (=1 a;M;
j=1

A minor multiplied by the appropriate sign is called the cofactor A; of the (ij)th
element so A; = (1)’ M; and thus

A= z a;A;
j=1

Some useful properties
@ |AT=]|A|
(i) |AB|=|A[B]

(iii) A square matrix A is said to be non-singular if | A | # 0 and singular if |A | = 0.

Adjoint and inverse matrices

Adjoint matrix

The adjoint of a square matrix A is the transpose of the matrix of cofactors, so for a
3 x 3 matrix A

T
Ay Ap A

adjA=|A, Ayp Ay
Ay Ay Ag

Properties

i AdjA=|A|

(i) |adjA|=|A|"", where n is the order of A
(iii) adj (AB) = (adj B)(adj A)

Inverse matrix
Given a square matrix A if we can construct a square matrix B such that
BA=AB=1

then we call B the inverse of A and write it as A™.
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Properties

(i)  If Ais non-singular then |A|# 0 and A™' = (adj A)/|A|.
(ii) If A is singular then |A|=0and A~ does not exist.
(iii) (AB)'=B"'A™.

All the basic matrix operations may be implemented in MATLAB using simple
commands. In MATLAB a matrix is entered as an array, with row elements sepa-
rated by spaces (or commas) and each row of elements separated by a semicolon(;),
or the return key to go to a new line. Thus, for example,

A=[1 2 3; 4 0 5; 7 4 2]
gives

A=
12 3
4 0 5
7 4 2

Having specified the two matrices A and B the operations of addition, subtraction
and multiplication are implemented using respectively the commands

C=A+B, C=A-B, C=A*B

The trace of the matrix A is determined by the command trace (A), and its
determinant by det (2).

Multiplication of a matrix A by a scalar is carried out using the command *, while
raising A to a given power is carried out using the command * . Thus, for example,
3A? is determined using the command C=3*A"2.

The transpose of a real matrix A is determined using the apostrophe ’ key; that
is C=A’ (to accommodate complex matrices the command Cc=A.’ should be used).
The inverse of A is determined by C=inv (A).

For matrices involving algebraic quantities, or when exact arithmetic is desirable
use of the Symbolic Math Toolbox is required; in which matrices must be expressed
in symbolic form using the sym command. The command A=sym (A) generates the
symbolic form of A. For example, for the matrix

2.1 32 0.6
A=|12 05 33
52 1.1 O

the commands
A=[2.1 3.2 0.6; 1.2 0.5 3.3; 5.2 1.1 0J;
A=sym(A)
generate
A=
[21/10, 16/5, 3/5]
[6/5, 1/2, 33/10]
[26/5, 11/10, 0]
Symbolic manipulation can also be undertaken in MATLAB using the MuPAD
version of Symbolic Math Toolbox.
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1.2.5

Such operations may be performed in Python. Details are not given here, but the
interested reader is directed to, for example, Beginning Python by Lie Hethand
(Springer, 2005). The numPy package should be loaded.

Linear equations

In this section we reiterate some definitive statements about the solution of the system
of simultaneous linear equations

apx; +apX, + - +a,x, =b

yXy + ApXy + -+ Ay X, = by

Xy + a,Xy +---t ApnXy = bn

or, in matrix notation,

ay dp ... A, || X% b,
Ay Ay ... Gy || X| | by
alll al‘12 M al‘lll -xn bn
that is,
Ax=b (1.1)

where A is the matrix of coefficients and x is the vector of unknowns. If b = 0 the
equations are called homogeneous, while if b # 0 they are called nonhomogeneous
(or inhomogeneous). Considering individual cases:

Case (i): If b # 0 and |A | # O then we have a unique solution x = A™'b.
Case (ii): If b =0 and |A| # 0 we have the trivial solution x = 0.

Case (iii): If b # 0 and |A| = 0 then we have two possibilities: either the equations are
inconsistent and we have no solution or we have infinitely many solutions.

Case (iv): If b = 0 and |A| = 0 then we have infinitely many solutions.

Case (iv) is one of the most important, since from it we can deduce the important
result that the homogeneous equation Ax = 0 has a non-trivial solution if and only
if |A|=0.
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1.2.6

Provided that a solution to (1.1) exists it may be determined in MATLAB using the
command x=A\b. For example, the system of simultaneous equations

x+y+z=6, x+2y+3z=14, x+4y+9z=36

may be written in the matrix form

1 1 1737« 6
1 2 3yl=|14
1 4 9]z 36

A x b

Entering A and b and using the command x = A\b provides the answer x=1,y=2,7=3.

Rank of a matrix

We adopt the following constructive definition of the rank, rank A of a matrix A. First,
using elementary row operations, the matrix A is reduced to echelon form

in which all the entries below the line are zero, and the leading element, marked *, in
each row above the line is non-zero. Then the number of non-zero rows in the echelon
form is equal to rank A. These are equivalent definitions.

When considering the solution of (1.1) we saw that provided the determinant of the
matrix A was not zero we could obtain explicit solutions in terms of the inverse matrix. How-
ever, when we looked at cases with zero determinant the results were much less clear. The
idea of the rank of a matrix helps to make these results more precise. Defining the
augmented matrix (A : b) for (1.1) as the matrix A with the column b added to it
then we can state the results of cases (iii) and (iv) of Section 1.2.5 more clearly as
follows:

If A and (A : b) have different rank then we have no solution to (1.1). If the two
matrices have the same rank then a solution exists, and furthermore the solution
will contain n — rank A free parameters.
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In MATLAB the rank of the matrix A is generated using the command rank (&) .
For example, if

-1
A=| 0
-1

N O N
S = DN

the commands

A=[-1 2 2; 0 0 1; -1 2 0];
rank (A)

generate
ans=2

In MAPLE the command is also rank () .

Vector spaces

Vectors and matrices form part of a more extensive formal structure called a vector space.
The theory of vector spaces underpins many approaches to numerical methods and the
approximate solution of many equations that arise in engineering analysis. In this section
we shall, briefly, introduce some basic ideas of vector spaces necessary for later work
in this chapter.

Definition

A real vector space V is a set of objects called vectors together with rules for addition
and multiplication by real numbers. For any three vectors a, b and ¢ in V and any real
numbers ¢ and S the sum a + b and the product oza also belong to V and satisfy the
following axioms:

(a) a+b=>b+a

(b) a+b+c)=(@+b>b)+c

(c) there exists a zero vector 0 such that
a+0=a

(d) for each a in V there is an element —a in V such that
a+(—a)=0

(e) aola+b)=coa+ ob

(f) (a+ Pa= ca+ Pa

(2) (ofa = a(fa)

(h) la=a
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1.3.1

Example 1.1

Solution

It is clear that the real numbers form a vector space. The properties given are also
satisfied by vectors and by m X n matrices so vectors and matrices also form vector
spaces. The space of all quadratics a + bx + cx” forms a vector space (check the axioms,
(a)—(h)). Many other common sets of objects also form vector spaces. If we can obtain
useful information from the general structure then this will be of considerable use in
specific cases.

Linear independence

The idea of linear dependence is a general one for any vector space. The vector x is said
to be linearly dependent on x,, x,, ..., x,, if it can be written as

X=0x, +0Xx,+ -+ a,x,

for some scalars ¢, ..., «,. The set of vectors y,, y,, ..., ¥, is said to be linearly
independent if and only if

ﬂ1y1+ﬂ2y2+”'+ﬂmym=0

implies that 8, = 3,=---=f,=0.
Let us now take a linearly independent set of vectors x,, x,, ..., x,, in V and
construct a set consisting of all vectors of the form

X=0x, +0Xx,+- -+ 0,Xx,

We shall call this set S(x,, x,, . .., x,,). It is clearly a vector space, since all the axioms
are satisfied.

Show that
1 0
e, =|0| and e,=|1
0 0

form a linearly independent set and describe S(e,, e,) geometrically.

‘We have that
o
0 = 0[81 + ﬁez = ﬂ
0

is only satisfied if &= #=0, and hence e, and e, are linearly independent.

o
S(e,, e,) is the set of all vectors of the form | #|, which is just the (x;, x,)
0

plane and is a subset of three-dimensional Euclidean space.
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1.3.2

If we can find a set B of linearly independent vectors x,, x,, . . . , X, in V such that
Sx,x5 ..., x)=V

then B is called a basis of the vector space V. Such a basis forms a crucial part of the
theory, since every vector x in V can be written uniquely as

X=0X + 00X, +- -+ Ox,

The definition of B implies that x must take this form. To establish uniqueness, let us
assume that we can also write x as

x=px +px,+ -+ fx,

Then, on subtracting,

0= (al _ﬂl)xl t-.-t (an _ﬂn)xn

and since x,, . . . , x,, are linearly independent, the only solution is &, = 3, s = S5, . . . ;
hence the two expressions for x are the same.

It can also be shown that any other basis for V must also contain n vectors and that
any n + 1 vectors must be linearly dependent. Such a vector space is said to have
dimension # (or infinite dimension if no finite » can be found). In a three-dimensional
Euclidean space

1 0 0
e, =10|, e,=|1|, e5=1|0
0 0 1

form an obvious basis, in fact the standard basis, and

is also a perfectly good basis. While the basis can change, the number of vectors in the
basis, three in this case, is an intrinsic property of the vector space. If we consider the
vector space of quadratics then the sets of functions {1, x, x*} and {1, x — 1, x(x — 1)}
are both bases for the space, since every quadratic can be written as a + bx + cx” or as
A + B(x — 1) + Cx(x — 1). This space is three-dimensional.

Transformations between bases

Since any basis of a particular space contains the same number of vectors, we can look
at transformations from one basis to another. We shall consider a three-dimensional
space, but the results are equally valid in any number of dimensions. Let e, e,, e; and
e/, e5, e; be two bases of a space. From the definition of a basis, the vectors e], e; and e}
can be written in terms of e,, e, and e; as

’
e =ape;+aye,t+aze;

4
e, = dape,+apne,taxe; 1.2)

’
€3 = dape;t+ane,taxe;
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Taking a typical vector x in V, which can be written both as

X =x.8, + X8, + x5, (1.3)
and as

x =xe] + x5e5 + x5e;
we can use the transformation (1.2) to give

7 4 ’
x =xj(ae, + a e, + aze;) + x3(ae, + ane, + aes) + x3(a;e; + ane, + azes)

7 ’ ’ ’ ’ ’ ’ 7 ’
= (xX{ay + X505, + x5a3)e) + (X1ay) + X0y + X303)€, + (X[as, + X5as, + Xidsz)es
On comparing with (1.3) we see that
_ ’ ’ ’
Xy =apX +apt+aps
_ ’ ’ ’
Xy = Xy + ApXy + dysXy
_ ’ ’ ’
X3 = A3 X + A3k + Ay
or
x =Ax

Thus changing from one basis to another is equivalent to transforming the coordinates
by multiplication by a matrix, and we thus have another interpretation of matrices.
Successive transformations to a third basis will just give x” = Bx”, and hence the
composite transformation is x = (AB)x” and is obtained through the standard matrix
rules.

For convenience of working it is usual to take mutually orthogonal vectors as a basis,
so that e;e;= &, and e/ e/ = &, where 0, is the Kronecker delta

1>
| if =i
§ij= 1 l. J
0 if i#j

Using (1.2) and multiplying out these orthogonality relations, we have
el'e Z age; Z a,e, = Zz ak,ap,ek Zz iy Oy = Z aay;
Hence
Zakiakj =6
k

or in matrix form
AA=|

Note that such a matrix A with A™' = AT is called an orthogonal matrix.
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1.3.3 Exercises

Which of the following sets form a basis for the Under this, how does the vector
three-dimensional Euclidean space TR*? X = x,e, + x,e, + x;e; transform and what

Lo - is the geometrical interpretation? What

1 |1 |3 lines transform into scalar multiples of
@ (0], 2], 12 () 0], |2],]2 themselves?
0 3 1113 5
S Show that the set of all cubic polynomials
|2 forms a vector space. Which of the following

© |0}, 1], sets of functions are bases of that space?

L0} 19] O] @ {1,x %, %)

Given the unit vectors

1
e; =0,
0

b {1-x,1+x,1=-x1+x%

© {1=-x1+x,x*(1=x),x(1+x)

(=]

0
e,=|1], es=|0 (@ {x(1—x),x(1+x),1-x,1+x}
1

(=]

(e) {1+42x, 2x+3x% 3x° +4x°, 4x° + 1}

find the transformation that takes these to the vectors

Describe the vector space

1 1 0

1 1 3 5 3

e/ =—|1|, e =—|-1], el =10 Sx+2x°, 2x = 3x°, x +x°)
1 f20 G 0 ’ )

What is its dimension?

1.4

The eigenvalue problem

A problem that leads to a concept of crucial importance in many branches of
mathematics and its applications is that of seeking non-trivial solutions x # 0 to
the matrix equation

Ax = Ax

This is referred to as the eigenvalue problem; values of the scalar A for which non-trivial
solutions exist are called eigenvalues and the corresponding solutions x # 0 are called
the eigenvectors. Such problems arise naturally in many branches of engineering. For
example, in vibrations the eigenvalues and eigenvectors describe the frequency and
mode of vibration respectively, while in mechanics they represent principal stresses
and the principal axes of stress in bodies subjected to external forces. In Section 1.11,
and later in Section 5.4.1, we shall see that eigenvalues also play an important role in
the stability analysis of dynamical systems.

For continuity some of the introductory material on eigenvalues and eigenvectors,
contained in Chapter 5 of MEM, is first revisited.
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14.1

Example 1.2

Solution

The characteristic equation

The set of simultaneous equations

Ax = Ax (1.4)
where Aisann X nmatrixandx =[x, x, ... x,]"isann x 1 column vector can be
written in the form

AU-Ax=0 (1.5)

where I is the identity matrix. The matrix equation (1.5) represents simply a set of
homogeneous equations, and we know that a non-trivial solution exists if

c(D)=|M-A|=0 (1.6)

Here ¢(A) is the expansion of the determinant and is a polynomial of degree n in A,
called the characteristic polynomial of A. Thus

cAD=+c A+, A+ + A+

n—

and the equation c¢(A) = 0 is called the characteristic equation of A. We note that this
equation can be obtained just as well by evaluating |A — Al| = 0; however, the form
(1.6) is preferred for the definition of the characteristic equation, since the coefficient
of A" is then always +1.

In many areas of engineering, particularly in those involving vibration or the control
of processes, the determination of those values of A for which (1.5) has a non-trivial
solution (that is, a solution for which x # 0) is of vital importance. These values of
A are precisely the values that satisfy the characteristic equation, and are called the
eigenvalues of A.

Find the characteristic equation for the matrix

1 1 -2
A=|-1 2 1
0 1 -1

By (1.6), the characteristic equation for A is the cubic equation

A-1 -1 2
c(A)=| 1 A-2  —1]=0
0 -1 A+1

Expanding the determinant along the first column gives
-1
A+1

1 -1
0 A+1

11-2
0 1

:(,1—1)‘/1_12 ’—(—1)’ +2

=(A-DIA-2)A+ D= 11+ A+ 1+2(1)
=A-DP-21-3)+1-1
=(A- DA -1-2)
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Thus, after simplification,
c)=-2P-21+2=0

is the required characteristic equation.

For matrices of large order, determining the characteristic polynomial by direct
expansion of |4l — A | is unsatisfactory in view of the large number of terms involved
in the determinant expansion. Alternative procedures are available to reduce the amount
of calculation, and that due to Dmitry Konstantinovich Faddeev (1907-1989) may be
stated as follows.

The method of Faddeev

If the characteristic polynomial of an n X n matrix A is written as
)J’! _plﬂ’n_l - _pn—l)“_pn

then the coefficients p,, p,, . . . , p, can be computed using
1
pr=;tr(Ar) (r=1,2,...,n)

where

A (r=1)
A =
AB,, (r=2,3,...,n)

and
B,=A,—pJ, where lis the n X n identity matrix
The calculations may be checked using the result that

B,=A,-p,J] mustbe the zero matrix

Example 1.3 Using the method of Faddeev, obtain the characteristic equation of the matrix A of
Example 1.2.

Solution 1 1 =2

We have n = 3, so let the characteristic equation be

c(A) = 3 _171/12 —pA=p;s
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1.4.2

Then, following the procedure described above,

pi=t(A)=(1+2-1)=2

11 =22
B =A-2l=|-1 0 1
0 1 -3
2 -1 5
A, =AB, =|-1 0 1
-1 -1 4

pP>= %tr(Az) = %(—2+O+4) =1

3 -1 5
B,=A,—I=|-1 -1 1
-1 -1 3
2 0 0
A,=AB,=| 0 -2 0
0 0 -2

P3= %tr(A3) = %(_2 -2-2)=-2
Then, the characteristic polynomial of A is
cA=-212-21+2

in agreement with the result of Example 1.2. In this case, however, a check may be
carried out on the computation, since

B,=A,+2=0

as required.

Eigenvalues and eigenvectors

The roots of the characteristic equation (1.6) are called the eigenvalues of the matrix A
(the terms latent roots, proper roots and characteristic roots are also sometimes used).
By the Fundamental Theorem of Algebra, a polynomial equation of degree n has
exactly n roots, so that the matrix A has exactly n eigenvalues A,,i=1,2, ..., n. These
eigenvalues may be real or complex, and not necessarily distinct. Corresponding to each
eigenvalue A,, there is a non-zero solution x = e; of (1.5); e; is called the eigenvector of
A corresponding to the eigenvalue A, We note that if x = e, satisfies (1.5) then any
scalar multiple SBe; of e, also satisfies (1.5), so that the eigenvector e; may only be deter-
mined to within a scalar multiple.
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Example 1.4

Solution

Determine the eigenvalues and eigenvectors for the matrix A of Example 1.2.

1 1 2
A=|-1 2 1
0 1 -1

The eigenvalues A, of A satisfy the characteristic equation ¢(4) = 0, and this has been
obtained in Examples 1.2 and 1.3 as the cubic

B-22-21+2=0

which can be solved to obtain the eigenvalues A,, 4, and A,. Alternatively, it may be
possible, using the determinant form |4/ — A|, or indeed (as we often do when seeking
the eigenvalues) the form |A — Al |, by carrying out suitable row and/or column opera-
tions to factorize the determinant. In this case

1-2 1 -2
A-All=| -1 2-2 1
0 1 “1-2

and adding column 1 to column 3 gives

-2 1 -1-2 1-12 1
1 2-4 0 |=-(1+A)] -1 2-1 0
0 1 -1-2 0 11

Subtracting row 3 from row 1 gives

1-2 0 0
—(1+4)] -1 2-4 0|l=—-(1+AH)(1-H(2-2)
0 1 1

Setting |A — Al | = 0 gives the eigenvalues as 4, =2, 4, =1 and A; = —1. The order in
which they are written is arbitrary, but for consistency we shall adopt the convention of
taking A;, 4,, . . ., 4, in decreasing order.

Having obtained the eigenvalues A, (i = 1, 2, 3), the corresponding eigenvectors e,
are obtained by solving the appropriate homogeneous equations

(A—Al)e,=0 1.7)
Wheni=1,4,=A4,=2and (1.7) is

-1 1 =2]|ey
-1 0 1l|le,|=0
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that is,
—e + ep—2e5=0
—e;;+0e,+ e53=0
Oe;;+ e, —3e,;=0

leading to the solution

en _—en _ en _
i
where £, is an arbitrary non-zero scalar. Thus the eigenvector e, corresponding to the
eigenvalue 4, =2 is
e, =401 3 11

As a check, we can compute

1 1 =211 2 1
Ae,=fi|-1 2 1||3|=4|6]|=203|=4e,
0 1 -1]|1 2 1

and thus conclude that our calculation was correct.
When i =2, 4,= A, =1 and we have to solve

0 1 =2||eyn
-1 1 1||exn|=0
0 1 =-2]|emx

that is,
Oey + ey —2€,,=0
—eytep+ epn=0
Oey + ey —2€,,=0

leading to the solution

where £, is an arbitrary scalar. Thus the eigenvector e, corresponding to the eigenvalue
A,=1is
e,=5[3 2 1"
Again a check could be made by computing Ae,.
Finally, when i = 3, 4, = A, = —1 and we obtain from (1.7)
2 1 _2 631
—1 3 1 €| = 0
0 1 0| e
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that is,
2e5+ e3—2e5;,=0
—e5 +3e5+ e3=0
Oe;; + e5,+ 0e3;=0

and hence

€3 €3 €33 ﬂ
A_2_3B_p

-1~ 0 -1

Here again f; is an arbitrary scalar, and the eigenvector e, corresponding to the
eigenvalue A, is

e;=4[1 0 1"

The calculation can be checked as before. Thus we have found that the eigenvalues of
the matrix A are 2, 1 and —1, with corresponding eigenvectors

Bl 3 1% AB 2 1" and A1 0 1

respectively.

Since in Example 1.4 the £, i = 1, 2, 3, are arbitrary, it follows that there are an
infinite number of eigenvectors, scalar multiples of each other, corresponding to each
eigenvalue. It is convenient to scale the eigenvectors according to some convention. A
convention frequently adopted is to normalize the eigenvectors so that they are
uniquely determined up to a scale factor of £1. The normalized form of an eigenvector
e=[e, e, ... e,]"isdenoted by é and is given by

s =L
Py

where

lel= J(&+e+.-+e)

For example, for the matrix A of Example 1.4, the normalized forms of the eigenvectors
are

é, =111 3/J11 1LJ11T,  &,=[3/J14 2/J14 1/ 14"

and

é,=[1/2 0 1/42T"

However, throughout the text, unless otherwise stated, the eigenvectors will always
be presented in their ‘simplest’ form, so that for the matrix of Example 1.4 we take

B, = B, = ;=1 and write
e=[1 3 11" e,=[3 2 1]" and e,=[1 0 1]°
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For a n X n matrix A the MATLAB command p=poly (A) generates an n + 1
element row vector whose elements are the coefficients of the characteristic polyno-
mial of A, the coefficients being ordered in descending powers. The eigenvalues
of A are the roots of the polynomial and are generated using the command
roots (p) . The command

[M,S]=eig(A)

generates the normalized eigenvectors of A as the columns of the matrix M and its
corresponding eigenvalues as the diagonal elements of the diagonal matrix S (M
and S are called respectively the modal and spectral matrices of A and we shall
return to discuss them in more detail in Section 1.6.1). In the absence of the left-
hand arguments, the command eig (A) by itself simply generates the eigenvalues
of A.

For the matrix A of Example 1.4 the commands

A=[1 1 -2; -1 2 1; 01 -1];
[M, S]=eig(A)
generate the output

0.3015 -0.8018 0.7071
M=0.9045 -0.5345 0.0000
0.3015 -0.2673 0.7071

2.0000 0 0
S=0 1.0000 0
0 0 -1.0000

These concur with our calculated answers, with B, = 0.3015, 3, = —0.2673 and
B =0.7071.

Using the Symbolic Math Toolbox in MATLAB we saw earlier that the matrix A
may be converted from numeric into symbolic form using the command A=sym (2) .
Then its symbolic eigenvalues and eigenvectors are generated using the sequence of
commands

A=[1 1 -2; -1 2 1; 0 1 -1];
A=sym(A) ;
[M,S]=eig(A)

as

M=[3/ ll 1]

[2, 3, 0]
1, 1, 1]
S=[1, 0, 0]
o, 2, o]
o, o, -1]

In MAPLE the command Eigenvalues (2) ; returns a vector of eigenvalues. The
command Eigenvectors (A); returns both a vector of eigenvalues as before and
a matrix containing the eigenvalues, so that the ith column is an eigenvector
corresponding to the eigenvalue in the ith entry of the preceding vector. Thus the
commands:
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with (LinearAlgebra) ,
A:=Matrix([[1,1,-2],[-1,2,1],[0,1,-1]11);
Eigenvalues (A) ;

return

2
-1
and the command

Eigenvectors (A) ;

returns
2 1 1 3
-1 3 0 2
1 1 1 1

Example 1.5  Find the eigenvalues and eigenvectors of

A- cosd —siné
sind cosé@

Solution Now

|;LI_A|:‘/1—COS49 sin @ ‘

—sin @ A—cosd
= —2Acos B+ cos’@+ sin*f= 1* — 2Acos O+ 1
So the eigenvalues are the roots of
A —2Acosf+1=0
that is,
A=cosf=xjsinb

Solving for the eigenvectors as in Example 1.4, we obtain

e,=[1 —j]" and e,=[1 jI"

This example may be done in MATLAB as
syms t;

A=[cos(t) —sin(t); sin(t) cos(t)l;
[M,S] =eig(a)

symplify (M)
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We see that eigenvalues can be complex numbers, and that the eigenvectors may

have complex components. This situation arises when the characteristic equation has
complex (conjugate) roots.

1.4.3 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

5 Using the method of Faddeev, obtain the M 0 4] r 11 2
characteristic polynomials of the matrices ©l o s 4 @ o 2 2
3 2 1 2 -1 12 -4 4 3] -1 1 3
0O 1 1 0
@4 5 -1 (b) - - -
) 3 4 -1 1 1 1 5 0 1 -1 0
1 1 10 @©fo 11 6 O] 1 2
6  Find the eigenvalues and corresponding 6 6 -2 -2 -1
eigenvectors of the matrices - - _
1 1 -4 2
@) {1 1} (b) {1 2} @2 5 4/ M™[o 3 1
I 302 -1 -1 0] 12 4
1.4.4 Repeated eigenvalues
In the examples considered so far the eigenvalues 4, (i =1, 2, . . . ) of the matrix A have
been distinct, and in such cases the corresponding eigenvectors can be found and are
linearly independent. The matrix A is then said to have a full set of linearly independent
eigenvectors. It is clear that the roots of the characteristic polynomial ¢(4) may not all
be distinct; and when c¢(4) has p < n distinct roots, ¢(1) may be factorized as
c(A)=(A=A)" A=) .. (A=-4,)"
indicating that the root A=A1,,i=1, 2, ..., p, is a root of order m;, where the integer m;
is called the algebraic multiplicity of the eigenvalue A,. Clearly m, +m,+ - - - +m,=n.
When a matrix A has repeated eigenvalues, the question arises as to whether it is
possible to obtain a full set of linearly independent eigenvectors for A. We first consider
two examples to illustrate the situation.
Example 1.6 Determine the eigenvalues and corresponding eigenvectors of the matrix
3 -3 2
A=|-1 5 =2
-1 30
Solution  We find the eigenvalues from

3-4 -3 2
-1 5-1 -2/=0
-1 3 -2

as A =4, 4, =1,=2.
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The eigenvectors are obtained from
(A-Ahe;=0 (1.8)
and when A = A, = 4, we obtain from (1.8)
e=[1 -1 -17"
When A= 4,=4,=2, (1.8) becomes
1 -3 2| exn
-1 3 =2||en|=0
-1 3 -2||exn
so that the corresponding eigenvector is obtained from the single equation
ey —3ey +2e,,=0 (1.9)

Clearly we are free to choose any two of the components e,,, e,, or e,; at will, with the
remaining one determined by (1.9). Suppose we set e,, = @zand e,; = 5, then (1.9) means
that e, = 3ar— 23, and thus

3 -2
e,=[B3a-28 o Bl'=ca|l|+8] 0 (1.10)
0 1

Now A = 2 is an eigenvalue of multiplicity 2, and we seek, if possible, two linearly
independent eigenvectors defined by (1.10). Setting o= 1 and =0 yields

e,=[3 1 0]
and setting =0 and =1 gives a second vector
e;=[-2 0 11"

These two vectors are linearly independent and of the form defined by (1.10), and it is
clear that many other choices are possible. However, any other choices of the form (1.10)
will be linear combinations of e, and e; as chosen above. For example, e =[1 1 1]
satisfies (1.10), bute = e, + e,.

In this example, although there was a repeated eigenvalue of algebraic multiplicity 2,
it was possible to construct two linearly independent eigenvectors corresponding to this
eigenvalue. Thus the matrix A has three and only three linearly independent eigenvectors.

Repeating the above, the MATLAB commands
A=[3 -3 2; -1 5 -2; -1 3 0];
[M,S]=eig(A)

generate

0.5774 -0.5774 -0.9633

M=-0.5774 -0.5774 -0.2075
-0.5774 -0.5774 0.1704

4.0000 0 0
S= 2.0000 0
0 0 2.0000
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Clearly the first column of M (corresponding to the eigenvalue A, = 4) is a scalar
multiple of e, The second and third columns of M (corresponding to the repeated
eigenvalue A, = A, = 2) are not scalar multiples of e, and e;. However, both satisfy
(1.10) and are equally acceptable as a pair of linearly independent eigenvectors
corresponding to the repeated eigenvalue. It is left as an exercise to show that both
are linear combinations of e, and e;.

Check that in symbolic form the commands

A=sym(A) ;
M, S]=eig(a)
generate

M=[-1, 3, -2]
[1, 1, 0]
[1, 0, 1]

S=[4, 0, 0]
[0, 2, 0]
[0, 0, 2]

In MAPLE the command Eigenvectors (A) ; produces corresponding results.
Thus the commands

with (LinearAlgebra) :
A:=Matrix([[3,-3,2],[-1,5,-2],[-1,3,0]11);
Eigenvectors (A) ;

return

Example 1.7 Determine the eigenvalues and corresponding eigenvectors for the matrix

[N I NS R \S]
[\ \S]

1
A=| 0
-1

Solution  Solving |A — Al| = 0 gives the eigenvalues as A, = 4, = 2, 4; = 1. The eigenvector
corresponding to the non-repeated or simple eigenvalue A, = 1 is easily found as

ex=[1 1 -1
When A= A4, = 4, = 2, the corresponding eigenvector is given by
(A-2l)e, =0
that is, as the solution of
—ey +2e,+2e,;=0 @)
e;=0 (i)

—ey, + 2en =0 (iii)
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Example 1.8

Solution

From (ii) we have e¢;; = 0, and from (i) and (ii) it follows that e,, = 2¢,,. We deduce
that there is only one linearly independent eigenvector corresponding to the repeated
eigenvalue A =2, namely

e,=[2 1 0o

and in this case the matrix A does not possess a full set of linearly independent
eigenvectors.

We see from Examples 1.6 and 1.7 that if an n X n matrix A has repeated eigenvalues
then a full set of n linearly independent eigenvectors may or may not exist. The num-
ber of linearly independent eigenvectors associated with a repeated eigenvalue A; of
algebraic multiplicity m; is given by the nullity g; of the matrix A — A,/, where

g;=n—rank (A-Al), with 1<g,<m

1

(1.11)

g; is sometimes referred to as the degeneracy of the matrix A — A,/ or the geometric
multiplicity of the eigenvalue A, since it determines the dimension of the space
spanned by the corresponding eigenvector(s) e;.

Confirm the findings of Examples 1.6 and 1.7 concerning the number of linearly
independent eigenvectors found.

In Example 1.6, we had an eigenvalue A, = 2 of algebraic multiplicity 2. Correspondingly,

3-2 -3 2 1 -3 2
A-LI=| -1 5-2 -2|=|-1 3 -2
-1 3 =2 -1 3 -2

and performing the row operation of adding row 1 to rows 2 and 3 yields

1 -3 2
0 0
0 0 O

Adding 3 times column 1 to column 2 followed by subtracting 2 times column 1 from
column 3 gives finally

S o =
oS o O
o o O

indicating a rank of 1. Then from (1.11) the nullity ¢, = 3 — 1 = 2, confirming that
corresponding to the eigenvalue A = 2 there are two linearly independent eigenvectors,
as found in Example 1.6.
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In Example 1.7 we again had a repeated eigenvalue A, = 2 of algebraic multiplicity 2.
Then

1-2 2 2 -1 2 2
A-2I=| O 2-2 I |=] 0 O
-1 2 2-2 -1 2 0

Performing row and column operations as before produces the matrix

S O =
oS o O
S = O

this time indicating a rank of 2. From (1.11) the nullity g, =3 — 2 = 1, confirming that
there is one and only one linearly independent eigenvector associated with this
eigenvalue, as found in Example 1.7.

1.4.5 Exercises

7  Obtain the eigen

eigenvectors of the matrices

Check your answers using MATLAB or MAPLE whenever possible.

values and corresponding using the concept of rank, determine how

many linearly independent eigenvectors

r correspond to this value of A. Determine a

2 21 0 -2 -2 corresponding set of linearly independent
(@ |1 3 1 (b) | -1 2 eigenvectors.
1 2 2 -1 -1 2
"4 6 6 7 5 4 Given that A =1 is a twice-repeated eigenvalue
of the matrix
© |1 3 2 @ |3 0 =2
-1 -5 -2 6 -2 -3 2 -1
A=|-1 0
8  Giventhat A=1 is a three-times repeated eigenvalue 1 -1 2

of the matrix

-3 -7 -5 how many linearly independent eigenvectors
correspond to this value of A? Determine a
A=|2 4 3 . . .
corresponding set of linearly independent
1 22 eigenvectors.
1.4.6 Some useful properties of eigenvalues

The following basic properties of the eigenvalues A,, 4, . .

., A, of an n X n matrix A

are sometimes useful. The results are readily proved either from the definition of
eigenvalues as the values of A satisfying (1.4), or by comparison of corresponding
characteristic polynomials (1.6). Consequently, the proofs are left to Exercise 10.
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Property 1.1

Property 1.2

Property 1.3

Property 1.4

Property 1.5

Property 1.6

The sum of the eigenvalues of A is

iﬂ,. — tr(A) = iaﬁ
i=1 i=1

The product of the eigenvalues of A is
[ 4=det(a)
i=1

where det(A) denotes the determinant of the matrix A.

The eigenvalues of the inverse matrix Al provided it exists, are

The eigenvalues of the transposed matrix A" are
Ay Ay o A,

as for the matrix A.

If k is a scalar then the eigenvalues of kA are

kA, kA ..., kA,

If k is a scalar and / the n X n identity (unit) matrix then the eigenvalues of A * kl

are respectively

Atk Atk ..., Atk

n
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Property 1.7

If k is a positive integer then the eigenvalues of A are

k k k
1> 2 L) ﬂ'n

1.4.7 Symmetric matrices

A square matrix A is said to be symmetric if A* = A. Such matrices form an important
class and arise in a variety of practical situations. Two important results concerning the
eigenvalues and eigenvectors of such matrices are

(a) the eigenvalues of a real symmetric matrix are real;

(b) for an n X n real symmetric matrix it is always possible to find n linearly
independent eigenvectors e, e,, . . . , e, that are mutually orthogonal so
that efe; = 0 for i # .

If the orthogonal eigenvectors of a symmetric matrix are normalized as

then the inner (scalar) product is

é-fé=5 (l,]=1,2ysn)

J U

where J; is the Kronecker delta defined in Section 1.3.2.
The set of normalized eigenvectors of a symmetric matrix therefore forms an
orthonormal set (that is, it forms a mutually orthogonal normalized set of vectors).

Example 1.9 Obtain the eigenvalues and corresponding orthogonal eigenvectors of the symmetric
matrix

0
0
3

>

Il
I SIS
S v oW

and show that the normalized eigenvectors form an orthonormal set.

Solution The eigenvalues of A are A, =6, 4, =3 and 4, = 1, with corresponding eigenvectors
e,=[1 2 0], e,=[0 0 1], e;=[-2 1 0]
which in normalized form are
é=[1 2 0I5, é=[0 0 1]y &=[-2 1 0]7./5
Evaluating the inner products, we see that, for example,

AT A AT A
é,6,=1+3+0=1, €,6,=-3+:+0=0
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and that, in general,

¢le=6 (j=1.2.3)

confirming that the eigenvectors form an orthonormal set.

1.4.8 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

10 Verify Properties 1.1-1.7 of Section 1.4.6. 12

11  Given that the eigenvalues of the matrix

4
A=| 2 5
-1 -1 0
are 5,3 and 1:

13
(a) confirm Properties 1.1-1.4 of Section
1.4.6;
(b) taking k = 2, confirm Properties 1.5-1.7 of
Section 1.4.6.

Determine the eigenvalues and corresponding
eigenvectors of the symmetric matrix

-3 -3 -3
A=|-3 1 -1
-3 -1 1

and verify that the eigenvectors are mutually
orthogonal.

The 3 x 3 symmetric matrix A has eigenvalues 6,
3 and 2. The eigenvectors corresponding to

the eigenvalues 6 and 3 are [1 1 2]" and

[1 1 ~—1]"respectively. Find an eigenvector
corresponding to the eigenvalue 2.

Numerical methods

In practice we may well be dealing with matrices whose elements are decimal numbers
or with matrices of high orders. In order to determine the eigenvalues and eigenvectors
of such matrices, it is necessary that we have numerical algorithms at our disposal.

1.5.1 The power method

Consider a matrix A having n distinct eigenvalues 4,, 4,, . . . , 4, and corresponding

n linearly independent eigenvectors e, e,, . .
basis, we can write any vector x = [x;,

form

., e,. Taking this set of vectors as the
X, ... x,]"as a linear combination in the

n
X = 0!181+0lzez+ . -+a,,e,,=20!,ve,-
i=1

Then, since Ae, = Ae; fori=1,2,...

n n
Ax = Az oe; = z o e,
i=1 i=1

, 1,
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and, for any positive integer k,

A'x = Z a e,
i=1
or, equivalently,
k

Ax = 1| ape, +i a,(&] e, 1.12)
=)

1

Assuming that the eigenvalues are ordered such that
|4 > | A2] > - > |4,
and that ¢ # 0, we have from (1.12)

lim Ax = Y ae, (1.13)
since all the other terms inside the square brackets tend to zero. The eigenvalue A, and its
corresponding eigenvector e, are referred to as the dominant eigenvalue and eigenvector
respectively. The other eigenvalues and eigenvectors are called subdominant.

Thus if we introduce the iterative process

£®D = Ax® k=0,1,2,...)

starting with some arbitrary vector x'” not orthogonal to e, it follows from (1.13)
that

*® = Aky©

will converge to the dominant eigenvector of A.

A clear disadvantage with this scheme is that if | 4,| is large then A'x® will become
very large, and computer overflow can occur. This can be avoided by scaling the vector
x® after each iteration. The standard approach is to make the largest element of x*
unity using the scaling factor max(x*’), which represents the element of x* having the
largest modulus.

Thus in practice we adopt the iterative process

(0)

P = Ax®
(k+1)
=L k=0,1,2,...) (1.14)
max(y )
and it is common to take x@ =1 1 ... 1]~

Corresponding to (1.12), we have

k

k 1‘ n )
Y =R, 0!181+Za,- A e
i=2 ’7’1

where

R = [max(y")max(y?) - - - max(y*)]™
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Figure 1.1 Outline
pseudocode program
for power method to
calculate the maximum
eigenvalue.

Example 1.10

Solution

Again we see that x* converges to a multiple of the dominant eigenvector e,. Also,
since Ax® — 1,x®, we have y* — 1,x®, and since the largest element of x* is unity,
it follows that the scaling factors max(y**") converge to the dominant eigenvalue A,.
The rate of convergence depends primarily on the ratios

Al |4 A,
Al A A
The smaller these ratios, the faster the rate of convergence. The iterative process

represents the simplest form of the power method, and a pseudocode for the basic
algorithm is given in Figure 1.1.

s 5 e e ey

{read in x" =[x, X, - - - X,] }
m« 0
repeat
m_old < m
{evaluate y = Ax}
{find m = max(y;) }
{x" = [y/m yym - - - y,/m]}
until abs(m — m_old) << tolerance
{write (results)}

Use the power method to find the dominant eigenvalue and the corresponding eigenvector
of the matrix

1 1 -2
A=|-1 2 1
0 1 -1

Takingx®=[1 1 1]"in (1.14), we have

11 =21 |0 0
y=Ax"=]-1 2 1||1|=]2]|=2[1|; A"=2
0 1 -1][1] |0 0
0
x“)=§y“)= 1
0
11 =2]fo] [1 0.5
yW=Ax"=|-1 2 1||1|=(2|=2]1 |; AV =2
0 1 -1][0o] |1 0.5

=32Y

1
2
JRC Y T
1
2
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Example 1.11

Solution

1o =2t ] Joas
yP=Ax?=|-1 2 1|[1]=]2]=2[1 |; AP =2
o 1 —t|[: [t o2s
0.25
M
0.25

Continuing with the process, we have
y¥=2[0375 1 0.375]", y®=2[0312 1 0.312]"
y©=2[0344 1 0.344]", y?=2[0328 1 0.328]"
y¥=2[0336 1 0.336]"

Clearly y® is approaching the vector 2[% 1 % ]T, so that the dominant eigenvalue is
2 and the corresponding eigenvector is [_% 1 _%]T, which conforms to the answer
obtained in Example 1.4.

Find the dominant eigenvalue of

1 0 -1 0

A= 0 1 1 0
- 1 2 1

0 0 1 -1

Starting withx® =[1 1 1 177, the iterations give the following:

Iteration k 1 2 3 4 5 6 7
Eigenvalue - 3 2.6667  3.3750 3.0741 3.2048  3.1636  3.1642
X 1 0 —0.3750 -0.4074 —-0.4578 —0.4549 —0.4621 —0.4621
xP 1 06667 0.6250 0.4815 0.4819  0.4624  0.4621  0.4621
xy) 11 1 1 1 1 1 1
xP 1 0 0.3750  0.1852  0.2651  0.2293  0.2403  0.2401

This indicates that the dominant eigenvalue is aproximately 3.16, with corresponding
eigenvector [-0.46 0.46 1 0.24]%

The power method is suitable for obtaining the dominant eigenvalue and correspond-
ing eigenvector of a matrix A having real distinct eigenvalues. The smallest eigenvalue,
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Example 1.12

Solution

provided it is non-zero, can be obtained by using the same method on the inverse matrix
A" when it exists. This follows since if Ax = Ax then A'x = 4 'x. To find the subdom-
inant eigenvalue using this method the dominant eigenvalue must first be removed from
the matrix using deflation methods. We shall illustrate such a method for symmetric
matrices only.

Let A be a symmetric matrix having real eigenvalues A,, 4,, ..., A, Then, by
result (b) of Section 1.4.7, it has n corresponding mutually orthogonal normalized
eigenvectors é,, é,, . . . , é, such that

ATA _ P
éé=9 (i,j=1,2,...,n
Let A, be the dominant eigenvalue and consider the matrix
A=A-1é¢é]
which is such that
A =(A- ﬂ'lélé—{)él =Aé, - llél(éTél) =46 - 4é =0
A, =Aé, - ﬂlél(éféz) = 1,6,
A= Aé; - /Ilél(é—lré3) = A:é;
Alén = Aén - /fi’lél(é—lrén) = ﬂ’nén
Thus the matrix A, has the same eigenvalues and eigenvectors as the matrix A, except
that the eigenvalue corresponding to A, is now zero. The power method can then be
applied to the matrix A, to obtain the subdominant eigenvalue 4, and its corresponding

eigenvector e,. By repeated use of this technique, we can determine all the eigenvalues
and corresponding eigenvectors of A.

Given that the symmetric matrix

A=

S NN
S N

0
0
3
has a dominant eigenvalue A4, = 6 with corresponding normalized eigenvector &, =

[1 2 0]7./5 find the subdominant eigenvalue 4, and corresponding eigenvector é,.

Following the above procedure,

_ 5 AT
A=A-1¢éé;

2 20 1 =10
=2 5 0[-§2|[1 2 01=|-% L o
00 3 0 0 0 3
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Applying the power method procedure (1.14), withx® =1 1 1717, gives
[ 2 2
5 15
yV=Ax"=|-L]=3-L|; 2)=3
3 I
21 1 0133
xV=|-%|=]-0133
| 1] 1
e 5
15 B
YO = Ax® =L =3] 2], A =3
| 3] 1
2] | 0044
@ _ _
x? =] 2] =] -0.044
1 1
[ 2] 2
45 135
Y= Ax®=| -2 =3|-2|; AP=3
| 3] 1
[ 0015
@ =|-0.015
|1

Clearly the subdominant eigenvalue of A is A, = 3, and a few more iterations confirm
the corresponding normalized eigenvector as &, =[0 0 1] This is confirmed by the
solution of Example 1.9. Note that the third eigenvalue may then be obtained using
Property 1.1 of Section 1.4.6, since

tr(A)=10=4,+ 4, + 4, =6+3+ A,

giving A; = 1. Alternatively, A, and &, can be obtained by applying the power method
to the matrix A, = A, — 1,é,é7.

Although it is good as an illustration of the principles underlying iterative methods
for evaluating eigenvalues and eigenvectors, the power method is of little practical
importance, except possibly when dealing with large sparse matrices. In order to eval-
uate all the eigenvalues and eigenvectors of a matrix, including those with repeated
eigenvalues, more sophisticated methods are required. Many of the numerical meth-
ods available, such as the Jacobi and Householder methods, are only applicable to
symmetric matrices, and involve reducing the matrix to a special form so that its
eigenvalues can be readily calculated. Analogous methods for non-symmetric matrices
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are the LR and QR methods. It is methods such as these, together with others based on
the inverse iterative method, that form the basis of the algorithms that exist in modern
software packages such as MATLAB. Such methods will not be pursued further here,
and the interested reader is referred to specialist texts on numerical analysis.

14

15

16

1.5.2 Exercises

Use the power method to estimate the dominant 17  Show that the characteristic equation of the matrix
eigenvalue and its corresponding eigenvector for the
matrix 10 -1 O
43 2 A= -l 2
A=[3 5 2 0
2 2 1 is
Stop when you .consider the eigenvalue estimate is fA) =2 =152 +51A-17=0
correct to 2 decimal places.
Using the Newton—Raphson iterati d
Repeat Exercise 14 for the matrices sing the Newton—Rapiison ileralive procecure
r A
210 30 1 1%1:/1,,7]{,((/{))
@A=[1 2 1 b A=[2 2 2 "
1 1 2 4 2 5 with a suitable initial value in the interval 9 < 4
- < 11, determine the eigenvalue in this interval
2 -1 0 correct to 3 decimal places.
_1 ) Using Properties 1.1 and 1.2 of Section 1.4.6,
(c) A= determine the other two eigenvalues of A to the
0 -1 2 -1 same approximation.
L0 0 -1 2
18  (a) If the eigenvalues of the n X n matrix A are

The symmetric matrix

31 1
A=|1 3 1
1 1 5

has dominant eigenvector e, =[1 1 21%
Obtain the matrix

A>AL>A...4,=0

show that the eigenvalue A, can be found by
applying the power method to the matrix k/ - A,
where I is the identity matrix and k = A,.

(b) Show that the eigenvalues of the matrix

A=A-¢¢" 2 -1 0
where /, is the eigenvalue corresponding to the A=|-1 2 -1
eigenvector e,. Using the deflation method, obtain 0 -1 2

the subdominant eigenvalue A, and corresponding
eigenvector e, correct to 2 decimal places, taking
[1 1 1]"as afirst approximation to e,. Continue
the process to obtain the third eigenvalue A, and its
corresponding eigenvector e;.

satisfy the inequality
0=A=<4

Hence, using the result proved in (a), determine the
smallest modulus eigenvalue of A correct to
2 decimal places.
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Reduction to canonical form

1.6.1

In this section we examine the process of reduction of a matrix to canonical form.
Specifically, we examine methods by which certain square matrices can be reduced or
transformed into diagonal form. The process of transformation can be thought of as a
change of system coordinates, with the new coordinate axes chosen in such a way that
the system can be expressed in a simple form. The simplification may, for example, be
a transformation to principal axes or a decoupling of system equations.

We will see that not all matrices can be reduced to diagonal form. In some cases we
can only achieve the so-called Jordan canonical form, but many of the advantages of the
diagonal form can be extended to this case as well.

The transformation to diagonal form is just one example of a similarity transform.
Other such transforms exist, but, in common with the transformation to diagonal form,
their purpose is usually that of simplifying the system model in some way.

Reduction to diagonal form

For an n X n matrix A possessing a full set of n linearly independent eigenvectors
e, e, ...,e, we can write down a modal matrix M having the n eigenvectors as its
columns:

M=1le, e, e; ... e,

The diagonal matrix having the eigenvalues of A as its diagonal elements is called the
spectral matrix corresponding to the modal matrix M of A, often denoted by A.
That is,

with the (i)th element being given by 4,8, where ¢; is the Kronecker delta and i, j = I,
2, ..., n. Itis important that the pair of matrices M and A are written down correctly.
If the ith column of M is the eigenvector e, then the element in the (i, i) position in

A must be 4, the eigenvalue corresponding to the eigenvector e;.

We saw in Section 1.4.2 that in MATLAB the command
[M,S]=eig(R)

generates the modal and spectral matrices for the matrix A. (Note: For convenience
S is used to represent A when using MATLAB; whilst both are produced by the
command Eigenvalues (A) in MAPLE.)
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Example 1.13

Solution

Obtain a modal matrix and the corresponding spectral matrix for the matrix A of
Example 1.4.

1 1 -2
A=|-1 2 1
0 1 -1

having eigenvalues 4, =2, 4, =1 and A, = —1, with corresponding eigenvectors
e=[1 3 11", e,=[3 2 11T e;=[1 0 I
Choosing as modal matrix M =[e, e, e;]" gives
1 3 1
M=|3 2 0
1 1 1

The corresponding spectral matrix is

2 0 O
A=|0 1 0
0 0 -1

Returning to the general case, if we premultiply the matrix M by A, we obtain

AM=Ale, e, ... e,]=[Ae, Ae, ... Ae,
=[Ae, A.e, ... Ae,] (by definition)
so that
AM=MA (1.15)
Since the n eigenvectors ey, e,, . . . , e, are linearly independent, the matrix M is non-

singular, and so M ™" exists. Thus premultiplying by M ™" gives
MAM=M"'MA=A (1.16)

indicating that the similarity transformation M—'AM reduces the matrix A to the
diagonal or canonical form A. Thus a matrix A possessing a full set of linearly inde-
pendent eigenvectors is reducible to diagonal form, and the reduction process is often
referred to as the diagonalization of the matrix A. Since

A=MAM"' 1.17)

it follows that A is uniquely determined once the eigenvalues and corresponding
eigenvectors are known. Note that knowledge of the eigenvalues and eigenvectors alone
is not sufficient: in order to structure M and A correctly, the association of eigenvalues
and the corresponding eigenvectors must also be known.
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Example 1.14 Verify results (1.16) and (1.17) for the matrix A of Example 1.13.

Solution Since

13 2 2 2
M=|3 2 0| wehave M‘lzé 30 -3
! 12 7
Taking
2.0 0
A=|o 1 o
0 -1

matrix multiplication confirms the results

M 'AM=A, A=MAM"'

For an n X n symmetric matrix A it follows, from result (b) of Section 1.4.7, that

to the n real eigenvalues 4,, A,, ..., A4, there correspond n linearly independent
normalized eigenvectors é,, é,, . . . , €, that are mutually orthogonal so that

éie,=0 (i,j=1,2,...,n)
The corresponding modal matrix

M =[e 2 é,]

Ta
€, e.e, e€,6 e e,
STon (8 ére, é.é éé
MM =|°2 [él éz én]: 261 2¢2 2¢n
AT AT A AT A AT A
_en enel eneZ enen

0 0

0 o0

= =I
0 0 1

That is, M'M=1 and so M" = M. Thus M is an orthogonal matrix (the term ortho-
normal matrix would be more appropriate, but the nomenclature is long established).

It follows from (1.16) that a symmetric matrix A can be reduced to diagonal form A
using the orthogonal transformation

MAM = A (1.18)
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Example 1.15

Solution

1.6.2

For the symmetric matrix A considered in Example 1.9 write down the corresponding
orthogonal modal matrix M and show that M 'AM = A where A is the spectral matrix.

From Example 1.9 the eigenvalues are 4, = 6, 1, = 3 and A, = 1, with corresponding
normalized eigenvectors

é,=[1 2 0175, é,=[0 0 11, é=[2 1 0]7.5

The corresponding modal matrix is

0 1 0

and, by matrix multiplication,

6 0 0
M=l0 3 0|=A
0 0 1

The Jordan canonical form

If an n X n matrix A does not possess a full set of linearly independent eigenvectors then
it cannot be reduced to diagonal form using the similarity transformation M~'AM. In
such a case, however, it is possible to reduce A to a Jordan canonical form (or Jordan
normal form), making use of ‘generalized’ eigenvectors.

As indicated in (1.11), if a matrix A has an eigenvalue A, of algebraic multiplicity m;
and geometric multiplicity g;, with 1 < g, < m,, then there are g, linearly independent
eigenvectors corresponding to A,. Consequently, we need to generate m; — g; generalized
eigenvectors in order to produce a full set. To obtain these, we first obtain the g, linearly
independent eigenvectors by solving

(A=Al =0

Then for each of these vectors we try to construct a generalized eigenvector e such
that

(A-Alei=e;

If the resulting vector e} is linearly independent of all the eigenvectors (and generalized
eigenvectors) already found then it is a valid additional generalized eigenvector. If
further generalized eigenvectors corresponding to /4, are needed, we then repeat the pro-
cess using

(A-Alei* =ef

and so on until sufficient vectors are found.
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Example 1.16

Solution

Obtain a generalized eigenvector corresponding to the eigenvalue A= 2 of Example 1.7.

For

1
A=| 0
-1

NN
N = N

we found in Example 1.7 that corresponding to the eigenvalue A, =2 there was only one
linearly independent eigenvector

e,=[2 1 0

and we need to find a generalized eigenvector to produce a full set. To obtain the
generalized eigenvector ef, we solve

(A=2l)et=e,

that is, we solve

-1 2 2| ef 2
0 0 1||lex|=|1
-1 2 0] ef 0

At once, we have ef; = 1 and e = 2¢7, and so
ex=[2 1 11"

Thus, by including generalized eigenvectors, we have a full set of eigenvectors for the
matrix A given by

e=12 1 0" e,=[2 1 1% es=[1 -1 1]"

If we include such generalized eigenvectors, it is always possible to obtain for
an n X n matrix A a modal matrix M with n linearly independent columns e,, e,,
..., e, Corresponding to (1.15), we have

AM=MJ

where J is called the Jordan normal form of A. Premultiplying by M™' then gives
M 'AM=J 1.19)

The process of reducing A to J is known as the reduction of A to its Jordan normal, or
canonical, form. This is named after Marie Ennemond Camille Jordan (1838-1922)
who was particularly known for his work on analysis and group theory.

If A has p distinct eigenvalues then the matrix J is of the block-diagonal form

J=[J, 4y o J]

where each submatrix J; (i=1, 2, ..., p) is associated with the corresponding eigenvalue
A;. The submatrix J; will have A, as its leading diagonal elements, with zeros elsewhere
except on the diagonal above the leading diagonal. On this diagonal the entries will have
the value 1 or 0, depending on the number of generalized eigenvectors used and how they
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Example 1.17

Solution

were generated. To illustrate this, suppose that A is a 7 X 7 matrix with eigenvalues
A, =1, A, = 2 (occurring twice), A; = 3 (occurring four times), and suppose that the
number of linearly independent eigenvectors generated in each case is

A, =1, 1 eigenvector
A,=2, 1 eigenvector
A, =3, 2 eigenvectors

with one further generalized eigenvector having been determined for A4, = 2 and two
more for 4, =3.

Corresponding to A, = 1, the Jordan block J; will be just [1], while that corresponding
to A, =2 will be

Jz{z 1}
0 2

Corresponding to A, = 3, the Jordan block J, can take one of the two forms

depending on how the generalized eigenvectors are generated. Corresponding to 4, = 3,
we had two linearly independent eigenvectors e;, and e,,. If both generalized
eigenvectors are generated from one of these vectors then J; will take the form J; |,
whereas if one generalized eigenvector has been generated from each eigenvector
then J; will take the form J;,.

Obtain the Jordan canonical form of the matrix A of Example 1.16, and show that
M~'AM = J where M is a modal matrix that includes generalized eigenvectors.

For
1 2 2
A= 0 2 1
-1 2 2

from Example 1.16 we know that the eigenvalues of A are A, =2 (twice) and 4, = 1.
The eigenvector corresponding to A, = 1 has been determined ase; = [1 1 —1]"in
Example 1.7 and corresponding to A4, = 2 we found one linearly independent eigen-
vector ¢, = [2 1 0] and a generalized eigenvector e = [2 1 1]% Thus the
modal matrix including this generalized eigenvector is

2 2 1

1 1

M=]1
0 1 -1
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and the corresponding Jordan canonical form is

To check this result, we compute M as

2 -3 -1
M'=|-1 2 1
-1 2 0

and, forming M~'AM, we obtain J as expected.

In MATLAB the command J=jordan (A) computes the Jordan form of A; including
the case when J is diagonal and all the eigenvectors of A are linearly independent.
The command

[M,J] =jordan (&)
also computes the similarity transformation or modal matrix M that may include
generalized eigenvectors.

Numerical calculation of the Jordan form is very sensitive to round-off errors and
so on. This makes it very difficult to compute the Jordan form reliably and almost
any change in A causes it to be diagonal.

For the matrix A in Example 1.17 the sequence of commands

A=[1 2 2; 02 1; -1 2 2];
[M,J] =jordan (A)

returns
-1 -2 2
=-1 -1 1
1 0 -1
1 0 0
J= 0 2 1
0 0 2

which is equally acceptable to the solution given in Example 1.17. (This can be
checked by evaluating M™AM.)
Using the Symbolic Math Toolbox in MATLAB the sequence of commands
A=[1 2 2; 02 1; -1 2 2];
AS=sym(A)
[M,J] =jordan (AS)
returns the same output as above. In practice, this sequence of commands is only

really effective when the elements of the matrix A are integers or ratios of small
integers.
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19

20

21

22

1.6.3 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

Show that the eigenvalues of the matrix

-1 6 -12
A=| 0 -13 30
0 -9 20

are 5, 2 and —1. Obtain the corresponding
eigenvectors. Write down the modal matrix
M and spectral matrix A. Evaluate M~ and
show that M~'AM = A.

Using the eigenvalues and corresponding
eigenvectors of the symmetric matrix

A=

S NN
S N

0
0
3

obtained in Example 1.9, verify that

M'AM = A where M and A are respectively
a normalized modal matrix and a spectral
matrix of A.

Given
5 10 8
A=|10 2 =2
8 -2 11

find its eigenvalues and corresponding
eigenvectors. Normalize the eigenvectors
and write down the corresponding normalized
modal matrix M. Write down M" and show
that M'AM = A where A is the spectral
matrix of A.

Determine the eigenvalues and corresponding
eigenvectors of the matrix

1 -2
A=-1 2 1
0 -1

Write down the modal matrix M and spectral
matrix A. Confirm that M~ AM = A and that
A=MAM™".

23

24

25

26

Determine the eigenvalues and corresponding
eigenvectors of the symmetric matrix

3 -2 4
A=|-2 -2 6
4 6 -1

Verify that the eigenvectors are orthogonal,
and write down an orthogonal matrix L such that
L"AL = A, where A is the spectral matrix of A.

A 3 X 3 symmetric matrix A has eigenvalues
6, 3 and 1. The eigenvectors corresponding

to the eigenvalues 6 and 1 are [I 2 0]" and
[2 1 0] respectively. Find the eigenvector
corresponding to the eigenvalue 3, and hence
determine the matrix A.

Given that A= 1 is a three times-repeated eigenvalue
of the matrix

-3 -7 =5
A=| 2 4 3
1 2 2

use the nullity, given by (1.11), of a suitable matrix to
show that there is only one corresponding linearly
independent eigenvector. Obtain two further
generalized eigenvectors, and write down the
corresponding modal matrix M. Confirm that
M~'AM = J, where J is the appropriate Jordan matrix.

Show that the eigenvalues of the matrix

1 0o 0 -3
0 1 -3 0
-05 -3 1 05

-3 0 0 1

A=

are —2, —2, 4 and 4. Using the nullity, given

by (1.11), of appropriate matrices, show that
there are two linearly independent eigenvectors
corresponding to the repeated eigenvalue —2
and only one corresponding to the repeated
eigenvalue 4. Obtain a further generalized
eigenvector corresponding to the eigenvalue 4.
Write down the Jordan canonical form of A.
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1.6.4 Quadratic forms

A quadratic form in n independent variables x,, x,, . . . , x, is a homogeneous second-
degree polynomial of the form

n n
V(xy, X9y o0 5 X,) = Z z a; X X;

i=1 j=1
=a, X3+ apx X, + -+ a,xx,

+ Ay XX, + Ao X5 + - -+ Ay XX,

+ A, X, X, F ApX, Xy + X2 (1.20)
Defining the vectorx =[x, x, --- x,]" and the matrix
ay dyp - Ay
A= ay dp Ay
a, d, ... da,,

the quadratic form (1.20) may be written in the form
V(x) =x"Ax 1.21)

The matrix A is referred to as the matrix of the quadratic form and the determinant of
A is called the discriminant of the quadratic form.

Now a; and a;; in (1.20) are both coefficients of the term x;x; (i # j), so that for i # j
the coefficient of the term x.x; is a; + a;. By defining new coefficients ajand aj;for xx;
and x;x; respectively, such that a/;= a};= %(a,-j + a;), the matrix A associated with the
quadratic form V(x) may be taken to be symmetric. Thus for real quadratic forms we
can, without loss of generality, consider the matrix A to be a symmetric matrix.

Example 1.18 Find the real symmetric matrix corresponding to the quadratic form

VX, X, X3) = X1+ 3x3 — 4x3 — 3x,2, + 2x,%; — 5x,X,

Solution Ifx=[x, x, x;]% then by comparing the coefficients of (1.20) and the above expres-
sion, we find that

3 2
L = 5lx
T
V(xi, X, x3) = [x1 X x3] —3 3 -3 X | =x Ax
2 2
2 5
e R

where the matrix of the quadratic form is
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Example 1.19

Solution

In Section 1.6.1 we saw that a real symmetric matrix A can always be reduced to the
diagonal form

M'AM = A

where K is the normalized orthogonal modal matrix of A and A is its spectral matrix.
Thus for a real quadratic form we can specify a change of variables

x= My
wherey=[y, y, ... ,]% such that
V=x"Ax =y" M"A My = y"Ay
giving
V= Ayi+ A+ + Ay (1.22)

Hence the quadratic form xATAx may be reduced to the sum of squares by the trans-
formation x = My, where M is the normalized modal matrix of A. The resulting form
given in (1.22) is called the canonical form of the quadratic form V given in (1.21). The
reduction of a quadratic form to its canonical form has many applications in engineer-
ing, particularly in stress analysis.

Find the canonical form of the quadratic form
V =2x3 + 5x3 + 3x3 + 4x,x,

Can V take negative values for any values of x,, x, and x;?

At once, we have

2 20
V=x"12 5 0lx=x"Ax
0 0 3

where

x=[x x, x|, A=

S DN
S N
w o O

The real symmetric matrix A is the matrix of Example 1.15, where we found the
normalized orthogonal modal matrix X and spectral matrix A to be

Lo 2/ 6 0 0

z&:zﬁ o Jf| A=|0 3 0
0O 1 0 0 0 1
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Example 1.20

such that M"AM = A. Thus, setting x = IVIy, we obtain

6 0 0
V=y"MAMy =yT[0 3 0|y =6y"+3)2+y
0 0 1

as the required canonical form. . .

Clearly V is non-negative for all y;, y, and y;. Since x = My and M is an orthogonal
matrix it follows that y = M ™x, so for all x there is a corresponding y. It follows that V
cannot take negative values for any values of x,, x, and x;.

The quadratic form of Example 1.19 was seen to be non-negative for any vector x,
and is positive provided that x # 0. Such a quadratic form x"Ax is called a positive-
definite quadratic form, and, by reducing to canonical form, we have seen that this
property depends only on the eigenvalues of the real symmetric matrix A. This leads us
to classify quadratic forms V = x"Ax, where x =[x, x, ... x,]" in the following
manner.

(a) Vs positive-definite (that is V > 0 for all vectors x except x = 0) if and only
if all the eigenvalues of A are positive.

(b) Vs positive-semidefinite (that is V = 0 for all vectors x and V = 0 for at least
one vector x # 0) if and only if all the eigenvalues of A are non-negative and
at least one of the eigenvalues is zero.

(c) Vis negative-definite if —V is positive-definite, with a corresponding condition
on the eigenvalues of —A.

(d) Vis negative-semidefinite if —V is positive-semidefinite, with a corresponding
condition on the eigenvalues of —A.

(e) V is indefinite (that is V takes at least one positive value and at least one
negative value) if and only if the matrix A has both positive and negative
eigenvalues.

Since the classification of a real quadratic form x"Ax depends entirely on the location
of the eigenvalues of the symmetric matrix A, it may be viewed as a property of A itself.
For this reason, it is common to talk of positive-definite, positive-semidefinite, and so
on, symmetric matrices without reference to the underlying quadratic form.

Classify the following quadratic forms:

(@) 3x+2x3+3x7 - 2x,%, — 25,43

(b)  Tx}+x5+x3—dxx, — 4x,x; + 8x,%3

(€)  —3xT—5x%—3x3+ 2x,x, + 2%, — 2x,X;

(d)  4x?+x3+15x7 — 4x,x,
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Solution

(a)  The matrix corresponding to the quadratic form is

3 -1 0
A=-1 2 -1
0o -1 3

The eigenvalues of A are 4, 3 and 1, so the quadratic form is positive-definite.

(b)  The matrix corresponding to the quadratic form is

7 =2 =2
A=-2 1 4
-2 4 1

The eigenvalues of A are 9, 3 and —3, so the quadratic form is indefinite.

(c)  The matrix corresponding to the quadratic form is

-3 1 -1
A=|1 -5 1
-1 1 -3

The eigenvalues of A are —6, —3 and —2, so the quadratic form is negative-definite.

(d) The matrix corresponding to the quadratic form is

4 -2 0
A=-2 1 0
0 0 15

The eigenvalues of A are 15, 5 and 0, so the quadratic form is positive-
semidefinite.

In Example 1.20 classifying the quadratic forms involved determining the eigenvalues
of A. If A contains one or more parameters then the task becomes difficult, if not
impossible, even with the use of a symbolic algebra computer package. Frequently in
engineering, particularly in stability analysis, it is necessary to determine the range of
values of a parameter k, say, for which a quadratic form remains definite or at least semi-
definite in sign. J. J. Sylvester determined criteria for the classification of quadratic forms
(or the associated real symmetric matrix) that do not require the computation of the
eigenvalues. These criteria are known as Sylvester’s conditions, which we shall briefly
discuss without proof.

In order to classify the quadratic form x"Ax Sylvester’s conditions involve consideration
of the principal minors of A. A principal minor P, of order i (i=1,2, ..., n) of an
n X n square matrix A is the determinant of the submatrix, of order i, whose principal
diagonal is part of the principal diagonal of A. Note that when i = n the principal minor
is det A. In particular, the leading principal minors of A are

ap dp dp
ap  dp

D1=|a11|, D2=

, Dy=l|ay ay ay|, ..., D,=detA
ay dpn
az dxnp a4z
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Example 1.21  Determine all the principal minors of the matrix

A=

S ;=
[« RN SR
wm O© O

and indicate which are the leading principal minors.

Solution (a) The principal minor of order three is
P,=detA=52 - k% (leading principal minor D;)
(b)  The principal minors of order two are
(i)  deleting row 1 and column 1,
2 0
P, = - =10
(i)  deleting row 2 and column 2,

1 0

Py = =5
22 O 5
(iii) deleting row 3 and column 3,
1 k& 2 . - .
Py = by =2-k> (leading principal minor D,)

(c)  The principal minors of order one are
(i)  deleting rows 1 and 2 and columns 1 and 2,
P, =151=5
(i) deleting rows 1 and 3 and columns 1 and 3,
P,=121=2
(iii) deleting rows 2 and 3 and columns 2 and 3,

P;=111=1 (leading principal minor D))

Sylvester’s conditions: These state that the quadratic form xTAx, where A is an
n X n real symmetric matrix, is

(a) positive-definite if and only if all the leading principal minors of A are

positive; thatis, D; >0 (=1, 2, ..., n);
(b) negative-definite if and only if the leading principal minors of A alternate in
sign with a,, < 0; that is, (-1))D, > 0(i=1,2, ..., n);

(c) positive-semidefinite if and only if det A = 0 and all the principal minors of
A are non-negative; that is, det A = 0 and P. = 0 for all principal minors;

(d) negative-semidefinite if and only if det A = 0 and (—1)'P, = 0 for all principal
minors.
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Example 1.22

Solution

Example 1.23

Solution

For what values of k is the matrix A of Example 1.21 positive-definite?
We need for all leading principal minors of A to be positive. These are

D=1, D,=2-k? D,=52-k%

These will be positive provided that 2 — k* > 0, so the matrix will be positive-definite
if k> < 2, thatis — 42 < k< 4/2.

Using Sylvester’s conditions, confirm the conclusions of Example 1.20.

(a) The matrix of the quadratic form is

3 -1 0
A=-1 2 -1
0o -1 3

and its leading principal minors are
3 -1
3, ‘ ‘=5, det A=12
-1 2
Thus, by Sylvester’s condition (a), the quadratic form is positive-definite.

(b) The matrix of the quadratic form is

7 -2 =2
A=|-2 1 4
-2 4 1

and its leading principal minors are

7 =2
7, =3, detA=-81
-2 1

Thus none of Sylvester’s conditions can be satisfied, and the quadratic form is
indefinite.

(¢)  The matrix of the quadratic form is

-3 1 -1
A=|1 -5 1
-1 1 -3

and its leading principal minors are
-3 1 ‘

=14, detA=-36
1 -5

s, ‘

Thus, by Sylvester’s condition (b), the quadratic form is negative-definite.
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27

28

29

30

(d) The matrix of the quadratic form is
4 -2 0
A=|-2 1 0
0O 0 15

and its leading principal minors are
4 =2
47 ‘ ) ’ = 0, det A = O

We therefore need to evaluate all the principal minors to see if the quadratic form
is positive-semidefinite. The principal minors are

4, 1, 15, ‘
-2 1

4 —2‘_ ‘1 0‘_1 ‘4 0‘

=60, detA=0

15 0 15

Thus, by Sylvester’s condition (c), the quadratic form is positive-semidefinite.

1.6.5 Exercises

Reduce the quadratic form
2x3 + 5x3 + 2x3 + 4oy, + 2x3x, + 4x,x,

to the sum of squares by an orthogonal
transformation.

Classify the quadratic forms

(@) X2+ 2x3 + Tx2 = 2x,x, + dx,x6, — 22,3

(b) X7+ 2x3 + 5x3 — 2x,%, + 4x,x; — 250,75

(©) x% 4 2x3 +4x2 — 2x,x, + 4x, x5 — 22,3

(a) Show that ax? — 2bx,x, + cx? is positive-definite
if and only if @ > 0 and ac > b

(b) Find inequalities that must be satisfied by a and

b to ensure that 2x? + ax? + 3x3 — 2x,x, + 2bx,x;
is positive-definite.

Evaluate the definiteness of the matrix

2 1 -1
A= 1 2 1
-1 1 2

31

32

33

(a) by obtaining the eigenvalues;
(b) by evaluating the principal minors.

Determine the exact range of k for which the
quadratic form

O, v, 2) =k(x*+y3) +2xy + 22 + 2xz — 2y
is positive-definite in x, y and z. What can be said

about the definiteness of Q when k =27

Determine the minimum value of the constant
a such that the quadratic form

1 1
x| 1 a 2|x
1 2 a

where x =[x, x, x,]%, is positive-definite.

Express the quadratic form
0 = X3+ 4x,x, — 4x,x, — 62,0, + (X3 + x3)

in the form x"Ax, where x =[x, x, x;]"and
A is a symmetric matrix. Hence determine

the range of values of A for which Q is
positive-definite.
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Functions of a matrix

Let A be an n X n constant square matrix, so that
A’=AA A= AA’=A’A, and so on

are all defined. We can then define a function f(A) of the matrix A using a power series
representation. For example,

f(A) = Zp:ﬂ,A’ =pl+BA+---+BA (1.23)

where we have interpreted A° as the n X n identity matrix /.

Example 1.24  Given the 2 x 2 square matrix
1 -1
A =

2
determine f(A) = Zﬂ,A’ when =1, §,=-1and 5, =3.

r=0

Solution Now

f(A):,BOI+/f1A+/32A2=1L1) (j_l{l _1}+3{_1 —4}

-3 -1
2 19

Note that A is a 2 X 2 matrix and f(A) is another 2 X 2 matrix.

Suppose that in (1.23) we let p — oo, so that
fa) =3 BA
r=0
We can attach meaning to f(A) in this case if the matrices
P r
(A=Y BA
r=0

tend to a constant n X n matrix in the limit as p — oo,
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Example 1.25

For the matrix

ol

using a computer and larger and larger values of p, we infer that

fA) = lim Y
r=0

A" _|271828 0
r! 0 2.718 28

indicating that

e O
f(l‘\)={0 J

What would be the corresponding results if

-1 0 -t 0
(a)A={0 1}, (b)A:{0 J?

Solution (a)

(b)

The computer will lead to the prediction

(2.71828)" 0
0

A) =
e 2.718 28

indicating that

—1
e 0
(A) =
f 0 e
The computer is of little help in this case. However, hand calculation shows that
we are generating the matrix

A - l—t+if -+ ... 0

0 L+t+it+00+

indicating that

B
f(A) = [e ]
0 e

By analogy with the definition of the scalar exponential function

2.2 r,r oo

ar _ a‘t a't < (an)
e“=1+at+ TR +-~-—Z 3

r=0
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Theorem 1.1

Example 1.26

Solution

it is natural to define the matrix function e”, where ¢ is a scalar parameter, by the
power series

f(A) = i'ﬂ;t’ (1.24)
r=0

r

In fact the matrix in part (b) of Example 1.25 illustrates that this definition is reasonable.
In Example 1.25 we were able to spot the construction of the matrix f(A), but this will
not be the case when A is a general n X n square matrix. In order to overcome this limitation
and generate a method that will not rely on our ability to ‘spot” a closed form of the limiting
matrix, we make use of the Cayley—Hamilton theorem, which may be stated as follows.

Cayley—Hamilton theorem

A square matrix A satisfies its own characteristic equation; that is, if
A+ A +e, A2+ + A+, =0
is the characteristic equation of an n X n matrix A then
A +c, A7 +c, A7+ -+ cA+cl=0 (1.25)

where [ is the n X n identity matrix.

end of theorem

The proof of this theorem is not trivial, and is not included here. We shall illustrate the
theorem using a simple example.

[The interested reader may consult the original proof in G. Frobenius. Uber Lineare
Substitutionen und Bilineare Formen. J. fiir die Reine U. Angew. Math., 84:1-63, 1878.]
Verify the Cayley—Hamilton theorem for the matrix

ol

The characteristic equation of A is

3-4 4
‘ =0 or A2-51+2=0
1 2-1
Since
A2:34_34:1320
1o2f|1 2] |5 s
we have

A*-5A+21= 1320 -5 34 +2 o =0
5 8 1 2 0 1

thus verifying the validity of the Cayley—Hamilton theorem for this matrix.




54 MATRIX ANALYSIS

Example 1.27

In the particular case when A is a 2 X 2 matrix with characteristic equation
cH)=A+al+a,=0 (1.26)
it follows from the Cayley—Hamilton theorem that
c(A)=A+aA+al=0

The significance of this result for our present purposes begins to appear when we
rearrange to give

A’=—aA-al

This means that A? can be written in terms of A and A° = I. Moreover, multiplying by
A gives

A'=—aqA*-a,A=-a(-aA-al)-aA

Thus A’ can also be expressed in terms of A and A° = [; that is, in terms of powers of
A less than n = 2, the order of the matrix A in this case. It is clear that we could continue
the process of multiplying by A and substituting A” for as long as we could manage the
algebra. However, we can quickly convince ourselves that for any integer r = n

A=l + oA (1.27)

where ¢, and ¢, are constants whose values will depend on r.

This is a key result deduced from the Cayley—Hamilton theorem, and the determi-
nation of the ¢; (i =0, 1) is not as difficult as it might appear. To see how to perform
the calculations, we use the characteristic equation of A itself. If we assume that the
eigenvalues A, and A, of A are distinct then it follows from (1.26) that

cA)=A+ald+a,=0 fori=1,2

Thus we can write
Ai=—a\d;— a,

in which a, and a, are the same constants as in (1.26). Then, fori =1, 2,
V=—a, 2 - a,A, = —a,(—a, A, — a,) — a,A,

Proceeding in this way, we deduce that for each of the eigenvalues 4, and 1, we
can write

A= oy + oA,

with the same ¢, and ¢ as in (1.27). This therefore provides us with a procedure for
the calculation of A" when r > n (the order of the matrix) is an integer.

Given that the matrix

Al

has eigenvalues A4, = —1 and A, = -2 calculate A’ and A", where r is an integer greater
than 2.
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Solution

Example 1.28

Solution

Since A is a 2 X 2 square matrix, it follows from (1.27) that
A’ = oyl + A
and for each eigenvalue 4; (i = 1, 2) ¢,and ¢, satisfy
A=+ o h,
Substituting 4, = —1 and 4, = -2 leads to the following pair of simultaneous equations:
1)’ = oy + a4(-1), (-2) = o+ (-2)
which can be solved for ¢, and ¢, to give
ay=2(-1 - (=2, o =(1y-(2)
Then

A5=[2<—1>5—(—2)5]{1 0}[(—1)5—(—2)5]{0 1}
0 1 -2 =3

2= =2y -1’=(=2y | | 30 31
(D)= (=2 2(-2°-(=1)] |62 -63
Replacing the exponent 5 by the general value r, the algebra is identical, and it is easy
to see that

e [2(—1)’(—2)" (1)~ (-2 }
(1) (-2)) 2-2) (1)’

To evaluate ¢, and ¢ in (1.24), we assumed that the matrix A had distinct eigen-
values A, and A,, leading to a pair of simultaneous equations for ¢, and ¢;,. What
happens if the 2 X 2 matrix A has a repeated eigenvalue so that 4, = 4, = 4, say?
We shall apparently have just a single equation to determine the two constants ¢, and
o,. However, we can obtain a second equation by differentiating with respect to
A, as illustrated in Example 1.28.

Given that the matrix

Al )

has eigenvalues 4, = A, = —1, determine A’, where r is an integer greater than 2.

Since A is a 2 X 2 matrix, it follows from (1.27) that
A =qol+ A
with ¢, and ¢ satisfying

A=0y+ ol (1.28)
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Since in this case we have only one value of A, namely A= -1, we differentiate (1.28)
with respect to A, to obtain

A =g (1.29)
Substituting 4 =—1 in (1.28) and (1.29) leads to
o =D o=+ =>0-n1)

giving

Af=<1—r)<—1>{1 O}r(—l){o 1}
0 1 -1 -2

_|A=nE1 —r=1y
r-)" (+n-1)

Having found a straightforward way of expressing any positive integer power of the
2 x 2 square matrix A we see that the same process could be used for each of the terms
in (1.23) for r = 2. Thus, for a 2 X 2 matrix A and some «, and ¢,

FAY = BA = al+ oA
r=0

If, as p — oo,
P
A =1 A
f(A) }me;ﬂ

exists, that is, it is a 2 X 2 matrix with finite entries independent of p, then we may write

F(A) = i BA = al+ A (1.30)

r=0

‘We are now in a position to check the results of our computer experiment with the matrix

A= Ll) (j of Example 1.25. We have defined

At = Ar r
fA)=e"=% "1
r=0

SO we can write
e = ol + A
Since A has repeated eigenvalue A= 1, we adopt the method of Example 1.28 to give

r_ [
e=0,+a, te'= o
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leading to
oy =tée, oy =(1-1¢e
Thus
)
ef=(1-pel+teA=¢l= ©
0 ¢

Setting t = 1 confirms our inference in Example 1.25.
Example 1.29  Calculate e*’ and sin At when
A= 1 -1
0 1

Solution  Again A has repeated eigenvalues, with A4, = A, = 1. Thus for e* we have

e =)+ aA

with
e=a,+ o, te'=q
leading to
a e —te
c =
0 e
Similarly,

sin At= ol + A
with
sint = o, + o, tcost=q

leading to

sin Aj = |sint —tcost
0 sin ¢

Although we have worked so far with 2 X 2 matrices, nothing in our development
restricts us to this case. The Cayley—Hamilton theorem allows us to express positive
integer powers of any n X n square matrix A in terms of powers of A up to n — 1. That
is, if A is an n X n matrix and p = n then

n—-1
A= Z ﬂrAr = ﬂol + ﬂlA teet ﬂnflA'H
r=0
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From this we can deduce that for an n X n matrix A we may write

fA) =3 pA
r=0

as
n—1
f(A) = z oA’ (1.31a)
r=0
which generalizes the result (1.30). Again the coefficients o, «,..., o, are

obtained by solving the n equations
n—1
S = Za,ﬂ,: i=12,...,n) (1.31b)
r=0

where 4, 4,, ..., 4, are the eigenvalues of A. If A has repeated eigenvalues, we
differentiate as before, noting that if A, is an eigenvalue of multiplicity m then the
first m — 1 derivatives

dk dk n—1 -
ﬁf(ﬂz)=ﬁ2a,l, k=1,2,....,m—1)

T =0

are also satisfied by A,.

Sometimes it is advantageous to use an alternative approach to evaluate

S = pA

If A possesses n linearly independent eigenvectors then there exists a modal matrix M
and spectral matrix A such that

M'AM= A =diag(4, A,, ..., 4)

Now

M AM= fMAM) = S (M AMY
r=0

r=0

BA =Y B diag(Ai, Ay ..., A)

P P
r=0 r=0

p 14 p
SDNZS WIS v
r=0 r=0 r=0

= dlag (f(ﬂl)’f(/qu)’ e 7f(/1n))

This gives us a second method of computing functions of a square matrix, since we see that

f(A) = M diag (f(A), f(Ay), . .., f(A)H)M™ (1.32)
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Example 1.30  Using the result (1.32), calculate A* for the matrix

2

of Example 1.27, i.e. show that A* = Mdiag (A}, )M~

Solution A has eigenvalues 4, = —1 and 4, = —2 with corresponding eigenvectors
e,=[1 ~11, e=[1 -2]"

Thus a modal matrix M and corresponding spectral matrix A are

GlE I S P
e[ ]

Taking f(A) = A", we have
diag (f(-1), f(-2)) = diag (-1)", (-2)")
Thus, from (1.32),

f(A):M\(—I) 0 k]MI: 2-1)"=(-2)"  (-1D)"=(-2)
0 (-2) 2((=2)" (=D 2(=2)'— (=)

as determined in Example 1.27.

Example 1.30 demonstrates a second approach to the calculation of a function of a
matrix. There is little difference in the labour associated with each method, so perhaps
the only comment we should make is that each approach gives a different perspective
on the construction of the matrix function either from powers of the matrix itself or
from its spectral and modal matrices.

Later in this chapter we need to make use of some properties of the exponential
matrix e?’, where A is a constant n X n square matrix. These are now briefly discussed.

(i) Considering the power series definition given in (1.24)
A=l+Ar+ LA+ LAY+
term-by-term differentiation gives
(%eA’=A+ LA+ ZAC + - = A+ Art JATY + -]
so that

C%(e‘“) —AM = MA (1.33)
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(i) Likewise, term-by-term integration of the power series gives

J eAdr= IJ dr+AJ T+ %A{ 2dr+- -
0 0 0 0

=lt+ LA + LAY + - -
so that
t
AJeA’dr+I=eA’

0
giving

J Adr=A"eM -1 =[c"-1A" 1.34)

0

provided the inverse exists.

At +t At At
e (1) 2)=e 17

(iii) (1.35)

Although this property is true in general we shall illustrate its validity for the
particular case when A has n linearly independent eigenvectors. Then, from (1.32),

e = Mdiag(e™", ™", 6, e )M
e = Mdiag(el"% 6/12’2, 6, e/l”'z)M*1
so that
eAtleAt2 — Mdlag (e/ll(tlﬂ‘z)’ elz(’l’f’z)’ 6 , el”(rlﬂz))M—l — eA(t1+t2)
(iv) It is important to note that in general

eAt eBt £ e(A+B )3

It follows from the power series definition that

eAt eBt — e(A+B)t (1.36)

if and only if the matrices A and B commute; that is, if AB = BA.
To conclude this section we consider the derivative and integral of a matrix A(f) =

[a; ()], whose elements a;(f) are functions of . The derivative and integral of A(7) are
defined respectively by

d, . [d
TA(M = [d—t a,,.(t)} (1.37a)

and

J A()dr = U a;(1) dt} (1.37b)

that is, each element of the matrix is differentiated or integrated as appropriate.
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Example 1.31  Evaluate dA/df and fA dt for the matrix
£+l -3
2 421

Solution  Using (1.37a),

d, » d
—_ +1 —_(t —
aa_|a D glued _{m 1
dr | g d, » o 2c+2
@) T+2-1)
Using (1.37b),
2
JAdt_ J(r+1)dr J(l3)dt ) %t3+t+cu %t2_3t+012
szt J(t2+2t1)dt 2tey AL -ty
War -3t c Cn War -3t
= + = +C
2t i+t Cy  Cxm 2t i+t

where C is a constant matrix.

Using the Symbolic Math Toolbox in MATLAB the derivative and integral of the

matrix A(?) is generated using the commands diff (A) and int (&) respectively.
To illustrate this confirm that the derivative of the matrix A(z) of Example 1.31 is
generated using the sequence of commands

syms t

A=[t"2+1 t-3; 2 t"2+2*%t-1];

df=diff (a) ;

pretty (df)
and its integral by the additional commands

I=int (4) ;
pretty (I)

From the basic definitions, it follows that for constants ¢ and 3

d dA dB

d_t(aA-’-ﬂB)_aE-’- E (1.38)
J (aA + fB)dt = aJA dr+ ﬁJBdt (1.39)
d dB  dA

Note in (1.40) that order is important, since in general AB # BA.
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34

35

36

Note that in general

L1dA

d 0 an
TIAMT #n AT

1.7.1 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

Show that the matrix

5 6
A =
2 3
satisfies its own characteristic equation.

Given

Al

use the Cayley—Hamilton theorem to evaluate

@A b A (A
The characteristic equation of an n X n matrix A is

A+ A+, A+ o+ A+ c,=0

n—1
so, by the Cayley—Hamilton theorem,
A+, A7+, LA+ .+ A+ =0

n—

If A is non-singular then every eigenvalue is
non-zero, so ¢, # 0 and

I= —Ci A"+ A4t A)
0
which on multiplying throughout by A™ gives
Al=—Larie A7 sel) 141

Co

(a) Using (1.41) find the inverse of the matrix

(b) Show that the characteristic equation of the
matrix

is
B =312-71-11=0

Evaluate A’ and, using (1.41), determine A",

37  Given

A=

—_— W N
o o= W
W N =

compute A? and, using the Cayley—Hamilton
theorem, compute

AT —3A°+ A* +3A° - 2A*+ 3]

38  Evaluate e for

1 0 1 0
A= bA:
wa-|, | wasll )

39  Given
2 0 0
T
==|0 1 1
A 2
0 0 1
show that
0O 0 0
snA=2A-2a =]0 1 0
n b8
0 0 1
40  Given
2
A= t+1 2t-3
5-t £—t+3
evaluate
dA ’
@35 b JIAdt
41 Given

2
A= r+1 t-1
5 0

evaluate A? and show that

dA

d Lo
dz(A )#2A 0
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Singular value decomposition

Example 1.32

Solution

So far we have been concerned mainly with square matrices, dealing in particular with
the inverse matrix, the eigenvalue problem and reduction to canonical form. In this
section we consider analogous results for non-square (or rectangular) matrices, all of
which have important applications in engineering.

First we review some definitions associated with non-square matrices:

(a) A non-square m X n matrix
A:(aij),i=1,2,...,m;j:1,2...,n

is said to be diagonal if all the 7, j entries are zero except possibly for i = j. For

example:
2 0
0 3 is a diagonal 3 X 2 matrix

10 0

whilst

2 0 0

is a diagonal 2 X 3 matrix

10 3 0

(b) The row rank of a m X n matrix A denotes the maximum number of linearly inde-
pendent rows of A, whilst the column rank of A denotes the maximum number of
linearly independent columns of A. It turns out that these are the same and referred
to simply as the rank of the matrix A and denoted by r = rank(A). It follows that
r <min(m, n) . The matrix A is said to be of full rank if » = min(m, n).

For the 3 X 4 matrix

1 2 3 4
A=1|3 4 7 10
2 1 3 5

confirm that row rank (A) = column rank (A).

Following the process outlined in Section 1.2.6 we reduce the matrix to row (column)
echelon form using row (column) elementary operations.

(a)  Row rank: using elementary row operations

1 2 3 4
3 4 7 10
2 1 3 5

l row 2 —3 Xrow 1, row 3 —2 X row 1
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1 2 3 4
0o -2 -2 2
0o -3 -3 3

l multiply row 2 by —}

1 2 3 4
0 1 1 1
0o -3 3 3

l row 3 + 3 X row 2

1 2 3 4
0 1 1 1
0 0

which is in row echelon form and indicating that
row rank (A) =2

(b)  Column rank: using elementary column operations

1 2 3 4
3 4 7 10
2 1 3 5

l col2 — 2 x coll, col3 — 3 x coll, col4 — 4 x coll

1 0 0 O
3 -2 -2 2
2 -3 3 3

l col3 — col2, col4 — col2

1 0 0 O
3 -2 0 0
2 3 0 0

which is in column echelon form and indicating that
column rank (A) =2

confirming that
rank(A) = row rank (A) = column rank (A) =2

Note that in this case the matrix A is not of full rank.
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1.8.1

Singular values

For a m X n matrix A the transposed matrix A" has dimension n X m so that the product
AA" is a square matrix of dimension m X m. This product is also a symmetric matrix
since

(AAD) = (AD)'(A") = AA

It follows from Section 1.4.7 that the m x m matrix AA" has a full set of m linearly
independent eigenvectors u,, u,, . . . , u,, that are mutually orthogonal, and which
can be normalized to give the orthogonal normalized set (or orthonormal set) of
eigenvectors

A A A

i, iy, ...,ia,

with ﬁ,-Tﬁj =0;(i,j=1,2,..., m), where g, is the Kronecker delta defined in

Section 1.3.2.

(Reminder: As indicated in Section 1.4.2 normalized eigenvectors are uniquely
determined up to a scale factor of +1.) We then define the m x m orthogonal matrix U
as a matrix having these normalized set of eigenvectors as its columns:

U=, i, ...,d,] (1.42)

with U0 = U0™ =1,,. Such a matrix is also called a unitary matrix.
Let A, A, ..., A, be the corresponding eigenvalues of AA" that is

(AAYG, = d, i=1,2,...,m
Considering the square of the length, or norm, of the vector A, then from orthogonality
|Aﬁi|2 = (Aﬁi)T(Aﬁi) = ﬁiT(ATAﬁi) = ﬁ?;“iﬁi = Z’i

(Note: The notation ||Ad; || is also frequently used.) Since | Ad;|* > 0 it follows that the
eigenvalues A,(i =1, 2, ..., m) of the matrix AA" are all non-negative and so can be
written in the form

ﬂ,l.zo'l.z’izl’z,...,m
It is also assumed that they are arranged in a non-increasing order so that
cl=oe=--=0=0

Some of these eigenvalues may be zero. The number of non-zero values (accounting for
multiplicity) is equal to r the rank of the matrix A. Thus, if rank(A) = r then the matrix
AAT has eigenvalues

oi=o03=--=0>0witho’, = --=02=0

The positive square roots of the non-zero eigenvalues of the matrix AA" are called the
singular values of the matrix A and play a similar role in general matrix theory that
eigenvalues play in the theory of square matrices. If the matrix A has rank r then it has
r singular values

o=0="""=0>0

In practice determining the singular values of a non-square matrix provides a means of
determining the rank of the matrix.
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Example 1.33  For the matrix

3 -1
A=]1 3
1 1

(a) Determine the eigenvalues and corresponding eigenvectors of the matrix AA".

(b) Normalize the eigenvectors to obtain the corresponding orthogonal matrix U and
confirm that UUT = 1.

(¢)  What are the singular values of A?

(d) What is the rank of A?

3 -1y 10 0 2
Solution (a) AA'=|1 3 L ; 1}: 0 10 4
1

(Note that AAT is a symmetric matrix.)
The eigenvalues of AAT are given by the solutions of the equation

10-4 0 2
|AA"-All=| 0 10-4 4 |=0
2 4 2-1

which reduces to

(12 =-H10-DHA=0
giving the eigenvalues as

=12, 4=10,4,=0
Solving the homogeneous equations

(AA" - A.hu; =0
gives the corresponding eigenvectors as:

w=[1 2 11" w,=02 -1 0], wu,=[1 2 -5]"

(b)  The corresponding normalized eigenvectors are:
T T T

I A R

giving the corresponding orthogonal matrix

12 1

NCNERINET 0.04082  0.8944  0.1826
U=, &, @)= ﬁ 715 ﬁ 08165 —04472 03651

19 = 0.4082  0.0000 -0.9129

Jo 30
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By direct multiplication
L2 L 2z L
Joo s ol e e e
T_|2 L 2 {2 -1 —
V=% % w|w F 07
19 = 2 s
o Jao || S0 S o
confirming that 00" = I.

S O =
S = O
- O O

(c)  The singular values of A are the square roots of the non-zero eigenvalues of AA™.
Thus the singular values of A are o; = A/1—2 and o, = «/ﬂ)

(d) The rank of A is equal to the number of singular values, giving rank (A) =2. This
can be confirmed by reducing A to echelon form.

Likewise, for a m X n matrix A the product A"A is a square n X n symmetric matrix,

having a full set of n orthogonal normalized eigenvectors vy, v,, . . . , ¥, which form the
columns of the n X n orthogonal matrix V:
V=009 7, (1.43)
and having corresponding non-negative eigenvalues (4, tb, . . . , {4, wWith
Ww=w=-=u=0 (1.44)

Again the number of non-zero eigenvalues equals r, the rank of A, so that the product
ATA has eigenvalues

=== u>0withy,, = =u4,=0
Thus

AAb,=ub, 4,>03G(=1,2,...,7 (1.45)
Premultiplying by A gives

(AAT)(AD) = L(AD)

so that 4 and (A¥,) are an eigenvalue and eigenvector pair of the matrix AA™; indicating
that the non-zero eigenvalues of the product AAT are the same as the non-zero
eigenvalues of the product A”A. Thus if A is of rank r then the eigenvalues (1.44) of the
product A"A may be written as

cii=1,2,...,r
= 0,i=r+1,...,n
In general the vector (A#,) is not a unit vector so
AV, = ki, (1.46)
and we need to show that k = g;. Taking the norm of (A¥;) gives
| AP, = (AD)"(AD) = ]A"AD,
=P, from (1.45)
=t =07
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Example 1.34

Solution

giving
|AV,|=k=0;
It follows from (1.46) that
o, i=1,2,...,r
Av, = { (1.47)
0,i=r+1,....m
Clearly the singular values of A may be determined by evaluating the eigenvalues of the
product AAT or the product ATA. The eigenvectors &,, i, . . . , ii,, of the product AAT
(that is the columns of U) are called the left singular vectors of A and the eigenvectors
Dy, Py ..., D, of the product A"A (that is columns of V) are called the right singular

vectors of A.

For the matrix

(a) Determine the eigenvalues and corresponding eigenvectors of the product AA.
(b) Normalize the eigenvectors to obtain the orthogonal matrix V.

(c)  What are the singular values of A?

_irog
111

The eigenvalues of A"A are given by the solutions of the equation

A 31 1])°
@) HIEEERE

|JATA—un=|11-4 1 1o
1 11— u
which reduces to
(U-12)(~10)=0
giving the eigenvalues as
M =12, 1, =10
Solving the homogeneous equations
(ATA—wlyv,=0

gives the corresponding eigenvectors as

vi=[1 11" v=01 1T
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1.8.2

(b) The corresponding normalized eigenvectors are:

r 1T T
s[4 L] oL
L Y IR IRV

giving the orthogonal matrix

L =Ll 107071 —0.7071

1 1]
P A {0.7071 0.7071}

(c)  The singular values of A are the square roots of the non-zero eigenvalues of A'A.
Thus the singular values of A are:

o =Ju, =12 =3.4641 and o0, =10 =3.1623

in agreement with the values obtained in Example 1.33.

Singular value decomposition (SVD)

For an m X n matrix A of rank r the m equations (1.47) can be written in the partitioned
form

A Dy D, | Dy .. D] = [l . |y, - . ,]E (1.48)

where the matrix X has the form

(o, 0 0 0]
0 o 00 0 ’
Z=1p o ol 0 0
0 O 00 0
: m-—r
100 0"o 0]
“—> —>
r n—r
where 0,, 0,, ..., 0, are the singular values of A. More precisely (1.48) may be
written as
AV=Ux

Using the orthogonality property VV" =1 leads to the result
A=0zV" (1.49)

Such a decomposition (or factorization) of a non-square matrix A is called the
singular value decomposition of A, commonly abbreviated as SVD of A. It is
analogous to the reduction to canonical (or diagonal) form of a square matrix developed
in Section 1.6.
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Example 1.35  Find the SVD of the matrix

and verify your answer.

Solution The associated matrices U and V and the singular values of A were determined in
Examples 1.33 and 1.34 as:

Loz L
Yo s W0 Lo
0=% + &= 9=|" ) a=J12 and =10
L = >
NN

From (1.49) it follows that the SVD of A is

L2 L
Joo s o120 L
12 S

w

2

A=1T% F || 0 Jof|T L
L = NN
Jéoﬁ)oozz

Direct multiplication of the right-hand side confirms

The decomposition (1.47) can always be done. The non-zero diagonal elements of X
are uniquely determined as the singular values of A. The matrices U and V are not
unique and it is necessary to ensure that linear combinations of their columns
satisfy (1.47). This applies when the matrices have repeated eigenvalues, as illustrated
in Example 1.36.

Example 1.36  Find the SVD of the matrix

o O O =
o O N O
o N o O
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Solution

1 0 0 1 0 0 O

0 2 0 L o00 0 4 0 O

A= 0 0 2 0.2 0 0= 0 0 4 0
0 0 2 0

0 0 O 0 0 0 O

The product AAT has eigenvalues A, =4, A, =4, 4, =1 and 4, = 0. Normalized eigenvectors
corresponding to A, and A, are respectively

@;=[1 0 0 0]" and @,=[0 O O 11"

Various possibilities exist for the repeated eigenvalues A, = 4, = 4. Two possible choices
of normalized eigenvectors are

4,=[0 1 0 0" and @,=[0 0 1 Of
or
a{="700 1 1 0" and @{=7%[0 1 -1 O

(Note that the eigenvectors @ | and #; are linear combinations of &, and #@,.) Likewise

[ R
S b~ O
~ © O

0
0
2
0

o O O =
o O O

and has eigenvalues &, =4, 1, =4 and 1, = 1. The normalized eigenvector corresponding
to the eigenvalue ;=1 is

p,=[1 0 O

and two possible choices for the eigenvectors corresponding to the repeated eigenvalue
My =, =4 are

$,=[0 1 O and $,=[0 O 1"
or
/=700 1 1" and #{=T[0 1 -IT

The singular values of A are 0, =2, 0, =2 and o; = 1 giving

o O O
S O NN O
o = O O

Considering the requirements (1.47) it is readily confirmed that

AV, = ogjii,, AV, = oii, and AV, = oiil,
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so that
0 01 O 0 0 1
. 1 0 0 O .
U = andVi=|1 0 0
01 0 O
0 1 0
0 0 0 1

reduces A to the SVD form A = U, ZV].
Also, it can be confirmed that

AV| = oiii|, AV, = oyii;, AV, = o3l

1.8.3

so that the matrix pair

0 0 1 0 0 0
L L 0 0
S R LS
: =
0 0 0 1
reduces A t(; the SVD form _
A=U0,2V]

However, the corresponding columns of the matrix pair U,, V, do not satisfy conditions
(1.47) and
AxU,zV7

To ensure that conditions (1.47) are satisfied it is advisable to select the normalized
eigenvectors ¥; first and then determine the corresponding normalized eigenvectors #;
directly from (1.47).

Pseudo inverse

In Section 1.2.5 we considered the solution of the system of simultaneous linear
equation

Ax=b (1.50)

where A is the n X n square matrix of coefficients and x is the n vector of unknowns.
Here the number of equations is equal to the number of unknowns and a unique solution

x=A"b (1.51)

exists if and only if the matrix A is non-singular.
There are situations when the matrix A is singular or a non-square m X n matrix. If
the matrix A is a m X n matrix then:

o if m > n there are more equations than unknowns and this represents the over
determined case;

o if m < n there are fewer equations than unknowns and this represents the under
determined case.
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Example 1.37

Solution

Clearly approximate solution vectors x are desirable in such cases. This can be achieved
using the SVD form (1.49) of a m X n matrix A. Recognizing the orthogonality of U
and V the following matrix A" is defined

Af=Vz=(" (1.52)

where X* is the transpose of X in which the singular values o; of A are replaced by their
reciprocals. The matrix A is called the pseudo inverse (or generalized inverse) of the
matrix A. It is also frequently referred to as the Moore—Penrose pseudo inverse of A.
It exists for any matrix A including singular square matrices and non-square matrices.
In the particular case when A is a square non-singular matrix A" = A", Since

I 0
AA=|... ¢ ...
0o : 0
a solution of (1.50) is A"Ax = A'b, that is
x=A'b (1.53)

This is the least squares solution of (1.50) in that it minimizes (Ax — b)"(Ax — b), the
sum of the squares of the errors.

Determine the pseudo inverse of the matrix

3 -1
A=|1 3
1 1

and confirm that ATA =1.

From Example 1.35 the SVD of A is
2

12 L
A1 v R I
2 2

|-

AvpT_ | X L2 PR
A=UIVI=1T5 5 || 0 0| L
L S0l o0 ol A2

s 0

The matrix £* is obtained by taking the transpose of X and inverting the non-zero
diagonal elements, giving

L
Z*:ﬁ 0 0
L
0 T 0
so from (1.52) the pseudo inverse is
L2z L
1L # 0 0| o o T4 s
T:"*‘T:ﬁﬁ 12 2 L 0|1
AVZU_I_;I.O_I_Oﬁﬁ 6{—7165}
2ok J1o L

2 s
NN I



74 MATRIX ANALYSIS

Example 1.38

Direct multiplication gives

3 -1

: 17 4 5 60 0

AA= 2L 1 3| == =1
6{7 16 5} L Lo o

so that A" is a left inverse of A. However, A" cannot be a right inverse of A.

We noted in the solution to Example 1.37 that whilst A" was a left inverse of A it was
not a right inverse. Indeed a matrix with more rows than columns cannot have a right
inverse, but it will have a left inverse if such an inverse exists. Likewise, a matrix with
more columns than rows cannot have a left inverse, but will have a right inverse if such
an inverse exists.

There are other ways of computing the pseudo inverse, without having to use SVD.
However, most are more restrictive in use and not so generally applicable as the SVD
method. It has been shown that A” is a unique pseudo inverse of an m X n matrix A
provided it satisfies the following three conditions:

AA" and A'A are symmetric
AATA=A

| 1.54
A'AAT=A' (59

For example, if an m X n matrix A is of full rank then the pseudo inverse may be
calculated as follows:
ifm>nthen A" = (ATA)'AT (1.55a)
if m < nthen A" = AT(AAT)"! (1.55b)

It is left as an exercise to confirm that these two forms satisfy conditions (1.54).

(a) Without using SVD determine the pseudo inverse of the matrix

3 -1
A=|1 3
1
(b) Find the least squares solution of the following systems of simultaneous linear
equations
i) 3x-y=2 i) 3x—-y=2
x+3y=4 x+3y=2
x+y=2 xX+y=2

and comment on the answers.
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Solution (a) From the solution to Example 1.33 rank(A) = 2, so the matrix A is of full rank.
Since in this case m > n we can use (1.55a) to determine the pseudo inverse as

-1
A= aayar |11 301 1
11| [-1 3 1

SR R S 1) B I O
P o1l -1 301

{17 4 5} _{ 0.2833  0.0667 0.0833}

— 1

60

7 16 5| |-0.1167 02667 00833

in agreement with the result obtained in Example 1.37.

(b) Both (i) and (ii) are examples of over determined (or over specified) sets of
equations Ax = b with A being an m X n matrix, m > n, b being an m-vector and
x an n-vector of unknowns. Considering the augmented matrix (A:b) then:

o if rank(A:b) > rank(A) the equations are inconsistent and there is no solution
(this is the most common situation for over specified sets of equations);

o if rank(A:b) = rank(A) some of the equations are redundant and there is a
solution containing n — rank(A) free parameters.

(See Section 5.6 of MEM.)
Considering case (i)

3 -1 2
A=|1 3I,b=|4| and x:{x}
11 2 7,
3 -1 2
rank(A:b) = rank | 1 3 4| =2 =rank(A) from (a).
1 1 2

Thus the equations are consistent and a unique solution exists. The least squares
solution is

2
| oanon[17 4 5]
y 716 5|

which gives the unique solution x =y = 1.
Considering case (ii) A and x are the same as in (i) and b = [2 2 2]"

3 -1 2
rank(A:b) = rank| 1 3 2|=3>rank(A)=2
1 1 2
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Thus the equations are inconsistent and there is no unique solution. The least
squares solution is

2
. 17 4 5 13
* =A‘b=6—1-6 2 =Tl-5-
y 116 5| 7

- — 13 — 7
givingx= 3 andy = .

As indicated earlier, the least squares solution x = A b of the system of equations Ax = b
is the solution that minimizes the square of the error vector r = (Ax — b); that is, minimizes
(Ax —b)"(Ax - b).

In practice, data associated with individual equations within the set may not be
equally reliable; so more importance may be attached to some of the errors r. To
accommodate for this, a weighting factor (positive number) w; is given to the ith equation
(i=1,2,...,m)and the least squares solution is the solution that minimizes the square
of the vector W(Ax — b), where W is the is the n X n diagonal matrix having the square
roots \/1:4 of the weighting factors as its diagonal entries; that is

Vw, 0 0
0 Vw, - 0
W= . o )
0 1 v AV

m

The larger w; the closer the fit of the least squares solution to the ith equation; the
smaller w; the poorer the fit. Care over weighting must be taken when using least
squares solution packages. Most times one would notice the heavy weighting, but in
automated systems one probably would not notice. Exercise 48 serves to illustrate.

In MATLAB the command
svd (A)

returns the singluar values of A in non-decreasing order; whilst the command
[U,S,V]=svd (A)

returns the diagonal matrix S = £ and the two unitary matrices U = U and V = V such
that A = USV". The commands

A=sym(A) ;
svd (A)

return the singular values of the matrix A in symbolic form. Symbolic singular vec-
tors are not available. The command

pinv (A)
returns the pseudo inverse of the matrix A using the SVD form of A.
Using the matrix A of Examples 1.35, 1.36, 1.38 and 1.39 the commands
A=[3 -1;1 3;1 1];
[U,S,V]=svd(A)
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return
-0.4082 0.8944 -0.1826

U=-0.8165 -0.4472 -0.3651
-0.4082 -0.0000 0.9129

3.4641 0
S= 0 3.1623
0 0

V=—O.7O7l 0.7071
-0.7071 -0.7071
The additional command
pinv (A)
returns the pseudo inverse of A as
0.2833 0.0667 0.0833
-0.1167 0.2667 0.0833
The commands
A=[3 -1;1 3;1 1];
a=sym(A) ;
S=svd (a)
return
_2*3%(1/2)
10" (1/2)
In MAPLE the commands
with (LinearAlgebra) :
A:=Matrix([[3,-11,[1,3],[1,111);
svd:=SingularValues (A,output=['U’,’S’,'Vt’']);
return

—-0.4082 0.8944 —-0.1826 3.4641

-0.7071 —-0.7071
svd=|-0.8165 —0.4472 —0.3651|, |3.1623]|,

e 0.7071 —0.07071
~0.4082 —1.9429X10 ° 0.9129| [0.0000

where the singular values are expressed as a vector. To output the values of U and vt
separately and to output the singular values as a matrix the following additional com-
mands may be used:

U:=svd[1l];

Vt:=svd[3];

SS:=matrix (3,2, (i,j) — 1f i=j then svd[2] [i]lelse O

fi) ;#output the singular values into a 3 2 matrix
The further command

U.SS.Vt;

gives the output
3.0000 -—1.0000

1.0000 3.0000
1.000 1.000
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42

43

44

confirming that we reproduce A.

To obtain the pseudo inverse using MAPLE the normal matrix inverse command

is used. Thus the commands

with (LinearAlgebra) :

A:=Matrix([[3,-11,[1,3],[1,1]1]1);

MatrixInverse (A) ;

return

7 4 1

LU T
60 15 12
60 15 12

in agreement with the answer obtained in Example 1.37.

1.8.4 Exercises

Use MATLAB or MAPLE to check your answers.

Considering the matrix

3
7 10
5

(a) Determine row rank (A) and column rank (A).

(b) Is the matrix A of full rank?
(a) Find the SVD form of the matrix

A= 4 11 14
8 7 -
(b) Use SVD to determine the pseudo inverse A" of

the matrix A. Confirm that A'A = I.

(c) Determine the pseudo inverse without using
SVD.

Show that the matrix

1 1

3 0
A=|-2 1
0 2

-1 2

is of full rank. Without using SVD determine its
pseudo inverse A" and confirm that A"A = I.

45

46

Considering the matrix

1 -1
A=|-—2 2
2 2

(a) What is the rank of A?
(b) Find the SVD of A.

(c) Find the pseudo inverse A" of A and confirm
that AA"A =A and ATAAT = A",

(d) Find the least squares solution of the
simultaneous equations

x—y=1,-2x+2y=2,2x-2y=3

(e) Confirm the answer to (d) by minimizing the

square of the error vector
(Ax —b) whereb=[1 2 3]"

Considering the matrix

(a) Use the pseudo inverse A" determined in
Example 1.37 to find the least squares solution
for the simultaneous equations

3x-y=1,x+3y=2,x+y=3
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47

48

(b) Confirm the answer to (a) by minimizing the

square of the error vector
(Ax —b) whereb=[1 2 3]"

(c) By drawing the straight lines represented by the
equations illustrate your answer graphically.

Considering the matrix

1 0 -2
A0 1 -1
-1 11

2 -1 2

(a) Show that A is of full rank.
(b) Determine the pseudo inverse A'.

(c) Show that the A" obtained satisfies the four
conditions (1.54).

Find the least squares solution of the following pairs
of simultaneous linear equations.

49

(@) (i) 2x+y=3 () 2x+y=3
x+2y=3 x+2y=3
x+y=2 x+y=3

b)) 2x+y=3 (i) 2x+y=3
x+2y=3 x+2y=3
10x + 10y =20 10x + 10y =30

() () 2x+y=3 (i) 2x+y=3
x+2y=3 x+2y=3

100x + 100y =200

Comment on your answers.

100x + 100y = 300

By representing the data in the matrix form Az =y,
where z = [m c]", use the pseudo inverse to find the
values of m and ¢ which provide the least squares fit
to the linear model y = mx + ¢ for the following data.

k|1 2 3 4 5
x | 0 1 2 3 4
v | 1 1 2 2 3

(Compare with Example 2.17 in MEM.)

State-space representation

1.9.1

In Section 10.11.2 of MEM it was illustrated how the solution of differential equation
initial value problems of order n can be reduced to the solution of a set n of first-order
differential equations, each with an initial condition. In this section we apply matrix
techniques to obtain the solution of such systems.

Single-input-single-output (SISO) systems

First let us consider the single-input-single-output (SISO) system characterized by
the nth-order linear differential equation

n—1

d"y d7y dy
—241q +.ooota, =2+ =u(t 1.56
andtn a, ldt'H aldt apy = u(t) ( )
where the coefficients a; (i =0, 1, ..., n) are constants with @, # 0 and it is assumed
that the initial conditions y(0), y’(0), . .., y*"(0) are known.
We introduce the n variables x,(?), x,(¢), . . . , x,(¢) defined by
x,(1) = y(1)

=5 =i

_dly .
x3(1) = :1? =x,(D)



80 MATRIX ANALYSIS

n-2

d 7y .

-xnfl(t) = dtn_z = xan(t)
'y .

xn(t) = d[nil = xn—l(t)

where, as usual, a dot denotes differentiation with respect to time . Then, by substituting
in (1.56), we have

a,x,+ a,_x,+a,,x,., +---+ax,+ayx; =u(t)

giving

a n a n

Thus, we can represent (1.56) as a system of n simultaneous first-order differential
equations

Xy =Xy Xp=X3 00 Xy =X,
ay a, a, 1
X, =——X —— X, — — X, +—u
an an an an

which may be written as the vector-matrix differential equation

(Note: Clearly x,, x,, . .

5] [o 1 o 0 0o |[x] [o]
X, 0 0 0 0 X 0
= : ' + lue) (157
X, 0 0 0 0 1| x,. 0
. —ay, —a; —a, —a,, —4, 1
X, — — — X, —
a, a, a, a, a, a,

., X, and u are functions of ¢ and strictly should be written as

Xx1(), x,(8), . . ., x,(t) and u(r). For the sake of convenience and notational simplicity the
argument (¢) is frequently omitted when the context is clear.)
Equation (1.57) may be written in the more concise form

Xx=Ax+bu (1.58a)

The vector x(¢) is called the system state vector, and it contains all the information that
one needs to know about the behaviour of the system. Its components are the n state
variables x,, x,, . . ., x,, which may be considered as representing a set of coordinate
axes in the n-dimensional coordinate space over which x(¢) ranges. This is referred to
as the state space, and as time increases the state vector x(f) will describe a locus in this
space called a trajectory. In two dimensions the state space reduces to the phase plane.
The matrix A is called the system matrix and the particular form adopted in (1.57) is
known as the companion form, which is widely adopted in practice. Equation (1.58a)
is referred to as the system state equation.
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The output, or response, of the system determined by (1.56) is given by y, which in
terms of the state variables is determined by x,. Thus

X
X3
y=I[1 0 01| .
'x}’l
or, more concisely,
y=c"x (1.58b)
wherec=[1 0 o1~

A distinct advantage of the vector—matrix approach is that it is applicable to
multivariable (that is, multi-input-multi-output MIMO) systems, dealt with in Section
1.9.2. In such cases it is particularly important to distinguish between the system state
variables and the system outputs, which, in general, are linear combinations of the
state variables.

Together the pair of equations (1.58a,b) in the form

%= Ax +bu (1.59a)

(1.59b)

constitute the dynamic equations of the system and are commonly referred to as the
state-space model representation of the system. Such a representation forms the basis
of the so-called ‘modern approach’ to the analysis and design of control systems in
engineering. An obvious advantage of adopting the vector—matrix representation (1.59)
is the compactness of the notation.

More generally the output y could be a linear combination of both the state and input,
so that the more general form of the system dynamic equations (1.59) is

y=c'x

x=Ax +bu (1.60a)
y=cx+du (1.60b)
Comment

It is important to realize that the choice of state variables x;, x,, . ..
For example, for the system represented by (1.56) we could also take

, X, 1S not unique.

dnfly dn72y
xlzdtn,1’ x2:Fa R A
leading to the state-space model (1.59) with
__anfl Ay _ﬂ _&)_ _l_
al‘l an an al‘l an O
1 0 0 0 0 0
A= , b= , c= (1.61)
0 1 0 0 :
: : : : 1
| 0 0 1 0 | 1 0]
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Example 1.39

Solution

Obtain a state-space representation of the system characterized by the third-order
differential equation
3 2
Ay, 3dy hdy 4y

3 2 (1.62)
dr dr dr

Writing

o
)
<

x2:d—y:xl7

dr

Il
=.
()

X1=DY X3 =

o
~
)

we have, from (1.62),

PR UMDY o SR S
dr dr dt
Thus the corresponding state equation is
x) 0 1 0f|lx 0
X =10 0 1
%3 4 -2 -3||x 1

x|+ |0]e”

with the output y being given by

X
0 0]|x,

X3

y=x =1

These two equations then constitute the state-space representation of the system.

We now proceed to consider the more general SISO system characterized by the
differential equation

n n—1 m
d_?_ll_'_anAd y+"'+aoy=bm(:l_,lg+"'+bou (m < n)
t

dt

(1.63)

n—1

in which the input involves derivative terms. Again there are various ways of representing
(1.63) in the state-space form, depending on the choice of the state variables. As an illus-
tration, we shall consider one possible approach, introducing others in the exercises.

We define A and b as in (1.57); that is, we take A to be the companion matrix of the
left-hand side of (1.63), giving

0 1 0 0 0
0 0 1
A= :
0 0 0 0 1
—dy —a; —a Ay —Ay-
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Example 1.40

Solution

Figure 1.2

Block diagram for the
state-space model of
Example 1.40.

and we take b =[0 O --- O 1]" In order to achieve the desired response, the

vector ¢ is then chosen to be
c=[b, b, -+ b, 0 --- 0" (1.64)

It is left as an exercise to confirm that this choice is appropriate (see also Section 5.4.1).

Obtain the state-space model for the system characterized by the differential equation
model

3 2 2
dy+6d—y+11‘3+3y=5d—’2‘+d—“+u (1.65)

df  dr dt dr*  dt

Taking A to be the companion matrix of the left-hand side in (1.65)

0 1 0
A=l 0 0 1| and b=[0 0 177
3 -11 -6

we have, from (1.64),
c=[1 1 31T

Then from (1.59) the state-space model becomes
x=Ax+bu, y=c'x

This model structure may be depicted by the block diagram of Figure 1.2. It provides
an ideal model for simulation studies, with the state variables being the outputs of the
various integrators involved.

u('t)

A distinct advantage of this approach to obtaining the state-space model is that A, b
and ¢ are readily written down. A possible disadvantage in some applications is that the
output y itself is not a state variable. An approach in which y is a state variable is
developed in Exercise 44, Section 5.4.2. In practice, it is also fairly common to choose
the state variables from a physical consideration.
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1.9.2

Example 1.41

Figure 1.3
Parallel circuit of
Example 1.41.

Solution

Multi-input-multi-output (MIMO) systems

Many practical systems are multivariable in nature, being characterized by having more
than one input and/or more than one output. In general terms, the state-space model is
similar to that in (1.60) for SISO systems, except that the input is now a vector u(f) as is
the output y (). Thus the more general form, corresponding to (1.60), of the state-space
model representation of an nth-order multi-input-multi-output (MIMO) system
subject to r inputs and / outputs is

£ = Ax+ Bu } (1.66a)

y=Cx+Du (1.66b)

where x is the n-state vector, u is the r-input vector, y is the l-output vector, A is the n X n
system matrix, B is the n X r control (or input) matrix, and C and D are respectively [ X n
and [ X r output matrices.

Obtain the state-space model representation characterizing the two-input—one-output
parallel network shown in Figure 1.3 in the form

b+ 1

@f:ull ‘:H"}
c nf]u =x

x =Ax+ Bu, y=cx+du

where the elements x|, x,, x; of x and u,, u, of u are as indicated in the figure, and the
output y is the voltage drop across the inductor L, (v denotes the voltage drop across
the capacitor C).

Applying Kirchhoff’s second law (see Chapter 5 and Section 11.4.1 of MEM) to each
of the two loops in turn gives

Rij+L Sy =, (1.67)
dt
di

L, d—t2 +ve=e, (1.68)

The voltage drop v, across the capacitor C is given by
. 1. .
Ve= G (G + i) (1.69)

The output y, being the voltage drop across the inductor L,, is given by

di,

=L
y L
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50

51

which, using (1.67), gives

y=-Ri—vc+e

(1.70)

Writing x, =i}, X, = i,, X; = V¢, U, = e, and u, = e,, (1.67)—(1.70) give the state-space

representation as

R, ] T ]
X -— 0 ——|x - 0
1 L, Li| |7 | L
. 1 1 ||,
X, =10 0 —=|x 0 -
L2 L2 U,
1 1
X = = 0 0 0
X3 C C X3
X1
Uy
y=[-R, 0 -1]jx|+[I 0]| }
U
X3
which is of the required form
x=Ax+Bu
y=cx+du
1.9.3 Exercises
Obtain the state-space forms of the differential 52  Obtain the state-space model of the single-input—
equations single-output network system of Figure 1.4 in the
& & d form X = Ax + bu, y = ¢"x, where u, y and the
(a) d_); +4 d—{ +5 d_y +4y =u(r) elements x,, x,, x; of x are as indicated.
t t t
4 2 Ue =Xy
(b)%—l—i}+2%§+4%=5u(t) R — h=x L
| | - — | G ;
using the companion form of the system matrix in C i = :
each case. I:I
R,
@ u=ell) L
Obtain the state-space form of the differential 3
equation models
3 2 2
(a) dy +6 dy +5 dy +7y= du +3 du +5u Figure 1.4 Network of Exercise 52.
af  drft  de e’ dr
djy d2y dy du du 53  The mass-spring—damper system of Figure 1.5
() E +4 ? +3 5 = F +3 ar +2u models the suspension system of a quarter-car.

using the companion form of the system matrix in
each case.

Obtain a state-space model in which the output
represents the body mass vertical movement y
and the input represents the tyre vertical movement
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u(t) due to the road surface. All displacements are 54
measured from equilibrium positions.

Obtain the state-space model, in the form
x=Ax +bu, y = Cx + d"u of the one-input—
two-output network illustrated in Figure 1.6. The

wr

v elements x,, x, of the state vector x and y,, y, of
: Body mass the output vector y are as indicated. If R, = 1kQ,
R,=5kQ R, =R,=3%k C,=C,=1YF
; calculate the eigenvalues of the system
Spring X I:, B Shock matrix A £ g
absorber ’
M, Axle and
wheel mass
i R, i R,
== o | ¥y

ulr) g

=X,

C, =] Ye, ¢ e, =X

=] v
® n=¢
Road profile = R, |:| R,
¥a

Figure 1.5 Quarter-car suspension model of

Exercise 53.

Figure 1.6 Network of Exercise 54.

1.10.1

Solution of the state equation

In this section we are concerned with seeking the solution of the state equation
x=Ax+Bu 1.71)

given the value of x at some initial time ¢, to be x,. Having obtained the solution of this
state equation, a system response y may then be readily written down from the linear
transformation (1.66b). As mentioned in Section 1.9.1, an obvious advantage of adopt-
ing the vector—matrix notation of (1.71) is its compactness. In this section we shall see
that another distinct advantage is that (1.71) behaves very much like the corresponding
first-order scalar differential equation

% =ax+bu, x(t)=x, (1.72)

Direct form of the solution

Before considering the nth-order system represented by (1.71), let us first briefly review the
solution of (1.72). When the input u is zero, (1.72) reduces to the homogeneous equation

dx _

S = ax (1.73)

which, by separation of variables,

X t
J (i).C:J adt
X
x, 1

0
gives

Inx —In x,=a(t - t,)
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leading to the solution
x=x,e"" (1.74)

for the unforced system.
If we consider the nonhomogeneous equation (1.72) directly, a solution can be

obtained by first multiplying throughout by the integrating factor e™ to obtain
—ar(dx ) —at
— —ax| =
e ( T e bu(r)
or
d%(e_“’x) =e " bu(r)
which on integration gives
t
e “x—e Mx,= J e ““bu(r)dr
fo
leading to the solution
x(1) =e" "y, +J e““bu(r)dr (1.75)

fo
The first term of the solution, which corresponds to the solution of the unforced system,
is a complementary function, while the convolution integral constituting the second
term, which is dependent on the forcing function u(?), is a particular integral.
Returning to (1.71), we first consider the unforced homogeneous system

x=Ax, x(t)=x, (1.76)

which represents the situation when the system is ‘relaxing’ from an initial state.
The solution is completely analogous to the solution (1.74) of the scalar equation (1.73),
and is of the form

x=e"""yx, 1.77)
It is readily shown that this is a solution of (1.76). Using (1.33), differentiation of (1.77)
gives

=AMy, = Ax

so that (1.76) is satisfied. Also, from (1.77),

A(ty—ty)

x(ty) =¢ x,=Ix,=x,

using e’ = I. Thus, since (1.77) satisfies the differential equation and the initial condi-
tions, it represents the unique solution of (1.76).

Likewise, the nonhomogeneous equation (1.71) may be solved in an analogous man-
ner to that used for solving (1.72). Premultiplying (1.71) throughout by e™', we obtain

e (x — Ax) =e*Bu(t)
or using (1.33),

d -—ar__ -a
dt(e x)=¢ Bu(t)
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1.10.2

Figure 1.7

(a) Transition
matrix @(t, t,).
(b) The transition
property.

(¢) The inverse
D71, 1y).

Integration then gives
t
e Mx(r) —e *ox, =J e *"Bu(7)dr
fy

leading to the solution

A(t-15)

x(H)=e xO+J " "Bu(r)dr (1.78)

0

This is analogous to the solution given in (1.75) for the scalar equation (1.72). Again it
contains two terms: one dependent on the initial state and corresponding to the solution
of the unforced system, and one a convolution integral arising from the input. Having
obtained the solution of the state equation, the system output y(¢) is then readily obtained
from (1.66b).

The transition matrix

The matrix exponential ™ is referred to as the fundamental or transition matrix
and is frequently denoted by @(z, 1,), so that (1.77) is written as

x(t) = D, 1)x, (1.79)

This is an important matrix, which can be used to characterize a linear system, and in
the absence of any input it maps a given state x,, at any time ¢, to the state x (¢) at any
time ¢, as illustrated in Figure 1.7(a).

x(1) x(t,) x(1)

.1y Pliy 1) Py 1) @, 1)

x(tl)
D1, 1) ol 1)
x(tn) x(IO) x(to)

(a) (b) (©

Using the properties of the exponential matrix given in Section 1.7, certain properties
of the transition matrix may be deduced. From

A(t,+t,) At At
e it — 1t

e
it follows that @(z, 1) satisfies the transition property

D(1y, 19) = D(1,, 1) D(1y, 1) (1.80)
for any ¢, t, and ¢,, as illustrated in Figure 1.7(b). From

At —At:l

[~

it follows that the inverse @7'(z, t,) of the transition matrix is obtained by negating time,
so that

D, 1) = D(—t, —t;) = D(t,, 1) (1.81)

for any #, and ¢, as illustrated in Figure 1.7(c).
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1.10.3

Example 1.42

Solution

Evaluating the transition matrix

Since, when dealing with time-invariant systems, there is no loss of generality in taking
t, = 0, we shall, for convenience, consider the evaluation of the transition matrix

D(t) = (1, 0) =™

Clearly, methods of evaluating this are readily applicable to the evaluation of
&, 7) = AP

Indeed, since A is a constant matrix,
D(t, 1)=D(t—1,0)

so, having obtained @(), we can write down @(¢, 7) by simply replacing t by t — 7.
Since A is a constant matrix the methods discussed in Section 1.7 are applicable for
evaluating the transition matrix. From (1.31a),

e = ay (Ol + o, (A + (DA + - - - + o, (1A (1.82a)
where, using (1.31b), the a(¢) (i=0, 1, ..., n — 1) are obtained by solving simulta-
neously the n equations

e = ay(t) + (A + OB+ + o (DA (1.82b)
where /tj (j=1,2,...,n) are the eigenvalues of A. As in Section 1.7, if A has

repeated eigenvalues then derivatives of e*, with respect to A, will have to be used.

A system is characterized by the state equation

{xl(r)} |-1 o} {xl(r)} H
= + u(t)
%, (1) 1 -3 |1

Given that the input is the unit step function

u(r) = H(1) = 0 (t<0)
B 1 (=0
and initially
x(0) =x(0) =1

deduce the state x (¢) = [x,(t) x,(¢)]" of the system at subsequent time .

From (1.78), the solution is given by

x(1) = e x(0) +J e* Pbu(r)dr (1.83)

0

where
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Since A is a 2 X 2 matrix, it follows from (1.82a) that
e'= ol + (1A

The eigenvalues of A are 4, =—1 and 4, = -3, so, using (1.82b), we have
at)=13Be"—e™), a®=1iE"-e")

giving

-t
Ar e 0

t -3t -3t

%(ef —-e ) e

Thus the first term in (1.83) becomes

—t —t
e 0 1 e
eAtx(O) = 1 —t -3t =3t = 1 —t -3t
(e —e ) e 1 (e +e )
and the second term is
t t —(t-1)
_ e 0 1
J eA(I ”bu(z‘)dz‘ ZJ 1, —(t-17) =3(t-17) =3(t-17) ldz
0 o |2(e —¢ ) e 1

t —(t—1) —(t—1)
:J 1, —(t-17) -3(t-17) dz = 1, —(t-=00 1 _-3(-17)
ol 3(e +e ) 5(e +3e ) .

-0 —t
e e
I P R N I IS R e 1
(e "+3e )| |a(e +3e )
1-¢e”’
- 2 1 -t 1 -3t
1372° ~%°
Substituting back in (1.83) gives the required solution
) e’ 1-¢” 1
x(t) = + =
1, —t —3¢ 2 1 -t 173t 2 1 -3t
s +e )| [53€ —5€ 3ts3e

That is,

x(@) =1, x@)= %"‘
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55

56

57

Using the Symbolic Math Toolbox in MATLAB the transition matrix e’ is generated

by the sequence of commands

syms t

A= [specify];
A=sym(A) ;
E=expm (t*A) ;
pretty (E)

Confirm this using the matrix A = [-1 0; 1 —3] of Example 1.42.
In MAPLE e is returned by the commands

with (LinearAlgebra) :
A:=Matrix([[-1,0],
MatrixExponential (A, t) ;

1.10.4 Exercises

[1,-311);

Check your answers using MATLAB or MAPLE whenever possible.

Obtain the transition matrix @(f) of the system
x=Ax

where

Verify that @(¢) has the following properties:
(@ P0)=1I

(b) @(t,) = D(t,— 1) D(1));

©) D'(t) = D(-1).

Writing x, = y and x, = dy/dt express the differential
equation
2
Cl%} +2 dy +y=0
dr dt

in the vector-matrix form x = Ax, x =[x, x,|"
Obtain the transition matrix and hence solve the
differential equation given that y = dy/dt = 1 when
t =0. Confirm your answer by direct solution of the
second-order differential equation.

Solve

subject to x(0) =[1 1]~

58

59

60

Find the solution of

12 S o
-6 =5||x, 6

where u(t) =2 and x(0) =[1 -1]"

Using (1.78), find the response for # = 0 of the
system

X, =X, +2u
X, =-2x, — 3x,
to an input u(f) = ¢ and subject to the initial

conditions x,(0) = 0, x,(0) = 1.

A system is governed by the vector—matrix
differential equation

ﬂt):F 4}x(t)+{0 l}u(t) (120)
2 1 11

where x(#) and u(7) are respectively the state

and input vectors of the system. Determine

the transition matrix of this system, and hence
obtain an explicit expression for x(#) for the input
u(f) = [4 3]" and subject to the initial condition
x©O)=[1 2J~
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1.10.5

Spectral representation of response
We first consider the unforced system
x(t) = Ax(t) (1.84)

with the initial state x(#,) at time ¢, given, and assume that the matrix A has as distinct
eigenvalues A, (i =1, 2, ..., n) corresponding to n linearly independent eigenvectors
e;(i=1,2,...,n). Since the n eigenvectors are linearly independent, they may be used
as a basis for the n-dimensional state space, so that the system state x(¢) may be written
as a linear combination in the form

x(t)=c(t)e, +---+c,(t)e, (1.85)

where, since the eigenvectors are constant, the time-varying nature of x(¢) is reflected
in the coefficients c,(7). Substituting (1.85) into (1.84) gives

(e +---+¢é (e, =Alc,(t)e, +---+c,te,] (1.86)
Since (4, e;) are spectral pairs (that is, eigenvalue—eigenvector pairs) for the matrix A,
Ae,=le, (i=1,2,...,n)
(1.86) may be written as
[¢,(t) — Aey()]ey+ - - -+ [¢,(1) — A,c(t)]e, =0 (1.87)

Because the eigenvectors e; are linearly independent, it follows from (1.87) that the
system (1.84) is completely represented by the set of uncoupled differential equations

¢t)-Ac,)=0 (i=1,2,...,n) (1.88)
with solutions of the form

A (1=1)

c(t)=¢€ ci(ty)

Then, using (1.85), the system response is

x(0)=3 ct)e” e, (1.89)
i=1

Using the given information about the initial state,

n

x(to) = " cilto) e; (1.90)
i=1
so that the constants c;(#,) may be found from the given initial state using the reciprocal
basis vectors r; (i =1, 2, . . ., n) defined by
rie.= 0,

vy — Yy

where 0;is the Kronecker delta. Taking the scalar product of both sides of (1.90) with
r,, we have

rlx(i) = Y cltrie = e (i) (k=120

i=1
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Example 1.43

Solution

which on substituting in (1.89) gives the system response

x(1) =Y rix(iy) e, (1.91)

i=1

which is referred to as the spectral or modal form of the response. The terms
r,-Tx(tO) el"(t_t”)e,v are called the modes of the system. Thus, provided that the system
matrix A has n linearly independent eigenvectors, this approach has the advantage of
enabling us to break down the general system response into the sum of its simple modal
responses. The amount of excitation of each mode, represented by r'x(Z,), is dependent
only on the initial conditions, so if, for example, the initial state x(#,) is parallel to the
ith eigenvector e; then only the ith mode will be excited.

It should be noted that if a pair of eigenvalues A4,, 4, are complex conjugates then
the modes associated with e and ™"~ cannot be separated from each other. The
combined motion takes place in a plane determined by the corresponding eigenvectors
e, and e, and is oscillatory. By retaining only the dominant modes, the spectral rep-
resentation may be used to approximate high-order systems by lower-order ones.

Obtain in spectral form the response of the second-order system

)'Cl _ _2 1 X1 , _x(O) — 1
X, 1 -1][x 2
and sketch the trajectory.

The eigenvalues of the matrix

S

are determined by
|[A-Al|=2+44+3=0
that is,
A =-1, A, =3
with corresponding eigenvectors
e, =[1 170 e,=[1 -11"
Denoting the reciprocal basis vectors by
ri=[ry rmlh  r=ln
and using the relationships

rie=0;, (i,j=172)
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we have

rie,=r,+r,=1, rie;=r,—r,=0
giving

7’11:%’ 7’12:%’ r1:[§ %]T
and

rie;=r, +ry=0, rie,=ry —ryp=1
giving

7’21:%’ 7’22:_§7 r2=[% —%]T
Thus

rx(0)=5+1=%  rx0)=i-1=-}

so that, from (1.91), the system response is

2
x(0) = erTx(O) e’e, = rix(0) e, +ryx(0) e’ e,

i=1
That is,
3 -t 1 -3t
x(f)=3¢ e, —5¢ e,

which is in the required spectral form.

To plot the response, we first draw axes corresponding to the eigenvectors e, and e,
as shown in Figure 1.8. Taking these as coordinate axes, we are at the point (% , —%) at
time ¢ = 0. As ¢ increases, the movement along the direction of e, is much faster than
that in the direction of e,, since ¢ decreases more rapidly than e™. We can therefore
guess the trajectory, without plotting, as sketched in Figure 1.8.

Figure 1.8 XA
Trajectory for x(0)
Example 1.43. S L

Trajectory

-10 -05 © 05 10 15 X
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1.10.6

We can proceed in an analogous manner to obtain the spectral representation of the
response to the forced system

x(t)=Ax(t)+ Bu(t)

with x(#,) given. Making the same assumption regarding the linear independence of the
eigenvectors e; (i = 1, 2, . . ., n) of the matrix A, the vector Bu(f) may also be written
as a linear combination of the form

Bu(n =3 A(ne, (1.92)
i=1

so that, corresponding to (1.87), we have

[¢,(1) — Aie\(t) — BuD))e, + - - -+ [€,(1) — Ae,(t) — B(1)]e, =0

As a consequence of the linear independence of the eigenvectors e, this leads to the set
of uncoupled differential equations

)= Aet) - BH)=0 (=1,2,....n)

which, using (1.75), have corresponding solutions

ety =¢""c.ty) +J e B(r)dr (1.93)

0

As for ¢,(t,), the reciprocal basis vectors r; may be used to obtain the coefficients S(7).
Taking the scalar product of both sides of (1.92) with r, and using the relationships
rie;= J;, we have

riBu()=p6t) k=1,2,...,n
Thus, from (1.93),

t
Ai(t=1) A(t=7)
c(t)=e Or,-Tx(tO)+J e riBu(r)dr
1,

0

giving the spectral form of the system response as

n

x(1) = Z ci(t)e;

i=1
Canonical representation
Consider the state-space representation given in (1.66), namely
x=Ax+Bu (1.66a)

y=Cx + Du (1.66b)

Applying the transformation
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x=Tz

where T is a non-singular matrix, leads to

Tz =ATz+ Bu
y=CTz+ Du
which may be written in the form
z=Az+Bu (1.94a)
y=Cz+Du (1.94b)

where z is now a state vector and
A=T'AT, B=T'B, C€=CT, D=D

The system input—output relationship is unchanged by the transformation (see
Section 5.6.3), and the linear systems (1.66) and (1.94) are said to be equivalent. By
the transformation the intrinsic properties of the system, such as stability, controllability
and observability, which are of interest to the engineer, are preserved, and there is merit
in seeking a transformation leading to a system that is more easily analysed.

Since the transformation matrix T can be arbitrarily chosen, an infinite number of
equivalent systems exist. Of particular interest is the case when T is taken to be the
modal matrix M of the system matrix A; that is,

T=M=[e, e, ... e]

where e, (i =1, 2, . .., n) are the eigenvectors of the matrix A. Under the assumption
that the n eigenvalues are distinct,

A=M"'AM= A, the spectral matrix of A
B=M'B
c=cM, D=D

so that (1.94) becomes

7=Az+M'Bu (1.952)

y=CMz + Du (1.95b)
Equation (1.95a) constitutes a system of uncoupled linear differential equations

Z2,=Az+bu (i=1,2,...,n) (1.96)
where 2= (z;, 25, . . . , 2,)" and bTis the ith row of the matrix M~'B. Thus, by reducing
(1.66) to the equivalent form (1.95) using the transformation x = Mz, the modes
of the system have been uncoupled, with the new state variables z; i=1, 2, ..., n)

being associated with the ith mode only. The representation (1.95) is called the normal
or canonical representation of the system equations.
From (1.75), the solution of (1.96) is

t
Ai(t=tg) Ai(t-17) .
z=e Ux(t0)+Je blu(v)ydr (i=1,...,n)
1

0
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so that the solution of (1.95a) may be written as

2(t) = eA(t—To)z(tO) +J eA(FT)Mleu(T)dT

0

where

e/ll(r—to) 0

A(1=ty)
c =

O ’ A, (1=10)
e
In terms of the original state vector x(¢), (1.97) becomes

M 'x(1,) + J Me'"" "M 'Bu (1) dr

fo

A(t=tg)

x(t)=Mz=Me

and the system response is then obtained from (1.66b) as

y(#) = Cx(t) + Du(r)

1.97)

(1.98)

By comparing the response (1.98) with that in (1.78), we note that the transition matrix

may be written as

A(t— A(t— _
D(1,t,) =" = Me""TOM™!

The representation (1.95) may be used to readily infer some system properties. If the
system is stable then each mode must be stable, so, from (1.98), each 4, (i=1, 2, ..., n)
must have a negative real part. If, for example, the jth row of the matrix M™'B is zero
then, from (1.96), z; = A, z; + 0, so the input u(7) has no influence on the jth mode of the
system, and the mode is said to be uncontrollable. A system is said to be controllable

if all of its modes are controllable.

If the jth column of the matrix CM is zero then, from (1.95b), the response y is
independent of z;, so it is not possible to use information about the output to identify z;.
The state z;is then said to be unobservable, and the overall system is not observable.

A third-order system is characterized by the state-space model

0 1 0 1
x=10 0 1lx+|-3|u, y=[1 0 O]x
0 -5 -6 18

where x =[x, x, x;]" Obtain the equivalent canonical representation of the model
and then obtain the response of the system to a unit step u(¢) = H(¢) given that initially

x0)=[1 1 O~
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Solution The eigenvalues of the matrix

0 1 0
A=|0 0 1
0 -5 -6

are determined by

-4 1 0
A-AUl=|0 -4 1 =0
0 -5 -6-41

that is,
M +61+5)=0

giving 4, =0, 4, =—1 and 4, = -5, with corresponding eigenvectors
e,=[1 0 O], e,=[1 -1 1], e;=[1 -5 25"

The corresponding modal and spectral matrices are

111 0 0 0
M=|0 -1 -5/, A=|0 -1 0
0 1 25 0 0 -5

and the inverse modal matrix is determined to be

20 25 4
M=% 0 -25 -5
0o 1 1

In thiscase B=[1 -3 18]", so

20 25 4|1 20 1
M'B=5%| 0 -25 -5||-3|=%|-15|=|-3
0 1 11|18 15 2

Likewise, C=[1 0 0], giving

1 1 1
CM=[1 0 0]|0 -1 -=5|=[1 1 1]
0 I 25

Thus, from (1.95), the equivalent canonical state-space representation is

(1.99a)

N
1l
N
8]
Il
|
—_
o
2
X 8]
+
|
EN I N I
<
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y=[1 1 1]z (1.99b)

When u(t) = H(t), from (1.97) the solution of (1.99a) is

e” 0 0 q1 0 1
z=10 e’ 0 z(O)+J 0 e“? o0 -3 1dr
0 0 & “lo o el 2
where
20 24 4|1 8
20)=M'x(0)=5| 0 -25 =5||1|=|-3
0 1 1]]0 %
leading to
1 0 o [|5| . 1
z=|0 ' o0 ||-3 +J e ldr
0 0 || % ’ f—‘e*S(H)
u t r+4
=|-Ge' |+ | 3+3e|=| 2-le”

I
~
+

Lo
|

1
(¢

|

Sl

(¢]

If we drop the assumption that the eigenvalues of A are distinct then A= M~'AM is
no longer diagonal, but may be represented by the corresponding Jordan canonical form
J with M being made up of both eigenvectors and generalized eigenvectors of A. The
equivalent canonical form in this case will be

z=Jz+M'Bu
y=CMz + Du
with the solution corresponding to (1.97) being

x(r) =M™ M k(1) + J M M'Bu (7)dr

L)
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61

62

63

64

65

1.10.7 Exercises

Obtain in spectral form the response of the unforced
second-order system

_:é (1) -2 3
. 1
(1) = = L.
x2(1) b=
2
x(0) =
4‘|
) 66
Using the eigenvectors as the frame of reference,
sketch the trajectory.
Using the spectral form of the solution given in
(1.91), solve the second-order system
. -2 2 2
x(1) = x(), x(0)=
2 -5 3
and sketch the trajectory.
67

Repeat Exercise 61 for the system

;&(r):B :ﬂx(t), x(O)zm

Determine the equivalent canonical representation
of the third-order system

1 1 =2 -1
x=|-1 2 1|x+| 1l|u

01 -1 -1
y=[-2 1 O0]x

The solution of a third-order linear system is
given by

X = oee, + ae Ve, + a,e Ve,

where e, e, and e, are linearly independent vectors
having values

e=[1 1 O
e,=[1 2 3T

e=[0 1 1T,

Initially, at time ¢ = O the system state is
x(0) = [1 1 1]" Find &, @, and @, using
the reciprocal basis method.

Obtain the eigenvalues and eigenvectors of the matrix

o]

Using a suitable transformation x(#) = Mz(t), reduce
X (1) = Ax(?) to the canonical form Z(¢) = Az(?),
where A is the spectral matrix of A. Solve the
decoupled canonical form for z, and hence solve
for x(¢) given that x(0) =[1  4]".

A second-order system is governed by the state
equation

:é(t):r 4}:(1)4{0 1:|u(t) (t=0)
2 1 1 1

Using a suitable transformation x(r) = Mz(t), reduce
this to the canonical form

2(t) = Az(f) + Bu(?)

where A is the spectral matrix of

]

and B is a suitable 2 X 2 matrix.

For the input u(f) = [4  3]" solve the decoupled
canonical form for z, and hence solve for x(¢) given
that x(0) =[1 2]~ Compare the answer with that
for Exercise 59.

In Chapter 5 (in particular Section 5.4) we shall consider the solution of state-space
models using the Laplace transform method. If you are unfamiliar with Laplace
transforms, see Chapter 11 of MEM. Chapter 6 extends the analysis to discrete-time

systems using z transforms.
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1.11 Engineering application: gRZIIGEA eI RVEREINHE

The Russian mathematician Aleksandr Mikhailovich Lyapunov (1857—-1918) developed
an approach to stability analysis which is now referred to as the direct (or second)
method of Lyapunov. His approach remained almost unknown in the English-speaking
world for around half a century, before it was translated into English in the late 1950s.
Publication of Lyapunov’s work in English aroused great interest, and it is now widely
used for stability analysis of linear and nonlinear systems, both time-invariant and time-
varying. Also, the approach has proved to be a useful tool in system design such as, for
example, in the design of stable adaptive control systems. The Lyapunov method is in
fact a ‘method of approach’ rather than a systematic means of investigating stability and
much depends on the ingenuity of the user in obtaining suitable Lyapunov functions.
There is no unique Lyapunov function for a given system.

In this section we briefly introduce the Lyapunov approach and will restrict con-
sideration to the unforced (absence of any input) linear time-invariant system

X =Ax (1.100)

where x = [x,, X,, . . ., x,]" is the n-state vector and A is a constant n X n matrix. For the
linear system (1.100) the origin x = 0 is the only point of equilibrium. If, for any initial
state x(0), the trajectory (solution path) x(¢) of the system approaches zero (the equilib-
rium point) as t — oo then the system is said to be asymptotically stable. In practice the
elements of the matrix A may include system parameters and we are interested in deter-
mining what constraints, if any, must be placed on these parameters to ensure system
stability. Stability of (1.100) is further discussed in Section 5.6.1, where algebraic criteria
for stability are presented. In particular, it is shown that stability of system (1.100) is
ensured if and only if all the eigenvalues of the state matrix A have negative real parts.

To develop the Lyapunov approach we set up a nest of closed surfaces, around the
origin (equilibrium point), defined by the scalar function

Vix)=V(x;, x5 ...,x,)=C (1.101)

where C is a positive constant (the various surfaces are obtained by increasing the
values of C as we move away from the origin). If the function V(x) satisfies
the following conditions:

(a) V(x) =0 at the origin, that is V(0) = 0;
(b) V(x) > 0 away from the origin;
(c) V(x) is continuous with continuous partial derivatives;

then it is called a scalar Lyapunov function. (Note that conditions (a) and (b) together
ensure that V(x) is a positive-definite function.) We now consider the rate of change
of V(x), called the Eulerian derivative of V(x) and denoted by V(x), along the trajectory
of the system under investigation; that is,

y Qdel avd)(fz &den
==+ ==t 1.102
Vx) ox, dt  ox, dt ox, dt ( )
where the values of X, x,, . . ., X, are substituted from the given equations representing

the system ((1.100) in the case of the linear equations under consideration).
If V satisfies the condition

(d) V(x)is negative definite

then it follows that all the trajectories cross the surfaces V(x) = C in an inward direction
and must tend to the origin, the position of equilibrium. Thus asymptotic stability has
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Example 1.45

been assured without having to solve the differential equations representing the system.
The function V(x) which satisfies conditions (a)—(d) is called a Lyapunov function for
the system being considered.

If we start with a positive-definite V(x) and impose conditions on V(x) to be negative-
definite, then these conditions will provide sufficient but not necessary stability criteria,
and in many cases they may be unduly restrictive. However, if we are able to start with
a negative-definite V(x) and work back to impose conditions on V(x) to be positive-
definite, then these conditions provide necessary and sufficient stability criteria. This
second procedure is far more difficult to apply than the first, although it may be applied
in certain cases, and in particular to linear systems.

Of particular importance as Lyapunov functions for linear systems are quadratic
forms in the variables x,, x,, . . ., x, which were introduced in Section 1.6.4. These
may be written in the matrix form V(x) = x"Px, where P is a real symmetric matrix.
Necessary and sufficient conditions for V(x) to be positive-definite are provided by
Sylvester’s criterion, which states that all the principal minors of P of order 1,2, ..., n
must be positive; that is

Pu P2 P13
p p
P >0, ! 2 >0,|pin Pn pPu| > 0,...,|P[>0
P2 P»
P13z P P33

Returning to the linear system (1.100) let us consider as a tentative Lyapunov function
the quadratic form

V(x) = x"Px

where P is an n X n real symmetric matrix. To obtain the Eulerian derivative of V(x)
with respect to system (1.103) we first differentiate V(x) with respect to ¢

v _ xTPx + x"Px
dt

and then substitute for x™ and x from (1.100) giving
V(x) = (Ax)"Px + x"P(Ax)
V(x) =x"A"P + PA)x
or alternatively
V(x) = —x"Qx (1.103)
—Q=A"P+PA (1.104)

that is

where

To obtain necessary and sufficient conditions for the stability of the linear system
(1.100) we start with any negative definite quadratic form —x"Qx, with an n X n
symmetric matrix (, and solve matrix equation (1.104) for the elements of P. The con-
ditions imposed on P to ensure that it is positive-definite then provide the required
necessary and sufficient stability criteria.

The vector-matrix differential equation model representing an unforced linear R—C
circuit is
5= 4o 4da ¥ (i)
20 -6«

Examine its stability using the Lyapunov approach.
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Solution Take Q of equation (1.104) to be the identity matrix I which is positive-definite
(thus —Q is negative-definite). Then (1.104) may be written

{—1 O} :|:—405 ZUfl {Pu Plz} n {Pu P12} [—4(1 40{} (i)
0o -1 4o —60||pn Pn P Pu|| 20 —60
Equating elements in (ii) gives

=8ap,, +4op,=-1,40p,, — 10ap,, + 2ap,, =0, 8ap,, — 12ap,, =—1

Solving for the elements gives

-7 _ 1~ _ 3
Pu= 200’2~ 10072~ 200

so that
1 (7 4
P=——

400{{4 6}

The principal minors of 74 are |7| >0 and 7oA 26 > 0.
4 6 4 6

Thus, by Sylvester’s criterion, P is positive-definite and the system is asymptotically
stable provided « > 0. Note that the Lyapunov function in this case was

V(x) =x"Px = 4—1(;—05 (7x% + 8x,x, + 6x3)

1.11.1 Exercises

68  Using the Lyapunov approach investigate the use the Lyapunov approach to determine the
stability of the system described by the state constraints on the parameters a and b that yield
equation necessary and sufficient conditions for asymptotic

stability.
. |4 2 . . .
X = 5 x 71  Condition (d) in the formulation of a Lyapunov
3 - function, requiring V(x) to be positive-definite, may

be relaxed to V(x) being positive-semidefinite
provided V(x) is not identically zero along any
trajectory. A third-order system, in the absence of
an input, is modelled by the state equation

Take Q to be the unit matrix. Confirm your answer
by determining the eigenvalues of the state matrix.

69  Repeat Exercise 67 for the system described by the

state equation X =Ax
T3 g wherex =[x, x, x;]"and
X = X
_—1 -1 0 1 0

A=| o -2 1| withkbeing a constant scalar.

70  For the system modelled by the state equation -k 0 -1
. It is required to use the Lyapunov approach to
s _(x1|_ [0 1]|x . . .
xX=\"= determine the constraints on k to ensure asymptotic
X2 —a —bl|x stability.
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(a) In (1.103) choose Q to be the positive- (c) Using Sylvester’s criterion show that the
semidefinite matrix system is asymptotically stable for
O<k<bé.
0 0 O
72 A feedback control system modelled by the
Q=10 0 0 . . .
differential equation
0 0 1

X+ax+kx=0

so that is known to be asymptotically stable, for £ > 0,

Vix)=—=x"Qx = -x3 a > 0. Set up the state-space form of the equation

. o . and show that
Verify that M(x) is identically zero only at the

origin (equilibrium point) and is therefore not V(xy, Xp) = kxi + (x, + ax)’, X, =X, X, = X
identically zero along any trajectory. is a suitable Lyapunov function for verifying
(b) Using this matrix Q solve the matrix equation this.

A™P+PA=-Q

to determine the matrix P.

1.12 Engineering application: QEIEMEIGI @Il o]l

Many smaller portable tape recorders have a capacitor microphone built in, since such
a system is simple and robust. It works on the principle that if the distance between the
plates of a capacitor changes then the capacitance changes in a known manner, and
these changes induce a current in an electric circuit. This current can then be amplified
or stored. The basic system is illustrated in Figure 1.9. There is a small air gap (about
0.02 mm) between the moving diaphragm and the fixed plate. Sound waves falling on
the diaphragm cause vibrations and small variations in the capacitance C; these are
certainly sufficiently small that the equations can be linearized.

Figure 1.9 Capacitor Air gap Moving diaphragm
microphone.

| — Fixed plate
Insulation

Metal frame

We assume that the diaphragm has mass m and moves as a single unit so that its
motion is one-dimensional. The housing of the diaphragm is modelled as a spring-
and-dashpot system. The plates are connected through a simple circuit containing a
resistance and an imposed steady voltage from a battery. Figure 1.10 illustrates the
model. The distance x(f) is measured from the position of zero spring tension, F is the
imposed force and f is the force required to hold the moving plate in position against
the electrical attraction. The mechanical motion is governed by Newton’s equation
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Figure 1.10 Capacitor
microphone model.

—> x(¢) from zero-spring-tension
position

N
4[[7

LI
k

F(#)

R Fixed  Moving
plate  diaphragm

mi =—kx—Ax—f+F (1.105)
and the electrical circuit equation gives
R+ wim 9=
E=RI+ ok with i I (1.106)

The variation of capacitance C with x is given by the standard formula

_ Coa
a+x

where a is the equilibrium distance between the plates. The force f is not so obvious,
but the following assumption is standard

2
_1 Zﬁ_(l)zli_
/=34 dx\C/ ?Cya

It is convenient to write the equations in the first-order form

X=v

2
. q
mv=—kx—/1v—%c—oa+F(t)
Ré=—M+E
aCO

Furthermore, it is convenient to non-dimensionalize the equations. While it is obvious
how to do this for the distance and velocity, for the time and the charge it is less so.
There are three natural time scales in the problem: the electrical time 7; = RC,, the
spring time 77 = m/k and the damping time 7; = m/A. Choosing to non-dimensionalize
the time with respect to 7,, the non-dimensionalization of the charge follows:

t X 14
T=—, X==, Vv

q
=777 Q =7
7, a kalA /(2C0ka2)

Then, denoting differentiation with respect to 7by a prime, the equations are

X'==

14

F
ka

J(2Coka®)

m

Vi=X-V-0
2RC, o+

0'=-0(1 +X)+
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y=-X(I1 +X)?

Figure 1.11 Solutions to
equations (1.108).

There are four non-dimensional parameters: the external force divided by the spring
force gives the first, G = F/ka; the electrical force divided by the spring force gives the
second, D* = (E*C,/2a)/ka; and the remaining two are

_ R Cok Tl 2-3 m 2-3

= — B

A = =
A T; //i,RCO 74

The final equations are therefore
X' =AV
BV =-X-V-0+G (1.107)
Q'=-0(1+X)+D
In equilibrium, with no driving force, G=0and V=X"=V’'=Q’ =0, so that
0'+X = 0} (1.108)
0(1+X)-D=0
or, on eliminating Q,
X(1+X)y=-D*

From Figure 1.11, we see that there is always one solution for X < —1, or equivalently
x < —a. The implication of this solution is that the plates have crossed. This is clearly
impossible, so the solution is discarded on physical grounds. There are two other solu-
tions if

2 1,4N\2 _ 4
D <3G) =5

E’C
2ka§ <z (1.109)

We can interpret this statement as saying that the electrical force must not be too strong,
and (1.109) gives a precise meaning to what ‘too strong’ means. There are two
physically satisfactory equilibrium solutions —3 <X, <0and -1 <X, <—1, and the only
question left is whether they are stable or unstable.

Stability is determined by small oscillations about the two values X, and X,, where
these values satisfy (1.108). Writing

X=X+¢ 0=0;+n, V=26
and substituting into (1.107), neglecting terms in &%, y?, 6%, €6 and so on, gives
g=A6
BO=—e- 0-20.7 (1.110)
n'=(-Qe-(1+X:)n)

Equations (1.110) are the linearized versions of (1.107) about the equilibrium values.
To test for stability, we put G =0 and £ =Le*", §=Me*", n=Ne* into (1.110):

Lo =AM
BMo=-L—-M-2Q,N
No=-Q,L-(1+X)N
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which can be written in the matrix form

L 0 A 0 L
a/M|=|-1/B -1/B =-2Q,B||M
N -0, 0 —(1+X)|| N

Thus the fundamental stability problem is an eigenvalue problem, a result common
to all vibrational stability problems. The equations have non-trivial solutions if

-0 A 0
0=|-1/B —(1/B) — a -20Q,/B
-0, 0 -(1+X) -«

=—[Ba+BA+X)+ D> +(1+X,+Aa+A( +X,—-20°)1/B

For stability, & must have a negative real part, so that the vibrations damp out, and the
Routh—Hurwitz criterion (Section 5.3.2) gives the conditions for this to be the case.
Each of the coefficients must be positive, and for the first three

B>0, B(1+X)+1>0, 1+X,+A>0

are obviously satisfied since —1 < X; < 0. The next condition is
Al +X,-205)>0

which, from (6.118), gives
1+3X,>0, or X,->—§

Thus the only solution that can possibly be stable is the one for which X;> —1; the other
solution is unstable. There is one final condition to check,

[B(1 + X)) + 1](1 + X;+ A) — BA(1 + X, — 20%) > 0
or
BA+X)Y+1+X+A+2BAQ> >0

Since all the terms are positive, the solution X;> % is indeed a stable solution.

Having established the stability of one of the positions of the capacitor diaphragm,
the next step is to look at the response of the microphone to various inputs.
The characteristics can most easily be checked by looking at the frequency response,
which is the system response to an individual input G = b &', as the frequency @ varies.
This will give information of how the electrical output behaves and for which range
of frequencies the response is reasonably flat.

The essential point of this example is to show that a practical vibrational problem
gives a stability problem that involves eigenvalues and a response that involves a matrix
inversion. The same behaviour is observed for more complicated vibrational problems.
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1.13  Review exercises (1-19)

Check your answers using MATLAB or MAPLE whenever possible.

Obtain the eigenvalues and corresponding
eigenvectors of the matrices

-1 6 12
@ | 0 -13 30
0 -9 20
2 0 1
®) -1 4 -1
12 0

1 -1 0
© [-1 2 -1
L0 -1 1

Find the principal stress values (eigenvalues)
and the corresponding principal stress directions
(eigenvectors) for the stress matrix

3 2 1
T=12 3 1
1 1 4

Verify that the principal stress directions are
mutually orthogonal.

Find the values of b and ¢ for which the matrix

2 -1 0
A=|[-1 3 b
0 b ¢

has[I O 1]"asan eigenvector. For these
values of b and c calculate all the eigenvalues
and corresponding eigenvectors of the matrix A.

(a) Using the power method find the dominant
eigenvalue and the corresponding eigenvector
of the matrix

2 1 1
A=|1 25 1
1 1 3

starting with an initial vector [1 1 1]"
and working to 3 decimal places.

(b) Given that another eigenvalue of A is 1.19
correct to 2 decimal places, find the value of the

third eigenvalue using a property of matrices.

(c) Having determined all the eigenvalues of A,
indicate which of these can be obtained by
using the power method on the following
matrices: (i) A~'; (ii) A — 31.

Consider the differential equations

ili—)tc=4x+y+z
%=2x+5y+4z
de____

di Y

Show that if it is assumed that there are solutions
of the form x = are”, y = Be* and z = ye* then
the system of equations can be transformed into
the eigenvalue problem

4 1 1| o
2 5 4||B|=AB
-1 -1 0|y V4

Show that the eigenvalues for this problem
are 5, 3 and 1, and find the eigenvectors
corresponding to the smallest eigenvalue.

Find the eigenvalues and corresponding
eigenvectors for the matrix

8 -8 -2
A=|4 -3 =2
3 -4 1

Write down the modal matrix M and spectral
matrix A of A, and confirm that

M'AM=A

Show that the eigenvalues of the symmetric matrix

1 0 -4
A=| 0 5 4
-4 4 3

are 9, 3 and —3. Obtain the corresponding
eigenvectors in normalized form, and write down
the normalized modal matrix M. Confirm that

MAM = A

where A is the spectral matrix of A.
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10

In a radioactive series consisting of four different
nuclides starting with the parent substance N, and
ending with the stable product N, the amounts of
each nuclide present at time ¢ are given by the
differential equations model

Py g,
%%=6M—4M
%%:mw—mw
ey,

Express these in the vector—matrix form
N =AN

where N=[N, N, N,; N,]"Find the eigenvalues
and corresponding eigenvectors of A. Using the
spectral form of the solution, determine N,(7) given
that at time =0, N,= C and N, = N;=N, = 0.

(a) Given

2 0
A E
1 1
use the Cayley—Hamilton theorem to find

(i) A7-3A%+A*+3A°-2A%+3I
(ii) A* where k > 0 is an integer.

(b) Using the Cayley—Hamilton theorem, find
e? when

e

Show that the matrix

>

Il
S O =
S = N

3
4
1

has an eigenvalue A= 1 with algebraic
multiplicity 3. By considering the rank of a
suitable matrix, show that there is only one
corresponding linearly independent eigenvector
e,. Obtain the eigenvector e, and two further
generalized eigenvectors. Write down the
corresponding modal matrix M and confirm that

11

12

13

M~AM=J, where J is the appropriate Jordan
matrix. (Hint: In this example care must be taken
in applying the procedure to evaluate the
generalized eigenvectors to ensure that the
triad of vectors takes the form {T’w, Tw, w},
where T=A — A, with T’w=e¢,.)

The equations of motion of three equal masses
connected by springs of equal stiffness are

X =-2x+y
y=x—-2y+z
I=y—2z

Show that for normal modes of oscillation
x =X cos wt, y = Ycoswt,
z=7Zcos wt

to exist then the condition on A = @” is

A-2 1 0
1 A-2 1 |=0
0 1 A-2

Find the three values of A that satisfy this
condition, and find the ratios X: Y:Z in
each case.

Classify the following quadratic forms:

(@) 2 +y*+277 - 2xy — 2yz

(b) 3x* + 7y + 27> — 4xy — 4z

(©) 16x* +36y* + 1727 + 32xy + 32xz +16yz
(d) —21x% + 30xy — 12xz — 11y* + 8yz — 27°
(€) —x*—3y* — 572+ 2xy + 2xz + 2y7

Show thate, = [1 2 3] is an eigenvector of

the matrix
7 1 1
2 T2 T2
A= 4 -1 0
3 3 1
2 2 2

and find its corresponding eigenvalue. Find the
other two eigenvalues and their corresponding
eigenvectors.
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Write down in spectral form the general
solution of the system of differential

equations
dx
D= =T=y=
TR
dy _
T =4x—-y

2%§=—3x+3y+z

Hence show thatif x =2, y=4andz=06
when ¢ = 0 then the solution is

y =4e', 7=06¢'

(a) Find the SVD form of the matrix
1.2 09 -4
A =
1.6 12 3
(b) Use the SVD to determine the pseudo inverse

A" and confirm it is a right inverse of A.

(c) Determine the pseudo inverse A" without using
the SVD.

From (1.48) the unitary matrices U/ and V and sigma
matrix X may be written in the partitioned form:

1 v=19,9,15=> °
m—rl> r n—-ris 0 O

where S is r X r diagonal matrix having the singular
values of A as its diagonal elements and 0 denotes
zero matrices having appropriate order.

(a) Show that the SVD form of A may be
expressed in the form

A=U0S0T
This is called the reduced singular value
decomposition of A.
(b) Deduce that the pseudo inverse is given by
AT=V S0T
(c) Use the results of (a) and (b) to determine

the SVD form and pseudo inverse of the
matrix

16

17

and check your answers with those obtained
in Exercise 45.

A linear time-invariant system (A, b, c) is
modelled by the state-space equations

x(f) = Ax(?) + bu(?)
y(0) =c"x()

where x() is the n-dimensional state vector, and u(r)
and y(7) are the system input and output
respectively. Given that the system matrix A

has n distinct non-zero eigenvalues, show that

the system equations may be reduced to the
canonical form

&t = AEQ) + bou(d)
MOEXHS0)

where A is a diagonal matrix. What properties of
this canonical form determine the controllability
and observability of (A, b, ¢)?

Reduce to canonical form the system (A, b, ¢)
having

[ 1 =2
A=-1 2 1
[0 1 -1
=il =)
b= 1 c=]| 1
-1 0

and comment on its stability, controllability and
observability by considering the ranks of the
appropriate Kalman matrices [p  Ab A’b]
and [¢ ATc (A"%].

A third-order system is modelled by the state-space
representation

-2 -2 0 1 0
1|u
1

x= 0 0 1|x+]|0
0 -3 -4 1
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wherex =[x, x, x]"andu=1[u, u,]"
Find the transformation x = Mz which reduces
the model to canonical form and solve for x(z)
givenx(0)=[10 5 2]"andu(®)=[t 1]~

The behaviour of an unforced mechanical system
is governed by the differential equation

5 2 -1
(=3 6 -9|x(1), x(0)=
11 1

S = O

(a) Show that the eigenvalues of the system
matrix are 6, 3, 3 and that there is only
one linearly independent eigenvector
corresponding to the eigenvalue 3. Obtain the
eigenvectors corresponding to the eigenvalues
6 and 3 and a further generalized eigenvector
for the eigenvalue 3.

(b) Write down a generalized modal matrix M
and confirm that

AM=MJ
for an appropriate Jordan matrix J.
(c) Using the result
x() = MeM~'x(0)

obtain the solution to the given differential
equation.

(Extended problem) Many vibrational systems are
modelled by the vector—matrix differential equation

X () = Ax(n) 1)

where A is a constant n X n matrix and x(f) =
[x, (D) x(0) x,(O)]". By substituting x = e*u,
show that

Au=Au )

and that non-trivial solutions for u exist
provided that

|A-21=0 3)
Let A3, A2, ..., A2 be the solutions of (3) and
U, U, ...,u,the corresponding solutions of (2).

Define M to be the matrix having u,, u,, . . .,
u, as its columns and S to be the diagonal matrix
having 43, 43, . .., A2 as its diagonal elements.
By applying the transformation x(z) = Mq(t),
where ¢(t) = [¢,(t) (1) 4,01 to (1),
show that

4 =Sq “
and deduce that (4) has solutions of the form
g;= C;sin(wt + o) 5)

where ¢; and ¢; are arbitrary constants and
A;=jw, withj=/(=1).

The solutions A? of (3) define the natural
frequencies @, of the system. The corresponding
solutions ¢g; given in (5) are called the normal
modes of the system. The general solution of (1)
is then obtained using x(¢) = Mq(2).

A mass—spring vibrating system is governed
by the differential equations

X (1) = =3x,(2) + 2x,(2)
X 5(t) = x,(t) — 2x5(2)

with x,(0) = 1 and x,(0) = x,(0) = x,(0) = 2.
Determine the natural frequencies and the
corresponding normal modes of the system.
Hence obtain the general displacement x,(z)
and x,(¢) at time ¢ = 0. Plot graphs of both
the normal modes and the general solutions.
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YBN Introduction

Frequently the equations which express mathematical models in both engineering analysis
and engineering design involve derivatives and integrals of the models’ variables. Equations
involving derivatives are called differential equations and those which include integrals
or both integrals and derivatives are called integral equations or integro-differential
equations. Generally integral and integro-differential equations are more difficult to deal
with than purely differential ones.

There are many methods and techniques for the analytical solution of elementary ordi-
nary differential equations. The most common of these are covered in most first-level
books on engineering mathematics (e.g. Modern Engineering Mathematics). However,
many differential equations of interest to engineers are not amenable to analytical solution
and in these cases we must resort to numerical solutions. Numerical solutions have many
disadvantages (it is, for instance, much less obvious how changes of parameters or
coefficients in the equations affect the solutions) so an analytical solution is generally
more useful where one is available.

There are many tools available to the engineer which will provide numerical solutions
to differential equations. The most versatile of these perhaps are the major computer
algebra systems such as MAPLE. These contain functions for both analytical and

numerical solution of differential equations. Systems such as MATLAB/Simulink and
Mathcad can also provide numerical solutions to differential equations problems. It
may sometimes be necessary for the engineer to write a computer program to solve
a differential equation numerically, either because suitable software packages are
not available or because the packages available provide no method suitable for the
particular differential equation under consideration.

Whether the engineer uses a software package or writes a computer program for
the specific problem, it is necessary to understand something of how numerical
solutions of differential equations are achieved mathematically. The engineer who
does not have this understanding cannot critically evaluate the results provided by a
software package and may fall into the trap of inadvertently using invalid results. In
this chapter we develop the basics of the numerical solution of ordinary differential
equations.

AV 2 P T T TN )W motion in a viscous fluid

The problem of determining the motion of a body falling through a viscous fluid arises in
a wide variety of engineering contexts. One obvious example is that of a parachutist, both
in free fall and after opening his or her parachute. The dropping of supplies from aircraft
provides another example. Many industrial processes involve adding particulate raw
materials into process vessels containing fluids, whether gases or liquids, which exert
viscous forces on the particles. Often the motion of the raw materials in the process vessel
must be understood in order to ensure that the process is effective and efficient. Fluidized
bed combustion furnaces involve effectively suspending particles in a moving gas stream
through the viscous forces exerted by the gas on the particles. Thus, understanding the
mechanics of the motion of a particle through a viscous fluid has important engineering
applications.
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mg

Figure 2.1 A particle
falling through a
viscous fluid.

When a particle is falling through a viscous fluid it may be modelled simply in the
following way. The force of gravity acts downwards and is opposed by a viscous drag
force produced by the resistance of the fluid. Figure 2.1 shows a free body diagram of
the particle which is assumed to be falling vertically downwards. If the particle’s mass
is m, the gravitational force is mg, and it is opposed by a drag force, D, acting to oppose
motion. The displacement of the particle from its initial position is x.

The equation of motion is

2
mg =mg-D 2.1)

Before we can solve this equation, the form of the drag term must be determined.
For particles moving at a high speed it is often assumed that the drag is proportional to
the square of the speed. For slow motion the drag is sometimes assumed to be directly
proportional to the speed. In other applications it is more appropriate to assume that
drag is proportional to some power of the velocity, so that

D=k“=k (?j_)t‘)a where, normally, 1| < o< 2

The differential equation (2.1) then becomes

2 o
mg =mg — k(dx)

dr’ dr
. d’x ((Bc)a _
ie. ma-t—z + k 9. =ms8 2.2)

This is a second-order, nonlinear, ordinary differential equation for x, the displacement of
the particle, as a function of time. In fact, for both =1 and =2, (2.2) can be solved
analytically, but for other values of & no such solution exists. If we want to solve the dif-
ferential equation for such values of ¢ we must resort to numerical techniques.

Numerical solution of first-order ordinary
differential equations

In a book such as this we cannot hope to cover all of the many numerical techniques which
have been developed for dealing with ordinary differential equations (ODEs) so we will
concentrate on presenting a selection of methods which illustrate the main strands of the
theory. In so doing we will meet the main theoretical tools and unifying concepts of the area.

In the last twenty years great advances have been made in the application of computers
to the solution of differential equations, particularly using computer algebra packages to
assist in the derivation of analytical solutions and the computation of numerical solutions.
The MATLAB package is principally oriented towards the solution of numerical problems
(although its Symbolic Math Toolbox and the MuPAD version are highly capable) and
contains a comprehensive selection of the best modern numerical techniques giving the
ability to solve most numerical problems in ODEs. Indeed numerical solutions can be
achieved both in native MATLAB and in the Simulink simulation subsystem; which of
these paths the user chooses to follow may well be dictated as much by their experience
and professional orientation as by theoretical considerations. MAPLE, despite being
mainly orientated towards the solution of symbolic problems, also contains a comprehen-
sive suite of numerical solution routines and is, in practice, just as capable as MATLAB in
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2.3.1

Figure 2.2

The direction field
for the equation
dx/dt = x(1 — x)t.

this area. Moreover, MAPLE gives to the user more control of the solution method used
and includes a number of ‘classical’ solution methods. These classical methods include all
the methods which are used, in this chapter, to introduce, develop and analyse the main
strands of the theory mentioned above. For this reason, MAPLE will be featured rather
more frequently than MATLAB, but the practising engineer is as likely to be using MAT-
LAB for the numerical solution of real-world problems as using MAPLE.

Despite the fact that professional engineers are very likely to be using these packages
to compute numerical solutions of ODEgs, it is still important that they understand the
methods which the computer packages use to do their work, for otherwise they are at the
mercy of the decisions made by the designers of the packages who have no foreknowl-
edge of the applications to which users may put the package. If the engineering user
does not have a sound understanding of the principles being used within the package
there is the ever present danger of using results outside their domain of validity. From
there it is a short step to engineering failures and human disasters.

A simple solution method: Euler’s method

For a first-order differential equation dx/df = f(#, x) we can define a direction field. The
direction field is that two-dimensional vector field in which the vector at any point (z, x)
has the gradient dx/dt.

More precisely, we know that the gradient at (#, x) is f{#, x). This means that we can
represent the solution of the differential equation in the (z, x) plane by the vector [1, f{%, x)]
at each point (¢, x). It is practical to normalize the vectors to give them unit magnitude, thus
the direction field is the field

[1, f(t,x)]
N1+ f(5,x)°

For instance, Figure 2.2 shows the direction field of the differential equation dx/dz
=x(1 — x)t.

Since a solution of a differential equation is a function x(f) which has the property
dx/dt = f(¢, x) at all points (¢, x) the solutions of the differential equation are curves in
the (#, x) plane to which the direction field lines are tangential at every point. For
instance, the curves shown in Figure 2.3 are solutions of the differential equation

X y
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Figure 2.3 Solutions x A
of dx/dt = x(1 — x)t 20+
superimposed on its
direction field.
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This immediately suggests that a curve representing a solution can be obtained by
sketching on the direction field a curve that is always tangential to the lines of the
direction field. In Figure 2.4 a way of systematically constructing an approximation to
such a curve is shown.

Starting at some point (%,, x,), a straight line parallel to the direction field at that point,
[ft,, %), is drawn. This line is followed to a point with abscissa ¢, + 4. The ordinate at this
point is x, + hf(%,, x,), which we shall call X,. The value of the direction field at this new
point is calculated, and another straight line from this point with the new gradient is
drawn. This line is followed as far as the point with abscissa #, + 2h. The process can be
repeated any number of times, and a curve in the (¢, x) plane consisting of a number of
short straight-line segments is constructed. The curve is completely defined by the points
at which the line segments join, and these can obviously be described by the equations.

Figure 2.4 %4
The construction of 12+
anumerlcal.solutlon | | | / / p .
of the equation
da/dr = £(t, x). 0+ b s - (tns1s Xn41)
| | [ / (tn X, ~hf(t X)) — — —
g4 | / / / / ~ h - — — i .
| / / / / P U
64 / i / / e o —_— e — S
! / / ~ — e —_
4+ / / / ~ - I — —
wXxy - - = = =
il s = S
2 hf (1, xo)
G~ h— — — — — — — — — —
Il 1

Il Il | Il o
T T I I | it
i
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Figure 2.5 The
Euler-method solutions
of dx/dt = x*te™ for
h=0.05, 0.025 and
0.0125.

x A Analytic
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t,=t,+h, X, = x, + hf(t,, x,)
t, =1t +h, X, =X, + hf(t, X))

t,=t+h, X5 =X, + hf(t,, X,)

tn+l = tn + h’ Xn+1 = Xn + hf(tn’ Xn)

These define, mathematically, the simplest method for integrating first-order differential
equations. It is called Euler’s method (or the forward Euler method). Solutions are
constructed step by step, starting from some given starting point (#,, x,). For a given t,
each different x, will give rise to a different solution curve. These curves are all solu-
tions of the differential equation, but each corresponds to a different initial condition.

The solution curves constructed using this method are obviously not exact solutions
but only approximations to solutions, because they are only tangential to the direction
field at certain points. Between these points, the curves are only approximately tangential
to the direction field. Intuitively, we expect that, as the distance for which we follow each
straight-line segment is reduced, the curve we are constructing will become a better and
better approximation to the exact solution. The increment % in the independent variable ¢
along each straight-line segment is called the step size used in the solution. In Figure 2.5
three approximate solutions of the initial-value problem

dx _ x’te”, x(0)=091 2.3)
dt

for step sizes £ = 0.05, 0.025 and 0.0125 are shown. These steps are sufficiently small
that the curves, despite being composed of a series of short straight lines, give the illusion
of being smooth curves. Equation (2.3) actually has an analytical solution, which can

be obtained by separation:
1

X = P ——

(1+nHe +C

The analytical solution to the initial-value problem is also shown in Figure 2.5 for
comparison. It can be seen that, as we expect intuitively, the smaller the step size the
more closely the numerical solution approximates the analytical solution.
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MAPLE provides options in the dsolve function, the general-purpose ordinary
differential equation solver, to return a numerical solution computed using the Euler
method. Using this option we can easily generate the solutions plotted on Figure 2.5.
In fact we can readily extend the figure to some smaller time steps. The following
MAPLE worksheet will produce a figure similar to Figure 2.5 comparing the solutions
obtained from the Euler method using time steps of 0.05, 0.025, 0.0125, 0.00625,
0.003125 and the exact solution. The pattern established in Figure 2.5 can be seen to
continue with each halving of the time step producing a solution with a yet smaller
error when compared with the exact solution.

> degl:=diff (x(t),t)=x(t) " 2*t*exp(-t);initl:=x(0)=0.91;
> #solve the differential equation with 5 different
timesteps
> x1:=dsolve({deql, initl},
numeric,method=classical [foreuler] , output=1listprocedure,
stepsize=0.05) ;
> x2:=dsolve({deqgl, initl},
numeric,method=classical [foreuler], output=1listprocedure,
stepsize=0.025) ;
> x3:=dsolve({degl, initl},
numeric,method=classical [foreuler] ,h output=1listprocedure,
stepsize=0.0125) ;
> x4:=dsolve({degl, initl},
numeric,method=classical [foreuler] ,h output=1listprocedure,
stepsize=0.00625) ;
> x5:=dsolve({deqgl, initl},
numeric, method=classical [foreuler] ,output=1listprocedure,
stepsize=0.003125) ;
> #extract the five solutions from the listprocedure
structures
for i from 1 to 5 do;solution||i:=op(2,x||1i[2]);end do;

#find the exact solution

xa:=dsolve ({deqgl, initl});

#plot the five numerical solutions and the exact solution

plot ([seg(solution||i(t),i=1..5),0p(2,xa) (t)],t=0..12);

V V. V V V

Example 2.1 The function x(¢) satisfies the differential equation

dx _ x+1t
dt xt

and the initial condition x(1) = 2. Use Euler’s method to obtain an approximation to the
value of x(2) using a step size of 4 =0.1.

Solution In this example the initial value of 7 is 1 and x(1) = 2. Using the notation above we have
t, =1, and x, = 2. The function f(z, x) = )%tt So we have

ty=t,+h=1+0.1=1.1000
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Figure 2.6
Computational results
for Example 2.1.

2.3.2

X+t
t X X+t Xt h i
1.0000 2.0000 3.0000 2.0000 0.1500
1.1000 2.1500 3.2500 2.3650 0.1374
1.2000 2.2874 3.4874 2.7449 0.1271
1.3000 2.4145 3.7145 3.1388 0.1183
1.4000 2.5328 3.9328 3.5459 0.1109
1.5000 2.6437 4.1437 3.9656 0.1045
1.6000 2.7482 4.3482 4.3971 0.0989
1.7000 2.8471 4.5471 4.8400 0.0939
1.8000 2.9410 4.7410 5.2939 0.0896
1.9000 3.0306 4.9306 5.7581 0.0856
2.0000 3.1162

Xo+ 2+1

Xy =+ Rty 30) = %o+ = =24 0.1 575 = 21500
ty=t,+h=1.1000+ 0.1 = 1.2000

~ ~ X+t 2.1500 + 1.100 _
X = x4 f(, 0) = 3+ Bt 21500 + 0.1 5o = 20874

The rest of the solution is obtained step by step as set out in Figure 2.6. The
approximation X(2) = 3.1162 results.

The solution to this example could easily be obtained using MAPLE as follows:

> degl:=diff (x(t),t)=(x(t)+t)/(x(t)*t);initl:=x(1)=2;

> x1:=dsolve ({deql, initl},

numeric,method=classical [foreuler] ,output=1listprocedure,
stepsize=0.1) ;

> sol:=op(2,x1[2]) ;s0l(2);

Analysing Euler’s method

We have introduced Euler’s method via an intuitive argument from a geometrical
understanding of the problem. Euler’s method can be seen in another light — as an
application of the Taylor series. The Taylor series expansion for a function x(¢) gives
2 2 33
x(t+ h)=x() + h%(t) + L d—);(t) + i d—)f(t) +... 2.4)
dr 2! dt 30 dr
Using this formula, we could, in theory, given the value of x(#) and all the derivatives of
x at t, compute the value of x(¢ + &) for any given A. If we choose a small value for &
then the Taylor series truncated after a finite number of terms will provide a good
approximation to the value of x(¢# + k). Euler’s method can be interpreted as using
the Taylor series truncated after the second term as an approximation to the value of
x(t+ h).
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In order to distinguish between the exact solution of a differential equation and a
numerical approximation to the exact solution (and it should be appreciated that all
numerical solutions, however accurate, are only approximations to the exact solution),
we shall now make explicit the convention that we used in the last section. The exact
solution of a differential equation will be denoted by a lower-case letter and a numerical
approximation to the exact solution by the corresponding capital letter. Thus, truncating
the Taylor series, we write

X+ h)=x() + h((ll—);(t) =x(t) + hf(t, x) 2.5)

Applying this truncated Taylor series, starting at the point (#,, x,) and denoting #, + nh
by #,, we obtain

X(t) = X(ty + h) = x(t,) + hf (1), xy)

X(t,) = X(t, + h) = X(t,) + hf(t,, X))

X(t;) = X(t, + h) = X(1,) + hf(t,, X5)
and so on

which is just the Euler-method formula obtained in Section 2.3.1. As an additional
abbreviated notation, we shall adopt the convention that x(z, + nh) is denoted by x,,
X(t, + nh) by X,, f(¢,, x,) by f,, and f(z,, X,) by F,. Hence we may express the Euler
method, in general terms, as the recursive rule

Xo =X

X

w1 =X, +hF, (n=0)

The advantage of viewing Euler’s method as an application of Taylor series in this way
is that it gives us a clue to obtaining more accurate methods for the numerical solution
of differential equations. It also enables us to analyse in more detail how accurate
the Euler method may be expected to be. Using the order notation we can abbreviate
(2.4) to

x(t + h) = x(t) + hf (¢, x) + O(h?)
and, combining this with (2.5), we see that
X(t+h)=x(t+h) + O (2.6)

(Note that in obtaining this result we have used the fact that signs are irrelevant in
determining the order of terms; that is, —O(h”) = O(h”).) Equation (2.6) expresses the
fact that at each step of the Euler process the value of X(¢ + k) obtained has an error of
order A2, or, to put it another way, the formula used is accurate as far as terms of order
h. For this reason Euler’s method is known as a first-order method. The exact size of
the error is, as we intuitively expected, dependent on the size of A, and decreases as h
decreases. Since the error is of order 4%, we expect that halving A, for instance, will
reduce the error at each step by a factor of four.

This does not, unfortunately, mean that the error in the solution of the initial value
problem is reduced by a factor of four. To understand why this is so, we argue as
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Example 2.2

Solution

Figure 2.7
Computational results
for Example 2.2.

follows. Starting from the point (#,, x,) and using Euler’s method with a step size A to
obtain a value of X(z, + 4), say, requires 4/h steps. At each step an error of order /” is
incurred. The total error in the value of X(z#, + 4) will be the sum of the errors incurred
at each step, and so will be 4/h times the value of a typical step error. Hence the total
error is of the order of (4/h)O(h?); that is, the total error is O(h). From this argument we
should expect that if we compare solutions of a differential equation obtained using
Euler’s method with different step sizes, halving the step size will halve the error in the
solution. Examination of Figure 2.5 confirms that this expectation is roughly correct in
the case of the solutions presented there.

Let X, denote the approximation to the solution of the initial-value problem

dx _ x
dr r+1°

x(0) =1

obtained using Euler’s method with a step size 4 = 0.1, and X, that obtained using a step size
of & = 0.05. Compute the values of X,(¢) and X, (¢) for t =0.1, 0.2, . . ., 1.0. Compare
these values with the values of x(#), the exact solution of the problem. Compute the ratio
of the errors in X, and X,.

The exact solution, which may be obtained by separation, is

1

SR S PY PR

The numerical solutions X, and Xj and their errors are shown in Figure 2.7. Of course,
in this figure the values of X, are recorded at every step whereas those of X, are only
recorded at alternate steps.

Again, the final column of Figure 2.7 shows that our expectations about the effects
of halving the step size when using Euler’s method to solve a differential equation are
confirmed. The ratio of the errors is not, of course, exactly one-half, because there are
some higher-order terms in the errors, which we have ignored.

t X X, 0 X X, [x— X
a b X |)C al |X b| ‘ ¥ — )(a |
0.000 00 1.000 00 1.000 00 1.000 00
0.10000 1.100 00 1.10250 1.10535 0.005 35 0.002 85 0.53
0.200 00 1.21000 1.21603 122297 0.01297 0.006 95 0.54
0.300 00 1.33201 1.34294 1.35568 0.02367 0.01275 0.54
0.400 00 1.468 49 1.486 17 1.507 10 0.03861 0.02092 0.54
0.500 00 1.62252 1.64952 1.68199 0.05947 0.03247 0.55
0.600 00 1.798 03 1.83791 1.886 81 0.08878 0.048 90 0.55
0.700 00 2.00008 2.05792 2.13051 0.13042 0.07259 0.56
0.800 00 2.23540 231857 2.42593 0.19053 0.10736 0.56
0.90000 2.51301 2.63251 279216 0.27915 0.15965 0.57

1.000 00 2.84539 3.01805 3.25889 0.41350 0.240 84 0.58
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2.3.3

Example 2.3

Solution

Using numerical methods to solve engineering problems

In Example 2.2 the errors in the values of X, and X, are quite large (up to about 14% in
the worst case). While carrying out computations with large errors such as these is quite
useful for illustrating the mathematical properties of computational methods, in engineering
computations we usually need to keep errors very much smaller. Exactly how small they
must be is largely a matter of engineering judgement. The engineer must decide how
accurately a result is needed for a given engineering purpose. It is then up to that engineer
to use the mathematical techniques and knowledge available to carry out the computations
to the desired accuracy. The engineering decision about the required accuracy will usually
be based on the use that is to be made of the result. If, for instance, a preliminary design
study is being carried out then a relatively approximate answer will often suffice, whereas
for final design work much more accurate answers will normally be required. It must be
appreciated that demanding greater accuracy than is actually needed for the engineering
purpose in hand will usually carry a penalty in time, effort or cost.

Let us imagine that, for the problem posed in Example 2.2, we had decided we needed
the value of x(1) accurate to 1%. In the cases in which we should normally resort to
numerical solution we should not have the analytical solution available, so we must ignore
that solution. We shall suppose then that we had obtained the values of X,(1) and X,(1) and
wanted to predict the step size we should need to use to obtain a better approximation to x(1)
accurate to 1%. Knowing that the error in X, (1) should be approximately one-half the error
in X,(1) suggests that the error in X, (1) will be roughly the same as the difference between
the errors in X,(1) and X, (1), which is the same as the difference between X,(1) and X, (1);
that is, 0.17266. One per cent of X, (1) is roughly 0.03, that is roughly one-sixth of the error
in X;(1). Hence we expect that a step size roughly one-sixth of that used to obtain X,
will suffice; that is, a step size 7 = 0.008 33. In practice, of course, we shall round to a
more convenient non-recurring decimal quantity such as # = 0.008. This procedure is
closely related to the Aitken extrapolation procedure sometimes used for estimating
limits of convergent sequences and series.

Compute an approximation X(1) to the value of x(1) satisfying the initial-value problem

dt t+1°

x(0)=1

by using Euler’s method with a step size & = 0.008.

It is worth commenting here that the calculations performed in Example 2.2 could reasonably
be carried out on any hand-held calculator, but this new calculation requires 125 steps. To do
this is on the boundaries of what might reasonably be done on a hand-held calculator, and is
more suited to computational software such as MAPLE. Repeating the calculation with a step
size h = 0.008 produces the result X(1)=3.21391.

We had estimated from the evidence available (that is, values of X(1) obtained using
step sizes 7 = 0.1 and 0.05) that the step size 47 = 0.008 should provide a value of X(1)
accurate to approximately 1%. Comparison of the value we have just computed with the
exact solution shows that it is actually in error by approximately 1.4%. This does not
quite meet the target of 1% that we set ourselves. This example therefore serves, first,
to illustrate how, given two approximations to x(1) derived using Euler’s method with
different step sizes, we can estimate the step size needed to compute an approximation
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Figure 2.8 A poorly
structured algorithm
for Example 2.2.

within a desired accuracy, and, secondly, to emphasize that the estimate of the appropriate
step size is only an estimate, and will not guarantee an approximate solution to the problem
meeting the desired accuracy criterion. If we had been more conservative and rounded the
estimated step size down to, say, 0.005, we should have obtained X(1) = 3.23043, which is
in error by only 0.9% and would have met the required accuracy criterion.

Again the solution to this example could be obtained using MAPLE. The following
worksheet computes the numerical solution using a step size of 0.008, then the
analytical solution and finally computes the percentage error in the numerical solution.

#set up differential equation

deqgl:=diff (x(t),t)=x(t)*2/(t+1);initl:=x(0)=1;

#fobtain x1, the numerical solution

x1:=dsolve ({degl, init1l},

numeric,method=classical [foreuler] , output=1listprocedure,

vV V V V

stepsize=0.008) ;

#xa is the analytic solution
xa:=dsolve ({degl, initl});
#obtain the value of x(t) at t=1
op(2,x1[2]) (1) ;
#find the percentage error in the numerical solution
evalf ((op(2,x1[2]) (1) -subs(t=1,0p(2,xa)))/

subs (t=1,0p(2,xa))) *100;

vV V. V V V V

Since we have mentioned in Example 2.3 the use of computers to undertake the
repetitive calculations involved in the numerical solution of differential equations, it is
also worth commenting briefly on the writing of computer programs to implement those
numerical solution methods. Whilst it is perfectly possible to write informal, unstructured
programs to implement algorithms such as Euler’s method, a little attention to planning
and structuring a program well will usually be amply rewarded — particularly in terms of
the reduced probability of introducing ‘bugs’. Another reason for careful structuring is
that, in this way, parts of programs can often be written in fairly general terms and can
be re-used later for other problems. The two pseudocode algorithms in Figures 2.8 and
2.9 will both produce the table of results in Example 2.2. The pseudocode program of
Figure 2.8 is very specific to the problem posed, whereas that of Figure 2.9 is more
general, better structured, and more expressive of the structure of mathematical problems.
It is generally better to aim at the style of Figure 2.9.

xl « 1
X2« 1
write(vdu, 0, 1, 1, 1)
foriis 1 to 10 do
x1 ¢« x1 + 0.1#x1x1/((i—1)%0.1 + 1)
X2 « x2 + 0.05#x2:%x2/((i—1)*0.1 + 1)
x2 ¢ x2 + 0.05:x2xx2/((i—1)%0.1 + 1.05)
X ¢« 1/(1 = In(i%0.1 + 1))
write(vdu,0.1:i,x1,x2,x,x — x1,x — x2,(x — x2)/(x — x1))
endfor
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Figure 2.9 A better

structured algorithm
for Example 2.2.

initial_time < 0
final_time « 1
initial_x < 1
step < 0.1
t < initial_time
x1 « initial_x
X2 < initial_x
hl « step
h2 « step/2
write(vdu,initial _time,x 1,x2,initial_x)
repeat
euler(t,x1,h1,1 — x1)
euler(t,x2,h2,2 — x2)
t < t+step
X <— exact_solution(t,initial_time,initial_x)
write(vdu,t,x1,x2,x,abs(x — x1),abs(x — x2),abs((x — x2)/(x — x1)))
until t = final_time

procedure euler(t_old,x_old,step,number — x_new)
temp_x < x_old
for i is O to number —1 do
temp_x < temp_x + step=derivative(t_old + step=i,temp_x)
endfor
X_New ¢« temp_x
endprocedure

procedure derivative(t,x — derivative)
derivative < x#x/(t + 1)
endprocedure

procedure exact_solution(t,t0,x0 — exact_solution)
¢« In(t0O+ 1) + 1/x0
exact_solution « 1/(c — In(t + 1))

endprocedure

2.3.4 Exercises

All the exercises in this section can be completed using MAPLE in a similar manner to Examples 2.1 and 2.3 above.
In particular MAPLE or some other form of computer assistance should be used for Exercises 5, 6 and 7. If you do
not have access to MAPLE, you will need to write a program in MATLAB or some other high-level scientific
computer programming language (e.g. Fortran, Python or C).

Find the value of X(0.3) for the initial-value problem 3 Find the value of X(1) for the initial-value problem
dx 1 dx x
—=-1 =1 2-_ 2 5)=1
T 5 xt,  x(0) TR TOEN s x(0.5)

using Euler’s method with step size & =0.1. using Euler’s method with step size 7 =0.1.

Find the value of X(1.1) for the initial-value problem 4 Find the value of X(0.5) for the initial-value problem
dx 1 dx 4-1¢
- =3 =0. _— = —, 0)=1
T 5xt, x(1)=0.1 T x(0)

using Euler’s method with step size i = 0.025. using Euler’s method with step size i = 0.05.
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5 Denote the Euler-method solution of the initial-value

problem
b A ay=2
dt ++2

using step size & = 0.1 by X,(¢), and that using

h =0.05 by X, (). Find the values of X,(2) and
X,(2). Estimate the error in the value of X,(2), and
suggest a value of step size that would provide a
value of X(2) accurate to 0.1%. Find the value of
X(2) using this step size. Find the exact solution of
the initial-value problem, and determine the actual
magnitude of the errors in X,(2), X,(2) and your
final value of X(2).

6 Denote the Euler-method solution of the initial-value

problem
d 1
@ K=

using step size i = 0.1 by X,(¢), and that using
h =0.05 by X,(?). Find the values of X,(2) and

X,(2). Estimate the error in the value of X,(2), and
suggest a value of step size that would provide a
value of X(2) accurate to 0.2%. Find the value of
X(2) using this step size. Find the exact solution of
the initial-value problem, and determine the actual
magnitude of the errors in X,(2), X,(2) and your
final value of X(2).

Denote the Euler-method solution of the initial-value
problem

dx 1

a = m N x(l) =12
using step size h = 0.05 by X (#), and that using
h = 0.025 by X, (7). Find the values of X,(1.5) and
X, (1.5). Estimate the error in the value of X,(1.5),
and suggest a value of step size that would provide
a value of X(1.5) accurate to 0.25%. Find the value
of X(1.5) using this step size. Find the exact solution
of the initial-value problem, and determine the
actual magnitude of the errors in X,(1.5), X;(1.5)
and your final value of X(1.5).

2.3.5 More accurate solution methods: multistep methods

In Section 2.3.2 we discovered that using Euler’s method to solve a differential equation
is essentially equivalent to using a Taylor series expansion of a function truncated after
two terms. Since, by so doing, we are ignoring terms O(h%), an error of this order is
introduced at each step in the solution. Could we not derive a method for calculating
approximate solutions of differential equations which, by using more terms of the Taylor
series, provides greater accuracy than Euler’s method? We can — but there are some
disadvantages in so doing, and various methods have to be used to overcome these.
Let us first consider a Taylor series expansion with the first three terms written

explicitly. This gives

x(t+ h)=x() + h—-—(t) + 5- —
Substituting f(¢, x) for dx/d¢, we obtain

x(t + h) = x(f) + hf(t, x) +

(t) +0() (2.7)

(1‘ x) + O(h?)

Dropping the O(h®) terms provides an approximation

X(t+ h) =x) + hf(t, x) + =

such that

X(t+ h) =x(t + h) + O(h®)
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in other words, a numerical approximation method which has an error at each step that
is not of order 4 like the Euler method but rather of order 4°. The corresponding general
numerical scheme is

K’ dF,
2 dr

The application of the formula (2.5) in Euler’s method was straightforward because
an expression for f(z, x) was provided by the differential equation itself. To apply (2.8)
as it stands requires an analytical expression for df/d¢ so that dF,/dt may be computed.
This may be relatively straightforward to provide — or it may be quite complicated.
Although, using modern computer algebra systems, it is now often possible to compute
analytical expressions for the derivatives of many functions, the need to do so remains
a considerable disadvantage when compared with methods which do not require the
function’s derivatives to be provided.

Fortunately, there are ways to work around this difficulty. One such method hinges
on the observation that it is just as valid to write down Taylor series expansions for
negative increments as for positive ones. The Taylor series expansion of x(¢ — h) is

h d’x n d’x

X =X,+hF,+ — 2.8)

x(t = h) = x(t) - —(t) +——) - — =) +-
dr 2! dt 31 dr
If we write only the first three terms explicitly, we have
h* d’x

—h)=x(t) — h=> L2 + o)
x(t = h) = x() d(t)+2. 5(1) + O(

or, rearranging the equation,

W d—x(t) x(t— )y —x(t) + B2 (0) + o)
21 d dt

Substituting this into (2.7), we obtain
x(t+ h) =x(@) + h%c(t) + [x(z —h) —x(t) + h%(t) + O(hS)} + O(h?)
That is,
dx 3
x(t+h)=x(t—h)+ 2h5(t) +O0l)

or, substituting f(z, x) for dx/dz,
x(t + h) = x(t — h) + 2hf(t, x) + O(hY) 2.9)

Alternatively, we could write down the Taylor series expansion of the function dx/dt
with an increment of —A:

dx dx d’x(t n d’x
Ly =Ly - n 0y + L LX) o)
dt dz dr 2! dt
Writing only the first two terms explicitly and rearranging gives

d’x dx dx 2
h—(t)=—{)——=(t—-h)+O0(h
dtz(f) dt(t) dt(t )+ O(h)

and substituting this into (2.4) gives
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_ dx hldx o d_x _ 2 3
x(t+h)=x(t) + hE(t) + E[E(I) dt(t h) + O(h )} + O(h)
That is,
_ hidx o dx = 3
x(t+h)=x(@) + 5{350) dt(r h)} + Oh)

or, substituting f(z, x) for dx/dz,
x(t + h) =x(1) + %h[3f(t, x(0) — f(t — h, x(t — h))] + O(h?) (2.10)

Equations (2.7), (2.9) and (2.10) each give an expression for x(¢# + /) in which all
terms up to those in 4% have been made explicit. In the same way as, by ignoring terms
of O(h*) in (2.7), the numerical scheme (2.8) can be obtained, (2.9) and (2.10) give rise
to the numerical schemes

X, =X, +2hF, 2.11)
and
X, =X,+ ;hQ3F, - F, ) (2.12)

respectively. Each of these alternative schemes, like (2.8), incurs an error O(h?) at
each step.

The advantage of (2.11) or (2.12) over (2.8) arises because the derivative of
f(t, x) in (2.7) has been replaced in (2.9) by the value of the function x at the
previous time, x(f — &), and in (2.10) by the value of the function f at time ¢ — . This is
reflected in (2.11) and (2.12) by the presence of the terms in X,_, and F,_, respectively
and the absence of the term in dF,/ds. The elimination of the derivative of the function
f(t, x) from the numerical scheme is an advantage, but it is not without its penalties.
In both (2.11) and (2.12) the value of X,,, depends not only on the values of X, and
F, but also on the value of one or the other at 7, ;. This is chiefly a problem when
starting the computation. In the case of the Euler scheme the first step took the form

X, =X, + hF,

In the case of (2.11) and (2.12) the first step would seem to take the forms
X, =X_, + 2hF,

and

X,=X,+ 3h(3F, - F_))

respectively. The value of X_, in the first case and F_, in the second is not normally
available. The resolution of this difficulty is usually to use some other method to
start the computation, and, when the value of X,, and therefore also the value of F/,
is available, change to (2.11) or (2.12). The first step using (2.11) or (2.12) therefore
involves

X, = X, + 2hF,

or
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Example 2.4

Solution

Figure 2.10
Computational results
for Example 2.4.

X, =X, + 3 h(3F, - Fy)

Methods like (2.11) and (2.12) that involve the values of the dependent variable or its
derivative at more than one value of the independent variable are called multistep
methods. These all share the problem that we have just noted of difficulties in deciding
how to start the computation. We shall return to this problem of starting multistep methods
in Section 2.3.7.

Solve the initial-value problem

2
dx x

ar t+ 1

x(0) =1

posed in Example 2.2 using the scheme (2.12) with a step size & = 0.1. Compute the
values of X(¢) for r = 0.1, 0.2, ..., 1.0 and compare them with the values of the exact
solution x(7).

We shall assume that the value of X(0.1) has been computed using some other method
and has been found to be 1.105 35. The computation therefore starts with the calculation
of the values of F, F, and hence X,. Using the standard notation we have 7,=0, and
x,= 1. The function f(z, x) = x*/(t + 1). Using the given value X(0.1) = 1.105 35, we have
t, =0.1, and X; = 1.105 35. So the first step is

t,=1t,+h=0.100 00 + 0.1 = 0.200 00

X=X+ %h(3F1 -F)=X+ %th(tnXO — fto, Xo)]

2 2 2 2
=x,+1n[3 X _ Xo |=10535+ L0 [3L19935 L | 00196
t+1 t+1 0.1+1 0+1

The results of the computation are shown in Figure 2.10.

t X, F, Yh(3F,— F,.) x(f) |x = X,|
0.000 00 1.000 00 1.000 00

0.10000 1.10535 1.11073 0.11661 1.10535 0.000 00
0.200 00 1.22196 1.24432 0.13111 1.22297 0.00101
0.30000 1.35307 1.408 31 0.14903 1.35568 0.00261
0.400 00 1.502 10 1.61165 0.17133 1.507 10 0.004 99
0.500 00 1.67344 1.866 92 0.19946 1.68199 0.008 55
0.600 00 1.87289 2.19233 0.23550 1.886 81 0.01391
0.700 00 2.108 39 2.61490 0.28262 2.13051 0.022 11
0.80000 2.39101 3.176 08 0.34567 242593 0.03492
0.900 00 2.736 68 3.94180 0.43247 279216 0.055 48

1.000 00 3.169 14 3.25889 0.08975
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Example 2.5

Solution

It is instructive to compare the values of X; computed in Example 2.4 with those computed
in Example 2.2. Since the method we are using here is a second-order method, the error at
each step should be O(%®) rather than the O(#?) error of the Euler method. We are using the
same step size as for the solution X, of Example 2.2, so the errors should be correspondingly
smaller. In this example we know the exact solution of the initial value problem and thus
can compute the error. Examination of the results shows that they are indeed much smaller
than those of the Euler method, and also considerably smaller than the errors in the Euler
method solution X;, which used step size # = 0.05, half the step size used here.

In fact, some numerical experimentation (which we shall not describe in detail) reveals
that to achieve a similarly low level of errors, the Euler method requires a step size #=0.016,
and therefore 63 steps are required to find the value of X(1). The second-order method of
(2.12) requires only 10 steps to find X(1) to a similar accuracy. Thus the solution of a
problem to a given accuracy using a second-order method can be achieved in a much
shorter computer processing time than using a first-order method. When very large
calculations are involved or simple calculations are repeated very many times, such
savings are very important.

How do we choose between methods of equal accuracy such as (2.11) and (2.12)?
Numerical methods for the solution of differential equations have other properties apart
from accuracy. One important property is stability. Some methods have the ability to
introduce gross errors into the numerical approximation to the exact solution of a prob-
lem. The sources of these gross errors are the so-called parasitic solutions of the
numerical process, which do not correspond to solutions of the differential equation.
The analysis of this behaviour is beyond the scope of this book, but methods that are
susceptible to it are intrinsically less useful than those that are not. The method of (2.11)
can show unstable behaviour, as demonstrated in Example 2.5.

Further details on the stability of numerical methods can be found in E. Siili and
D. Mayers, An Introduction to Numerical Mathematics (Cambridge, Cambridge
University Press, 2014); R. W. Hamming, Numerical Methods for Scientists and
Engineers (New York, Dover Publications, 1987); E. Isaacson and H. B. Keller, Analysis
of Numerical Methods (New York, Dover Publications, 1994).

Let X, denote the approximation to the solution of the initial-value problem

% =-3x+2e”’, x(0)=2
obtained using the method defined by (2.11), and X, that obtained using the method
defined by (2.12), both with step size 7 = 0.1. Compute the values of X,(¢) and X,(¥) for
t=0.1,0.2, ..., 2.0. Compare these with the values of x(¢), the exact solution of the
problem. In order to overcome the difficulty of starting the processes, assume that the
value X(0.1) = 1.645 66 has been obtained by another method.

The exact solution of the problem, which is a linear equation and so may be solved by
the integrating-factor method, is

x=¢'+e
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Figure 2.11
Computational results
for Example 2.5.

X, X, x(1) x—X, x—X,

0.000 00 2.00000 2.00000 2.00000

0.10000 1.645 66 1.645 66 1.645 66 0.000 00 0.000 00
0.200 00 1.37454 1.376 56 1.367 54 —-0.007 00 —-0.009 02
0.30000 1.14842 1.15909 1.147 39 —-0.001 04 -0.01170
0.400 00 0.98182 0.984 36 0.97151 —-0.01030 -0.012 84
0.500 00 0.82746 0.84227 0.829 66 0.00220 -0.01261
0.600 00 0.72795 0.72583 0.714 11 -0.013 84 -0.01172
0.700 00 0.61022 0.629 54 0.619 04 0.008 83 —0.01050
0.800 00 0.56045 0.54922 0.54005 -0.02041 —-0.009 17
0.900 00 0.453 68 0.481 64 0.47378 0.020 10 -0.007 86
1.000 00 0.450 88 0.424 32 0.41767 -0.03321 -0.006 66
1.100 00 0.33030 0.37533 0.36975 0.03945 —0.005 58
1.200 00 0.38584 033315 0.328 52 -0.05733 —-0.004 64
1.300 00 0.21927 0.296 60 0.29277 0.073 50 -0.003 83
1.400 00 0.36329 0.26475 0.261 59 —-0.10170 —-0.003 15
1.500 00 0.09993 0.23683 0.23424 0.13431 -0.00259
1.600 00 0.39259 0.21225 0.21013 —0.18246 -0.002 12
1.700 00 —0.054 86 0.19052 0.18878 0.243 64 —-0.00173
1.800 00 0.498 57 0.17124 0.169 82 -0.32876 —-0.001 42
1.900 00 —0.28788 0.15408 0.15291 0.440 80 -0.001 16
2.000 00 0.73113 0.13877 0.13781 -0.59332 —0.000 96

The numerical solutions X, and X, and their errors are shown in Figure 2.11. It can be
seen that X, exhibits an unexpected oscillatory behaviour, leading to large errors in the
solution. This is typical of the type of instability from which the scheme (2.11) and
those like it are known to suffer. The scheme defined by (2.11) is not unstable for all
differential equations, but only for a certain class. The possibility of instability in
numerical schemes is one that should always be borne in mind, and the intelligent user is
always critical of the results of numerical work and alert for signs of this type of problem.

In this section we have seen how, starting from the Taylor series for a function,
schemes of a higher order of accuracy than Euler’s method can be constructed. We have
constructed two second-order schemes. The principle of this technique can be extended
to produce schemes of yet higher orders. They will obviously introduce more values of
X, or F, (where m=n—2,n—3,...). The scheme (2.12) is, in fact, a member of a
family of schemes known as the Adams—Bashforth formulae. The first few members
of this family are

X,., =X, +hF,

n

X, =X, + LhGF,~ F,.)

n

X,.1 =X, + 5 h(23F, — 16F,_, + 5F,_,)

n

X, =X, + % h(55F, — 59F,, + 37F, , — 9F, ,)

n

The formulae represent first-, second-, third- and fourth-order methods respectively. The
first-order Adams—Bashforth formula is just the Euler method, the second-order
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2.3.6

one is the scheme we introduced as (2.12), while the third- and fourth-order formulae
are extensions of the principle we have just introduced. Obviously all of these require
special methods to start the process in the absence of values of X_, F_|, X_,, F_, and
SO on.

Some of the methods used by the standard MATLAB procedures for numerical
solution of ODEs are based on more sophisticated versions of the multistep methods
which we have just introduced. Multistep methods are particularly suitable for solving
equations in which the derivative function, f{t, x), is relatively computationally costly to
evaluate. At each step a multistep methods can re-use the values of the function already
computed at previous steps so the number of evaluations of the derivative function is
reduced compared to some other methods.

Local and global truncation errors

In Section 2.3.2 we argued intuitively that, although the Euler method introduces an
error O(h?) at each step, it yields an O(h) error in the value of the dependent variable
corresponding to a given value of the independent variable. What is the equivalent result
for the second-order methods we have introduced in Section 2.3.5? We shall answer this
question with a slightly more general analysis that will also be useful to us in succeed-
ing sections.

First let us define two types of error. The local error in a method for integrating
a differential equation is the error introduced at each step. Thus if the method is
defined by

Xn+l = g(h’ tﬂ’ Xn’ tnfl’ anl’ e )
and analysis shows us that
X1 = g(h’ tﬂ’ X tnfl’ Kol + + - ) + O(hp+l)

then we say that the local error in the method is of order p + 1 or that the method is a
pth-order method.

The global error of an integration method is the error in the value of X(#, + a)
obtained by using that method to advance the required number of steps from a known
value of x(t,). Using a pth-order method, the first step introduces an error O(h”*"). The
next step takes the approximation X, and derives an estimate X, of x, that introduces a
further error O(h”*"). The number of steps needed to calculate the value X(z, + a) is a/h.
Hence we have

X(t, + a) = x(ty + a) + % O(h?*)

Dividing a quantity that is O(h") by h produces a quantity that is O(h"™"), so we must
have

X(t, + a) = x(ty + a) + O(h")

In other words, the global error produced by a method that has a local error O(h™") is
O(h?). As we saw in Example 2.2, halving the step size for a calculation using Euler’s
method produces errors that are roughly half as big. This is consistent with the global
error being O(h). Since the local error of the Euler method is O(h?), this is as we should
expect. Let us now repeat Example 2.2 using the second-order Adams—Bashforth
method, (2.12).
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Example 2.6

Solution

Figure 2.12
Computational results
for Example 2.6.

Let X, denote the approximation to the solution of the initial-value problem

2
dx X

dr t+ 1
obtained using the second-order Adams—Bashforth method with a step size 4 = 0.1, and
X, that obtained using a step size of & = 0.05. Compute the values of X,(¢) and X,(¢) for
t=0.1,0.2, ..., 1.0. Compare these values with the values of x(#), the exact solution
of the problem. Compute the ratio of the errors in X, and X,. In order to start the process,
assume that the values X(—0.1) = 0.904 68 and X(—0.05) = 0.951 21 have already been
obtained by another method.

x(0) =1

The exact solution was given in Example 2.2. The numerical solutions X, and X, and
their errors are shown in Figure 2.12.

Because the method is second-order, we expect the global error to vary like k.
Theoretically, then, the error in the solution X, should be one-quarter that in X,. We see
that this expectation is approximately borne out in practice.

‘ X X x(0) - X,| e X,| [x = X
a b a b | X — )(a |
0.00000 1.000 00 100000 100000
0.10000 110453 1105 12 110535 0.00082 0.00023 0.28
0.20000 122089 122239 122297 0.00208 0.00058 0.28
0.30000 135176 135459 135568 0.00392 0.00109 0.28
0.40000 150049 150525 1507 10 0.00661 0.00185 0.28
0.50000 1.67144 1.67903 1.68199 0.01055 0.00296 0.28
0.60000 1.87040 1.88217 1.88681 0.01640 0.004 64 0.28
0.70000 2.10525 212331 213051 0.02525 0.00720 0.29
0.80000 2.38700 241470 242593 0.03893 0.01123 0.29
0.90000 273145 277440 279216 0.06070 0.01776 0.29
100000 3.16220 3.23007 3.258 89 0.09670 0.028 82 0.30

Just as previously we outlined how, for the Euler method, we could estimate from
two solutions of the differential equation the step size that would suffice to compute a
solution to any required accuracy, so we can do the same in a more general way. If we
use a pth-order method to compute two estimates X,(, + a) and X, (¢, + a) of x(z, + a)
using step sizes & and 3 h then, because the global error of the process is O(h”), we
expect the error in X,(#, + a) to be roughly 27 times that in X,(#, + ). Hence the error in
X,(t, + a) may be estimated to be

| X.(t+ a) — X, (o + a) |
2" —1
If the desired error, which may be expressed in absolute terms or may be derived from

a desired maximum percentage error, is € then the factor &, say, by which the error in
X, (t, + a) must be reduced is

i = | X(to+ a) — Xy (to+ a)|
2" - 1)
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Example 2.7

Solution

2.3.7

Since reducing the step size by a factor of g will, for a pth-order error, reduce the error
by a factor of ¢”, the factor by which step size must be reduced in order to meet the
error criterion is the pth root of k. The step size used to compute X, is % h, so finally we
estimate the required step size as

1/p
h ( &2~ 1) j 2.13)

2| | X (tg+ a) — Xo(to+ a) |

This technique of estimating the error in a numerical approximation of an unknown
quantity by comparing two approximations of that unknown quantity whose order of
accuracy is known is an example of the application of Richardson extrapolation.

Estimate the step size required to compute an estimate of x(1) accurate to 2 decimal
places for the initial-value problem in Example 2.6 given the values X, (1) = 3.16220
and X, (1) = 3.230 07 obtained using step sizes & = 0.1 and 0.05 respectively.

For the result to be accurate to 2 decimal places the error must be less than 0.005. The
estimates X,(1) and X, (1) were obtained using a second-order process, so, applying
(2.13), with £=0.005, %h =0.05 and p =2, we have

1/2
h=0.05 0.015 =0.0235
[3.162 20 — 3.230 07]

In a real engineering problem what we would usually do is round this down to say
0.02 and recompute X(1) using step sizes & = 0.04 and 0.02. These two new estimates
of X(1) could then be used to estimate again the error in the value of X(1) and confirm
that the desired error criterion had been met.

More accurate solution methods:
predictor-corrector methods

In Section 2.3.5 we showed how the third term in the Taylor series expansion

x(t+h) = x(t) + h—(t) + ;l—d—x(t) +O) (2.14)

could be replaced by either x(t — i) or (dx/df)(¢ — h). These are not the only possibilities.
By using appropriate Taylor series expansions, we could replace the term with other values
of x(#) or dx/dt. For instance, expanding the function x(¢# — 2A) about x(f) gives rise to

x(t — 2h) = x(£) — 2h —(t) +2h° i—x(t) +O(h) (2.15)

and eliminating the second-derivative term between (2.14) and (2.15) gives

x(t+h)=3x(0) +3x(t—2h) +3h —(t) + O(h?)
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which, in turn, would give rise to the integration scheme
_3 1 3
Xn+l - Z;Xn + Z;Xn72 + EhE‘l

Such a scheme, however, would not seem to offer any advantages to compensate for the
added difficulties caused by a two-step scheme using non-consecutive values of X.

The one alternative possibility that does offer some gains is using the value of
(dx/dr)(¢ + h). Writing the Taylor series expansion of (dx/df)(¢ + h) yields

2
Eli‘(z+ h) = 511“(:) +h d—f(z) +0(h%)
dr dr dr
and eliminating the second derivative between this and (2.14) gives
s Mdxg s
x(t+h)=x@) + > Lt(t) + dt(t + h)} + O(h) (2.16)

leading to the integration scheme

X

n

+1 = Xn + %h(Fn + Fn+l) (2.17)

This, like (2.11) and (2.12), is a second-order scheme. It has the problem that, in order
to calculate X,,,, the value of F,,, is needed, which, in its turn, requires that the value
of X,,., be known. This seems to be a circular argument!

One way to work around this problem and turn (2.17) into a usable scheme is to start
by working out a rough value of X,,,, use that to compute a value of F,,,, and then use
(2.17) to compute a more accurate value of X, ,. Such a process can be derived as
follows. We know that

x(t+h)=x(@)+ h %—)—:(1‘) +O(h?)
Let
R+ h) =x(f)+ h ‘:l—’;(t) (2.18)

so that
x(t+ h) = X(t+ h) + O(h®)

or, using the subscript notation defined above,
Xy = Ryt + O(R)

Now

dox,,
‘"a"t"'l :f(tn+l’ xn+l)
:f(th’ xnﬂ + O(hz))

=ty $e) + 00D (11 2,0+ 00

= f(ty1, Xoir) + O(R7) (2.19)
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In the subscript notation (2.16) is
Xyt = X, + 5 BOf( X,) + [y X,00)) + O(RY)
Substituting (2.19) into this gives
Xt =X, 3 h(f(ty %) + (1, Ft) + O0)) + O()
That is,
Xy = Xy 3B f(ln 25,) + flt10 2)) + O0F) (2.20)

Equation (2.20) together with (2.18) forms the basis of what is known as a
predictor—corrector method, which is defined by the following scheme:

(1) compute the ‘predicted” value of X,,,, call it X ,,,, from

X 1 = X, + 1f(1,, X,) (2.21a)
(2) compute the ‘corrected’ value of X,,, from

Xy =X, + h(f(t, X)) + [ty X 0i1) (2.21b)

This predictor—corrector scheme, as demonstrated by (2.20), is a second-order method.
It has the advantage over (2.11) and (2.12) of requiring only the value of X,, not X,,_, or
F,_,. On the other hand, each step requires two evaluations of the function f(z, x), and
so the method is less efficient computationally.

Example 2.8  Solve the initial-value problem

dr_
dt t+1

x(0)=1

posed in Example 2.2 using the second-order predictor—corrector scheme with a step
size h =0.1. Compute the values of X(#) forr=0.1,0.2, . .., 1.0 and compare them with
the values of the exact solution x(z).

Solution The exact solution was given in Example 2.2. In this example the initial value of  is
0 and x(0) = 1. Using the standard notation we have #,= 0, and x,= x(¢,) = x(0) = 1.
The function f(¢, x) = x*/(t + 1). So the first two steps of the computation are thus

2 2
X +01

X1=x0+hf(t0,x0)=x0+ht+1 i

1= 1.100 00

2

A2
" X X
X, =x,+ %h[f(to, Xo) +f(tl’X1)] =Xo+ %l{toi 1 " 5 +l J

1’ . 1.100 00*
0+1 010000+ 1

=1.00000+§0.1[ j =1.105 00
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Figure 2.13

Computational results

for Example 2.8.

X,= X, + hf(t,, X)) = X, + h—ts

=1.10500 + 0.1

2

X, =X+ %h[f(tl’ X)) + f(t,, )22)]

:X¢+%h(

=1.10500+§0.1(

The complete computation is set out in Figure 2.13.

X,
 + 1
1.10500°
01000051 21600
Xi o, X
Hh+1l t+1
1.105 00 1.216 00
=1.22211
0.10000 + 1 ' 0.200 00 + J

‘ X, £, X)) Ko fl X)X e X,
0.00000 1.000 00 1.000 00 1.10000 1.10000 1.000 00 0.00000
0.10000 1.10500 1.11002 1.216 00 1.23222 1.10535 0.000 35
0.20000 1.22211 1.24463 1.346 58 1.394 82 1.22297 0.000 86
0.30000 1.35408 1.41042 1.49513 1.59672 1.35568 0.001 60
0.400 00 1.504 44 1.61667 1.66611 1.85061 1.507 10 0.002 65
0.50000 1.677 81 1.876 69 1.86547 2.17500 1.68199 0.004 18
0.600 00 1.88039 2.20992 2.10138 2.59753 1.886 81 0.00642
0.700 00 2.12076 2.64567 2.38533 3.16100 2.13051 0.00975
0.80000 241110 3.229 66 2.734 06 3.93426 2.42593 0.014 83
0.90000 2.76929 4.036 30 3.17292 5.03372 2.792 16 0.022 87
1.000 00 3.22279 3.258 89 0.03610

Again the solution to this example can be obtained using MAPLE. The following
worksheet computes the numerical and analytical solutions and compares them at

the required points.

> f#set up differential equation

> deql:=diff (x(t),t)=x(t) "2/ (t+1);initl:=x(0)=1;

> #obtain x1,

> x1:=dsolve ({deql,
numeric, method=classical [heunform] ,output=1listprocedure,
stepsize=0.1) ;

> #xa is the analytic solution

> xa:=dsolve ({deql,
> #compute values at required solution points

initl},

initl}) ;

> for i from 1 to 10 do

t:=0.1*i:o0p(2,x1[2]) (t),evalf (op(2,xa))

the numerical solution

end do;

Comparison of the result of Example 2.8 with those of Examples 2.2 and 2.6 shows that,
as we should expect, the predictor—corrector scheme produces results of considerably higher
accuracy than the Euler method and of comparable (though slightly better) accuracy to the
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Example 2.9

Solution

Figure 2.14
Computational results
for Example 2.9.

second-order Adams—Bashforth scheme. We also expect the scheme to have a global error
O(h?), and, in the spirit of Examples 2.2 and 2.6, we confirm this in Example 2.9.

Let X, denote the approximation to the solution of the initial-value problem

2
dx _ x

& MO=l

obtained using the second-order predictor—corrector method with a step size 2 = 0.1, and
X, that obtained using 2 = 0.05. Compute the values of X,(f) and X, () for t=0.1,0.2, ...,
1.0. Compare these with the values of x(#), the exact solution of the problem. Compute
the ratio of the errors in X, and X,

The numerical solutions X, and X;, and their errors are shown in Figure 2.14. The ratio
of the errors confirms that the error behaves roughly as O(h?).

|x— X, |
t X, X, x(1) |x—X,| [x =X ‘foa|
0.000 00 1.000 00 1.000 00 1.000 00
0.100 00 1.10500 1.10526 1.10535 0.00035 0.000 09 0.27
0.200 00 1.22211 1.22274 1.22297 0.000 86 0.00023 0.27
0.30000 1.354 08 1.35525 1.35568 0.001 60 0.00043 0.27
0.400 00 1.504 44 1.506 38 1.507 10 0.002 65 0.00072 0.27
0.500 00 1.67781 1.680 86 1.68199 0.004 18 0.00113 0.27
0.600 00 1.88039 1.88507 1.886 81 0.00642 0.00173 0.27
0.700 00 2.12076 2.12787 2.13051 0.00975 0.002 64 0.27
0.800 00 241110 2.42190 2.42593 0.014 83 0.004 03 0.27
0.900 00 2.769 29 2.78592 279216 0.02287 0.006 24 0.27
1.000 00 3.22279 3.24898 3.258 89 0.036 10 0.00991 0.27

In Section 2.3.5 we mentioned the difficulties that multistep methods introduce
with respect to starting the computation. We now have a second-order method that
does not need values of X,_; or earlier. Obviously we can use this method just as
it stands, but we then pay the penalty, in computer processing time, of the extra
evaluation of f(z, x) at each step of the process. An alternative scheme is to use the
second-order predictor—corrector for the first step and then, because the appropriate
function values are now available, change to the second-order Adams—Bashforth
scheme — or even, if the problem is one for which the scheme given by (2.11) (which is
called the central difference scheme) is stable, to that process. In this way we create a
hybrid process that retains the O(h?) convergence and simultaneously minimizes the
computational load.

The principles by which we derive (2.16) and so the integration scheme (2.17) can be
extended to produce higher-order schemes. Such schemes are called the Adams—Moulton
formulae and are as follows:
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2.3.8

Figure 2.15

A geometrical
interpretation of
the second-order
predictor—corrector
method.

Xn+1 = Xn + th+1

X1 =X, + 3 h(F,, +F,)

X, =X, + 55 h(5F,,, + 8F,— F,))
X, =X, + 5 hOF,, + 19F, - 5F, , + F, )

These are first-, second-, third- and fourth-order formulae respectively. They are all like
the one we derived in this section in that the value of F,,, is required in order to compute
the value of X, ,,. They are therefore usually used as corrector formulae in predictor—
corrector schemes. The most common way to do this is to use the (p — 1)th-order
Adams—Bashforth formula as predictor, with the pth-order Adams—Moulton formula as
corrector. This combination can be shown to always produce a scheme of pth order. The
predictor—corrector scheme we have derived in this section is of this form, with p = 2.
Of course, for p > 2 the predictor—corrector formula produced is no longer self-starting,
and other means have to be found to produce the first few values of X. We shall return
to this topic in the next section.

It may be noted that one of the alternative methods offered by MATLAB for the
numerical solution of ODE:s is based on the families of Adams—Bashforth and Adams—
Moulton formulae.

More accurate solution methods: Runge-Kutta methods

Another class of higher-order methods comprises the Runge-Kutta methods. The
mathematical derivation of these methods is quite complicated and beyond the scope of this
book. However, their general principle can be explained informally by a graphical argument.
Mathematical details can be found in the references on page 130 above Example 2.5
and in C. F. Gerald and P. O. Wheatley, Applied Numerical Analysis (Upper Saddle River,
NJ, Pearson, 2003). Figure 2.15 shows a geometrical interpretation of the second-order
predictor—corrector method introduced in the last section. Starting at the point (z,, X,,), point
A in the diagram, the predicted value X,,, is calculated. The line AB has gradient f(z,, X,),
so the ordinate of the point B is the predicted value X ,.,. The line AC in the diagram has
gradient fi¢,.,, X,.,), the gradient of the direction field of the equation at point B, so point C
has ordinate X, + hfit,.;, X,.). The midpoint of the line BC, point D, has ordinate

X

C
D
KXot (tyet> Xoe1) .
B hf(ths )(wl)
X ThLf(t X)) + (i1, X))
} hf(t,, X,)

o tn 2 n+l

~
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Figure 2.16

A geometrical
interpretation of
the fourth-order
Runge—Kutta
method.

X, + % h(fit,, X,) + f(t,., X 1)), Which is the value of X,,,, given by the corrector formula.
Geometrically speaking, the predictor—corrector scheme can be viewed as the process of
calculating the gradient of the direction field of the equation at points A and B and then
assuming that the average gradient of the solution over the interval (z,, t,,,) is reasonably
well estimated by the average of the gradients at these two points. The Euler method, of
course, is equivalent to assuming that the gradient at point A is a good estimate of the
average gradient of the solution over the interval (z,, f,,,). Given this insight, it is
unsurprising that the error performance of the predictor—corrector method is superior to that
of the Euler method.

Runge—Kutta methods extend this principle by using the gradient at several points in
the interval (z,, 7,,,) to estimate the average gradient of the solution over the interval.
The most commonly used Runge—Kutta method is a fourth-order one which can be
expressed as follows:

¢, = hf(t,, X,) (2.22a)
¢ = hf(t, + 3, X, +5¢) (2.22b)
c; = hf(t, + % h, X, + % cy) (2.22¢)
cy=hf(t, + h, X, + c3) (2.22d)
X=X, +1(c;+2¢,+2c;+ ¢,) (2.22e)

Geometrically, this can be understood as the process shown in Figure 2.16. The line AB
has the same gradient as the equation’s direction field at point A. The ordinate of this line
ats, + % h defines point B. The line AC has gradient equal to the direction of the direction
field at point B. This line defines point C. Finally, a line AD, with gradient equal to the
direction of the direction field at point C, defines point D. The average gradient of the
solution over the interval (¢, 7,,,) is then estimated from a weighted average of the gradi-
ents at points A, B, C and D. It is intuitively acceptable that such a process is likely to give
a highly accurate estimate of the average gradient over the interval.

x A
Inits Xy
X+ bf(t, + X, + ) (trer i)
1 1 D
X, +hf(t, + 3h, X, + 5¢)
X, +hf(t, + $h, X, + $c)) e
C C3 1
X, + hf(t,, X,) c, s(c1+2c+2c3+¢y)
= |-
X,
A
Th Th

n Ly t
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Example 2.10

Solution

Figure 2.17
Computational results
for Example 2.10.

As was said before, the mathematical proof that the process defined by (2.22a—e) is
a fourth-order process is beyond the scope of this text. It is interesting to note that the
predictor—corrector method defined by (2.21a, b) could also be expressed as

¢ = hf(tm Xn)
e, =hf(t,+h, X, +c)
Xn+1 = Xn + %(Cl + C2)
This is also of the form of a Runge—Kutta method (the second-order Runge—Kutta

method), so we find that the second-order Runge—Kutta method and the second-order
Adams—Bashforth/Adams—Moulton predictor—corrector are, in fact, equivalent processes.

Let X, denote the approximation to the solution of the initial-value problem

dx _
dt t+1

x(0) =1

obtained using the fourth-order Runge—Kutta method with a step size # = 0.1, and X,
that obtained using 4 = 0.05. Compute the values of X,(¢) and X, () for r = 0.1, 0.2, .. .,
1.0. Compare these with the values of x(f), the exact solution of the problem. Compute
the ratio of the errors in X, and X,.

The exact solution was given in Example 2.2. The numerical solutions X, and X, and their
errors are presented in Figure 2.17.

This example shows, first, that the Runge—Kutta scheme, being a fourth-order scheme,
has considerably smaller errors, in absolute terms, than any of the other methods we
have met so far (note that Figure 2.17 does not give raw errors but errors times 1000!) and,
second, that the expectation we have that the global error should be O(h*) is roughly
borne out in practice (the ratio of |x — X,| to |x — X, | is roughly 16:1).

3 3 | X Xb |

t X, X, x(7) [x = X,| x 10 |x = X,| x 10
|x—X,]

0.00000 1.000 0000 1.000 0000 1.0000000
0.10000 1.1053507 1.1053512 1.1053512 0.000 55 0.000 04 0.0682
0.20000 1.2229733 1.2229745 1.2229746 0.001 33 0.000 09 0.0630
0.30000 1.3556802 1.3556825 1.3556827 0.002 46 0.000 17 0.0679
0.40000 1.5070918 1.507 0957 1.5070959 0.004 10 0.00028 0.0678
0.500 00 1.6819805 1.681986 6 1.681987 1 0.006 53 0.000 44 0.0678
0.600 00 1.8867952 1.8868047 1.8868054 0.01020 0.000 69 0.0677
0.700 00 2.1304915 2.130506 4 2.1305074 0.01592 0.001 08 0.0677
0.800 00 24259031 24259266 24259283 0.025 19 0.00171 0.0677
0.900 00 27921155 2.7921537 2.7921565 0.04103 0.002 78 0.0677

1.000 00 3.2588214 3.2588866 3.2588914 0.069 94 0.004 74 0.0678
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The table of values in Figure 2.17 can be obtained using MAPLE with the
appropriate setting of the numerical method. The following worksheet computes
the solutions specified and composes the required table.

#set up differential equation
deqgl:=diff (x(t),t)=x(t) "2/ (t+1) ;initl:=x(0)=1;
#obtain x1 and x2, the numerical solutions

vV V V V

x1:=dsolve ({degl, initl}, numeric,method=classical [rk4],
output=listprocedure, stepsize=0.1) ;
> x2:=dsolve({deqgl, initl},numeric,method=classical [rk4],
output=1listprocedure, stepsize=0.05) ;
> #xa is the analytic solution
> xa:=dsolve ({deqgl, initl});
> printlevel:=0:
fmtstr:="%5.1£,%12.7£,%12.7f£,%12.7£,%10.5£,%10.5¢f,
$10.4f,\n":
for i from 1 to 10 do
t:=0.1%1i:
xxl:=op(2,x1[2]) (t) :
xx2:=0p (2,x2[2]) (t) :
xxa:=evalf (subs (t=1,0p(2,xa))) :
printf (fmtstr, t,xx1l,xx2,xxa, abs (xxl-xxa) *1le3,
abs (xx2-xxa) *le3, (xx2-xxa)/ (xxl-xxa)) ;
end do;

It is interesting to note that the MAPLE results in the right-hand column, the ratio
of the errors in the two numerical solutions, vary slightly from those in Figure 2.17.
The results in Figure 2.17 were computed using the high-level programming language
Pascal which uses a different representation of floating point numbers from that
used by MAPLE. The variation in the results is an effect of the differing levels of
precision in the two languages. The differences are, of course, small and do not
change the overall message obtained from the figure.

Runge—Kutta schemes are single-step methods in the sense that they only require the
value of X,,, not the value of X at any steps prior to that. Therefore, they are entirely self-
starting, unlike the predictor—corrector and other multistep methods. On the other hand,
Runge—Kutta methods proceed by effectively creating substeps within each step. Thus
they require more evaluations of the function f{(z, x) at each step than multistep methods
of equivalent order of accuracy. For this reason, they are computationally less efficient.
Because they are self-starting, however, Runge—Kutta methods can be used to start the
process for multistep methods. An example of an efficient scheme that consistently has
a fourth-order local error is as follows. Start by taking two steps using the fourth-order
Runge—Kutta method. At this point values of X, X, and X, are available, so, to achieve
computational efficiency, change to the three-step fourth-order predictor—corrector con-
sisting of the third-order Adams—Bashforth/fourth-order Adams—Moulton pair.
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2.3.9 Exercises

(Note that Questions 8—15 may be attempted
using a hand-held calculator, particularly if it
is of the programmable variety. The arithmetic
will, however, be found to be tedious, and the
use of computer assistance is recommended if
the maximum benefit is to be obtained from
completing these questions.)

Using the second-order Adams—Bashforth
method (start the process with a single step
using the second-order predictor—corrector
method),

(a) compute an estimate of x(0.5) for the initial-value
problem

x(0)=0.2

dx—xzsint—x
dr ’

using step size h = 0.1;
(b) compute an estimate of x(1.2) for the initial-value
problem

dx —_ x j—
3= x*e”, x(0.5)=05

using step size h =0.1.
Using the third-order Adams—Bashforth method
(start the process with two second-order

predictor—corrector method steps) compute an
estimate of x(0.5) for the initial-value problem

‘;—f = J(&¥ 20, x0)=1
using step size h =0.1.

Using the second-order predictor—corrector method,

(a) compute an estimate of x(0.5) for the initial-value

problem
dx .
i 2t +x)sin2t, x(0)=0.5

using step size h = 0.05;
(b) compute an estimate of x(1) for the initial-value
problem

dx 1+x

& smaen 0=

using step size h = 0.1.

11

12

13

Write down the first three terms of the Taylor series
expansions of the functions

dx dx
T (t—h) and T (t—2h)
about x(7). Use these two equations to eliminate
2 3
Xy and L
dr dr’

from the Taylor series expansion of the function
x(t + h) about x(¢). Show that the resulting formula
for x(¢ + h) is the third member of the Adams—
Bashforth family, and hence confirm that this
Adams-Bashforth method is a third-order method.

Write down the first three terms of the Taylor series
expansions of the functions

dx dx
a(t+h) and a(l‘—h)
about x(7). Use these two equations to eliminate
2 3
Cxy and L
dr dr’

from the Taylor series expansion of the function
x(t + h) about x(f). Show that the resulting formula
for x(z + h) is the third member of the Adams—
Moulton family, and hence confirm that this
Adams—Moulton method is a third-order method.

Write down the first four terms of the Taylor series
expansion of the function x(z — &) about x(), and the
first three terms of the expansion of the function

dx
= (t—-h
3 ¢ )
about x(7). Use these two equations to eliminate
d’x ’x
—=(t) and —(1)
dr r

from the Taylor series expansion of the function
x(t + h) about x(7). Show that the resulting formula is

X,., =—4X, + 5X,_, + h(4F, + 2F, ) + O(h*)

Show that this method is a linear combination of the
second-order Adams—Bashforth method and the
central difference method (that is, the scheme based
on (2.9)). What do you think, in view of this, might
be its disadvantages?
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Using the third-order Adams—Bashforth-Moulton
predictor—corrector method (that is, the second-order
Adams—Bashforth formula as predictor and the
third-order Adams—Moulton formula as corrector),
compute an estimate of x(0.5) for
the initial-value problem

dx

— =x"+1

T x(0.3)=0.1

using step size & = 0.05. (You will need to employ
another method for the first step to start this scheme
— use the fourth-order Runge—Kutta method.)

Using the fourth-order Runge—Kutta method,

(a) compute an estimate of x(0.75) for the
initial-value problem

17
d—x=x+z+xz, x(0)=1

v
using step size h = 0.15;
(b) compute an estimate of x(2) for the initial-value

problem
d 1
@ S0=2

using step size h = 0.1.

Consider the initial-value problem

dx
e

T x(0) =-1

(a) Compute estimates of x(2) using the second-order
Adams-Bashforth scheme (using the
second-order predictor—corrector to start the
computation) with step sizes #=0.2 and 0.1. From
these two estimates of x(2) estimate what step size
would be needed to compute an estimate of x(2)
accurate to 3 decimal places. Compute X(2), first
using your estimated step size and second using
half your estimated step size. Does the
required accuracy appear to have been achieved?

(b) Compute estimates of x(2) using the second-order
predictor—corrector scheme with step sizes i =
0.2 and 0.1. From these two estimates of x(2)

estimate what step size would be
needed with this scheme to compute an
estimate of x(2) accurate to 3 decimal places.
Compute X(2), first using your estimated step
size and second using half your estimated step
size. Does the required accuracy appear to have
been achieved?

(c) Compute estimates of x(2) using the fourth-order
Runge—Kutta scheme with step sizes
h=0.4 and 0.2. From these two estimates of x(2)
estimate what step size would be needed to
compute an estimate of x(2) accurate to 5 dp.
Compute X(3), first using your estimated step
size and second using half your estimated step
size. Does the required accuracy appear to have
been achieved?

For the initial-value problem

dx 2
—=x"e,
dt

x(1)=1
find, by any method, an estimate, accurate to 5dp, of
the value of x(3).

Note: All of the exercises in this section can be
completed by programming the algorithms in a
high-level computer language such as Pascal,

C and Java. Programming in a similar high-level
style can be achieved using the language constructs
embedded within the MATLAB and MAPLE
packages. MAPLE, as we have already seen,
and MATLAB also allow a higher-level style

of programming using their built-in procedures
for numerical solution of ODEs. Both MATLAB
and MAPLE have very sophisticated built-in
procedures, but MAPLE also allows the user

to specify that it should use simpler algorithms
(which it calls ‘classic’ algorithms). Amongst
these simpler algorithms are many of the
algorithms we discuss in this chapter. In the
preceding exercise set, those which specify the
Runge—Kutta method and the second-order
predictor—corrector could be completed using
MAPLE’s dsolve procedure specifying the
relevant ‘classic’ solution methods.
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Example 2.11

Figure 2.18

The analytical
solutions of
(2.23) and (2.24).

Stiff equations

There is a class of differential equations, known as stiff differential equations, that are
apt to be somewhat troublesome to solve numerically. It is beyond the scope of this text
to explore the topic of stiff equations in any great detail. It is, however, important to be
aware of the possibility of difficulties from this source and to be able to recognize the
sort of equations that are likely to be stiff. In that spirit we shall present a very informal
treatment of stiff equations and the sort of troubles that they cause. Example 2.11 shows
the sort of behaviour that is typical of stiff differential equations.

The equation

dr _

1-— =2 2.2
T x, x(0) (2.23)
has analytical solution x = 1 + e™. The equation

dx .

Fri 50(1 —x)+50e™, x(0)=2 (2.24)

has analytical solution x = 1 + 5(50 e — e™"). The two solutions are shown in
Figure 2.18.

Suppose that it were not possible to solve the two equations analytically and
that numerical solutions must be sought. The form of the two solutions shown in
Figure 2.18 is not very different, and it might be supposed (at least naively) that the
numerical solution of the two equations would present similar problems. This, however,
is far from the case.

Figure 2.19 shows the results of solving the two equations using the second-order
predictor—corrector method with step size # = 0.01. The numerical and exact solutions
of (2.23) are denoted by X, and x, respectively, and those of (2.24) by X, and x,. The
third and fifth columns give the errors in the numerical solutions (compared with the
exact solutions), and the last column gives the ratio of the errors. The solution X, is seen
to be considerably more accurate than X, using the same step size.
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Figure 2.19
Computational results
for Example 2.11;
h=0.01.

Figure 2.20
Computational results
for Example 2.11;
h=0.025.

Figure 2.21
Computational results
for Example 2.11;
h=0.05.

t X, | X, — x| X, | X — x| Ratio of
errors
0.000 00 2.000 00 0.000 000 2.00000 0.000 000
0.10000 1.904 84 0.000 002 1.923 15 0.000017 11.264 68
0.200 00 1.81873 0.000 003 1.83547 0.000028 10.022 19
0.30000 1.740 82 0.000 004 1.75596 0.000026 6.864 34
0.40000 1.67032 0.000 005 1.684 02 0.000023 5.15007
0.50000 1.606 54 0.000 005 1.61893 0.000021 4.12006
0.600 00 1.548 82 0.000 006 1.56003 0.000019 3.43338
0.70000 1.496 59 0.000 006 1.50674 0.000017 2.94290
0.80000 1.449 34 0.000 006 1.45851 0.000016 2.57503
0.900 00 1.406 58 0.000 006 1.41488 0.000014 2.28892
1.000 00 1.367 89 0.000 006 1.37540 0.000013 2.06002
t X, | X, — x| X, | Xy — x5 Ratio of
errors
0.000 00 2.00000 0.000 000 2.000 00 0.000 000
0.10000 1.904 85 0.000010 1.922 04 0.001 123 116.95124
0.20000 1.81875 0.000017 1.83567 0.000231 13.270 10
0.300 00 1.740 84 0.000 024 1.756 25 0.000317 13.438 84
0.40000 1.67035 0.000028 1.684 30 0.000296 10.384 39
0.500 00 1.606 56 0.000032 1.61918 0.000268 8.32898
0.600 00 1.548 85 0.000 035 1.56025 0.000243 6.94236
0.700 00 1.496 62 0.000037 1.506 94 0.000220 5.950 68
0.80000 1.44937 0.000038 1.458 70 0.000 199 5.206 82
0.900 00 1.40661 0.000039 1.41505 0.000 180 4.628 26
1.000 00 1.36792 0.000039 1.37555 0.000 163 4.16542
t X, | X, — x| X, [ X, — x|
0.00000 2.00000 0.000 000 2.00000 0.000 000
0.10000 1.904 88 0.000039 1.87343 0.049 740
0.20000 1.818 80 0.000071 1.707 36 0.128 075
0.30000 1.74091 0.000 096 1.42102 0.334914
0.40000 1.67044 0.000116 0.80259 0.881408
0.50000 1.606 66 0.000 131 —-0.705 87 2.324778
0.600 00 1.548 95 0.000 142 -4.57642 6.136434
0.70000 1.49674 0.000 150 —14.695 10 16.201 818
0.80000 1.449 48 0.000 156 —41.32243 42.780932
0.90000 1.406 73 0.000 158 —-111.55173 112.966 595
1.000 00 1.368 04 0.000 159 —296.925 40 298.300783

Figure 2.20 is similar to Figure 2.19, but with a step size & = 0.025. As we might
expect, the error in the solution X, is larger by a factor of roughly six (the global error
of the second-order predictor—corrector method is O(h%)). The errors in X,, however, are
larger by more than the expected factor, as is evidenced by the increase in the ratio of

the error in X, to that in X,.

Figure 2.21 shows the results obtained using a step size h = 0.05. The errors in X,
are again larger by about the factor expected (25 when compared with Figure 2.19). The
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solution X, however, shows little relationship to the exact solution x, — so little that the
error at ¢ = 1 is over 20 000% of the exact solution. Obviously a numerical method that
causes such large errors to accumulate is not at all satisfactory.

In Section 2.3.5 we met the idea that some numerical methods can, when applied to
some classes of differential equation, show instability. What has happened here is, of
course, that the predictor—corrector method is showing instability when used to solve
(2.24) with a step size larger than some critical limit. Unfortunately the same behaviour
is also manifest by the other methods that we have already come across — the problem
lies with the equation (2.24), which is an example of a stiff differential equation.

The typical pattern with stiff differential equations is that, in order to avoid instability,
the step size used to solve the equation using normal numerical methods must be very
small when compared with the interval over which the equation is to be solved. In other
words, the number of steps to be taken is very large and the solution is costly in time
and computing resources. Essentially, stiff equations are equations whose solution con-
tains terms involving widely varying time scales. That (2.24) is of this type is evid-
enced by the presence of terms in both e and e™" in the analytical solution. In order to
solve such equations accurately, a step must be chosen that is small enough to cope with
the shortest time scale. If the solution is required for times comparable to the long time
scales, this can mean that very large numbers of steps are needed and the computer
processing time needed to solve the problem becomes prohibitive. In Example 2.11 the
time scale of the rapidly varying and the more slowly varying components of the solution
differed by only a factor of 50. It is not unusual, in the physical problems arising from
engineering investigations, to find time scales differing by three or more orders of
magnitude; that is, factors of 1000 or more. In these cases the problems caused are
proportionately amplified. Fortunately a number of numerical methods that are par-
ticularly efficient at solving stiff differential equations have been developed. It is beyond
the scope of this text to treat these in any detail.

From the engineering point of view, the implication of the existence of stiff equations is
that engineers must be aware of the possibility of meeting such equations and also of the
nature of the difficulty for the numerical methods — the widely varying time scales inherent
in the problem. It is probably easier to recognize that an engineering problem is likely to
give rise to a stiff equation or equations because of the physical nature of the problem than
it is to recognize a stiff equation in its abstract form isolated from the engineering context
from which it arose. As is often the case, a judicious combination of mathematical reasoning
and engineering intuition is more powerful than either approach in isolation.

Both MAPLE and MATLAB feature procedures for the numerical solution of ODEs
which are designed to deal efficiently with stiff equations. The user may be tempted to
think that a simple way to negotiate the problem of stiff equations is to use the stiff equation
solvers for all ODEs. However, the stiff equation methods are less computationally
efficient for non-stiff equations so it is worth trying to identify which type of equation
one is facing and using the most appropriate methods.

Computer software libraries

In the last few sections we have built up some basic methods for the integration of first-
order ODEs. These methods, particularly the more sophisticated ones — the fourth-order
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Runge—Kutta and the predictor—corrector methods — suffice for many of the problems aris-
ing in engineering practice. However, for more demanding problems — demanding in terms
of the scale of the problem or because the problem is characterized by ill behaviour of some
form — there exist more sophisticated methods than those we are able to present in this book.

All the methods that we have presented in the last few sections use a fixed step size.
Among the more sophisticated methods to which we have just alluded are some that use
a variable step size. In Section 2.3.6 we showed how Richardson extrapolation can be
used to estimate the size of the error in a numerical solution and, furthermore, to estim-
ate the step size that should be used in order to compute a solution of a differential
equation to some desired accuracy. The principle of the variable-step methods is that a
running check is kept of the estimated error in the solution being computed. The error
may be estimated by a formula derived along principles similar to that of Richardson
extrapolation. This running estimate of the error is used to predict, at any point in the
computation, how large a step can be taken while still computing a solution within any
given error bound specified by the user. The step size used in the solution can be altered
accordingly. If the error is approaching the limits of what is acceptable then the step size
can be reduced; if it is very much smaller than that which can be tolerated then the step size
may be increased in the interests of speedy and efficient computing. For multistep meth-
ods the change of step size can lead to quite complicated formulae or procedures. As an
alternative, or in addition, to a change of step size, changes can be made in the order of
the integration formula used. When increased accuracy is required, instead of reduc-
ing the step size, the order of the integration method can be increased, and vice versa.
Implementations of the best of these more sophisticated schemes are readily available in
software packages, such as MAPLE and MATLAB, and software libraries such as the
NAG library.

The availability of complex and sophisticated ‘state of the art’ methods is not the
only argument for the use of software packages and libraries. It is a good engineering
principle that, if an engineer wishes to design and construct a reliable engineering artefact,
tried and proven components of known reliability and performance characteristics
should be used. This principle can also be extended to engineering software. It is almost
always both more efficient, in terms of expenditure of time and intellectual energy, and
more reliable, in terms of elimination of bugs and unwanted side-effects, to use software
from a known and proven source than to write programs from scratch.

For both of the foregoing reasons, when reliable mathematical packages, such as
MAPLE and MATLAB, and software libraries are available, their use is strongly rec-
ommended. MAPLE offers both symbolic manipulation (computer algebra) and numer-
ical problem solving across the whole span of mathematics. Amongst these, as we have
already noted, MAPLE includes routines for the numerical solution of systems of
ODE:s. These routines are highly sophisticated, offering alternative methods suitable for
stiff and non-stiff problems, using fixed time steps or variable time steps and optimized
either for speed or for accuracy. The MATLAB package, with its Simulink continuous
system modelling add-on, also offers sophisticated facilities for solving differential
equations numerically. Again the package offers the choice of both fixed and variable
time step methods, methods suitable for stiff problems as well as non-stiff ones, and a
choice of optimizations aimed at either best speed or highest accuracy. Amongst the
best known, and probably the most widely used, library of software procedures today
is the NAG library. This library has a long history and has been compiled by leading
experts in the field of numerical mathematics. Routines are available in a variety
of programming languages. The routines provided for the solution of ODEs again
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encompass a variety of methods chosen to deal with stiff and non-stiff problems and to
offer the user considerable flexibility in choice of method to suit every possible engi-
neering requirement. By choosing an appropriate, high-quality software package or
library the engineer can be assured that the implementation will be, as far as possible,
bug free, that the methods used will be efficient and reliable, and that the algorithms
will have been chosen from the best ‘state of the art” methods.

It is tempting to believe that the use of software libraries solves all the problems of
numerical analysis that an engineering user is likely to meet. Faced with a problem for
which analytical methods fail, the engineer simply needs to thumb through the index to
some numerical analysis software library until a method for solving the type of problem
currently faced is found. Unfortunately such undiscerning use of packaged software
will almost certainly, sooner or later, lead to a gross failure of some sort. If the user is
fortunate, the software will be sophisticated enough to detect that the problem posed is
outside its capabilities and to return an error message to that effect. If the user is less
fortunate, the writer of the software will not have been able to foresee all the possible
uses and misuses to which the software might be subjected and the software will not be
proof against such use outside its range of applicability. In that case the software may
produce seemingly valid answers while giving no indication of any potential problem.
Under such circumstances the undiscerning user of engineering software is on the verge
of committing a major engineering blunder. From such circumstances result failed
bridges and crashed aircraft! It has been the objective of these sections on the numerical
solution of differential equations both to equip readers with numerical methods suitable
for the less demanding problems that will arise in their engineering careers and to give
them sufficient understanding of the basics of this branch of numerical analysis that
they may become discriminating, intelligent and wary users of packaged software and
other aids to numerical computing.

Numerical methods for systems of ordinary differential
equations and higher-order differential equations

Obviously, the classes of second- and higher-order differential equations that can be
solved analytically, while representing an important subset of the totality of such
equations, are relatively restricted. Just as for first-order equations, those for which no
analytical solution exists can still be solved by numerical means. The numerical
solution of second- and higher-order equations does not, in fact, need any significant
new mathematical theory or technique.

Numerical solution of coupled first-order equations

In Section 2.3 we met various methods for the numerical solution of equations of the
form

dx

a =f(t7 .X')

that is, first-order differential equations involving a single dependent variable and a
single independent variable. However it is possible to have sets of coupled first-order
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equations, each involving the same independent variable but with more than one
dependent variable. An example of these types of equation is

dx _ 2
ol X —y +xt (2.25a)
‘% Sl ay—t (2.25b)

This is a pair of differential equations in the dependent variables x and y with the
independent variable 7. The derivative of each of the dependent variables depends
not only on itself and on the independent variable ¢, but also on the other dependent
variable. Neither of the equations can be solved in isolation or independently of the
other — both must be solved simultaneously, or side by side. A pair of coupled
differential equations such as (2.25) may be characterized as

Sy (2.262)
i xy) (2.26b)
ar hY )

For a set of p such equations it is convenient to denote the dependent variables not by
X, ¥, Z, . .. but by xy, x,, x3, . . . , x, and the set of equations by

dx; .
E:flt(l"xl’xb"‘?xp) (l:1,2,...,p)

or equivalently, using vector notation,
d% [x] =f(z x)

where x(f) is a vector function of ¢ given by
xO) =0 o) - x5O

f(t, x) is a vector-valued function of the scalar variable ¢ and the vector variable x.
The Euler method for the solution of a single differential equation takes the
form

X

n

1 = Xn + hf(tn’ Xn)
If we were to try to apply this method to (2.26a), we should obtain

X=X, +hfi(t, X, ¥,)

n

In other words, the value of X,,,, depends not only on ¢, and X, but also on Y,,. In the same
way, we would obtain

Yn+1 = Yn + h.fZ(tn? Xn? Yn)



2.4 NUMERICAL METHODS FOR SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS 151

Example 2.12

Solution

for Y,,,. In practice, this means that to solve two simultaneous differential equations, we
must advance the solution of both equations simultaneously in the manner shown in
Example 2.12.

Find the value of X(1.4) satisfying the following initial-value problem:

dx _ _
T =x-y +xt, x(1)=0.5
(c% =27 +xy—t, y(1)=12

using the Euler method with time step 4 = 0.1.

The right-hand sides of the two equations will be denoted by f(¢, x, y) and f,(, x, y)
respectively, so

filt,x,y)=x—y*+xt and fy(t,x,y)=2x>+xy—t

The initial condition is imposed at # = 1, so t, will denote 1 + nh, X, will denote X(1 + nh),
and Y, will denote Y(1 + nh). Then we have

X, = xo + hfi(to, X0» Yo) Y, =y + hfy(to, Xo, Vo)
=0.5+0.1f,(1, 0.5, 1.2) =1.2+0.1f(1, 0.5, 1.2)
=0.4560 =1.2100

for the first step. The next step is therefore

X, =X, +hfi(t, X,, Y) Y=Y +hfs(t,, X, Y)
=0.4560 =1.2100
+ 0.1£,(1.1, 0.4560, 1.2100) + 0.1£5(1.1, 0.4560, 1.2100)
=0.4054 =1.1968

and the third step is

X, = 0.4054 Y, = 1.1968
+0.1£,(1.2, 0.4054, 1.1968) +0.1£,(1.2, 0.4054, 1.1968)
=0.3513 =1.1581

Finally, we obtain
X,=0.3513 + 0.1f,(1.3, 0.3513, 1.1581)
=0.2980

Hence we have X(1.4) = 0.2980.
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MAPLE’s dsolve procedure can find the numerical solution of sets of coupled
ordinary differential equations as readily as for a single differential equation. The
following worksheet finds the solution required in the example above.

> #set up the two differential equations
> degl:=diff (x(t),t)=x(t)*(1+t)-y(t)"2:
deqg2:=diff (y(t),t)=2*x(t) "2 +x(t)*y(t)-t:
degsystem:=deqgl, deq2;
> #set up the initial conditions
> inits:=x(1)=0.5,y(1)=1.2;
> #procedure "dsolve" used to solve s system of two coupled
differential equations
> sol:=dsolve ({degsystem, inits}, numeric,
method=classical [foreuler] ,output=1listprocedure,
stepsize=0.1) ;
> #obtain numerical solution required
> xx:=0p(2,s01[2]) ;xx(1.4);

The principle of solving the two equations side by side extends in exactly the same
way to the solution of more than two simultaneous equations and to the solution of
simultaneous differential equations by methods other than the Euler method.

Example 2.13  Find the value of X(1.4) satisfying the following initial-value problem:

(31—); =x—y*+xt, x(1)=0.5
% =2x"+xy—t, y(1)=12

using the second-order predictor—corrector method with time step 2 = 0.1.

Solution  First step:

predictor
)A(l =X, + hfi(t, X0, Vo) 171 =y, + W5y, X0 Yo)
=0.4560 =1.2100
corrector
X, =xy+ %h[fl(to, X5 Vo) Yi=y + %h[f2(t0, Xg5 o)
+ i, X, Tl + it X, 9]
=0.5+0.05[f,(1, 0.5, 1.2) =1.2+0.05[£(1, 0.5, 1.2)
+ f1(1.1, 0.456, 1.21)] + f5(1.1, 0.456, 1.21)]

=0.4527 =1.1984
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Second step:
predictor
X, = X, + hfy(1, X,, Y)
=0.4042
corrector
X, =X, + 3 hlfi(t, X1, V)
+ (6 Xy, V)]
=0.4527
+0.05[ (1.1, 0.4527, 1.1984)
+£1(1.2, 0.4042, 1.1836)]
=0.4028

Third step:

predictor
X,= X, + hfi(ty, X, Ys)
=0.3542
corrector
X;=X,+ 3 hlfi(ty, X,, Y>)
+fits, Xy V)]
=0.4028
+0.05[ f,(1.2, 0.4028, 1.1713)
+ £1(1.3, 0.3542, 1.1309)]
=0.3553

Fourth step:

predictor
)24 =X; + hfi(t5, X5, 1s)
=0.3119

corrector

A

YZ:Y1+hf2(tl’Xla Y)
=1.1836

Y, =Y, + 3hl (1, X,, Y)
+ [ty X, 1)1
=1.1984
+0.05[fo(1.1, 0.4527, 1.1984)
+£,(1.2, 0.4042, 1.1836)]
=1.1713

Yi=Y, + hfi(ty, Xo, Y))
= 1.1309

Y=Y, + S hlfi(tr, Xo, Ys)
+ otz X V)]
=1.1713
+0.05[ £5(1.2, 0.4028, 1.1713)
+£(1.3, 0.3542, 1.1309)]
=1.1186

?4 =Y+ hf(t, X5, Vs)
=1.0536

X=Xy + ShUfi(ts, X, Y9) + ity Xy V)]
=0.3553 + 0.05[ £,(1.3, 0.3553, 1.1186) + f,(1.4, 0.3119, 1.0536)]
Hence finally we have X(1.4) = 0.3155.
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The MAPLE worksheet at the end of Example 2.12 can be easily modified to
reproduce the solution of Example 2.13 by changing the name of the required
numerical method from foreuler to heunform.

It should be obvious from Example 2.13 that the main drawback of extending the
methods we already have at our disposal to sets of differential equations is the
additional labour and tedium of the computations. Intrinsically, the computations
are no more difficult, merely much more laborious — a prime example of a problem
ripe for computerization.

2.4.2 State-space representation of higher-order systems

The solution of differential equation initial-value problems of order greater than one can
be reduced to the solution of a set of first-order differential equations using the state-space
representation introduced in Section 1.9. This is achieved by a simple transformation,
illustrated by Example 2.14.

Example 2.14  The initial-value problem

2
SRS S 17, x(0)=12, d—)‘(0) =0.8
dt dt

can be transformed into two coupled first-order differential equations by introducing
an additional variable

_dx
T
With this definition, we have
d’x _dy
a7 dr
and so the differential equation becomes
((% + Xty —xt? = 1

Thus the original differential equation can be replaced by a pair of coupled first-order

differential equations, together with initial conditions:
dx
— =y, 0)=12
3 = O

% =ty +x+ 3, y(0)=0.8

This process can be extended to transform a pth-order initial-value problem into a
set of p first-order equations, each with an initial condition. Once the original equation
has been transformed in this way, its solution by numerical methods is just the same
as if it had been a set of coupled equations in the first place.
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Example 2.15  Find the value of X(0.2) satisfying the initial-value problem

3 2 2
dr e pco, =1, Eoy=05. LX0)=-02
dr dt dr dr dr

using the fourth-order Runge—Kutta scheme with step size 4 = 0.05.

Solution  Since this is a third-order equation, we need to introduce two new variables:

2
pod g oy

dt dr dr

Then the equation is transformed into a set of three first-order differential equations

dx

=y x(0) =1
dy _ _

T =2 ¥(0) = 0.5

3—? =—xtz —ty + t°x z2(0)=-0.2

Applied to the set of differential equations

dx

a :f‘l(t’ X, y’ Z)
dy _

dt —f‘z(t, x’ y’ Z)

dz _
E _,f;(t’ X, y’ Z)

the Runge—Kutta scheme is of the form
cn =@, X, Y, Z,)
e =, X, Y, Z,)
c =hf5(t, X, Y, Z,)
cn = hfi@, + %h» X, + %Cu» Y, + %CZI’ Z,+ 5631)
e = (1, + %h, X, + %Cu» Y, + %CZI’ Z,+ 5631)
e =yt +3h, X, + 51, Y, 4500, Z, +5¢31)
ci3 =i, + %h» X, + %Clzv Y, + %sz’ Z,+ 5632)
o3 = (1, + %h, X, + %Clzv Y, + %sz’ Z,+ 5632)
e = hfy(t, +3h, X, + 5010, Y, + 50 Z, + 5 C3)
cu=hi@,+h, X, +cp Y, + 3 Z, + ¢35)
Cu =, +h, X, + cp3, Y, + ¢33, Z, + ¢33)

Cu=hfy(t,+ h, X, +cp5, Y, + ¢, Z, + C33)
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1
X=X, +5(611 +2¢,+2¢5+¢py)
1
Yo=Y, +z(co + 2¢y + 2¢55 + o)
1
Zyp =2, +z(C31 + 203 + 2¢33 + €34)

Note that each of the four substeps of the Runge—Kutta scheme must be carried out in
parallel on each of the equations, since the intermediate values for all the independent
variables are needed in the next substep for each variable; for instance, the computation
of ¢,; requires not only the value of ¢, but also the values of c,, and cs,. The first step of
the computation in this case proceeds thus:

X,=x,=1 Yo=v,=0.5 Zy=12,=-02
ey = (1o, Xo, Yo, Zo)
- 1Y,
= 0.025 000 co1 = hfiltos Xo» Yoo Zo)
= hZ,
=-0.010000 c31 = hfs(tos Xo» Yor Zo)
= h(=XotoZy = 1Yy + 15 Xo)
=0.000 000
e =hfi(ty+ 3h, Xy + 5c11, Yo+ 5¢a1, Zo + 5C31)
=h(Yy + 5¢y1)
=0.024750
Cy = hfy(t, + %h, X+ %c,l, Yo+ %021, Zy+ %C:“)
=h(Z,+ %cﬂ)
=-0.010000

e = hfy(to+ 31, Xy + 5¢11, Yo+ 5¢01, Zo + 5C31)
= h(—(Xy + 3¢t + 3 W)(Zy + 5¢31)
= (ty+ 5 (Yy + 3¢50 + (b + 5 )Xy + 5¢11)
=-0.000334
ci3=hfi(to+ 31, Xo+ 310 Yo+ 5C000 Zo + 5C3)
=h(Y,+ %czz)
=0.024750
e = hfy(ty+ 3h, Xo + 3¢5, Yo+ 5Cy Zo + 5C3)
=h(Zy+ S c3)
=-0.010008
33 = hfsto + 3, Xo+ 310 Yo+ 500y Zo + 3C3)
= h(—(Xy + 3c)(to + 3 W)(Zy + 5 ¢3p)
—(to+ 3 )Yy + 3¢50 + (b + 3 W)Xy + 5¢1)
=-0.000334
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cu=hfi(ty+ h, Xy + 13, Yo+ Coz, Zy + C33)
=h(Y,+ cy)
=0.024499
Cos = hfs(ty + h, Xy + 13, Yo + Cozy Zy + C33)
=h(Zy+ c33)
=-0.010016
Cya = hf5(ty + h, Xy + C13, Yo+ Co3, Zy + C33)
= h(—(Xy + c;3)(ty + h)(Zy + ¢33)
— (ty + W)Yy + Cp3) + (I + WX,y + C13))
=-0.000584
X, =1.024750, Y, =0.489994, Z, =-0.200320

The second and subsequent steps are similar — we shall not present the details of the
computations. It should be obvious by now that computations like these are sufficiently
tedious to justify the effort of writing a computer program to carry out the actual arithmetic.
The essential point for the reader to grasp is not the mechanics, but rather the principle
whereby methods for the solution of first-order differential equations can be extended to the
solution of sets of equations and hence to higher-order equations.

Again MAPLE could be used to find the numerical solution of this set of coupled
ordinary differential equations. However, the MAPLE dsolve procedure is also able
to do the conversion of the higher-order equation into a set of first-order equations
internally so the numerical solution of the example above using the fourth-order
Runge—Kutta algorithm could be achieved with the following worksheet.

> #iset up the differential equation
> deqg:=diff (x(t),t,t,t)+x(t)*t*diff (x(t),t, t)
+t*diff (x(t),t)-t"2*x(t)=0;
> #set up the initial conditions
> inits:=x(0)=1,D(x) (0)=0.5,D(D(x)) (0)=-0.2;
> #fprocedure "dsolve" used to solve third order
differential equations
> sol:=dsolve ({deq, inits}, numeric,method=classical [rk4],
output=1listprocedure, stepsize=0.05) ;
> #obtain the numerical solution required
> xx:=0p(2,s801[2]) ;xx(0.05) ;xx(0.2) ;
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18

2.4.3 Exercises

Transform the following initial-value problems
into sets of first-order differential equations with
appropriate initial conditions:

(@)

(b)

2
(iizc+6(x27t)g’—vf4xt=0
dr dr

-1 90 =
K0)=1, (0)=2

d’x 2 2172
dr

dx
x(1)=2, a—z(l) =0.5

d’x . (dx
(c) —< —sin| —|+4x=0
dr’ [dz]
dx
x0)=0, FO)=0
3 2
@ L2 e dx e
dr dr dr
2
W=1, Eoy=2, Lo=0
dt dr
3 2
(e) (iif+tg—’:+x2= sin ¢
dr dr

)

2
=1 Em=0, Lm=-2
dr dr

3 1/2 2
dx +zd——)2f+x2t2=0
ar’ ds
2
=0, Eoy=0, =2
dr dr

4 2

(g) %‘u%mzzlnz, x0)=0,
1 1
2 3
Lroy=4, Lo=-3
dr dr

()

4
dx 12
4

dx d’x  dx
+|=-1|t— +— - (x1)
dr dt dr’ dt
=t*+4t-5

2
wW0=a, Eo=0, X0)=p,
dr dr

dx 0)=0,
dr

3
4x0)=0
dr’

19

20

21

22

Find the value of X(0.3) for the initial-value
problem

2
d_“f+x2d_x+x=sint, x(0) =0, Z_x(()):l
t

dr dr
using the Euler method with step size h =0.1.
The second-order Adams—Bashforth method for

the integration of a single first-order differential
equation

dx _
a; _.f([’ X)
is
X1 =X, + § hI3f@, X)) = f(tys X))

Write down the appropriate equations for applying
the same method to the solution of the pair of
differential equations

dx . dy _
a;_fl(z’ X, y), dr —fz(t, X, y)

Hence find the value of X(0.3) for the initial-value
problem

2
H+x2d—)c+x= sint, x(0)=0,

. dx =1
dr dt dr

using this Adams—Bashforth method with step size
h =0.1. Use the second-order predictor—corrector
method for the first step to start the computation.

Use the second-order predictor—corrector

method (that is, the first-order Adams—Bashforth
formula as predictor and the second-order
Adams—Moulton formula as corrector) to compute
an approximation X(0.65) to the solution x(0.65)
of the initial-value problem

2
d—)f+( —t)d—f+ drl -9
dr dr
2
205 =-1, ZL0s5=1, LFos=2
dt dr

using a step size & = 0.05.

Write a computer program to solve the initial-value
problem

2
d-i‘+xzj—x+x= sint, x(0)=0,
t

. dx 0)=1
dr dr
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using the fourth-order Runge—Kutta method. Use
your program to find the value of X(1.6) using
step sizes h = 0.4 and 0.2. Estimate the accuracy
of your value of X(1.6) and estimate the step size
that would be necessary to obtain a value of X(1.6)
accurate to 6dp.

Write a computer program to solve the initial-value
problem

using the third-order predictor—corrector method
(that is, the second-order Adams—Bashforth formula
as predictor with the third-order Adams—Moulton as
corrector). Use the fourth-order Runge—Kutta
method to overcome the starting problem with this
process. Use your program to find the value of
X(2.2) using step sizes £ =0.1 and 0.05. Estimate the
accuracy of your value of X(2.2) and estimate the
step size that would be necessary to obtain a value of
X(2.2) accurate to 6dp.

Note: The comment on the use of high-level computer
language and the MATLAB and MAPLE packages
at the end of Section 2.3.9 is equally applicable to

the immediately preceding exercises in this section.

r dit - (dt
_ dx _ d’x _
x035)=-1, Z@035=1, ==05=2
dr dr
2.4.4 Boundary-value problems

Because first-order ODEs only have one boundary condition, that condition can always
be treated as an initial condition. Once we turn to second- and higher-order differential
equations, there are, at least for fully determined problems, two or more boundary condi-
tions. If the boundary conditions are all imposed at the same point then the problem is an
initial-value problem and can be solved by the methods we have already described. The
problems that have been used as illustrations in Sections 2.4.1 and 2.4.2 were all initial-
value problems. Boundary-value problems are somewhat more difficult to solve than ini-

tial-value problems.

To illustrate the difficulties of boundary-value problems, let us consider second-order
differential equations. These have two boundary conditions. If they are both imposed at the
same point (and so are initial conditions), the conditions will usually be a value of the
dependent variable and of its derivative, for instance a problem like

L{x(n] = f(®),

x(a) =p,

dx
T, (@=¢q

where L is some differential operator. Occasionally, a mixed boundary condition such as

dx, .
Cx(a) + D P (@)=p

will arise. Provided that a second boundary condition on x or dx/d¢ is imposed at the same
point, this causes no difficulty, since the boundary conditions can be decoupled, that is
solved to give values of x(a) and (dx/df)(a), before the problem is solved.

If the two boundary conditions are imposed at different points then they could consist of
two values of the dependent variable, the value of the dependent variable at one boundary
and its derivative at the other, or even linear combinations of the values of the dependent
variable and its derivative. For instance, we may have

L{x(n] = f(»),

or

x(a) =p,

x(b)=¢q
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Example 2.16

Solution

245

L0l =/, F@=p, xb)=g
or
L0 =0, x@=p, S b)=g
or even such systems as
L0 =), x(@ =p. Ax(b)+BS () =¢

The increased range of possibilities introduced by boundary-value problems almost
inevitably increases the problems which may arise in their solution. For instance, it may at
first sight seem that it should also be possible to solve problems with boundary conditions
consisting of the derivative at both boundaries, such as

Lxol =0, F@=p. Fbr=g

Things are unfortunately not that simple — as Example 2.16 shows.

Solve the boundary-value problem

Q:4 dx

dx
— = —1 =
=4 qO=p Fh=g

Integrating twice easily yields the general solution
x=2t"+At+B

The boundary conditions then impose
A=p and 4+A=¢g

It is obviously not possible to find a value of A satisfying both these equations unless
g =p + 4. In any event, whether or not p and ¢ satisfy this relation, it is not possible to
determine the constant B.

Example 2.16 illustrates the fact that if derivative boundary conditions are to be applied,
a supplementary compatibility condition is needed. In addition, there may be a residual
uncertainty in the solution. The complete analysis of what types of boundary conditions are
allowable for two-point boundary-value problems is beyond the scope of this book.
Differential equations of orders higher than two increase the range of possibilities even
further and introduce further complexities into the determination of what boundary
conditions are allowable and valid.

The method of shooting

One obvious way of solving two-point boundary-value problems is a form of systematic
trial and error in which the boundary-value problem is replaced by an initial-value
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Figure 2.22

The solution of a
differential equation
by the method of

shooting: initial trials.

X
~ X, (b)
9t T4
P+
=X (b)
}
0 a b t

problem with initial values given at one of the two boundary points. The initial-value
problem can be solved by an appropriate numerical technique and the value of whatever
function is involved in the boundary condition at the second boundary point determined.
The initial values are then adjusted and another initial-value problem solved. This process
is repeated until a solution is found with the appropriate value at the second boundary
point.

As an illustration, we shall consider a second-order boundary-value problem of
the form

Lix]=f(®), x(a)=p, x(b)=q (2.27)

The related initial-value problem
dx
Lixl=f@®, x@=p, (@=0 (2.28)

could be solved as described in Section 2.4.2. Suppose that doing this results in an
approximate solution of (2.28) denoted by X,. In the same way, denote the solution of
the problem

Lixl =/, @ =p, T @=1 (2.29)

by X,. We now have a situation as shown in Figure 2.22. The values of the two solutions
at the point # = b are X,(b) and X,(b). The original boundary-value problem (2.27)
requires a value g at b. Since q is roughly three-quarters of the way between X,(b) and
X,(b), we should intuitively expect that solving the initial-value problem

Lix] =f(®, x(a)=p, %(a) =0.75 (2.30)

will produce a solution with X(b) much closer to g. What we have done, of course,
is to assume that X(b) varies continuously and roughly in proportion to (dx/d¢)(a)
and then to use linear interpolation to estimate a better value of (dx/df)(a). It is unlikely,
of course, that X(b) will vary exactly linearly with (dx/df)(a) so the solution of (2.30),
call it X5, will be something like that shown in Figure 2.23. The process of linear
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Figure 2.23 x A
The solution of a
differential equation
by the method of
shooting: first
refinement. X, (b)
T +x ®)
P+
~ X (D)
: >
0 a b t

interpolation to estimate a value of (dx/df)(a) and the subsequent solution of the
resulting initial-value problem can be repeated until a solution is found with a value
of X(b) as close to g as may be required. This method of solution is known, by an
obvious analogy with the bracketing method employed by artillerymen to find their
targets, as the method of shooting. Shooting is not restricted to solving two-point
boundary-value problems in which the two boundary values are values of the
dependent variable. Problems involving boundary values on the derivatives can be
solved in an analogous manner.

The solution of a two-point boundary-value problem by the method of shooting
involves repeatedly solving a similar initial-value problem. It is therefore obvious that the
amount of computation required to obtain a solution to a two-point boundary-value prob-
lem by this method is certain to be an order of magnitude or more greater than that
required to solve an initial-value problem of the same order to the same accuracy. The
method for finding the solution that satisfies the boundary condition at the second
boundary point which we have just described used linear interpolation. It is possible to
reduce the computation required by using more sophisticated interpolation methods.
For instance, a version of the method of shooting that utilizes Newton—Raphson itera-
tion is described in R. D. Milne, Applied Functional Analysis, An Introductory Treat-
ment (London, Pitman, 1979).

YR 2 T Tl T TN oscillations of a pendulum

The simple pendulum has been used for hundreds of years as a timing device. A
pendulum clock, using either a falling weight or a clockwork spring device to
provide motive power, relies on the natural periodic oscillations of a pendulum to
ensure good timekeeping. Generally we assume that the period of a pendulum is
constant regardless of its amplitude. But this is only true for infinitesimally small
amplitude oscillations. In reality the period of a pendulum’s oscillations depends
on its amplitude. In this section we will use our knowledge of numerical analysis
to assist in an investigation of this relationship.
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Figure 2.24 A simple
pendulum.

Figure 2.24 shows a simple rigid pendulum mounted on a frictionless pivot swinging
in a single plane. By resolving forces in the tangential direction we have, following the
classical analysis of such pendulums,

2
ma— =-mg sin @
dr’

that is,

2
(:1_{"0 +8sing=0 2.31)
a

For small oscillations of the pendulum we can use the approximation sin &= & so the
equation becomes

d’e
— +

> =0 (2.32)
t

ISIIS]

which is, of course, the simple harmonic motion equation with solutions

a=Acosu§t] +Bsinu§t]

Hence the period of the oscillations is 2n./(a/g) and is independent of the amplitude
of the oscillations.

In reality, of course, the amplitude of the oscillations may not be small enough for
the linear approximation sin = @to be valid, so it would be useful to be able to solve
(2.31). Equation (2.31) is nonlinear so its solution is rather more problematical than
(2.32). We will solve the equation numerically. In order to make the solution a little
more transparent we will scale it so that the period of the oscillations of the linear
approximation (2.32) is unity. This is achieved by setting ¢ = 2n./(a/g)7. Equation
(2.31) then becomes

2
Elm§+ 41’ sin =0 (2.33)
dr

For an initial amplitude of 30°, the pseudocode algorithm shown in Figure 2.25, which
implements the fourth-order Runge—Kutta method described in Section 2.3.8, produces
the results ©(6.0) = 23.965 834 using a time step of 0.05 and ©(6.0) = 24.018 659 with a
step of 0.025. Using Richardson extrapolation (see Section 2.3.6) we can predict that the
time step needed to achieve 5 decimal places of accuracy (i.e. an error less than 5 x 107°)
with this fourth-order method is

1/4

0.000 005 x (2* — 1)

0.025 = 0.0049
[23.965 834 — 24.018 659 | %
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repeating the calculation with time steps 0.01 and 0.005 gives ©(6.0) = 24.021 872 7 and
©(6.0) = 24.021 948 1 for which Richardson extrapolation implies an error of 5 x 107
as predicted.

These results could also have been obtained using MAPLE as shown by the following
worksheet:

\

degsys:=diff (x(t),t$2)+4*Pi*2*sin(x(t))=0;

inits:=x(0)=60/180*Pi,D(x) (0)=0;

> sol:=dsolve ({degsys, inits}, numeric,method=classical
[rk4] ,output=1listprocedure, stepsize=0.005) ;

> xx:=0p(2,801[2]) ;xx(6) ;evalf (xx(6)*180/Pi) ;

\

As a check we can draw the graph of |©,,(7) — ©gs(7)|, shown in Figure 2.26.
This confirms that the error grows as the solution advances and that the maximum error
is around 7.5 x 1075,

What we actually wanted is an estimate of the period of the oscillations. The
most satisfactory way to determine this is to find the interval between the times of
successive zero crossings. The time of a zero crossing can be estimated by linear
interpolation between the data points produced in numerical solution of the differ-
ential equation. At a zero crossing the successive values of ® have the opposite
sign. Figure 2.27 shows a modified version of the main part of the algorithm of
Figure 2.25. This version determines the times of successive positive to negative
zero crossings and the differences between them.

Figure 2.28 shows some results from a program based on the algorithm of Figure 2.27;
it is evident that the period has been determined to 6 sf accuracy. Figure 2.29 has
been compiled from similar results for other amplitudes of oscillation.

Some spring-powered pendulum clocks are observed to behave in a counter-
intuitive way — as the spring winds down the clock gains time where most people
intuitively expect it to run more slowly and hence lose time. Figure 2.29 explains
this phenomenon. The reason is that, in a spring-powered clock, the spring, acting
through the escapement mechanism, exerts forces on the pendulum which, over each
cycle of oscillation of the pendulum, result in the application of a tiny net impulse.
The result is that just sufficient work is done on the pendulum to overcome the
effects of bearing friction, air resistance and any other dissipative effects, and to
keep the pendulum swinging with constant amplitude. But, as the spring unwinds the
force available is reduced and the impulse gets smaller. The result is that, as the
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Figure 2.25

A pseudocode
algorithm for solving
the nonlinear pendulum
(2.33).

clock winds down, the amplitude of oscillation of the pendulum decreases slightly.
Figure 2.29 shows that as the amplitude decreases the period also decreases. Since
the period of the pendulum controls the speed of the clock, the clock runs faster as
the period decreases! Of course, as the clock winds down even further, the spring
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Figure 2.26 8.0E—6
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Figure 2.27
Modification of
pseudocode algorithm
to find the period

of oscillations of
(2.33).

tol < 0.00001
t_start « O
tend < 6
write(vdu, ‘Enter amplitude => ")
read(keyb,x0)
x_start «— pi*x0/180
v_start < 0
write(vdu, ‘Enter stepsize => ")
read(keyb,h)
write(vdu,t_start,” ’,deg(x_start))
t < t_start
X < Xx_start
V < v_start
t_previous_cross <« t_start
repeat
rk4(x,v,h — xn,vn)
if(xnxx < 0) and (x > 0) then
t_cross «— (t#xn — (t + h)#x)/(xn-x)
write(vdu,t_cross,” ’,t_cross —t_previous_cross)
t_previous_cross <— t_cross
endif
X ¢ Xn
V ¢ vn
t < t+h
until abs(t — t_end) < tol

reaches a point where it is no longer capable of applying a sufficient impulse to
overcome the dissipative forces, the pendulum ceases swinging and the clock
finally stops.
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Figure 2.28 Periods of

. N Time of crossing Period of last cycle
successive oscillations
p— o
Zf—(%)'%)%))s’ 0, =30, 0.25435213
- : 1.27176106 1.017408 93

2.289169 73 1.017408 67
3.306578 68 1.017 408 95
4.32398734 1.017 408 66
5.341396 30 1.017408 96

Figure 2.29 1.2

Variation of period of
oscillations of (2.33)
with amplitude.

Period of oscillation

1.05

/
1 //

0 10 20 30 40 50 60 70 80 90
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[Q The periods of the oscillations can also be measured using MAPLE. The procedure
fsolve finds numerically the roots of a function. The output of the procedure
dsolve is a function so we can use £solve to find the zeros of that function, as in
the following MAPLE worksheet. Note that the period of successive cycles is found
more accurately and consistently using MAPLE. This is because the procedure
fsolve uses a higher-order method to locate the zeros of the function rather than
the linear interpolation method outlined in the algorithm in Figure 2.27.

> printlevel:=0:

> for i from 1 to 6 do;
tl:=fsolve(xx(t)=0,t, (i-1)..(1-1+0.99)) :
t2:=fsolve (xx(t)=0,t,i..(1i+0.99)):
printf ("%$12.7£,%12.7£,%12.7£,\n",tl,t2,t2-tl) ;
end do;

AN S P CET T TN M heating of an electrical fuse

The electrical fuse is a simple device for protecting an electrical apparatus or circuit
from overload and possible damage after the failure of one or more components in the
apparatus. A fuse is usually a short length of thin wire through which the electrical current
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powering the apparatus flows. If the apparatus fails in such a way as to draw a dangerously
increased current, the fuse wire heats up and eventually melts thus disconnecting the
apparatus from the power source. In order to design fuses which will not fail during
normal use but which will operate reliably and rapidly in abnormal circumstances we
must understand the heating of a thin wire carrying an electrical current.

The equation governing the heat generation and dissipation in a wire carrying an
electrical current can be formulated as

2
kL s omen(r- 1) = 1P £ (2.34)
dx nr

where T is the temperature of the fuse wire, x is the distance along the wire, k is the
thermal conductivity of the material of which the wire is composed, r is the radius of the
wire, h is the convective heat transfer coefficient from the surface of the wire, T, is the
ambient temperature of the fuse’s surroundings, ¢ is an empirical constant with a value
around 1.25, I is the current in the wire and p is the resistivity of the wire. Equation (2.34)
expresses the balance, in the steady state, between heat generation and heat loss. The
first term of the equation represents the transfer of heat along the wire by conduction,
the second term is the loss of heat from the surface of the wire by convection and the
third term is the generation of heat in the wire by the electrical current.

Taking &= (T — T,) and dividing by kmr?, (2.34) can be expressed as

2 2
40 _2heg__pl” (2.35)
dx”  kr k't
Letting the length of the fuse be 2a and scaling the space variable, x, by setting x = 2aX,
(2.35) becomes
&0 8a’h e 4d’pl’
dx*  kr k't

The boundary conditions are that the two ends of the wire, which are in contact with the
electrical terminals in the fuse unit, are kept at some fixed temperature (we will assume
that this temperature is the same as 7,). In addition, the fuse has symmetry about its
midpoint x = a. Hence we may express the complete differential equation problem as

&0 8a’h 4 4d’pl’
dx*  kr km*r

o0y=0, Y91)=0 (2.36)
ax

Equation (2.36) is a nonlinear second-order ODE. There is no straightforward ana-
Iytical technique for tackling it so we must use numerical means. The problem is a
boundary-value problem so we could use the method of shooting or some function
approximation method. Figure 2.30 shows a pseudocode algorithm for this problem and
Figure 2.31 gives the supporting procedures. The procedure desolve assumes initial
conditions of the form 6(0) =0, d6/d X(0) = 6; and solves the differential equation using
the third-order predictor—corrector method (with a single fourth-order Runge—Kutta
step to start the multistep process). The main program uses the method of regula falsa
to iterate from two starting values of € which bracket that value of ] corresponding to
d@dX(1) = 0 which we seek.

Figure 2.32 shows the result of computations using a program based on the algorithm
in Figure 2.30. Taking the values of the physical constants as = 100Wm>K™, a =0.01m,
k=63Wm'K", p=16x10%Q m and r =5 x 10~ m, and taking I as 20 amps and
40 amps, gives the lower and upper curves in Figure 2.32 respectively.
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Figure 2.30
Pseudocode algorithm
for solving (2.36).

rho < 16e-8
kappa < 63
r < Se-4
a<«le-2
hh « le2
i< 20
pconst «— 8xhhs*axa/(kappasr)
qconst «— 4*a*akrho*ixi/(kappa*pi*pi*r#r r#r)
tol « le-5
x_start < 0.0
x_end « 1.0
theta_start < 0.0
write(vdu, ‘Enter stepsize -->")
read(keyb,h)
write(vdu, ‘Enter lower limit -->")
read(keyb,theta_dash_low)
write(vdu, ‘Enter upper limit -->")
read(keyb,theta_dash_high)
desolve(x_start,x_end,h,theta_start,theta_dash_low — th,ql)
desolve(x_start,x_end,h,theta_start,theta_dash_high — th,gh)
repeat
theta_dash_new < (qhxtheta_dash_low — qlitheta_dash_high)/(qh — ql)
desolve (x_start,x_end,h,theta_start,theta_dash_new — th,qn)
if ql*qn>0 then
ql < qgn
theta_dash_low <« theta_dash_new
else
gh < qn
theta_dash_high <« theta_dash_new
endif
until abs(qn) < tol
write(vdu,th,qn)

procedure desolve(x_0,x_end,h,v1_0,v2_0 — v1_f,v2_f)
X« x_0
vl_o«vl_0
v2_ 0 v2_0
rk4(x,vl_o,v2_o,h — v1,v2)
X < x+h
repeat
pe3(x,vl_o,v2_o,vl,v2,h, = vl_n,v2_n)
vl_o ¢« vl
v2_ 0« V2
vl < vl_n
v2 < v2_n
X < x+h
until abs(x — x_end) < tol
vl_f« vl
v2 f«v2
endprocedure

Evidently at 20 amps the operating temperature of the middle part of the wire is
about 77° above the ambient temperature. If the current increases to 40 amps the
temperature increases to about 245° above ambient — just above the melting point
of tin! The procedure could obviously be used to design and validate appropriate
dimensions (length and diameter) for fuses made from a variety of metals for a

variety of applications and rated currents.
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Figure 2.31
Subsidiary procedures
for pseudocode
algorithm for solving
(2.36).

Figure 2.32
Comparison of
temperatures in a fuse
wire carrying 20 amps
and 40 amps.

Temperature

procedure rk4 (x,v1,v2,h — vIn,v2n)
cll « h#f1(x,v1,v2)
c21 « h#f2(x,v1,v2)
cl12 « h#fl(x + h/2,v1 + c11/2,v2 + c21/2)
c22 < h#f2(x + h/2,v1 + c11/2,v2 + c21/2)
cl3 < h#fl(x + h/2,v1 + c12/2,v2 + c22/2)
c23 « h#f2(x + h/2,v1 + c12/2,v2 + c22/2)
cl4 < h#f1(x + h,v1l + c13,v2 + c23)
c24 < h#f2(x + h,v1 + c13,v2 + ¢23)
vin < vl + (cl1 + 2%(c12 + c13) + c14)/6
v2n ¢ v2 + (21 + 2#(c22 + ¢23) + c24)/6
endprocedure

procedure pc3(x, vl_o,v2_o,v1,v2,h — vl_n,v2_n)
vl_p < vl +h#(3#f1(x,v1,v2) — fl1(x — h,vl_o,v2_0))/2
v2_p < v2 + h#(3%f2(x,v1,v2) — f2(x — h,vl_o,v2_0))/2
vl_n < vl + h#(5#f1(x + h,vl_p,v2_p)
+ 8xf1(x,v1,v2) — f1(x —h,vl_o,v2_0))/12
v2_n < v2 + h#(5#f2(x + h,vl_p, v2_p)
+ 8#f2(x,v1,v2) — f2(x — h,vl_o,v2_0))/12
endprocedure

procedure f1(x, theta,theta_dash — f1)
f1 < theta_dash;
endprocedure

procedure f2(x,theta,theta_dash — 2)
if theta < tol then
f2 < —qconst
else
f2 < pconstxexp(In (theta)*1.25) — qconst
endif
endprocedure
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The differential equation problem to be solved in this application is a boundary-value
problem rather than an initial-value problem. MAPLE’s dsolve procedure can readily
handle this type of problem. The following MAPLE worksheet reproduces the
temperature profiles shown in Figure 2.32.
> degsys:=diff (theta(x),x,x)-8*a"2*h/
(k*r) *theta (x) "alpha=-4*a”2*ro*i*2/ (k*Pi"2*r"4) ;
> inits:=theta(0)=0,D(theta) (1)=0;
> alpha:=1.25;h:=100;a:=0.01;k:=63;ro:=16e-8;r:=5e-4;
i:=20;
> soll:=dsolve ({degsys, inits},
numeric,output=1listprocedure, maxmesh=512) ;
> 1:=40;
> sol2:=dsolve ({degsys, inits},
numeric,output=1listprocedure, maxmesh=512) ;
> op(2,s011([2]) (1) ;op(2,s012[2]) (1) ;
> plot([op(2,8011[2]),0p(2,8012[2])],0..1);

To find a numerical solution of a second-order differential equation using MATLAB, the
user must first carry out the transformation to a set of two first-order equations; MATLAB,
unlike MAPLE, cannot complete this stage internally. Then the following MATLAB M-file
solves the differential equation and reproduce the temperature profiles shown in
Figure 2.32.

function engineering app2
a=0.01;h=100;k=63;r=5e-4;alpha=1.25;ro=16e-8;1=20;
solinit = bvpinit (linspace(0,1,10), [40 0.5]);
soll = bvp4c (@odefun,@bcfun,solinit) ;

i=40;

sol2 = bvp4c(@odefun,@bcfun,solinit) ;

x = linspace(0,1) ;

yl = deval (soll,x) ;

y2 = deval (sol2,x) ;

plot(x,y1(1,:),x,y2(1,:));
y1(1,100)

v2(1,100)

function dydx = odefun(x,y)

dydx = [ y(2)
8*a”2*h/ (k*r) *y (1) “alpha-4*a*2*ro*i”2/ (k*pi*2*r*4)];
end
function res = bcfun(ya,yb)
res = [ ya(l)
yb(2)1;
end
end
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2.7 Review exercises (1-12)

1

2

3

4

5

Find the value of X(0.5) for the initial-value
problem

dx
- =X, 0)=1
5 =% X0
using Euler’s method with step size &= 0.1.

Find the value of X(1.2) for the initial-value
problem

%i; =—e", xl)=1

using Euler’s method with step size & = 0.05.

Solve the differential equation

dx_ | xt
dr Nx'+1

s, x(0)=1

to find the value of X(0.4) using the Euler method
with steps of size 0.1 and 0.05. By comparing the
two estimates of x(0.4) estimate the accuracy of the
better of the two values which you have obtained
and also the step size you would need to use in order
to calculate an estimate of x(0.4) accurate to 2
decimal places.

Solve the differential equation

dx _ . _
Fri sin (%), x(0)=2

to find the value of X(0.25) using the Euler method
with steps of size 0.05 and 0.025. By comparing
the two estimates of x(0.25) estimate the accuracy
of the better of the two values which you have
obtained and also the step size you would need to
use in order to calculate an estimate of x(0.25)
accurate to 3 decimal places.

Let X, X, and X; denote the estimates of the

@ function x(z) satistying the differential equation

%‘ =Jxt+1), x(1)=2

which are calculated using the second-order
predictor—corrector method with steps of 0.1, 0.05
and 0.025 respectively. Compute X,(1.2), X,(1.2)
and X;(1.2). Show that the ratio of | X, — X,| and

|X; — X,| should tend to 4 : 1 as the step size
tends to zero. Do your computations bear out
this expectation?

Compute the solution of the differential equation

dx —xt

PPl x(0)=5

for x = 0 to 2 using the fourth-order Runge—Kutta
method with step sizes of 0.2, 0.1 and 0.05.
Estimate the accuracy of the most accurate of
your three solutions.

In a thick cylinder subjected to internal pressure
the radial pressure p(7) at distance r from the axis
of the cylinder is given by
dp
+r—=2a-
prr dr a—p

where a is a constant (which depends on the
geometry of the cylinder).

If the stress has magnitude p, at the inner wall,
r = r,, and may be neglected at the outer wall,
r =r,, show that

If r,=1,r, =2 and p, = 1, compare the value
of p(1.5) obtained from this analytic solution
with the numerical value obtained using the
fourth-order Runge—Kutta method with step size
h =0.5. (Note: With these values of 7y, r; and p,,
a=-1/3.)

Find the values of X(#) for 7 up to 2 where X()
is the solution of the differential equation

problem
2

2
d’x d’x dx .
— +|— | t4 —| —fx=sin,
dr dr dt
dx X
x(1)=02, —(1)=1, —(1)=0
dt

using the Euler method with steps of 0.025.
Repeat the computation with a step size of
0.0125. Hence estimate the accuracy of

the value of X(2) given by your solution.
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10

Find the solution of the differential equation problem

2
d—’;+(x2— 1)‘H+40x=0,
dr dr

- dx gy =
%(0) =002, =(0)=0

using the second-order predictor—corrector
method. Hence find an estimate of the value 12
of x(4) accurate to 4 decimal places. .

Find the solution of the differential equation problem
3

1
2
+ 4[—(-1-)6—] —tx =sint,
dr

d*x
“Z(y=2
dr

3
1'x
13

dr

&

dr

dx
H=-1, —=(1)=1,
x(1) dt()

using the fourth-order Runge—Kutta method.
Hence find an estimate of the value of x(2.5)
accurate to 4 decimal places.

(Extended, open-ended problem.) The second-
order, nonlinear, ODEs

d’x 2 dx 2
— +ux-1)—+Ax=0
dr # dt

governs the oscillations of the Van der Pol
oscillator. By scaling the time variable the
equation can be reduced to

d’x +ux - 1)Qi‘+ (2n)’x =0
dr dt

Investigate the properties of the Van der

Pol oscillator. In particular show that the
oscillator shows limit cycle behaviour (that

is, the oscillations tend to a form which is
independent of the initial conditions and depends
only on the parameter ). Determine the
dependence of the limit cycle period on g

(Extended, open-ended problem.) The equation
of simple harmonic motion

2

d—i; +x=0

dr
is generally used to model the undamped
oscillations of a mass supported on the end of
a linear spring (that is, a spring whose tension is
strictly proportional to its extension). Most real
springs are actually nonlinear because as their
extension or compression increases their
stiffness changes. This can be modelled by
the equation

2
i—f + 411 + Bx*)x =0
t

For a ‘hard’ spring stiffness increases with
displacement (> 0) and a soft spring’s stiffness
decreases (S < 0). Investigate the oscillations

of a mass supported by a hard or soft spring. In
particular determine the connection between

the frequency of the oscillations and their
amplitude.
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176 VECTOR CALCULUS

Figure 3.1
Elementary
vector algebra.

3.1

Introduction

In many applications we use functions of the space variable r = xi + yj + zk as models for
quantities that vary from point to point in three-dimensional space. There are two types of
such functions. There are scalar point functions, which model scalar quantities like the
temperature at a point in a body, and vector point functions, which model vector quantities
like the velocity of the flow at a point in a liquid. We can express this more formally in the
following way. For each scalar point function f we have a rule, u = f{r), which assigns to
each point with coordinate r in the domain of the function a unique real number u. For
vector point functions the rule v = F(r) assigns to each r a unique vector v in the range of
the function. Vector calculus was designed to measure the variation of such functions with
respect to the space variable r. That development made use of the ideas about vectors
(components, addition, subtraction, scalar and vector products) described in Chapter 4
of Modern Engineering Mathematics (MEM) and summarized here in Figure 3.1.

b B -b _
<t p >
‘ a+b a-b a
addition subtraction

components

b
(%]

a

a-b=|a||b| cos 6
scalar product

c=axb
|| = |a]|b] sin 6
vector product

In component form if @ = (a,, a,, a;) and b = (b,, b,, b;) then
arb=(a £b,a,xby, a;%by)

ab =(ab,+ab,+ab;)=b-a

i j k
axb=|a, a, a;=-bxXa
by by, b

= (ab; — byas, bias — a,by, ab, — bia,).



3.1 INTRODUCTION 177

3.1.1

Figure 3.2

Level surfaces

of f(r)=2,2,-1)-r=
2x+2y—z.

The recent development of computer packages for the modelling of engineering
problems involving vector quantities has relieved designers of much tedious analysis
and computation. To be able to use those packages effectively, however, designers need
a good understanding of the mathematical tools they bring to their tasks. It is on that
basic understanding that this chapter focuses.

Basic concepts

ZA

We can picture a scalar point function f{r) by means of its level surfaces f(r) = constant.
For example, the level surfaces of f(r) = 2x + 2y — z are planes parallel to the plane
z = 2x + 2y, as shown in Figure 3.2. On the level surface the function value does not
change, so the rate of change of the function will be zero along any line drawn on the
level surface. An alternative name for a scalar point function is scalar field. This is in
contrast to the vector point function (or vector field). We picture a vector field by its
field (or flow) lines. A field line is a curve in space represented by the position vector
r(t) such that at each point of the curve its tangent is parallel to the vector field. Thus
the field lines of F(r) are given by the differential equation

dr =F(r), wherer(t)=r,

dt
and r, is the point on the line corresponding to ¢ = f,. This vector equation represents
the three simultaneous ordinary differential equations

dx
_:P k) 9’ 9’
T (x, ¥, 2)

dy _
dt - Q(-xs y’ Z),

dz
_:R 9’ 9’
T (x, ¥, 2)

where F = (P, O, R).

Modern computer algebra packages make it easier to draw both the level surfaces of
scalar functions and the field lines of vector functions, but to underline the basic ideas
we shall consider two simple examples.
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Example 3.1  Sketch
(a) the level surfaces of the scalar point function f(r) = ze™;

(b) the field lines of the vector point function F(r) = (—y, x, 1).

Solution (a) Consider the level surface given by f(r) = ¢, where c is a number. Then ze™ = ¢
and so z = ce”. For ¢, x and y all positive we can easily sketch part of the surface
as shown in Figure 3.3(a), from which we can deduce the appearance of the whole
family of level surfaces.

Figure 3.3 (a) Level z
surfaces of f(r) =ze™;
and (b) field lines of
Firy=(-y,x, 1) of
Example 3.1.

ey

MBS

(a) (b)

(b) For the function F(r) = (-, x, 1) the field lines are given by

dr
= = (- 1
O (=»x, 1)

that is, by the simultaneous differential equations

dx dy dz
_—= el —_— = 1

a- 7 Tt @

The general solution of these simultaneous equations is
x(t)=Acost+ Bsint, y(t)=-Bcost+Asint, z(t)=t+C

where A, B and C are arbitrary constants. Considering, in particular, the field line
that passes through (1, 0, 0), we determine the parametric equation

(x(2), y(2), z(t)) = (cost, sint, t)

This represents a circular helix as shown in Figure 3.3(b), from which we can
deduce the appearance of the whole family of flow lines.
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In MATLAB a level surface may be drawn using the ezsurf function. Using the
Symbolic Math Toolbox the commands
syms X y z C
for ¢ = [1, 2, 3]
fsurf (a(x,y)c*exp (-x*y), [0,2,0,2]);
hold on
xlabel ('x")
ylabel ('y )
title(’c exp(-xy) ')
end

will produce three of the level surfaces of z = e™ on the same set of axes. The
surfaces may also be produced in MAPLE using the ezsurf function. The field
lines may be plotted in MATLAB using the st reamline function.

To investigate the properties of scalar and vector fields further we need to use the
calculus of several variables. Here we shall describe the basic ideas and definitions
needed for vector calculus. A fuller treatment is given in Chapter 9 of MEM.

Given a function f(x) of a single variable x, we measure its rate of change (or
gradient) by its derivative with respect to x. This is

df _ er oy = qim JEHAX) — f(X)
dx == Ale—r>10 Ax

However, a function f(x, y, z) of three independent variables x, y and z does not have a

unique rate of change. The value of the latter depends on the direction in which it is

measured. The rate of change of the function f(x, y, z) in the x direction is given by its
partial derivative with respect to x, namely

I _ im fEG+AY, . 2) — fx, y, 2)
g—)_x Ax—0 Ax

This measures the rate of change of f(x, y, z) with respect to x when y and z are held
constant. We can calculate such partial derivatives by differentiating f(x, y, z) with
respect to x, treating y and z as constants. Similarly,

ﬁ‘_ lim f(x’ y+Ay’ Z)ff(-xv ) Z)

dy Ady-e Ay

and

I _ i Ly, 2+ AZ) —f(x, ¥, 2)
&Z Az — oo AZ

define the partial derivatives of f(x, y, z) with respect to y and z respectively.
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For conciseness we sometimes use a suffix notation to denote partial derivatives, for
example writing f, for df/dx. The rules for partial differentiation are essentially the
same as for ordinary differentiation, but it must always be remembered which variables
are being held constant.

Higher-order partial derivatives may be defined in a similar manner, with, for

example,
7o),
x> x|\ dx o

i _o(a)_,
dyox  Iy(gx | "

of__ 99 _
dzdydx  dz| dydx | T

Example 3.2  Find the first partial derivatives of the functions f(x, y, z) with formula (a) x + 2y + z°,
(b) x*(y + 22) and (c) (x + Y)/(2° + x).

Solution (a) f(x,y,2) =x + 2y + z°>. To obtain f,, we differentiate f(x, y, z) with respect to x,
keeping y and z constant. Thus f, = 1, since the derivative of a constant (2y + z*)
with respect to x is zero. Similarly, f, =2 and f, = 3z°.

(b)  f(x, y, 2) = x*(y + 2z). Here we use the same idea: when we differentiate with
respect to one variable, we treat the other two as constants. Thus

gx X(y+22)]=(y+ 2z)0%(x2) =2x(y + 22)
2 [x3(y + 22)] =x2i (y+22)=x*(1)=x>
dy dy

J J
S+ 2] =25 (3 +29) = 6'(2) = 207

(©)  f(x, ¥ 2)= (x+ )/’ + x). Here we use the same idea, together with basic rules
from ordinary differentiation:

2f (N +x) — (x+y)(1)

(quotient rule)

Jx (Z3 + x)2
= "'Z'"3"'7""y""-
(13 N x)z
a __1_
dy Hx

f _ =322 (x +y)

(chain rule)
az (Z'i + X)Z
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Example 3.3

Solution

In Example 3.2 we used the chain (or composite-function) rule of ordinary
differentiation

df _ dfdu
dx dudx

to obtain the partial derivative df/dz. The multivariable calculus form of the chain rule
is a little more complicated. If the variables u, v and w are defined in terms of x, y and
z then the partial derivative of f(u, v, w) with respect to x is

OF _ofdu ordv, f dw
dx Judx JIvdx JIwdx

with similar expressions for df/dy and df/dz.

Find JI'7Jr and JI1J6 when
Tx, y)=x—xy +y*
and

x=rcosf and y=rsiné

By the chain rule,
T _aTdx ITdy
dr Jdxdr dyodr
In this example

g—z=3x2—y and %z—x+3y

2

and

&—x:cosﬁ and &—y:sinﬁ

ar ar
so that

g—z = (3x* — y)cos @+ (—x + 3y?)sin @

Substituting for x and y in terms of r and 8 gives

%Yi =3r*(cos’@+ sin*@) — 2rcos @sin 6
Similarly,

aT ) i 5

e Bx”—y)(=rsinf) + (—x + 3y“)rcos 8

= 3r3(sin @— cos B)cos @sin @+ r*(sin*@ — cos> )
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Example 3.4

Solution

Example 3.5

Solution

Figure 3.4 Spherical
polar coordinates of
Example 3.5.

Find d H/dt when
H(t)=sin(3x — y)
and

x=2"-3 and y=3r’-5t+1

We note that x and y are functions of ¢ only, so that the chain rule becomes
dH _3Hdx  JH dy
dr  Jdx dr Jdy dr

Note the mixture of partial and ordinary derivatives. H is a function of the one variable
t, but its dependence is expressed through the two variables x and y.
Substituting for the derivatives involved, we have

dﬁl_ti = 3[cos(3x — y)]4t — [cosBx — Y)](r — 5)
=11z + 5)cos (3x — )

= (11t + S)cos(5 t* + 5¢— 10)

A scalar point function f(r) can be expressed in terms of rectangular cartesian

coordinates (x, y, z) or in terms of spherical polar coordinates (r, 6, ¢), where
x=rsinfcos@, y=rsinfsing, z=rcosf

as shown in Figure 3.4. Find df/Jdx in terms of the partial derivatives of the function
with respect to r, @and ¢.

Using the chain rule, we have

af _ oﬁW_r+o7f86 dfd¢
dx  drdx 90dx Jgdx
From Figure 3.4, r* = x> + y> + z°, tan ¢ = y/x and tan 8= (x> + y?)"?/z, so that
ar _x _ .
il =siné cos ¢
Jd¢ 0 -1y y sin ¢
~=—|tan = )=-— -
dx ax( x) X +y rsin 6
a_g_i{ e +y2)1/2} xz
dx  0x z 4y ) D"
__cos ¢gcos 8
- r
Thus
o7f _ in 6 cos ¢&f sin @ Jf cos gcos 8If

r sin 6’07(1?+ r 26
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Example 3.6 The Laplace equation in two dimensions is

3_M+ﬂ = O
ax’ Ay’

where x and y are rectangular cartesian coordinates. Show that expressed in polar
coordinates (r, 8), where x = r cos # and y = r sin 6, the Laplace equation may be

written
1Jd( ou 1u _
ré’r( 5;) +;73_92 =0

Solution  Using the chain rule, we have

Ju _dudx  Judy
é’r_é’xé’r dyadr

_du g, du
axcos ¢9+3ys1n0
and
2 2
07 4 3 “e 6+a—u51n 0+23 sin @ cos @
ar &x 07y dxdy
Similarly
éﬂ = ——( 7 sin 6)+——(rcos 0)
20 dx
and
0—)2’1 0—) 32 32 2 .
— = 6 +<% 0) -2 o 7]
Py 0_)x( rsin 6)° 3}} > (r cos )’ I ayr sin @ cos
du du, .
— 5” cos 6) 707—y(r sin 6)
so that
2 2
125’ u_Ju 26’+0—)—ucos - 2& “ sin Ocos @
06’ o"x '’ dxdy
du du
— —(50 os 0+ a—ysm 9)
Hence
10°u | 10u ﬁ U A’u u .
200 2+r8r 8x 0+07y cos” 6 2& &ysmﬁcose
and
1%, 19u 9% _ 9w, 9'u
06 TIr 9 9 3)}2
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Since

of a0 _ Pu o
&r(ro'?r) B r&rz +Z

we obtain the polar form of the Laplace equation in two dimensions

1%u _

rolrg) + 5ok

3.1.2 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

Sketch the contours (in two dimensions) of the
scalar functions

(@ flx,y)=Inx*+y>—1)

(b) flx,y)=tan [ y/(1 +x)]

Sketch the flow lines (in two dimensions) of the
vector functions

(@) F(x,y)=yi+ (6x*— 4x)j

(b) Flx,y)=yi+ (3’ —x)j

where i and j are unit vectors in the direction of
the x and y axes respectively.

Sketch the level surfaces of the functions

(@ fn=z-xy (b) f=z-¢"

Sketch the field lines of the functions
(@ Fr)=@yy +1,2)
(b) F@r)=(yz, zx, xy)

Find all the first and second partial derivatives of the
functions
@ fO)=xyz-x*+y-z  (b) fr)=x’yz’

(¢) f(r)=ztan™(y/x)

Find df/d¢, where

@ firy=x*+y"—z,andx=¢£-1,y=2t,
z=U@t-1)

10

(b) f(r)=xyz,and x=¢e"'sint,y=ecost,z="1

Find df/dy and df/dz in terms of the partial
derivatives of f with respect to spherical polar
coordinates (r, 6, ¢) (see Example 3.5).

Show that if u(r) = f(r), where r* = x> + y* + 7% as
usual, and

v = =0
ax* dy 97
then
2
oL 20,
dr” rdr

Hence find the general form for f(7).

Show that
1 X+ y2
V(x, ¥, 2) = —exp| ==
(., 2) = 7 XP[ .
satisfies the differential equation
2’V 3V 9V
_2 + _2 —_ —_—
ox- Jdy Jz
Verify that V(x, y, z) = sin3x cos4y cosh5z satisfies
the differential equation

2. 2. 2
PV PV IV _

0
ox> dyt 97




3.1 INTRODUCTION 185

3.1.3 Transformations

Example 3.3 may be viewed as an example of transformation of coordinates. For exam-
ple, consider the transformation or mapping from the (x, y) plane to the (s, f) plane
defined by

s =s(x, y), t=1tx,y) 3.1)

Then a function u = f(x, y) of x and y becomes a function u = F(s, ) of s and ¢ under the
transformation, and the partial derivatives are related by

ou_ouds dudt
dx  Jdsdox  0drdx

3.2)
du _Juds  Jud
dy  dsdy dtdy
In matrix notation this becomes
oul [os orl[ou
dx| _|dx Jdx||ds 3.3)

dul |25 It ||u

dy| |dy Jdy||dt
The determinant of the matrix of the transformation is called the Jacobian of the
transformation defined by (3.1) and is abbreviated to

d(s, 1)

———  orsimplyto J

a(x, y)
so that

ds dt| |ds ds
_d(s, 1) _ dx Jdx _ dx dy 1
T d(x,y) |ds dt| |dt It (3.4)

dy dy| |9x Iy

The matrix itself is referred to as the Jacobian matrix and is generally expressed in

2s 95
ax Jdy

the form at atl The Jacobian plays an important role in various applications of
ox Jy

mathematics in engineering, particularly in implementing changes in variables in multiple
integrals, as considered later in this chapter.

As indicated earlier, (3.1) define a transformation of the (x, y) plane to the (s, 7) plane
and give the coordinates of a point in the (s, f) plane corresponding to a point in the
(x, y) plane. If we solve (3.1) for x and y, we obtain

x=X(s, 1), y=1Y(s, 1) @A3.5)
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Example 3.7

Solution

which represent a transformation of the (s, #) plane into the (x, y) plane. This is called
the inverse transformation of the transformation defined by (3.1), and, analogously to
(3.2), we can relate the partial derivatives by

Ou_dudx Judy
ds  dxds Jyds
u_ dudx  dudy
dt  dxdt Jdyodt

3.6)

The Jacobian of the inverse transformation (3.5) is

'xS yS

Xeo Y

_d(x,y) _
Ji= d(s, 1)

where the suffix notation has been used to denote the partial derivatives. Provided
J # 0, it is always true that J, =J ' or

I, ) I, 1) _
(s, 1) Ix, y)

If J = 0 then the variables s and  defined by (3.1) are functionally dependent; that is, a
relationship of the form f(s, f) = 0 exists. This implies a non-unique correspondence
between points in the (x, y) and (s, ) planes.

(a)  Obtain the Jacobian J of the transformation
s=2x+Yy, t=x—12y

(b) Determine the inverse transformation of the above transformation and obtain its
Jacobian J,. Confirm that J, = J .

(a)  Using (3.4), the Jacobian of the transformation is

d(s, 1) ‘2 1‘
J = ——= = = -5
d(x,y) |1 =2

(b)  Solving the pair of equations in the transformation for x and y gives the inverse
transformation as

x=1Qs+n, y=1i(s-20

The Jacobian of this inverse transformation is

_d(x,y)
Ji= d(s, t

wil—

[T VATN)

QI U=

confirming that J, = J ™",
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Example 3.8 Show that the variables x and y given by

y=St! _st! 3.7

>

N Y t

are functionally dependent, and obtain the relationship f(x, y) = 0.

Solution The Jacobian of the transformation (3.7) is

_t 1
A, y) % || s |11
J = ——= = = =——==0
d(s, 1) X,y 1 s st st
N t2

Since J = 0, the variables x and y are functionally related.
Rearranging (3.7), we have

x=1+£, y=§+1
S t
so that
ts
-1 -1)=--=1
(x-D(y-1=7:2

giving the functional relationship as

xy—(x+y)=0

The definition of a Jacobian is not restricted to functions of two variables, and it is
readily extendable to functions of many variables. For example, for functions of three
variables, if

u= U(-x7 ya Z)’ V= V(-x’ y7 Z)7 w= W(-x7 y9 Z) (3‘8)

represents a transformation in three dimensions from the variables x, y, z to the variables
u, v, w then the corresponding Jacobian is

o ) u, v, w, u, u, u
U, v, w

s =|n, v, wl=|v. v v

&(x’ y’ Z) y y y X y 4

u, v, w w, w, w

5

Again, if J =0, it follows that there exists a functional relationship f(u, v, w) = 0 between
the variables u, v and w defined by (3.8).
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11

12

13

14

3.1.4 Exercises
Show that if x + y = u and y = uv, then

d(x,y) _
Au, v) “

Show that, if x + y +z=u, y + z=uv and z = uvw,
then

d(x, ¥, 2) _ 2
Au, v, w) wv

If x =e"cosv and y = " sinv, obtain the two
Jacobians

d(u, v)

el e

a(u, v)
and verify that they are mutual inverses.
Find the values of the constant parameter A for
which the functions

u=cosxcosy— Asinxsiny

v =sinxcosy+ Acosxsiny

are functionally dependent.

15

16

Find the value of the constant K for which
u=Kx*+4y*+ 72
v=3x+2y+z
w=2yz+ 3zx + 6xy

are functionally related, and obtain the
corresponding relation.

Show that, if u = g(x, y) and v = h(x, y), then

x_gv |  dx_ du
du_ dy / v dy /J
dy_ v dy _du
okl A
where in each case
_du, v)
a(x,y)

Use the results of Exercise 16 to obtain the partial
derivatives

x 9x dy A

du’ v Jdu’ Jdv
where

u=e'cosy and v=esiny

3.1.5 The total differential

Consider a function u = f(x, y) of two variables x and y. Let Ax and Ay be increments
in the values of x and y. Then the corresponding increment in u is given by

Au=flx+Ax,y+Ay) - f(x,y)

We rewrite this as two terms: one showing the change in u due to the change in x, and
the other showing the change in u due to the change in y. Thus

Au=[flx+Ax, y + Ay) = f(x, y + Ap)] + [f(x, y + Ay) = f(x, y)]
Dividing the first bracketed term by Ax and the second by Ay gives

Au = f(x+Ax, y+Ay)—f()C, y+Ax)Ax+f(x’ y+Ay)_f(x’ y)Ay

Ax

Ay

From the definition of the partial derivative, we may approximate this expression by

7 N/
Au ~&xAx +0.)yAy
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We define the differential du by the equation

a9
du —&xAx +0.)yAy 3.9

By setting f(x, y) = fi(x, y) = x and f(x, y) = fo(x, ¥) = y in turn in (3.9), we see that

dx = %Ax +%Ay =Ax and dy=Ay
dx d

y

so that for the independent variables increments and differentials are equal. For the
dependent variable we have

7 P i
du = Srdx+ Shdy (3.10)

We see that the differential du is an approximation to the change Au in u = f(x, y)
resulting from small changes Ax and Ay in the independent variables x and y; that is,

AT T N/ §
u=du e dx Jy dy 5.0x Iy y 3.11)
a result illustrated in Figure 3.5.
Figure 3.5 (x+Ax,y+ Ay, u+ Au)

Illustration of result

G.11). A

N
vy S
Au (;Ax

Ax

I

This extends to functions of as many variables as we please, provided that the partial
derivatives exist. For example, for a function of three variables (x, y, z) defined by
u = f(x, y, z) we have

of  If . Of

Auzduzzcdx+@dy+07—zdz

D
= &xA)H_ &yAy + azAz

The differential of a function of several variables is often called a total differential,
emphasizing that it shows the variation of the function with respect to small changes in
all the independent variables.
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Example 3.9  Find the total differential of u(x, y) = x”.

Solution Taking partial derivatives we have
&M — y—1

- X and (9—u =x"Inx
ox 7 dy

Hence, using (3.10),
du =y dx + x*Inxdy

Differentials sometimes arise naturally when modelling practical problems. When this
occurs, it is often possible to analyse the problem further by testing to see if the expression
in which the differentials occur is a total differential. Consider the equation

P(x, y)dx+ Q(x, y)dy=0

connecting x, y and their differentials. The left-hand side of this equation is said to be
an exact differential if there is a function f(x, y) such that

df=P(x, y)dx + O(x, y)dy
Now we know that

df=3—'§dx +§—'§dy

so if f(x, y) exists then

Py =2 and oy=Z

dx dy
For functions with continuous second derivatives we have
f _If
dxdy Jdydx

Thus if f(x, y) exists then

JP _J0

or _ oY A2

dy OJx 3.12)
This gives us a test for the existence of f(x, y), but does not tell us how to find
it! The technique for finding f(x, y) is shown in Example 3.10.

Example 3.10  Show that
(6x+9y+ 11)dx + (9x —4y + 3)dy
is an exact differential and find the relationship between y and x given

dy _ 6x+9y+11

dx 9x—4y+3

and the condition y = 1 when x = 0.
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Solution

In this example
Px,y)=6x+9y+11 and Q,y)=9%x—-4y+3
First we test whether the expression is an exact differential. In this example

oP 20

_—= d —_—= =

2y 9 an x 9
so from (3.12), we have an exact differential. Thus we know that there is a function
f(x, y) such that

&—f=6x+9y+ll and &—f=9x—4y+3 (3.13a, b)
dx dy
Integrating (3.13a) with respect to x, keeping y constant (that is, reversing the partial
differentiation process), we have

FO, y)=3x+9xy + L1x + g(y) (3.14)

Note that the ‘constant’ of integration is a function of y. You can check that this expression
for f(x, y) is correct by differentiating it partially with respect to x. But we also know
from (3.13b) the partial derivative of f(x, y) with respect to y, and this enables us to find
g'(y). Differentiating (3.14) partially with respect to y and equating it to (3.13b), we have

0—)—f=9x+3—§=9x74y+3

dy
(Note that since g is a function of y only we use dg/dy rather than dg/d.) Thus
dg
—==—4y+
dy y+3

so0, on integrating,
g(y»)=-2y"+3y+C
Substituting back into (3.13b) gives
fe,y)=3x"+9%y+ 1lx —2y*+3y+ C
Now we are given that

dy  6x+9y+11
dx  9x—-4y+3

which implies that
Gx+9y+11)dx+(Ox—4y+3)dy=0
which in turn implies that
3x2+9xy+ 11x —2y*+3y+C=0

The arbitrary constant C is fixed by applying the given condition y = 1 when x = 0,
giving C = —1. Thus x and y satisfy the equation

3x2+9xy + 11x—2y*+3y=1
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3.1.6 Exercises

18  Determine which of the following are exact is the exact differential of a function f(x, y). Find the
differentials of a function, and find, where corresponding function f(x, y) that also satisfies the
appropriate, the corresponding function. condition (0, 1) = 0.

@ (y*+2xy+ Ddx+ (2xy +x?)dy 20  Show that the differential
(b) (2xy? + 3ycos3x)dx + (2x%y + sin 3x) dy g(x, y) = (10x* + 6xy + 6y*)dx

+ (9% + 4xy + 15y%) dy

(©) (6xy—y)dx+ (2xe’ —x)dy

is not exact, but that a constant m can be chosen so

(d) (z°=3y)dx+ (12y> = 3x)dy + 3xz%dz that

(2x + 3y)"g(x, y)

19  Find the value of the constant A such that

is equal to dz, the exact differential of a function

(ycosx+ Acosy)dx + (xsiny + sinx + y) dy z=f(x, y). Find f(x, y).

Derivatives of a scalar point function

3.2.1

In many practical problems it is necessary to measure the rate of change of a scalar
point function. For example, in heat transfer problems we need to know the rate of
change of temperature from point to point, because that determines the rate at which
heat flows. Similarly, if we are investigating the electric field due to static charges, we
need to know the variation of the electric potential from point to point. To determine
such information, the ideas of calculus were extended to vector quantities. The first
development of this was the concept of the gradient of a scalar point function.

The gradient of a scalar point function

We described in Section 3.1.1 how the gradient of a scalar field depended on the
direction along which its rate of change was measured. We now explore this idea
further. Consider the rate of change of the function f{(r) at the point (x, y, z) in the
direction of the unit vector (I, m, n). To find this, we need to evaluate the limit

i L+ AP) — fr)
r

Ar—0 A
where Ar is in the direction of (I, m, n). In terms of coordinates, this means

r+Ar=r+ Ar(l, m, n)
=(x+Ax,y+ Ay, z+Az)

so that
Ax = [Ar, Ay = mAr, Az =nAr
Thus we have to consider the limit

lim f(x+I1Ar, y+mAr, z+nAr)—f(x,y,2)
Ar—0 Ar
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We can rewrite this as

lim {f(x + [Ar, y+mAr, z+nAr)—f(x, y+mAr, 7+ nAr)} i
Ar—0 IAr

+ lim fx, y+mAr, z+nAr) —f(x, y, 2+ nAr) m
Ar—0 mAr

Ar—0 nAr

+ lim {f(x, v, 2+ AR~ f(x, y, z)}n

Evaluating the limits, remembering that Ax = /Ar and so on, we find that the rate of
change of f(r) in the direction of the unit vector (/, m, n) is

oy I I _ (O I I,
ol Tyt o= (axaya)(l’m’”)

The vector

(if of If )
dx’dy’dz

is called the gradient of the scalar point function f(x, y, z), and is denoted by grad f or
by Vf, where V is the vector operator

.J d Jd
V = 1(9_ +_]0.)— +k(9—

where i, j and k are the usual triad of unit vectors.
The symbol V is called ‘del’ or sometimes ‘nabla’. Then

il f o Vf_afl+§f1 g]; (g: 3;” 3{) (3.15)

Thus we can calculate the rate of change of f(x, y, z) along any direction we please. If
i is the unit vector in that direction then

(gradf)-a

gives the required directional derivative, that is the rate of change of f(x, y, z) in
the direction of #. Remembering that a.b = |a||b|cos 6, where @ is the angle
between the two vectors, it follows that the rate of change of f(x, y, z) is zero along
directions perpendicular to gradf and is maximum along the direction parallel to
grad f. Furthermore, gradfacts along the normal direction to the level surface of f(x, y, 2).
We can see this by considering the level surfaces of the function corresponding to ¢ and
¢ + Ac, as shown in Figure 3.6(a). In going from P on the surface f(r) = c to any point
Q on f{r) = ¢ + Ac, the increase in f is the same whatever point Q is chosen, but the
distance PQ will be smallest, and hence the rate of change of f(x, y, z) greatest, when Q
lies on the normal 7 to the surface at P. Thus gradf at P is in the direction of the out-
ward normal 7 to the surface f(r) = u, and represents in magnitude and direction the
greatest rate of increase of f(x, y, z) with distance (Figure 3.6(b)). It is frequently
written as

grad f = %ﬁ
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Figure 3.6

(a) Adjacent level
surfaces of f(r);
(b) grad f acts
normally to the
surface f(r) = c.

Example 3.11

Solution

Example 3.12

Solution

where df/dn is referred to as the normal derivative to the surface f(r) = c.

vf

(b)

Find gradf for f(r) = 3x* + 2y* + z” at the point (1, 2, 3). Hence calculate

(a) the directional derivative of f(r) at (1, 2, 3) in the direction of the unit vector
1
(2,2, 1);
3

(b) the maximum rate of change of the function at (1, 2, 3) and its direction.

(a) Since df/dx = 6x, df/dy = 4y and df/dz = 2z, we have from (3.15) that
grad f=Vf=6xi + 4yj + 2zk
At the point (1, 2, 3)
grad f= 6i + & + 6k

Thus the directional derivative of f(r) at (1, 2, 3) in the direction of the unit vector
(G.3.3) s

(6i+8j+6k)- (3i+3j+ik)=%
(b) The maximum rate of change of f(r) at (1, 2, 3) occurs along the direction parallel

to grad f at (1, 2, 3); that is, parallel to (6, 8, 6). The unit vector in that direction
is (3, 4, 3)/./34 and the maximum rate of change of f(r) is |grad f| =2 J34.

If a surface in three dimensions is specified by the equation f(x, y, z) = ¢, or equivalently
fir) =c, then grad fis a vector perpendicular to that surface. This enables us to calculate
the normal vector at any point on the surface, and consequently to find the equation of
the tangent plane at that point.

A paraboloid of revolution has equation 2z = x* + y*. Find the unit normal vector to the
surface at the point (1, 3, 5). Hence obtain the equation of the normal and the tangent
plane to the surface at that point.

A vector normal to the surface 2z = x* + y* is given by
grad (x* + y* — 27) = 2xi + 2yj — 2k

At the point (1, 3, 5) the vector has the value 2i + 6§ — 2k. Thus the normal unit vector
at the point (1, 3, 5)is i + 3j — k)h/ﬁ. The equation of the line through (1, 3, 5) in the
direction of this normal is
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Figure 3.7 Tangent
plane at (1, 3, 5) to the
paraboloid 2z = x* + y*
of Example 3.12.

21

22

23

24

25

26

27

x—1_y-3_2z-5
1 3 -1

and the equation of the tangent plane is
ME-=D+B)(y=-3)+(Dz-5=0
which simplifies to x + 3y — z = 5 (see Figure 3.7).

3.2.2 Exercises

Find grad f for f(r) = x*yz* at the point (1, 2, 3).
Hence calculate

(a) the directional derivative of f(r) at (1, 2, 3)
in the direction of the vector (-2, 3, —6);

(b) the maximum rate of change of the function at
(1, 2, 3) and its direction.

Find Vf where f(r) is
(@) x*+y*—z (b) ztan™ (y/x)

© eI +y7)

(d) xyzsin{m(x+y+2z)}

Find the directional derivative of f(r) = x>+ y> — 7
at the point (1, 1, 2) in the direction of the vector
4,4,-2).

Find a unit normal to the surface xy> — 3xz = -5 at
the point (1, -2, 3).

If r is the usual position vector r = xi + yj + zk, with
|r| = r, evaluate

o ()

If Vo= (2xy + z2)i + (x> + 2)j + (y + 2x2)k, find a
possible value for ¢.

(@) Vr

Given the scalar function of position
P(x, . 2) =x’y = 3xyz + 2°

find the value of grad ¢ at the point (3, 1, 2). Also
find the directional derivative of @at this point in the
direction of the vector (3, —2, 6); that is, in the
direction 3i — 2j + 6k.

28

29

30

The concept of the gradient of a scalar field occurs in many applications. The simplest,
perhaps, is when f{(r) represents the potential in an electric field due to static charges. Then
the electric force is in the direction of the greatest decrease of the potential. Its magnitude
is equal to that rate of decrease, so that the force is given by —gradf.

Find the angle between the surfaces x* + y* +z2 =9
and z = x> + y> — 3 at the point (2, -1, 2).

Find the equations of the tangent plane and normal
line to the surfaces

(a) x> +2y>+3z>=6at(l,1,1)
(b) 2x*+y?-z?=-3at(1,2,3)
©) x*+y*—z=1lat(l,2,4).

(Spherical polar coordinates) When a function f(r)
is specified in polar coordinates, it is usual to
express gradfin terms of the partial derivatives of f
with respect to r, fand ¢ and the unit vectors u,, u,
and u, in the directions of increasing r, & and ¢ as
shown in Figure 3.8. Working from first principles,
show that

19f 1 _Jf
* “ +rsin007¢u¢

Vf:gradf:a—f

u
ar "

rdo

Figure 3.8 Unit vectors associated with spherical polar
coordinates of Exercise 30.
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Derivatives of a vector point function

3.3.1

Figure 3.9 Flow out
of a cuboid.

When we come to consider the rate of change of a vector point function F(r), we see
that there are two ways of combining the vector operator V with the vector F. Thus we
have two cases to consider, namely

V-F and VXF

that is, the scalar product and vector product respectively. Both of these ‘derivatives’
have physical meanings, as we shall discover in the following sections. Roughly, if we
picture a vector field as a fluid flow then at every point in the flow we need to measure
the rate at which the field is flowing away from that point and also the amount of spin
possessed by the particles of the fluid at that point. The two ‘derivatives’ given formally
above provide these measures.

Divergence of a vector field

Consider the steady motion of a fluid in a region R such that a particle of fluid
instantaneously at the point r with coordinates (x, y, z) has a velocity v(r) that is
independent of time. To measure the flow away from this point in the fluid, we
surround the point by an ‘elementary’ cuboid of side (2Ax) X (2Ay) X (2Az), as shown in
Figure 3.9, and calculate the average flow out of the cuboid per unit volume.

k-vx,y,z+Az)

i-v(x—Ax,y,z2)

i-v(x+Ax,y,z2)

Jvx,y+Ay,2)
k-vx,y,z—Az)

The flow out of the cuboid is the sum of the flows across each of its six faces.
Representing the velocity of the fluid at (x, y, z) by v, the flow out of the face ABCD is
given approximately by

i-v(x+ Ax,y, 2)(4AyAz)
The flow out of the face A'B’C’D’ is given approximately by
—i-v(x — Ax, y, 2)(4AyAz)

There are similar expressions for the remaining four faces of the cuboid, so that the total
flow out of the latter is
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Example 3.13

Solution

i-[v(x+Ax,y,2) —v(x — Ax, y, 2)1(4AyAz)
+j- v, y+ Ay, 2) —v(x, y — Ay, 2)[(4AxAz)
+k-[v(x,y, z+Az) —v(x, y, z — A2)](4AxAY)

Dividing by the volume 8AxAyAz, and proceeding to the limit as Ax, Ay, Az — 0, we
see that the flow away from the point (x, y, z) per unit time is given by

EIN
Ix o7y az

This may be rewritten as

(ii + A +k£) y
Ix Jc?y dz
or simply as V -v. Thus we see that the flow away from this point is given by the scalar

product of the vector operator V with the velocity vector v. This is called the divergence
of the vector v, and is written as div v. In terms of components,

o _(;d . d
leV—V‘v—(lo.)x+Ja +k ) -(@v, +jv, + kvs)

T dx dy 9z

(3.16)

When v is specified in this way, it is easy to compute its divergence. Note that the
divergence of a vector field is a scalar quantity.

Find the divergence of the vector v = (2x — y?, 3z + x?, 4y — z?) at the point (1, 2, 3).

Here v, = 2x — y%, v, = 3z + x? and v, = 4y — 77 so that

v, v, vy

dx dy Jdz —2z

=2, =0,

Thus from (3.16), at a general point (x, y, z),
divy=V.vy=2-27

so that at the point (1, 2, 3)
Vey=—

A more general way of defining the divergence of a vector field F(r) at the point r is
to enclose the point in an elementary volume AV and find the flow or flux out of AV per
unit volume. Thus

.o .. flowoutof AV
divF =V .F = AIVIEIO—AV



198 VECTOR CALCULUS

31

32

33

34

35

A non-zero divergence at a point in a fluid measures the rate, per unit volume, at
which the fluid is flowing away from or towards that point. That implies that either
the density of the fluid is changing at the point or there is a source or sink of fluid
there. In the case of a non-material vector field, for example temperature gradient in
heat transfer, a non-zero divergence indicates a point of generation or absorption.
When the divergence is everywhere zero, the flow entering any element of the space
is exactly balanced by the outflow. This implies that the lines of flow of the field F(r)
where div F = 0 must either form closed curves or finish at boundaries or extend to
infinity. Vectors satisfying this condition are sometimes termed solenoidal.

Using MuPAD in MATLAB the divergence of a vector field is given by the
divergence function. For example, the divergence of the vector

v=_2x— yz, 3z 4 X%, 4y — )
considered in Example 3.13, is given by the commands

delete x, y, z:
linalg :: divergence([2*x -y"2, 3*z + x"2, 4*y - x"2],
[x, v, zl)
which return the answer

2 - 2z

In MAPLE the answer is returned using the commands
with (VectorCalculus) :
SetCoordinates (’cartesian’ [ x, y, z]);
F:= VectorField(<2*x -y*2, 3*z + x72, 4*y - x"25);
Divergence (F); or Del.F ;

3.3.2 Exercises

Find div v where F=(Q2x%*+ )i+ Bxy* = x%2)j + Axy*z + xy)k
(a) v(r)=3xyi+z +x%k is solenoidal.

b =03 i+ (2 j - 2y)k
©®) Vi) =Gxr+yi+@z+0j+@-2) 36  (Spherical polar coordinates) Using the notation

introduced in Exercise 30, show, working from first

If F = 2xy2 + 220 + 3x%22 = y*23)j + (yz* = x2)k,
(Zxy"+ 29 + (32 = y72)j + (y2" = x7) principles, that

calculate div f at the point (-1, 2, 3).
1

r sin

V.v=divy = lfa-(rzv,w
r or

) .
Find V(a - r), (a- V)r and a(V - r), where a is a 055(‘}9 sin &)

constant vector and, as usual, r is the position vector
r=(x,y,2).

1
* 7 sin 08—(‘}‘”)

1

The vector v is defined by v =rr~", where

where v =v.u, + vou,+ v,u,.
r=(x, z) and r = |r|. Show that U+ Vallg+ Vol

37  Aforce field F, defined by the inverse square law, is

V(V-v)zgraddivv:—%r .
s given by

) F=rlr?
Find the value of the constant A such that the vector

field defined by Show that V- F = 0.
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Figure 3.10 Flow
around a rectangle.

Curl of a vector field

It is clear from observations (for example, by watching the movements of marked corks
on water) that many fluid flows involve rotational motion of the fluid particles. Complete
determination of this motion requires knowledge of the axis of rotation, the rate of rotation
and its sense (clockwise or anticlockwise). The measure of rotation is thus a vector
quantity, which we shall find by calculating its x, y and z components separately. Consider
the vector field v(r). To find the flow around an axis in the x direction at the point r, we
take an elementary rectangle surrounding r perpendicular to the x direction, as shown in
Figure 3.10.

To measure the circulation around the point r about an axis parallel to the x direction,
we calculate the flow around the elementary rectangle ABCD and divide by its area,
giving

[Va(x, y*, 2 = A2)(2AY) + v3(x, y + Ay, 2¥)(2Az)
— (%, ¥, 2+ AZ)(2AY) — vi(x, y — Ay, T)(2AZ)|/(4AyAz)

where y*, ¥ €(y — Ay, y + Ay), z¥, 2€(z — Az, z + Az) and v = vii + v,j + vsk.
Rearranging, we obtain

—[vy(x, ¥, 2+ Az) = vy(x, y¥, 2= A2)/(2A2)
+ s, y + Ay, 2%) = vs(x, y = Ay, 2)1/(2Ay)
Proceeding to the limit as AyAz — 0, we obtain the x component of this vector as

dvy Idv,

dy 0Jz
By similar arguments, we obtain the y and z components as

dv, dvs v, Iv,

dz Ix’ dx dy

respectively.
The vector measuring the rotation about a point in the fluid is called the curl
of v:

curl v = %_a_vz i+ %_% j+ (9_\/’2_(& k
dy dz) \dz dx Idx  dy
- (QVS e &—Vzéﬁ} 3.17)

dy 9z’ dz dx Ix dy
It may be written formally as
J
curl v = | 5= 2 @
T ldx dy dz

Vi Va2 V3

(3.18)

or more compactly as

curly =V x vy



200 VECTOR CALCULUS

Example 3.14

Solution

Figure 3.11
Circulation around
the element AS.

Figure 3.12
Rotation of a
rigid body.

Find the curl of the vector v = (2x — y?, 3z + x% 4y — z°) at the point (1, 2, 3).

Here v, = 2x — y?, v, = 3z + x?, v; = 4y — 2%, so that

i j k
J J J

curl v = -—

Ix dy dz

Zx—y2 32+ X 4y—z2

_.|d 2 _i 2
_l[c?y(4y Z) 07Z(3z+x)_

_,-L%(@Zz) - j—z(zxyz)}

+ ka—x(& +x7) —;—}}(Zx—yz)}

=i(4-3)—j0-0)+kQx+2y)=i+2(x+y)k
Thus, at the point (1, 2, 3), V xv =(1, 0, 6).

More generally, the component of the curl of a vector field F(r) in the direction of
the unit vector 71 at a point L is found by enclosing L by an elementary area AS that is
perpendicular to i, as in Figure 3.11, and calculating the flow around AS per unit area.
Thus

flow round AS

(curl F)-n :}1?0 AS

Another way of visualizing the meaning of the curl of a vector is to consider the
motion of a rigid body. We can describe such motion by specifying the angular velocity
w of the body about an axis OA, where O is a fixed point in the body, together with the
translational (linear) velocity v of O itself. Then at any point P in the body the velocity
u is given by

u=v+wxr
as shown in Figure 3.12. Here v and w are independent of (x, y, z). Thus

curlu = curlv + curl (w X r) =0 + curl (w X r)

@ X r tangential velocity

v translation velocity
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The vector @ X r is given by
WXr= (a)h w29 a)3) X (-xs y’ Z)

= (02 — @i + (Wx — W2)j + (WY — W)k

and
i J k
curl(w xr) = 2 -] 2
dx dy dz
WrZ— W3y O3Xx— D7 @) — WX
=2wi+2w,j+ 20k =2w
Thus
curlu =2w
that is,
o= icurlu

Hence when any rigid body is in motion, the curl of its linear velocity at any point is

twice its angular velocity in magnitude and has the same direction.

Applying this result to the motion of a fluid, we can see by regarding particles of the
fluid as miniature bodies that when the curl of the velocity is zero there is no rotation
of the particle, and the motion is said to be curl-free or irrotational. When the curl is

non-zero, the motion is rotational.

Using MuPAD in MATLAB the command 1inalg :: curl (v, x) computes the
curl of the three-dimensional vector field v with respect to the three-dimensional

vector x in cartesian coordinates. For example, the curl of the vector
v=02x—y,3z+ x5 4y -2
considered in Example 3.14, is given by the commands

delete x, vy, z:

linalg :: curl([2*x -y*2, 3*z + x"2, 4*y - z"2],
[x, v, zl)
1
which return the answer 0
2x+2y

In MAPLE the answer is returned using the commands

with (VectorCalculus) :

SetCoordinates (’cartesian’ [ x, y, zl);

F:= VectorField(<2*x -y*2, 3*z + x72, 4*y - z725);
Curl (F); or Del &x F;
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38

39

40

41

42

3.3.4 Exercises

Find u = curly when v = (3xz?, —yz, x + 22). 43 If v =—yi + xj + xyzk is the velocity vector of a fluid,

A vector field is defined by v = (yz, xz, xy). Show
that curlv = 0.

find the local value of the angular velocity at the
point (1, 3, 2).

44 TIf the velocity of a fluid at the point (x, y, z) is given by

Show that if v = (2x + yz, 2y + zx, 2z + xy) then v = (ax + by)i + (cx + dy)j

curlvy =0, and find f(r) such that v = grad f.

find the conditions on the constants a, b, ¢ and d in
order that

By evaluating each term separately, verify the

identity

V X (fv) =f(V xv) + (VF) x v

for f(r) = x* — y and v(r) = (z, 0, —x).

divv=0, curly =0
Verify that in this case

grad (ax? + 2bxy — ay?)

1
2

45  (Spherical polar coordinates) Using the notation

Find constants a, b and ¢ such that the vector field introduced in Exercise 30, show that

defined by

= (dxy + az®)i + (bx* + 32)j + (6xz> + cy)k

V xv=curl v

u rug rsinu,
is irrotational. With these values of a, b and c, — 1 i i i
determine a scalar function @(x, y, z) such that Fsing|dr 20 ¢
F=V¢. V, Tve rsinv,

3.3.5 Further properties of the vector operator V

So far we have used the vector operator in three ways:

Vf = grad f = —f l + = af af k, f(r) ascalar field
o"y &
oh  of 9
V.-F=divF = o o'?y + == 27 F(r) a vector field
VXF = curl F
8‘/‘3 8‘/‘2 %7% ; 8f2 8f1 F field
[07)/ 07ZJ [072 o J+ o 0_, (r) a vector fie

A further application is in determining the directional derivative of a vector field:

Jd J J
a-VF = [a1£+a2$ +a3ZJF

alg +61207 +a & 1_+ 2§ +a307z

:( af I &fle( af I %j i

+ (al% +a2% +a3g3j
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The ordinary rules of differentiation carry over to this vector differential operator, but
they have to be applied with care, using the rules of vector algebra. For non-orthogonal
coordinate systems a specialist textbook should be consulted. Thus for scalar fields f(r),
g(r) and vector fields u(r), v(r) we have

UVCOEEAT (3.199)
VIfr)gr)] = gr)\VAr) + f(r)Vg(r) (3.19b)
Viur) - ve)l=vx (Vxu)+ux(Vxv)+@-VIu+ @-V)yr (3.19¢)

V- f®uw))=u-VF+fV-u 3.19d)
VX[ f@um]=NVf)xu+fVxu (3.19%¢)
V- -lu@) xve)]=v-(Vxu)—u-(Vxvp) (3.19f)
Vxu@)xve)l=w-Vu—v(V-u)— -V +ulV-v) (3.19g)

Higher-order derivatives can also be formed, giving the following:

div [grad f(r)] = V- Vf = = &f &fz &{ i (3.20)
x> Iy oz
where V? is called the Laplacian operator (sometimes denoted by A);
curl [grad f(r)] =V X Vf(r) =0 3.21)
since
s A PO O S S PO O i
VxVf= S — == - k
v [3)}31 7oy | T\ Gzox sz ) T dwdy dyox
=0
when all second-order derivatives of f(r) are continuous;
div[curl v(r)] = V- (V x»)=0 3.22)
since
I (Fvy v\, 9 (Ivy v\, 9 (s dw) _
dx\dy dz| dy\dz Ix| dzldx dy
Jd .o d \(dv, 07v2 071)3
dd =VVy) =|li=+j=+k— || = .
grad (divv) = V(V-») (18x+ iy k&z][&x Iy &z] (3.23)
2 2 2
Vi = (i i+i)(vlz+vzj+v3k) (3.24)
o’ I

curl [curl ()] =V x (V xv) = V(V -v) — V& (3.25)
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Example 3.15

Solution

Example 3.16

Solution

Verify that V x (V x v) = V(V -v) — V% for the vector field v = (3xz7, —yz, x + 27).

i J k
|2 2 2 _ _
Vxy = 5 5 > =(y, 6xz—1,0)
3xz -yz x+2z
i J k
I ) _
VX (Vxv)= o N > =(—-6x,0, 6z—-1)
y 6xz-1 0

._i 2 i_ i — 1,2 _
\Y v—&x(3x1)+&y( yz)+a.,z(x+2z) =3z"—z+2

VV-v)=(0,0,6z-1)
V& = (V2(3xz%), VX (—yz), V(x + 272)) = (6x, 0, 0)
Thus
V(V-v) = V¥ =(-6x,0,67—1)=V x(V x»)

Similar verifications for other identities are suggested in Exercises 3.3.6.

Maxwell’s equations in free space may be written, in Gaussian units, as

(a) divH =0, (b) divE=0
_1JE - __1oJH
(¢) curlH=V xH = e (d) curlE=VXE = P

where c is the velocity of light (assumed constant). Show that these equations are
satisfied by

H:ligradqﬁxk, E=- 107—£)+—grad¢
cdt ¢’ or
where ¢ satisfies
1%
V==
4 ¢’ or

and k is a unit vector along the z axis.

(a) H= —§grad¢xk

gives

divH = d1v (grad ¢ x k)

I— O I»—
%I% B

[k curl (grad ¢) — (grad ¢) - curlk], from (3.19f)

By (3.21), curl (grad ¢) = 0, and since k is a constant vector, curl k = 0, so that
divH=0
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kJ¢
b E=———+— d
® ¢’ or &Zgra¢
gives
divE = —— le( & ¢j + —d1V grad ¢
¢ or | 9z
1 J(d°¢ d o2
= ——=— +—=(V7¢), by (3.20
ngz(atz] (V79), by (3.20)

:_8_ 2 10°¢
QZ(V - 207;}

and since V2@ = (1/c*)3*@/Jt*, we have

divE =0
10
(¢c) curlH=- 07— curl (grad ¢ x k)
=12 14 v)grad g
— k (div grad ¢) — (grad ¢- V)k + grad ¢(V - k)], from (3.19g)
= %gt ; grad ¢— kV2¢) , since k is a constant vector
10k
¢ dt

2
(d) culE = —lzcurl [k—qjj +0_)icurl grad ¢

¢ or )z
i k
= _-1—2 &ﬁ; 0% &—i , since curl grad ¢ =0 by (3.21)
C ,
2
0 o 3_?
ot
-1 M 0" ¢
¢ o"yo"t o"x07t
Also,
2
%ti = %j—ﬁgrad oxk

19 : ,
== 5—2( grad ¢ x k), since k is a constant vector
cot

2
=l£5 @i+@j+a—¢k <k|= 07¢ J&¢ ¢ 0"¢
cdt' |\dx dy Iz c&t o"y ox 0"y0"z axat
so that we have

1JH
VX E__c ot

~
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47

48
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50

51

3.3.6 Exercises

Show that if g is a function of r = (x, y, z) then

1dg
dg=--=
grad g rdrr

Deduce that if u is a vector field then
div [(u x r)g] = (r-curlu)g

For ¢(x, y, z) = x*y*z® and

F(x, y, z) = x*i + xy’gj — yz°k determine

(@) V¢

(b) graddivF (c) curlcurl F

Show that if a is a constant vector and r is the
position vector r = (x, y, z) then

div {grad [(r - r)(r -a)]} = 10(r - a)
Verify the identity

V2 = grad divv — curl curlv

for the vector field v = x*y(xi + yj + 7k).

Verity, by calculating each term separately,
the identities

div(u xv)=v-curlu —u-curly

curl (@ xv)=udivy —vdivu + (v-V)u
—(-Vy

when u = xyj + xzk and v = xyi + yzk.

If r is the usual position vector r = (x, y, z),
show that

(a) div grad(%) =0

(b) curl {k X grad(%)} + grad {k . grad(% )} =

52

53

54

55

If A is a constant vector and r is the position vector
r=(x, y, z), show that

j _A A,

3 5
r r

(a) grad (A
v

(b) curl[AX0) 2243 (4 xryxr
r r r

If r is the position vector r = (x, y, z), and a and b
are constant vectors, show that

(@ Vxr=0

) (@-Vir=a

() VX[@a-r)b—(b-r)a]=2axb)

d V-[(@a-b-b-ral=0

By evaluating V - (Vf), show that the Laplacian

in spherical polar coordinates (see Exercise 30) is
given by

sz:lzi P +5— L 2fneX
rdr\ Jdr) r sin 830 20

1 9

¥ sin” 6 99"

Show that Maxwell’s equations in free space, namely

divH =0, divE=0
_10E __19H
VXH_c&t’ VXE= c Jt
are satisfied by
1 A
H = -curl =
Mo

E =curlcurlZ

where the Hertzian vector Z satisfies

2
V37 = 15__22
c ot

Topics in integration

In the previous sections we saw how the idea of the differentiation of a function of a
single variable is generalized to include scalar and vector point functions. We now turn
to the inverse process of integration. The fundamental idea of an integral is that of
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Figure 3.13 Definite
integral as an area.

34.1

Figure 3.14 Integral
along a curve.

summing all the constituent parts that make a whole. More formally, we define the
integral of a function f(x) by

J fx)dx =

where a = xp < x; < X, < -+ <X, <Xx,=b, Ax, =x; — x_; and x|, < X, < Xx,
Geometrically, we can interpret this integral as the area between the graph y = f(x), the
x axis and the lines x = a and x = b, as illustrated in Figure 3.13.

lim 3 f(E)Ax,

all Ax; — 0 =1

Xp X X2 Kiopv X Xp

=a b =b

Line integrals

Consider the integral

Jf(x, y)dx,  where y=g(x)

b

This can be evaluated in the usual way by first substituting for y in terms of x in the
integrand and then performing the integration

J J(x, g(x))dx

b

Clearly the value of the integral will, in general, depend on the function y = g(x). It may
be interpreted as evaluating the integral ff f(x, y)dx along the curve y = g(x), as shown
in Figure 3.14. Note, however, that the integral is not represented in this case by the
area under the curve. This type of integral is called a line integral.

There are many different types of such integrals, for example

Jf(x,y)dx, J F(x, y)ds, sz(x,y)dt, f Lfi(x, ) dx+fi(x, y)dy]

A A A

|
c c c

Here the letter under the integral sign indicates that the integral is evaluated along the
curve (or path) C. This path is not restricted to two dimensions, and may be in as many
dimensions as we please. It is normal to omit the points A and B, since they are usually
implicit in the specification of C.
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Example 3.17

Figure 3.15
Portion of circle of
Example 3.17.

Solution

Example 3.18

Solution

Evaluate [ xydx from A(1, 0) to B(0, 1) along the curve C that is the portion of x* + y?=1
in the first quadrant.

¥y
B
0,1
0, 1) c
A
0 (1,0) x

The curve C is the first quadrant of the unit circle as shown in Figure 3.15. On the curve,
y= (1 -x%), so that

0
nydx = J x(1=x)dx = [ 2(1-x%)"]) = -1
1

C

Evaluate the integral

I= J[(x2+2y)dx+ (x+y))dy]

C

from A(0O, 1) to B(2, 3) along the curve C defined by y = x + 1.

The curve C is the straight line y = x + 1 from the point A(0, 1) to the point B(2, 3).
In this case we can eliminate either x or y. Using

y=x+1 and dy=dx

we have, on eliminating y,

x=2
IZJ (X +2(x+ 1)]dx+[x+(x+ 1) ]dx}

x=0

2
= J(2x2+5x+3)dx =3+ P+ 3x) =8
0

In many practical problems line integrals involving vectors occur. Let P(r) be a point
on a curve C in three dimensions, and let ¢ be the unit tangent vector at P in the
sense of the integration (that is, in the sense of increasing arclength s), as indicated in
Figure 3.16. Then ¢ ds is the vector element of arc at P, and

dx, dy. dz . .
tds=|—=i+-=j+—k|ds=dxi+dyj+dzk=d
y {dsl+dsj+dsk} SEaxtm ATz d
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Figure 3.16
Element of arclength.

Example 3.19

Solution

Figure 3.17
The spiral
r=(acos 6,
asin 6, a@) of
Example 3.19.

If fi(x, v, 2), fo(x, ¥, 2) and f;(x, y, z) are the scalar components of a vector field F(r) then

J [fl(x7 y’ Z)dx+f2(x’ y’ Z)dy +f3(x’ y? Z)dZ]

d d d
= J [fl(x, ¥ ) T ds Ay ) ds Hfi(e v, ) 5 ds}

=J F-tds = J F-dr
C C

Thus, given a vector field F(r), we can evaluate line integrals of the form [ F -dr. In
order to make it clear that we are integrating along a curve, the line integral
is sometimes written as [ F - ds, where ds = dr (some authors use dl instead of ds in
order to avoid confusion with dS, the element of surface area). In a similar manner we
can evaluate line integrals of the form [, F X dr.

Calculate (a) Jo F-dr and (b) [ F x dr, where C is the part of the spiral r = (acos 6,
asin 6, af) corresponding to 0 < @< %n, and F = ri.

The curve C is illustrated in Figure 3.17.

(a)

Since r = acos i + asin 6j + a6k,
dr =—asin 8d6i + acos 8d6j + adbk
so that
F-dr=r%-(—asin 8d6i + acos 6d6j + a d6k)
=—ar*sin 6d6
= —a*(cos’0+ sin*@+ 6%) sin dO=—a’*(1 + 6*) sin 8dO

since r = |r| =+/(a’cos’+ a’sin*6+ a*6°). Thus,

/2
J F-dr=—a3J (1+ 6°)sin 6d6
C

0
= —a’[cos 6+ 2 Osin 6— 6’ cos 0]3/2, using integration by parts

=-drm-1)



210 VECTOR CALCULUS

Fir)

r

Figure 3.18 Work done
by a force F.

i j k
(b) Fxdr= r 0 0
—asin@d@ acosfdO adb
= —ar’déj + ar’cos 6d6k
= —a’(1 + 60 doj +a’(1 + 6% cos OOk
so that

/2 /2
J Fxdr= —ja3J (1+ 92)d49+ka3j (14 6%)cos 8dO
C 0 0
3

3
_ _Ta 2., @ 2
= —24(12+TE)J+4(TE 4k

The work done as the point of application of a force F moves along a given path
C as illustrated in Figure 3.18 can be expressed as a line integral. The work done
as the point of application moves from P(r) to P’(r + dr), where PP’= dr, is
dW=|dr||F|cos 8= F -dr. Hence the total work done as P goes from A to B is

sz F-dr
C

In general, W depends on the path chosen. If, however, F(r) is such that F(r) - dr is an
exact differential, say —dU, then W = [, — dU = U, — Uy, which depends only on A and
B and is the same for all paths C joining A and B. Such a force is a conservative force,
and U(r) is its potential energy, with F(r) = —grad U. Forces that do not have this property
are said to be dissipative or non-conservative.

Similarly, if v(r) represents the velocity field of a fluid then ¢, v -dr is the flow
around the closed curve C in unit time. This is sometimes termed the net circulation
integral of v. If §.v -dr = 0 then the fluid is curl-free or irrotational, and in this case v
has a potential function ¢(r) such that v = —grad ¢.

3.4.2 Exercises

56  Evaluate [yds along the parabola y = 24/x from 59

AG, 2./3) to B(24, 4./6).
Recall: (95)2 =1+ (%y ]

dy

If A = 2y + 3)i + xzj + (yz — )k, evaluate [, A -dr
along the following paths C:

(@) x=2t2,y=t,z=tfromt=0tor=1;
(b) the straight lines from (0, 0, 0) to (0, O, 1),
then to (0, 1, 1) and then to (2, 1, 1);

dy

57  Evaluate [§ [2xydx + (x> — y?) dy] along the arc

58

of the circle x? + y? = 1 in the first quadrant from
A(1, 0) to B(0, 1).

Evaluate the integral [V -dr, where

V = (2yz + 3x%, y* + 4xz, 27 + 6xy), and C is the
curve with parametric equations x =13,y =t z =t
joining the points (0, 0, 0) and (1, 1, 1).

60

(c) the straight line joining (0, 0, 0) to (2, 1, 1).

Prove that F = (y*cosx + z°)i + (2y sinx — 4)j

+ (3xz% + 2)k is a conservative force field. Hence
find the work done in moving an object in this field
from (0, 1, —1) to (m/2, —1, 2).
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61  Find the work done in moving a particle in the force any curve C joining the point (0, 0, 0) to the
field F = 3x% + (2xz — y)j + zk along point (1, 2, 3).
2 _ 3 _
(a) the curve deﬁ.ned by x”= 4y, 3x" = 8z from 63  If F=xyi—zj+x’%k and Cis the curve x =12, y = 2t,
x=0 tox= 2’ z=1>from t =0 to ¢ = 1, evaluate the vector line
(b) the straight line from (0, 0, 0) to (2, 1, 3). integral [,.F x dr.
(c) Does this mean that F is a conservative force?
Give reasons for your answer. 64 IfA=0Gx+y—-x,y—-zandB=(2,-3,1)
evaluate the line integral $.(A x B) x dr around
62 Prove that the vector field F = (3x* — y, 2yz> — x, the circle in the (x, y) plane having centre at the

2y?%z) is conservative, but not solenoidal. Hence
evaluate the scalar line integral [ F - dr along

origin and radius 2, traversed in the positive
direction.

3.4.3

Figure 3.19 Volume
as an integral.

Double integrals

In the introduction to Section 3.4 we defined the definite integral of a function f(x) of
one variable by the limit

Jf(x) dr= lim 3 f(¥)Ax,

all Ax; >0 i=1

where a =x, < x, <x,<---<x,=b, Ax;=x;,— x_, and x,_, < X < x,. This integral is
represented by the area between the curve y = f(x) and the x axis and between x = @ and
x = b, as shown in Figure 3.13.

Now consider z =f(x, y) and a region R of the (x, y) plane, as shown in Figure 3.19.
Define the integral of f(x, y) over the region R by the limit

Jff(x, y)dA = lim z f(xi, yi) AA;
allnAX)i:O i=1

R

where AA; (i=1, ..., n) is a partition of R into n elements of area AA; and (Xi, Vi)
is a point in AA;. Now z = f(x, y) represents a surface, and so f(Xi, ¥i) AA, = Zi AA;is
the volume between z = 0 and z = Z on the base AA,. The integral [[, f(x, y) dA is the
limit of the sum of all such volumes, and so it is the volume under the surface z = f(x, y)
above the region R.

n z=£(x,y)
ni

<

s

AA
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L -
-
L§

(8] —>
Ax;
Figure 3.20 A possible grid for the partition of R Figure 3.21 Another possible grid for the partition of R
(rectangular cartesian). (polar).

The partition of R into elementary areas can be achieved using grid lines parallel to
the x and y axes as shown in Figure 3.20. Then AA; = Ax; Ay,, and we can write

” flx, y)dA = ”fx, ydxdy = lim %" %, yi Ax; Ay,

i=1
R R

Other partitions may be chosen, for example a polar grid as in Figure 3.21. Then the
element of area is (r;A@)Ar,= AA, and

ﬂf(x, y)dA = J J f(rcos 8, rsin )rdrd@ (3.26)

R R

The expression for AA is more complicated when the grid lines do not intersect at right
angles; we shall discuss this case in Section 3.4.5.

We can evaluate integrals of the type [f f(x, ) dxdy as repeated single integrals in
x and y. Consequently, they are usually called double integrals.

Consider the region R shown in Figure 3.22, with boundary ACBD. Let the curve
ACB be given by y = g,(x) and the curve ADB by y = g,(x). Then we can evaluate
JIz f(x, y) dxdy by summing for y first over the Ay, holding x constant (x = Xi, say),
from y = g,(x;) to y = g,(x;), and then summing all such strips from A to B; that is, from
X =a to x =b. Thus we may write

Hf(x,y)dA= lim SIS G y)Ay,| Ax, (0= minGr,, )

R all Ax;y Ay =0 i=1 | j=1
b y=8,(x)
=J U S, y)dy}dx
a LJ y=¢,(x)

Here the integral inside the brackets is evaluated first, integrating with respect to y,
keeping the value of x fixed, and then the result of this integration is integrated with
respect to x.
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vA
YA
d 2 D
1 d
/!
A y=ga(x) x=hy(y)—
R A
B \ L__-_F,_,_._.ax=hl(_v)
y=g) Y [E s I B
| : il
- |
| C ¢
| G
|
l >
0] a 2l b X !
Ax; 0 a b x
(a) (b)

Figure 3.22 The region R.

Alternatively, we can sum for x first and then y. If the curve CAD is represented by
x = h,(y) and the curve CBD by x = h,(y), we can write the integral as

n—seo
all ij, Axi—>0 Jj=1 i=1

d x=hy(y)
(1 semids
¢ L x=n ()

If the double integral exists then these two results are equal, and in going from one to
the other we have changed the order of integration. Notice that the limits of integration
are also changed in the process. Often, when evaluating an integral analytically, it is
easier to perform the evaluation one way rather than the other.

ij(xs )’) dA lim i i f(xi’ 5)1) Axi A)’, (f’l = min(nls nz))

N

Example 3.20  Evaluate [[; (x* + y*) dA over the triangle with vertices at (0, 0), (2, 0) and (1, 1).

Figure 3.23 Domain y y
of integration for X i 1
Example 3.20. y=x y=2-x :
|
|
. E—— : - { -
(6] 1 2 x a 1 2 % 0O 1 2 Xk

Solution The domain of integration is shown in Figure 3.23(a). The triangle is bounded by the
linesy=0,y=xand y=2 — x.
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(a) Integrating with respect to x first, as indicated in Figure 3.23(b), gives

1 fx=2-y
Jj(x2+y2)dA = J j (x2+y2)dxdy
0J x=y

R

1
- J B+ dy

0

Wik

1
=J E-dy+4y’ -8y’ ldy=

0

(b) Integrating with respect to y first, as indicated in Figure 3.23(c), gives

I fy=x 2 (y=2-y
Jf(x2+y2)dA=J J (x2+y2)dydx+J J (x2+y2)dydx
0J y=0 1Jy=0

R

Note that because the upper boundary of the region R has different equations for
it along different parts, the integral has to be split up into convenient subintegrals.
Evaluating the integrals we have

1 ry=x 1 1
J J (x"+y)dydx = J [x°y + _%ys]i:;dx =J §x3dx =1

0Jy=0 0 0

2 fy=2-x 2
J J (x"+y")dy dx = J [y +1y'T 7 "dx

0JYy=0 1

2
= j (§—4x+4x2—§x3)dx =1

1

Thus

JJ(xZ +y)dA=1+1= 4, as before
R

Clearly, in this example it is easier to integrate with respect to x first.

Example 3.21  Evaluate [f, (x + 2y)™"*dA over the region x — 2y < 1 and x = y? + 1.

Figure 3.24 Domain y x=1+2y
of integration for A l
Example 3.21.

i
T
—_—

x=yc+1
j 0

sy
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Solution

Example 3.22

Solution

The bounding curves intersect where 2y + 1 = y* + 1, which gives y = 0 (with x = 1)
and y =2 (with x =5). The region R is shown in Figure 3.24. In this example we choose to
take x first because the formula for the boundary is easier to deal with: x = y? + 1 rather
than y = (x — 1)""%. Thus we obtain

2 r2y+1
fj(x + 2y)_”2 dA = J J (x+ 2)/)_1/2 dxdy
0 y2+1

R

2
= J [2(x+2y) 130 dy

0

2
=J[2My+lf”2@+lﬂdy

0

=iy + 1) =y -2yl =12

As indicated earlier, the evaluation of integrals over a domain R is not restricted to
the use of rectangular cartesian coordinates (x, y). Example 3.22 shows how polar coor-
dinates can be used in some cases to simplify the analytical process.

Evaluate [[,x%ydA, where R is the region x* + y> < 1.

The fact that the domain of integration is a circle suggests that polar coordinates are a
natural choice for the integration process. Then, from (3.26), x = rcos 6, y = rsin 8 and
dA =rdédr, and the integral becomes

1 2n
jf xzy dA = J J r*cos’@ rsin@ rd@dr
0 r=0J =0

1 2n
= J J r*cos’@sin 8 dOdr

r=0J =0

Note that in this example the integration is such that we can separate the variables r and
6 and write

1 2n
U X'y dA = J r4J cos’@sin @ dOdr
r=0 6=0

R

Furthermore, since the limits of integration with respect to 8 do not involve r, we can

write
1 2n
2 4 2 .
ijydAzj rdrj cos’@sinfde
r=0 6=0

R
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65

and the double integral in this case reduces to a product of integrals. Thus we obtain

H;fy dA=[Lr ] [~Lcos’d]," =0
R

Reflecting on the nature of the integrand and the domain of integration, this is the result
one would anticipate.

There are several ways of evaluating double integrals using MATLAB. The simplest
uses the command dblquad (£, x,, %;, Yo, Vi) .Forexample, consider

2 (3
J J (* + y)dx dy
1J 0

Here we define the integrand as an inline function

f = inline (’x.%2 + y*27', 'x’, 'y');
(Note that x is taken as a vector argument.)

I = dblquad (£ , 1, 2 , 0 , 3)
returns the answer

I = 16

For non-rectangular domains, the same command is used but the integrand is
modified as shown below. Consider

1 (x
JJ (¢ + y*)dx dy
0J 0

from Example 3.20 (b). Here we define the integrand as the inline function
f = inline (' (x.72 + y"2).*(y-x <= 0)', 'x’', 'yv');
where the logical expression (y - x <= 0) returns 1 if the expression is true and
0 otherwise, so that the command
I = dblquad (£ , 0 , 1, 0 , 1)
returns the required answer
I = 0.3333

despite integrating over a rectangular domain.

3.4.4 Exercises

Evaluate the following: 66  Evaluate
3 r2 315
2
@ J J (v dydy () f j ¥y dy dx J j % drdy
0J1 2J1 y
1 2
(© J j (2x*+y")dydx over the rectangle bounded by the lines x = 0,
-1J 2 x=2,y:landy=2.
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67

68

69

70

71

72

Evaluate [f(x>+y?) dxdy over the region for which
x=0,y=0andx+y=<1.

Sketch the domain of integration and evaluate

2 2x 1 1-x
(a) J dxj zdy () J dxj (x+y)dy
1 Xty 0 0

()jld jm .
c X ~—————dy
0 =) (1 —x" =)

Evaluate [[sin % 7(x 4+ y) dx dy over the triangle
whose vertices are (0, 0), (2, 1), (1, 2).

Sketch the domains of integration of the double
integrals

xydy

1 1
(a) J de —e
o JeJ(+yh
/2 y
(b) J dyj (cos2y)A(1 K sinzx) dx
0

0

Change the order of integration, and hence evaluate
the integrals.

Evaluate

Jl Jl dx
dy| ———
o JANIY(1+xY)]

Sketch the domain of integration of the double
integral

dydx

(e
X
joJ’o A/(x2+y2)

73

Express the integral in polar coordinates, and hence
show that its value is % .

Sketch the domain of integration of the double
integral

1 (12
J 0 J X+y
0 0 A/(x2 +y2)

and evaluate the integral.

dy

Evaluate

X+y
fj—z 3 2dxdy
X +y +a

over the portion of the first quadrant lying inside the
circle x* + y? = a*.

By using polar coordinates, evaluate the double
integral

x2 7y2
dx dy
Xy

over the region in the first quadrant bounded by the arc
of the parabola y? = 4(1 — x) and the coordinate axes.

By transforming to polar coordinates, show that the
double integral

taken over the area common to the two circles
x*+y?=ax and x> + y* = by is ab.

3.4.5

Green’s theorem in a plane

This theorem shows the relationship between line integrals and double integrals,
and will also provide a justification for the general change of variables in a double

integral.

Consider a simple closed curve, C, enclosing the region A as shown in Figure 3.25. If
P(x, y) and Q(x, y) are continuous functions with continuous partial derivatives then

C A

Jdo d

jg(de+Qdy) = ”( .

dy

) dxdy

3.27)
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Figure 3.25 Green’s =g

theorem. (} A \ N
- x=g,(»)

where C is traversed in the positive sense (that is, so that the bounded area is always on
the left). This result is called Green’s theorem in a plane.

The proof of this result is straightforward. Consider the first term on the right-hand
side. Then, with reference to Figure 3.25,

d 8,(»
%Y _ 29
JJ O dxdy= JC LL . e dx}dy
R 19

J [Q(g2(¥), ¥)—0(g:i(y), y)]dy

c

J O(x, y)dy— J O(x, y)dy

LMN LKN

J O(x, y)dy = % O(x, y)dy

LMNKL c
Similarly,
_JJ&_IJdXdy = jEP(x, y)dx
dy
A C
and hence
(9_(2 _ 0"_1") dxdy = @ [P(x, y) dx + Q(x, ) dy]
dx dy
A C

An elementary application is shown in Example 3.23.

Example 3.23  Evaluate § [2x(x + y) dx + (x> + xy + y?) dy] around the square with vertices at (0, 0),
(1, 0), (1, 1) and (0, 1) illustrated in Figure 3.26.

Solution Here P(x, y) = 2x(x + y) and Q(x, y) = x> + xy + %, so that dP/dy=2x, IQdk=2x +y
and JQ/dx — JP/Jdy=y. Thus the line integral transforms into an easy double integral
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0, 1) (1, 1)

(0,0)

(1,0)

Figure 3.26 Path
of integration for
Example 3.23.

i§ [2x(x+y)dx+ (x2+xy+y2) dy] = JJy dxdy
c

[Jowo
foof

It follows immediately from Green’s theorem (3.27) that the area A enclosed by the
closed curve C is given by

A= ledxdyz %xdyz—%ydxz%%(—ydx+xdy)

A c c c

Suppose that under a transformation of coordinates x = x(u, v) and y = y(u, v), the curve
becomes C’, enclosing an area A”. Then

A= deudv = jgudv = % (g dx+§—vdy)

C

gl [ -4

A
&uc?v 82vJ_|i&_u&_\z+ *y
&xc?y é’xé’y dydx c?

_ (o”_ua_v_&_ua_v)
- dxdy dydx dx dy

A

}}d dy

This implies that the element of area du dv is equivalent to the element

‘ (o"u dv du a"v)

dxdy é’yé’x dx dy

Here the modulus sign is introduced to preserve the orientation of the curve under the
mapping. Similarly, we may prove that

dxdy = &Ex L ; dudy (3.28)

where J(x, y)/d(u, v) is the Jacobian

dxdy Jdxdy _

dudv Iviu =Jx )
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Example 3.24

Solution

Figure 3.27

Domain of
integration for
Example 3.24:

(a) in the (x, y) plane;
(b) in the (u, v) plane.

This enables us to make a general change of coordinates in a double integral:

jj f(x, y)dxdy = JJf(x(u, v), y(u, v))|J| dudv (3.29)

A A’

where A’ is the region in the (u, v) plane corresponding to A in the (x, y) plane.
Note that the above discussion confirms the result

d(u, v) _ |:07(x, y):|1

d(x,y)  |d(u,v)

as shown in Section 3.1.3. Using (3.29), the result (3.26) when using polar coordinates
is readily confirmed.

Evaluate[fxy dx dy over the region in x = 0, y = 0 bounded by y = x* + 4, y = x?,
y=6-x?andy=12 - x.

The domain of integration is shown in Figure 3.27(a). The bounding curves can be
rewritten as y — x> =4, y—x?=0, y + x> =6 and y + x? = 12, so that a natural change
of coordinates is to set

u=y+x? v=y—x*

Under this transformation, the region of integration becomes the rectangle 6 < u < 12,
0 < v < 4, as shown in Figure 3.27(b). Thus since

9y _ [ wn] 1
T d(u,v) | dx,y)|  4x

J(x, y)

the integral simplifies to

Jf xy dxdy = JJ xyé%cdudv

A A’

A
12]
() v
0|
- 4
4
~ -
0 * 0 6 U

(a) (b)
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Figure 3.28
Three-dimensional
generalization of
Green’s theorem.

77

Hence

foydxdyziﬂydudv zéjj (u+v)dudv, sincey=(u+v)/2

A A
4 12

zéf va (u+v)du =33
0 6

We remark in passing that Green’s theorem in a plane may be generalized to three
dimensions. Note that the result (3.27) may be written as

kS

f(P, Q,0)-dr = JJ curl [(P, Q, 0)] - kdxdy

C A

For a general surface S with bounding curve C as shown in Figure 3.28 this identity
becomes

%F(rydr = Jf curl F(r) - dS

C S

where dS =7 dS is the vector element of surface area and # is a unit vector along the
normal. This generalization is called Stokes’ theorem, and will be discussed in

Section 3.4.12 after we have formally introduced the concept of a surface integral.

3.4.6 Exercises

Evaluate the line integral

f£ [siny dx + (x—cos y) dy]
C

taken in the anticlockwise sense, where C is the
perimeter of the triangle formed by the lines

1 1
y=;Tx, y=5T, x=0

Surface S

78

Verify your answer using Green’s theorem in a plane.

Use Green'’s theorem in a plane to evaluate

jg [(xy* —y) dx + (x +y°) dy]

C

as a double integral, where C is the triangle with
vertices at (0, 0), (2, 0) and (2, 2) and is traversed
in the anticlockwise direction.
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79  Evaluate the line integral 81  Evaluate

a 2a-x
I =¢ (xydx+xdy) dx —r=r dy
i# o . 4q* + (y+ x)2

C

where C is the closed curve consisting of y = x?

using the transformation of coordinates u = x +y,

V=x-Y.
fromx=0tox=1 andyzﬁfromxz 1tox=0.
Confirm your answer by applying Green’s theorem 82  Using the transformation
in the plane and evaluating / as a double integral. y
+vyv=u, - =
80  Use Green’s theorem in a plane to evaluate the line rry= x =V
integral
tniegra show that
[(e"=3y") dx+ (e’ +4x") dy] N o
- X ’ X x+y u
Y Y dej )izye+'dx=J duJedv:ezl
0 y X 0 0

C

where C is the circle x* + y* = 4. (Hint: Use polar
coordinates to evaluate the double integral.)

3.4.7

ji
Cn(r (u’ UO))

C(r(u, v))

Culr(ug, v)

Figure 3.29 Parametric
curves on a surface.

Surface integrals

The extensions of the idea of an integral to line and double integrals are not the only
generalizations that can be made. We can also extend the idea to integration over a gen-
eral surface S. Two types of such integrals occur:

(a) ”f(x,y, z)ds

N

(b) ﬂ F(r)-adS= ﬂ F(r)-dS

N N

In case (a) we have a scalar field f(r) and in case (b) a vector field F(r). Note that
dS = iidS is the vector element of area, where 7i is the unit outward-drawn normal vec-
tor to the element dS.

In general, the surface S can be described in terms of two parameters, u# and v say, so
that on §

r=r(u, v) = x(u, v), y(u, v), z(u, v))

The surface S can be specified by a scalar point function C(r) = ¢, where c is a con-
stant. Curves may be drawn on that surface, and in particular if we fix the value of one
of the two parameters u and v then we obtain two families of curves. On one, C,(r(u, v,)),
the value of u varies while v is fixed, and on the other, C (r(u,, v)), the value of v varies
while u is fixed, as shown in Figure 3.29. Then as indicated in Figure 3.29, the vector
element of area dS is given by
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Figure 3.30 A surface
described by
z=z(x, y).

_adr ar ar 8r
ds = udux vdv o & du dv

J d
ax ay a X ay az
&u ou’ 314) (Jv TV’ av dudv = (Jyi +J,j+ Jsk)dudy
where
dydz dydz _Jdzdx Jdzdx dxdy dxdy
Ji= dudv Jdvou’ Jz_&u&v avou’ S = dudv Jdvdu (3.30)
Hence

”F(r) dS = U (PJ,+ QJ,+ RJ;) dudy

N

ﬂf(x, y,z)dS = Hf(u, NI+ I3+ dudy

N A
where F(r) = (P, O, R) and A is the region of the (&, v) plane corresponding to S. Here,

of course, the terms in the integrands have to be expressed in terms of # and v.
In particular, # and v can be chosen as any two of x, y and z. For example, if z = z(x, y)

describes a surface as in Figure 3.30 then

r=(x,y, zx,y))

with x and y as independent variables. This gives

dz _ dz L=1

Ji=- ox’ So=- dy’

and

” F(r) - dS = ” — Q—+R) dxdy (3.31a)

S

Hf(x,y, 2)ds = ” FOy. z(x, y))\/{ (Bz) (gi)}dxdy (3.31b)

A

L Surface S

it
=

Element dS
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Example 3.25  Evaluate the surface integral

JJ (x+y+2z)dS

S

where S is the portion of the sphere x* + y* + z* = 1 that lies in the first quadrant.

Figure 3.31
(a) Surface S for

Example 3.25; .
(b) quadrant of a 0, 1)
circle in the (x, y)
plane.
0 (1,0) x

(b)

Solution  The surface S is illustrated in Figure 3.31(a). Taking
2= -y
we have

Iz _ —x dz -y

o Jadoyh I Juord oy

giving
92\ (92) 1y (1 =Xy’
1+ _Z + _Z — X Yy (z_xz_y)
Jx J (I-x"=y)

1

J(1=x =y

Using (3.31) then gives

JJ(x+y+z)dS=JJ[x+y+A/(1—x2—y2)]

N A

- dx dy

1
(1 =2 —y?)

where A is the quadrant of a circle in the (x, y) plane illustrated in Figure 3.31(b).
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Thus

(1- IS x y
(x+y+z)dS = dxf |V + +1|dy
H Ja-x =y Ja-x-y)
i Ja-2)

j A==y 4y dx

J
[t
-/
;s

L 0

—x+2A/(1 x )}dx

1
X+ xAl(1 —xz) + sinlx}
0

-z:-lu.:

An alternative approach to evaluating the surface integral in Example 3.25 is to evaluate
it directly over the surface of the sphere using spherical polar coordinates. As illustrated
in Figure 3.32, on the surface of a sphere of radius a we have

X = asin 6 cos g, y = asin @sin ¢

z=acos6, dS=a’sinHdOde

Figure 3.32 Surface
element in spherical
polar coordinates.

In the sphere of Example 3.25 the radius a = 1, so that

0 0

/2 w2
JJ (x+y+z)dS=J J (sin @ cos @+ sin @sin ¢+ cos 0) sin 8 dOd¢
S

/2
=J [iTcos @+ msing+3]dg=13

0

as determined in Example 3.25.
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In a similar manner, when evaluating surface integrals over the surface of a cylinder of
radius a, we have, as illustrated in Figure 3.33,

X =acos ¢, y =asin @, =12, dS=adzdg

Figure 3.33
Surface element
in cylindrical
polar coordinates.

Example 3.26  Find the surface area of the torus shown in Figure 3.34(a) formed by rotating a circle
of radius b about an axis distance a from its centre.

Figure 3.34 (a) Torus
of Example 3.26; ' '
(b) position vector of a RN / centre of circle
point on the surface of
the torus.

Locus of

x (b)

Solution  From Figure 3.34(b), the position vector r of a point on the surface is given by
r=(a+ bcos @)cos 6i + (a + bcos @) sin 6f + bsin gk

(Notice that € and ¢ are not the angles used for spherical polar coordinates.) Thus
using (3.30),

J, = (a+ bcos @) cos (b cos @) — (—b sin ¢ sin 6)(0)
J, = (0)(=bsin ¢ cos 8) — (b cos @P)(a + b cos @g)(—sin H)
Jy=—(a + bcos @) sin 8(—b sin ¢ sin ) — (b sin @ cos 8)(a + b cos @) cos &
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Example 3.27

Solution

Simplifying, we obtain
J,=b(a+ bcos ¢)cos fcos ¢
J, =b(a + bcos @) sin Gcos ¢
J;=b(a+ bcos @) sin ¢

and the surface area is given by

2n (2n
S = J J JUT+ 75+ 73) dodg
0

0

2n (2¢;
=J J b(a + bcos ¢) dOd ¢

0 0

=4n’ab

Thus the surface area of the torus is the product of the circumferences of the two circles
that generate it.

Evaluate [f;V - dS, where V = zi + 5j — 3y’zk and S is the surface of the cylinder
x*+ y? =16 in the first octant between z =0 and z = 5.

The surface S is illustrated in Figure 3.35. From Section 3.2.1, the outward normal to
the surface is in the direction of the vector

n=grad (x> +y* — 16) = 2xi + 2yj
so that the unit outward normal f2is given by

2xi + 2yj
247+

Hence on the surface x* + y? = 16,

fl:

=g (xi+yj)
giving
dS =dSna= 1dS(xi+ yj)

Projecting the element of surface dS onto the (x, z) plane as illustrated in Figure 3.35,
the area dx dz of the projected element is given by

dxdz=dScosf

where f1is the angle between the normal i to the surface element and the normalj to the
(x, z) plane. Thus

dxdz=dSla-jl= ;dSI(xi+yj) - jl=3dSy
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Figure 3.35
Surface $ for
Example 3.26.

ZA
(0,0,5)

d »‘_':_“_\_\_ ds
e

o Sai .
0,4,0) >
X
(4,0,0)
giving
ds=%dxdz
y
Also,
v-ds=v-ﬁdS:(zi+)g'—3yzzk)-()%y’)‘y—‘dxdp’%”dxdz
so that
”V-dszﬂxz—”ldxdz
y
N A

where A is the rectangular region in the (x, z) plane bounded by 0 s x < 4,0 <z < 5.
Noting that the integrand is still evaluated on the surface, we can write y = /(16 —x°),
so that

4 rs Xz
V.dS = x+ dzd
U J” «16)4 o

5

_ f U R I
N 24(16 —x%) .

4

J S+ —22X gy
N 2J(16 — x%)

[ -2/(16-x)],

=90

An alternative approach in this case is to evaluate  [f, (xz + xy) dS directly over
the surface using cylindrical polar coordinates. This is left as Exercise 90, in
Exercises 3.4.8.
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83

84

85

86

3.4.8 Exercises

Evaluate the area of the surface z=2 — x*—y?*lying 87  Evaluate the surface integral [[5 U(x, y, z) dS,
above the (x, y) plane. (Hint: Use polar coordinates where S is the surface of the paraboloid
to evaluate the double integral.) z7=2—(x*+y?) above the (x, y) plane and
U(x, y, z) is given by

Evaluate @ 1 (b) 2%+ © 2
(a) [fs(x*+y?»dS, where S is the surface area of i L L

the plane 2x + y + 2z = 6 cut off by the planes Give a physical interpretation in each case.

72=0,z2=2,y=0,y=3; .
(b) ff,zdS, where S is the surface area of the 88  Determine the surface area of the plane

hemisphere x>+ y? + z2 =1 (z > 0) cut off Zx+y+2z=16cutoff by x=0,y=0

P y +z 2, .2
by the cylinder x> — x + y>=0. and x” +y~ = 64.
89  Show that the area of that portion of the surface

Evaluate [fsv- dS, where of the paraboloid x* + y* = 4z included between
(a) v=(xy,—x% x+2)and S is the part of the planes z=1and z=3 is ';—" 4 - 2).

the plane 2x + 2y + z = 6 included in the

first octant; 90  Evaluate the surface integral in Example 3.27 using
(b) v =3y, 2x% z%) and S is the surface of the cylindrical polar coordinates.

cylinder x> +y?=1,0<z< 1.

91 If F =yi+ (x — 2x7)j — xyk, evaluate the surface

Show that [f;z>dS = 2, where S is the surface of
the sphere x> +y*+z?=1,z=0.

integral [f (curl F)- dS, where S is the surface of
the sphere x> + y* + z*=a* z = 0.

3.4.9 Volume integrals

In Section 3.4.7 we defined the integral of a function over a curved surface in three
dimensions. This idea can be extended to define the integral of a function of three
variables through a region T of three-dimensional space by the limit

”Jf(x,y,Z)dV= lim Z”:f(ici, $i, %) AV,

all Av, - 0 i=1
T i

where AV, (i=1, ..., n) is a partition of T into n elements of volume, and (%:, ¥, Z) is
a point in AV; as illustrated in Figure 3.36.

In terms of rectangular cartesian coordinates the triple integral can, as illustrated in
Figure 3.37, be written as

b 8,(x) Iy (x, y)
”jf(x,y, z)dV=J dxj dyj f(x,y,2)dz
a &) By ()

T

(3.32)

Note that there are six different orders in which the integration in (3.32) can be
carried out.

As we saw for double integrals in (3.28), the expression for the element of volume
dV = dx dy dz under the transformation x = x(u, v, w), y = y(u, v, w), z = z(u, v, w) may
be obtained using the Jacobian
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Upper surface z = h,(x, y)

Figure 3.36 Partition of region T into

volume elements AV,.

<Y

Projection of
volume onto
(x, y) plane

cartesian coordinates.

x o x
du Jdu Jdu
jo 9y _|dx Jdy Jz

ANu, v, w) dv dv v
x o
ow Jdw JIw

as
dV=dxdydz=IJIdudvdw
For example, in the case of cylindrical polar coordinates
X = pcos g, y=psing, 7=z
cos¢g sing O
J=p|-sing cosg O|=p
0 0 1
so that

dV = pdpdgdz

a result illustrated in Figure 3.38.
Similarly, for spherical polar coordinates (7, 6, @)

X =rsin fcos @, y =rsin @sin ¢, z=rcos @
sin @cos ¢ sin @sin @ cos 6
J=|rcos@cos¢ rcos@sing -—rsinf =/’ sin@
—rsin @sin ¢ rsin @ cos @ 0
so that

dV = r?sin drd@dg

a result illustrated in Figure 3.39.

y=a)

Figure 3.37 The volume integral in terms of rectangular

3.33)

(3.34)

(3.35)
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Example 3.28

Solution

planex+y+z=1

linex+y=1,
z=0
Figure 3.40

Tetrahedron for
Example 3.28.

Example 3.29

Solution

zZA

Figure 3.39 Volume element in spherical polar
coordinates.

Figure 3.38 Volume element in
cylindrical polar coordinates.

Find the volume and the coordinates of the centroid of the tetrahedron defined by x = 0,
y=0,z=0andx+y+z=<1.

The tetrahedron is shown in Figure 3.40. Its volume is

x=1 y=1-x z=l-x-y
V= JJJ dxddeZJ de dyJ dz
x=0 y=0 z=0

tetrahedron

1 1-x 1
=dej (1—x—y)dy=J§(1—x)2dx=g
0 0 0

Let the coordinates of the centroid be (X, ¥, z); then, taking moments about the line x =0,
z=12z,

- W v = W rdxdyds

tetrahedron tetrahedron

1 1-x 1-x—y 1
:J dxj dyJ xdz :J Lx(1 = x)’dx = &
0 0 0 0

Hence x = 3, and by symmetry y =z = i.

1
4 b
Find the moment of inertia of a uniform sphere of mass M and radius a about a diameter.

A sphere of radius a has volume 47ta’/3, so that its density is 3M/4ma’. Then the moment
of inertia of the sphere about the z axis is

1= 12 4 y?) dxdydz
4ra

sphere
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92  Evaluate the triple integrals 95
1 2 3
(a) J de dyj xzyzdz
0 0 0 96
2 (3 (4
(b)j J J xyz2 dzdydx
0)1)2
93  Show that

In this example it is natural to use spherical polar coordinates, so that

1= (2 sin’0)  sing dr dodg
4ma

a T 2n
- 3M3J r4er sin30d0J dp = 2 (L5 em)

3
0 0 4ma

Evaluating triple integrals using MATLAB uses the command triplequad. For
example, consider (see Example 3.28):

1 (1-x [1-x-y
JJ J x dx dy dz
0J 0 0

Here we write the integrand as the inline function

F = inline ('x.*( x + y + z <=1)', 'x’',

so that the command
I = triplequad (£ , 0 , 1 , 0, 1, 0 , 1)
returns the answer
I = 0.0416

This procedure could be slow because of the large number of points at which the
integrand is evaluated.

3.4.10 Exercises

Evaluate [[f, xyzdxdydz, where V is the region
bounded by the planes x =0,y =0, z=0 and
x+y+z=1.

Sketch the region contained between the parabolic
cylinders y = x* and x = y* and the planes z = 0 and
X +y+ z=2. Show that the volume of the region
may be expressed as the triple integral

1 Jx [2-x-y
J J J dzdydx
o) Jo

and evaluate it.

1 z x+z
J dzf dxf (x+y+2z2)dy=0
-1 0 x-z

94  Evaluate [f[sin (x +y + z) dx dy dz over the
portion of the positive octant cut off by the plane
X+y+z=T.

Use spherical polar coordinates to evaluate

JJJ)C()C2 + y2 +7) dxdydz

v
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98

99

where V is the region in the first octant lying within
the sphere x* +y* +z2 = 1.

Evaluate [ffx%*y*z*(x +y + z) dx dy dz throughout
the region defined by x +y+z<1,x=0,y =0,
z=0.

Show thatif x +y+z=u,y+z=uv and z = uvw
then

A6 y.2) _ 2
Au, v, w)

14

Hence evaluate the triple integral

J'JJ exp[-(x +y + 2)3] dxdydz

14

100

101

102

where V is the volume of the tetrahedron
bounded by the planes x =0, y =0, z=0 and
x+y+z=1

Evaluate [[f, yz dx dy dz taken throughout the prism
with sides parallel to the z axis, whose base

is the triangle with vertices at (0, 0, 0), (1, 0, 0),
(0, 1, 0) and whose top is the triangle with vertices
at (0, 0, 2), (1, 0, 1), (0, 1, 1). Find also the position
of the centroid of this prism.

Evaluate [ff zdxdy dz throughout the region
defined by x? +y? < z4 x> +y*+z2<1,z>0.

Using spherical polar coordinates, evaluate
Jff xdx dy dz throughout the positive octant of
the sphere x* + y* + z> = a’.

Figure 3.41
Closed volume V
with surface S.

3.4.11

expressed as

divF=V.F= lim

AV—0

AV

Gauss’s divergence theorem

In the same way that Green’s theorem relates surface and line integrals, Gauss’s theorem
relates surface and volume integrals.

Consider the closed volume V with surface area S shown in Figure 3.41. The surface
integral [[ F -dS may be interpreted as the flow of a liquid with velocity field F(r)
out of the volume V. In Section 3.3.1 we saw that the divergence of F could be

flow out of AV

In terms of differentials, this may be written

div F dV = flow out of dV

Consider now a partition of the volume V given by AV, (i =1, . . ., n). Then the total
flow out of Vis the sum of the flows out of each AV,. That is,

JJF -dS = lim Z (flow out of AV;) = lim Z (div FAV))
i=1

n-—oo

S

giving

s ff v

N \4

i=1

(3.36)

This result is known as the divergence theorem or Gauss’s theorem. It enables us
to convert surface integrals into volume integrals, and often simplifies their evaluation.
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Example 3.30 A vector field F(r) is given by
F(r) = x%i + x5 + x*yzk

Find [f, F -dS, where S is the surface of the region in the first octant for which
x+y+z=<1.

Figure 3.42 Region V
and surface S for
Example 3.30.

Solution  We begin by sketching the region V enclosed by S, as shown in Figure 3.42. It is clear that
evaluating the surface integral directly will be rather clumsy, involving four separate
integrals (one over each of the four surfaces). It is simpler in this case to transform it into
a volume integral using the divergence theorem (3.36):

[ ff

N Vv
Here
div F = 3x%y + 2x%y + xy = 6x%y

and we obtain

1 1-x I-x—y
ﬂFdS:J de dyj 6x°ydz
< 0 0 0

1 1-x 1-x—y
=6J xzdxf ydyf dz
0 0 0 (see Example 3.28)

1 1-x
= 6J xzde [(1 - x)y—y'ldy

1
=J (1 -x) dx =3

Example 3.31  Verify the divergence theorem

[ fffnro

N %

when F = 2xzi + yzj + 2’k and V is the volume enclosed by the upper hemisphere
x> +y*+7*=a*z=0.
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Figure 3.43
Hemisphere for
Example 3.31.

Solution

The volume V and surface S of the hemisphere are illustrated in Figure 3.43. Note that
since the theorem relates to a closed volume, the surface S consists of the flat circular
base in the (x, y) plane as well as the hemispherical surface. In this case

divF=2z+z+2z=5z2

so that the volume integral is readily evaluated as

JJJSZ dxdydz = J 5znr dz = J 57tz(a2 - zz)dz = %na4
0 0

14

Considering the surface integral

[[ros || riase || ros

S circular base hemisphere
The unit normal to the base is clearly ﬁl =-k, so
F.-n =-z
giving

H F-ndS=0

circular base

since z = 0 on this surface.
The hemispherical surface is given by

fy,=x*+y*+z2-a*=0
so the outward unit normal 72, is

- Vf  2xi+2yj +2zk
n2=|Vf|= 2, 2, 2
2N +y +2)

Since x? + y? + z* = @ on the surface,

~ X . .
A, =%i+ i iy
a a a
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giving
2 2 3 2
~ 2x°z yz K6z Xz Z,2 2 2
F-ny==—= 44> ="—=+4+3x"+y +2)
a a a a a
Hence
” F-i,dS = ” 2 +dh)ds
a
hemisphere hemisphere

since x? + y* + z? = @’ on the surface. Transforming to spherical polar coordinates,
X =asinfcos ¢, z=acos 6, dS =a*sin8dOdg

the surface integral becomes

2n (/2
JJ F-i,dS = a4J j (sin @ cos @ + sin’@ cos 000s2¢) dédg

0 0
hemisphere

2n
. .4
= a4J [1sin’@ + §sin‘6 cos’g]Y* d¢

0

2n
= a4J [1+ }cos’pldg = Ina’

0

thus confirming that

[ o-ffro

N \4

3.4.12 Stokes’ theorem

Stokes’ theorem is the generalization of Green’s theorem, and relates line integrals in
three dimensions with surface integrals. At the end of Section 3.3.3 we saw that the curl

of the vector F could be expressed in the form

N . flow round AS
= TAy

In terms of differentials, this becomes

curl F-dS = flow round dS

S Consider the surface S shown in Figure 3.44, bounded by the curve C. Then the
% line integral ¢, F-dr can be interpreted as the total flow of a fluid with velocity field
“ F around the curve C. Partitioning the surface S into elements AS; (i=1, ..., n), we
can write
C n n
Figure 3.44 Surface § F-dr = }1_{2 Z (flow round AS;) = }11_1)2 Z (curl F-AS)
i=1 i=1

bounded by curve C. P
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Figure 3.45 Two
paths, C, and C,,
joining points A
and B.

so that
ng~ dr = JJ (curl F) -dS 3.37)
C S

This result is known as Stokes’ theorem. It provides a condition for a line integral to
be independent of its path of integration. For, if the integral [% F-dr is independent of
the path of integration then

JF-dr=JF~dr

Gy Gy

where C, and C, are two different paths joining A and B as shown in Figure 3.45. Since

JF-dr:—JF-dr

¢ -G

where —C, is the path C, traversed in the opposite direction, we have

JF-dr+ JF~dr=0

¢ -G

That is,

jEF-drzo

C

where C is the combined, closed curve formed from C, and —C,. Stokes’ theorem
implies that if $. F - dr = 0 then

JJ (curl F)-dS =0

N

for any surface S bounded by C. Since this is true for all surfaces bounded by C, we
deduce that the integrand must be zero, that is curl F = 0. Writing F = (F\, F,, F;), we
then have that

F-dr=F,dx+ F,dy+ F;dz
is an exact differential if curl F = 0; that is, if
O _ I I _OF I

Jdz x> dy  ox’ dz  dy
Thus there is a function f(x, y, z) = f(r) such that

Fl:g__{:, Fzzg_';‘, F;zg_';‘

that is, such that F(r) = grad f.
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Example 3.32

Figure 3.46
Hemispherical
surface and boundary
for Example 3.32.

Solution

When F(r) represents a field of force, the field is said to be conservative (since it
conserves rather than dissipates energy). When F(r) represents a velocity field for a
fluid, the field is said to be curl-free or irrotational.

Verify Stokes’ theorem for F = (2x — y)i — yz’j — y’zk, where S is the upper half of the
sphere x* + y> + z? =1 and C is its boundary.

X

The surface and boundary involved are illustrated in Figure 3.46. We are required to
show that

%F-drzjjcurlF-dS

C N

Since C is a circle of unit radius in the (x, y) plane, to evaluate $. F - dr, we take
X =cos ¢, y=sin @
so that
r = cos @i + sin @j
giving
dr = —sin ¢ d@i+ cos pd@j
Also, on the boundary C, z = 0, so that
F = (2x — y)i = (2cos ¢ — sin @)i
Thus

2n
%F-dr= J (2 cos ¢ — sin @)i- (—sin @i + cos ¢j)d¢
ha 0
2n 2n
= (—2 sin ¢ cos ¢ + sin2¢) d¢ = J [-sin2¢ + %(1 + cos2¢)] d¢
0 0
T

i J k
J J J
curl F = E 3—}1 9} =k

2x -y —y22 —yzz
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103

104

105

106

107

108

The unit outward-drawn normal at a point (x, y, z) on the hemisphere is given by
(xi + yj + zk), since x> + y* + z* = 1. Thus

churl F-dSs :JJ k-(xi +yj +zk)dS
=JJZdS

N

2n (n/2
=J J cos @ sin 8 dOd¢

0 0
. /2
= 275[% sm29]g =7

Hence ¢ F-dr = [[s(curl F)-dS, and Stokes’ theorem is verified.

3.4.13 Exercises

Evaluate [[; F-dS, where F = (4xz, —y? yz) and S is
the surface of the cube bounded by the planes x =0,
x=1,y=0,y=1,z=0and z=1.

Use the divergence theorem to evaluate the surface

F = (36xz + 6y cos x, 3 + 6 sin x + z sin y,
18x% — cos y)

is independent of the path joining the points A and B.

integral [[ F - dS, where F =xzi + yz + z%k and Sis 109  Use Stokes’ theorem to evaluate the line integral
the closed surface of the hemisphere x> + y? +z2 =4, $cA-dr, where A = —yi + xj and C is the boundary
z > 0. (Note that you are not required to verify the of the ellipse x*/a’ + y*/b* =1, z=0.
theorem.)
110  Verify Stokes’ theorem by evaluating both sides of
Verify the divergence theorem
Jj(curledS = §F~dr
JfF-dS =JJJ div FdV < pa
s v where F = (2x — y)i — yz% — y*zk and S is the curved
H 2 2 2 _
for F = 4xi — 2y% + 7%k over the region bounded by surface of the hemisphere x” +y~+z° =16, z = 0.
x*+y*=4,z=0and z=3. ] ]
111 By applying Stokes’ theorem to the function af(r),
Prove that where a is a constant, deduce that
JJJ (grad ¢) . (Curl F)dV: JJ (FXgrad ¢) .ds JJ (n Xgrad f) ds = Jf(r)dr
N C
Vv N
Verify this result for the function f(r) = 3xy* and
Verify the divergence theorem for F = (xy + y?)i +x%j the rectangle in the plane z = 0 bounded by the
and the volume V in the first octant bounded by linesx=0,x=1,y=0and y=2.
x=0,y=0,z=0,z=1and x>+ y*=4.
112 Verify Stokes’ theorem for F = (2y +z,x— 2, y — X)

Use Stokes’ theorem to show that the value of the
line integral [ F-dr for

for the part of x> + y* + z*> = 1 lying in the positive
octant.
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ERI 3 CEIT T IO M streamlines in fluid dynamics

As we mentioned in Section 3.1.5, differentials often occur in mathematical modelling
of practical problems. An example occurs in fluid dynamics. Consider the case of
steady-state incompressible fluid flow in two dimensions. Using rectangular cartesian
coordinates (x, y) to describe a point in the fluid, let # and v be the velocities of the fluid
in the x and y directions respectively. Then by considering the flow in and flow out of
a small rectangle, as shown in Figure 3.47, per unit time, we obtain a differential
relationship between u(x, y) and v(x, y) that models the fact that no fluid is lost or gained
Ay | L1 in the rectangle; that is, the fluid is conserved.

The velocity of the fluid g is a vector point function. The values of its components u

(x+Ax,y+Ay)

) T and v depend on the spatial coordinates x and y. The flow into the small rectangle in unit
S time is
k—s
Ax u(x,y )Ay + v(x, y)Ax
Figure 3.47 where ¥ lies between x and x + Ax, and Y lies between y and y + Ay. Similarly, the flow
Fluid flow. out of the rectangle is
u(x + Ax,y)Ay + v(x, y + Ay)Ax
where X lies between x and x + Ax and y lies between y and y + Ay. Because no fluid is
created or destroyed within the rectangle, we may equate these two expressions, giving
u(x, ¥ )Ay + v(x, Y)Ax = u(x + Ax, y)Ay + v(X, y + Ay)Ax
Rearranging, we have
M(X+Ax9)~))_u(-x’}_)) V(;C,y‘*‘Ay)—V()_C,)’)_
+ =0
Ax Ay
Letting Ax — 0 and Ay — 0 gives the continuity equation
Streamline @ N 01\1 0
3 =
u:[Ay * 07y
The fluid actually flows along paths called streamlines so that there is no flow across a
v . .
— streamline. Thus from Figure 3.48 we deduce that
X
. vAx=uAy
Figure 3.48
Streamline. and hence
vdx —udy=0

The condition for this expression to be an exact differential is
J J
ay(v) - ax(_u)

or

@ + i\/ = O

dx  dy
This is satisfied for incompressible flow since it is just the continuity equation, so that
we deduce that there is a function y(x, y), called the stream function, such that
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Example 3.33

Solution

Y

y == and

ox - dy

It follows that if we are given u and v, as functions of x and y, that satisfy the continuity
equation then we can find the equations of the streamlines given by y(x, y) = constant.

Find the stream function (x, y) for the incompressible flow that is such that the velocity
q at the point (x, y) is

(—y/(x* + y?), xI(x* + y?))

From the definition of the stream function, we have

u(r,y) = -2 and v y) = Y
dy Jx

provided that

du  Jdv

—+==0

dx dy
Here we have

—y x
u= and v =
x2 + y2 x2 + y2

so that

@=22;y22 and &=_ 22yx22

dx  (x +y) dy (x"+y)
confirming that

du Jdv

—+==0

dx dy
Integrating

d

Ve cury) = 52

dy X +y

with respect to y, keeping x constant, gives
px, y) =3I +y%) + g(x0)

Differentiating partially with respect to x gives
dy__x  dg
ox X +y dx

Since it is known that

dy_ X
Jx Ve ) X +y




242 VECTOR CALCULUS

we have

dg _
dx_o

which on integrating gives
gx)=C

where C is a constant. Substituting back into the expression obtained for y(x, y), we have
wx,y) =il +y)+C

A streamline of the flow is given by the equation y(x, y) = k, where k is a constant.
After a little manipulation this gives

x*+y’=a®> and Ina=k-C

and the corresponding streamlines are shown in Figure 3.49. This is an example of a
vortex.

g

Figure 3.49 y
Streamline illustrating
a vortex.

[
N

W

3.6  Engineering application: yEEIRIEIIN

In modelling heat transfer problems we make use of three experimental laws.

(1) Heat flows from hot regions to cold regions of a body.

(2) The rate at which heat flows through a plane section drawn in a body is proportional
to its area and to the temperature gradient normal to the section.

(3) The quantity of heat in a body is proportional to its mass and to its temperature.
In the simplest case we consider heat transfer in a medium for which the constants of
proportionality in the above laws are independent of direction. Such a medium is called

thermally isentropic. For any arbitrary region within such a medium we can obtain an
equation that models such heat flows. The total amount Q(f) of heat within the region V is

0(1)= m cpu(r, t)dV

v
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where c is the specific heat of the medium, p is the density and u(r, ¢) is the temperature
at the point r at time ¢. Heat flows out of the region through its bounding surface S. The
experimental laws (1) and (2) above imply that the rate at which heat flows across an
element AS of that surface is —kVu-AS, where k is the thermal conductivity of the
medium. (The minus sign indicates that heat flows from hot regions to cold.) Thus the
rate at which heat flows across the whole surface of the region is given by

” (—kVu)-dS = —k H Vu-dS

N N

Using Gauss’s theorem, we deduce that the rate at which heat flows out of the region is

fffsvar

v

If there are no sources or sinks of heat within the region, this must equal the rate at which
the region loses heat, —dQ/dr. Therefore

,d% JJJ cpu(r, 1)dv| =k J:[J Viudv

v

Since

][ rrse ][ o

Vv \4

this implies that

”J (szu - cp%) dv=0

%

This models the situation for any arbitrarily chosen region V. The arbitrariness in the
choice of V implies that the value of the integral is independent of V and that the
integrand is equal to zero. Thus

2 _ P du
Viu = k ot

The quantity k/cp is termed the thermal diffusivity of the medium and is usually
denoted by the Greek letter kappa, x. The differential equation models heat flow within
a medium. Its solution depends on the initial temperature distribution u(r, 0) and on
the conditions pertaining at the boundary of the region. Methods for solving this equa-
tion are discussed in Chapter 9. This differential equation also occurs as a model for
water percolation through a dam, for neutron transport in reactors and in charge transfer
within charge-coupled devices. We shall now proceed to obtain its solution in a very
special case.
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Example 3.34 A large slab of material has an initial temperature distribution such that one half is at
—u, and the other at +u,. Obtain a mathematical model for this situation and solve it,
stating explicitly the assumptions that are made.

Solution When a problem is stated in such vague terms, it is difficult to know what approximations
and simplifications may be reasonably made. Since we are dealing with heat transfer, we
know that for an isentropic medium the temperature distribution satisfies the equation

1 Jdu
Vi ==-%
“ Kot

throughout the medium. We know that the region we are studying is divided so that at
t = 0 the temperature in one part is —u, while that in the other is +u,, as illustrated in
Figure 3.50. We can deduce from this figure that the subsequent temperature at a point
in the medium depends only on the perpendicular distance of the point from the
dividing plane. We choose a coordinate system so that its origin lies on the dividing
plane and the x axis is perpendicular to it, as shown in Figure 3.51. Then the differential
equation simplifies, since u(r, t) is independent of y and z, and we have

—uy, (x < 0)

+u, (x=0)

C T

u(r, 0) = +(x, 0) u(r, 0) = +(x, 0)
= 7u0 = +M0

Fu_1ou

e o with u(x,0)={
X

Figure 3.50 Region for Example 3.34. Figure 3.51 Coordinate system for Example 3.34.

Thinking about the physical problem also provides us with some further information.
The heat flows from the hot region to the cold until (eventually) the temperature is
uniform throughout the medium. In this case that terminal temperature is zero,
since initially half the medium is at temperature +u, and the other half at —u,. So we
know that u(x, r) — 0 as t — co. We also deduce from the initial temperature distribution
that —u, < u(x, ) < u, for all x and ¢, since there are no extra sources or sinks of heat
in the medium. Summarizing, we have

—uy (x <0)

2 +u, (x=0)

u

2
X

u(x,0) = {

NS

A =

du (0o < x < oo, t = 0) with
ot

NS

u(x,t) bounded for all x
u(x,t) >0 as t—>o
There are many approaches to solving this problem (see Chapter 9). One is to investigate

the effect of changing the scale of the independent variables x and . Setting x = AX and
t = uT, where A and u are positive constants, the problem becomes
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FU_X N

Hox " wor
with UX, T) = u(x, ¢) and U(X, 0) = u, sgn X. Choosing = A2, we see that

FU 1U .
— =——, with U, 0)=u,sgn X
ox* aT 058

which implies that the solution u(x, ) of the original equation is also a solution of the
scaled equation. Thus

u(x, 1) = u(Ax, A*%)

which suggests that we should look for a solution expressed in terms of a new variable s
that is proportional to the ratio of x to Jt Setting s = ax/ Jt, we seek a solution as a
function of s:

u(x, 1) = uo f(s)
This reduces the partial differential equation for u to an ordinary differential equation
for f, since

du _augdf  Qu_dudf  Ju_ | axuydf

dx Jrds’ ox’ rods” dt 2 1t ds
Thus the differential equation is transformed into

<df _ _ax df
t

ds® T 2/(“/1‘ ds
giving
d'f s df

2
—S =-——

ds 2k ds

2
a

Choosing the constant a such that a® = 1/(4 &) reduces this to the equation

if— -2 df

ds’ ds

The initial condition is transformed into two conditions, since for x < 0, s — —oo as
t— 0 and forx > 0, s = + as t — 0. So we have

f(s) > 1 as §s—>oo
f(s) > -1 as s—> —oc0

Integrating the differential equation once gives

df_ Ae”

3 ., where A is a constant
s

and integrating a second time gives

ﬂn=B+AJ@ﬁs
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The integral occurring here is one that frequently arises in heat transfer problems, and
is given a special name. We define the error function, erf(x), by the integral

2 [
erf(x) = :/: e dz
TT)o

Its name derives from the fact that it is associated with the normal distribution, which

is a common model for the distribution of experimental errors (see Section 11.2.4).

This is a well-tabulated function, and has the property that erf(x) — 1 as x — co.
Writing the solution obtained above in terms of the error function, we have

f(s)y=Aerf(s) + B
Letting s — oo and s — —oo gives two equations for A and B:
1=A+B
-1=-A+B
from which we deduce A =1 and B = 0. Thus
f(s) = exf (s)
so that

2 X124t

X 0 -2
u(x,t) = ugerf| —| = — e dz
’ (Zﬁj J

3.7 Review exercises (1-21)

1 Show that u(x, y) = x"f(¢), t = y/x, satisfies the Hence deduce that the general solution of the

differential equations equation is given by

(a) xﬁ‘+yﬂ=nu u(w, y)=f + 3y) + g0 + 1)
ox dy
2 2 2 where f'and g are arbitrary functions.

(b) x° —1: T~ —': =n(n - u Find the solution of the differential equation
Ix Ixdy Y that satisfies the conditions

Verify these results for the function Ju(x, 0)

u(x, y) =x*+y* + 16x2y” u(x, 0) = sin x, 0-,—y =3cosx

2  Find the values of the numbers a and b such that
the change of variables u = x + ay, v =x + by
transforms the differential equation

07—2f— 9—072f + 2&0 =0
i Ixdy ayZ P(x,y, z2)dx+ O(x, y, 2)dy + R(x, y, z) dz
into = Vf-(dx, dy, dz)

2’f -0 Show that this implies V X (P, O, R) = 0. Deduce
dudv that curl grad f= 0.

3 A differential P(x, y, z) dx + O(x, y, 2) dy +
R(x, y, z) dz is exact if there is a function
f(x, y, 2) such that

9
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10

11

Find grad f, plot some level curves f = constant
and indicate grad f by arrows at some points
on the level curves for f(r) given by

12
(@ xy  (b) X(x*+y?)
Show that if @is a constant vector then
(@) grad(w-r=w
(b) curl (wxr)=2w 13

(a) Prove that if f(r) is a scalar point function then
curl grad f=0

(b) Prove that if v = grad [zf(r)] + af(r)k and 14
V2f= 0, where ¢is a constant and fis a
scalar point function, then

S af 2 = ( af )
d1vv-(2+a)0.’z, Vv = grad 231
Show that if F = (x* — y? + x)i — (2xy + y)j,
then curl F = 0, and find f(r) such that
F =gradf.

Verify that 15

(2.1)
J F-dr=[f(n]7,)

(1,2)

A force F acts on a particle that is moving

in two dimensions along the semicircle

x=1-cosf, y=sinf(0 < 6= m).

Find the work done when 16

@) F= " +y)i
(b) F=J(x" +y)n

it being the unit vector tangential to the path. 17

A force F = (xy, —y, 1) acts on a particle as it moves
along the straight line from (0, 0, 0) to (1, 1, 1).
Calculate the work done. 18

The force F per unit length of a conducting wire
carrying a current  in a magnetic field B is
F =1 x B. Find the force acting on a circuit
whose shape is given by x = sin 6, y = cos 6,
z=sin 3 6, when current / flows in it and when
it lies in a magnetic field B = xi — yj + k.

The velocity v at the point (x, y) in a 19
two-dimensional fluid flow is given by

v = (yi — xj)/(x> + y?). Find the net
circulation around the square x = £1, y = *1.

A metal plate has its boundary defined by
x=0, y=x*cand y = c. The density at the
point (x, y) is kxy (per unit area). Find the
moment of inertia of the plate about an axis
through (0, 0) and perpendicular to the plate.

A right circular cone of height / and base radius
a is cut into two pieces along a plane parallel to
and distance ¢ from the axis of the cone. Find the
volume of the smaller piece.

The axes of two circular cylinders of radius a
intersect at right angles. Show that the volume
common to both cylinders may be expressed as
the triple integral

“ (a®=y) (a®=y?)
SJ dy f dx f dz
0 0 0

and hence evaluate it.

The elastic energy of a volume V of material
is g*VI(2EI), where q is its stress and E and [
are constants. Find the elastic energy of a
cylindrical volume of radius r and length / in
which the stress varies directly as the distance
from its axis, being zero at the axis and g, at the
outer surface.

The velocity of a fluid at the point (x, y, z) has
components (3xy, xy?, 0). Find the flow rate out
of the triangular prism bounded by z =0,z =1,
x=0,y=0andx+y=1.

An electrostatic field has components
(2xy, —=y?, x + y) at the point (x, ¥, z). Find the total
flux out of the sphere x> + y? + z> = a’.

Verify Stokes’ theorem

%F»dr = JJ (curl F)-dS

@ N
where F = (x> +y — 4, 3xy, 2xz + z°) and S is
the surface of the hemisphere x> + y> + z> = 16
above the (x, y) plane.

Use the divergence theorem to evaluate the
surface integral
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20

s :

s

where a = xi + yj — 2zk and S is the surface of
the sphere x* + y* + z> = a® above the (x, y)
plane.

Evaluate the volume integral

I

14

where V denotes the wedge-shaped region
bounded in the positive octant by the four
planes x=0,y=0,y=1—-xand z=2 — x.

Continuing the analysis of Section 3.5, show that
the net circulation of fluid around the rectangular
element shown in Figure 3.47 is given by

[u(x, y + Ay) — u(x, y)]Ax
= [v(x + Ax, y) = v(x, y)]Ay

Deduce that if the fluid motion is irrotational at
(x, y), then

e _,
dy Oox

Show that for irrotational incompressible flow,

the stream function ¥ satisfies Laplace equation

2 2
TV, IV _y
Jdx~ oy
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4.1

Introduction

In the theory of alternating currents, the application of quantities such as the complex
impedance involves functions having complex numbers as independent variables. There
are many other areas in engineering where this is the case; for example, the motion of
fluids, the transfer of heat or the processing of signals. Some of these applications are
discussed later in this book.

Traditionally, complex variable techniques have been important, and extensively
used, in a wide variety of engineering situations. This has been especially the case in
areas such as electromagnetic and electrostatic field theory, fluid dynamics, aerodynamics
and elasticity. With the development of computer technology and the consequential use
of sophisticated algorithms for analysis and design in engineering there has, over the
last two decades or so, been less emphasis on the use of complex variable techniques
and a shift towards numerical techniques applied directly to the underlying full partial
differential equations model of the situation being investigated. However, even when
this is the case there is still considerable merit in having an analytical solution, possibly
for an idealized model, in order both to develop better understanding of the behaviour
of the solution and to give confidence in the numerical estimates for the solution of
enhanced models. Many sophisticated software packages now exist, many of which are
available as freeware, downloadable from various internet sites. The older packages
such as FLUENT and CFX are still available and still in use by engineering companies
to solve problems such as fluid flow and heat transfer in real situations. The finite-element
package TELEMAC is modular in style and is useful for larger-scale environmental
problems; these types of software programs use a core plus optional add-ons tailored
for specific applications. The best use of all such software still requires knowledge of
mappings and use of complex variables. One should also mention the computer
entertainment industry which makes use of such mathematics to enable accurate
simulation of real life. The kind of mappings that used to be used extensively in
aerodynamics are now used in the computer games industry. In particular the ability
to analyse complicated flow patterns by mapping from a simple geometry to a complex
one and back again remains very important. Examples at the end of the chapter illustrate
the techniques that have been introduced. Many engineering mathematics texts have
introduced programming segments that help the reader to use packages such as
MATLAB or MAPLE to carry out the technicalities. This has not been done in this
chapter since, in the latest version of MAPLE, the user simply opens the program and
uses the menu to click on the application required (in this chapter a derivative or an
integral), types in the problem and presses return to get the answer. Students are
encouraged to use such software to solve any of the problems; the understanding of
what the solutions mean is always more important than any tricks used to solve what
are idealized problems.

Throughout engineering, transforms in one form or another play a major role
in analysis and design. An area of continuing importance is the use of Laplace, z,
Fourier and other transforms in areas such as control, communication and signal
processing. Such transforms are considered later in the book where it will be seen
that complex variables play a key role. This chapter is devoted to developing under-
standing of the standard techniques of complex variables so as to enable the reader
to apply them with confidence in application areas.
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S

e

I Mapping I

Figure 4.1 Real
mapping y = f(x).

Figure 4.2 Complex
mapping w = f(2).

Complex functions and mappings

The concept of a function involves two sets X and Y and a rule that assigns to each
element x in the set X (written x € X ) precisely one element y € Y. Whenever this situ-
ation arises, we say that there is a function f that maps the set X to the set ¥, and
represent this symbolically by

y=f) xeX)

Schematically we illustrate a function as in Figure 4.1. While x can take any value in
the set X, the variable y = f(x) depends on the particular element chosen for x. We therefore
refer to x as the independent variable and y as the dependent variable. The set X is
called the domain of the function, and the set of all images y = f(x) (x € X) is called
the image set or range of f. Previously we were concerned with real functions, so that
x and y were real numbers. If the independent variable is a complex variable z = x + jy,
where x and y are real and j = J(—_D , then the function f(z) of z will in general also
be complex. For example, if f(z) = z* then, replacing z by x + jy and expanding, we have

f@=x+jy)’=0C"-y)+j2xy=u+jv (say)
where u and v are real. Such a function f(z) is called a complex function, and we write

w=f(z)

where, in general, the dependent variable w = u + jv is also complex.

The reader will recall that a complex number z = x + jy can be represented on a plane
called the Argand diagram, as illustrated in Figure 4.2(a). However, we cannot plot
the values of x, y and f(z) on one set of axes, as we were able to do for real functions
y = f(x). We therefore represent the values of

w=f(Q)=u+jv

on a second plane as illustrated in Figure 4.2(b). The plane containing the independent
variable z is called the z plane and the plane containing the dependent variable w is
called the w plane. Thus the complex function w = f(z) may be regarded as a mapping
or transformation of points P within a region in the z plane (called the domain) to
corresponding image points P” within a region in the w plane (called the range).

It is this facility for mapping that gives the theory of complex functions much of its
application in engineering. In most useful mappings the entire z plane is mapped onto
the entire w plane, except perhaps for isolated points. Throughout this chapter the
domain will be taken to be the entire z plane (that is, the set of all complex numbers,
denoted by C). This is analogous, for real functions, to the domain being the entire real

w=/()
_—

Mapping or
transformation

Domain

ZJP
b

Y @

(a) z plane (b) w plane
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Example 4.1

Solution

Figure 4.3
The mapping of
Example 4.1.

line (that is, the set of all real numbers R). If this is not the case then the complex
function is termed ‘not well defined’. In contrast, as for real functions, the range of the
complex function may well be a proper subset of C.

Find the image in the w plane of the straight line y = 2x + 4 in the z plane, z = x + jy,
under the mapping

w=2z+6

Writing w = u + jv, where u and v are real, the mapping becomes
w=u+jy=2x+jy)+6
or
u+jv=02x+6)+j2y
Equating real and imaginary parts then gives
u=2x+06, v=2y 4.1)
which, on solving for x and y, leads to
x=3u-6)., y=}iv
Thus the image of the straight line
y=2x+4
in the z plane is represented by
Ww=2x3u—-6)+4
or
v=2u—-4

which corresponds to a straight line in the w plane. The given line in the z plane and the
mapped image line in the w plane are illustrated in Figures 4.3(a) and (b) respectively.

Note from (1.1) that, in particular, the point P,(=2 + jO) in the z plane is mapped to
the point P{(2 + jO) in the w plane, and that the point P,(0 + j4) in the z plane is mapped
to the point P5(6 + j8) in the w plane. Thus, as the point P moves from P, to P, along

(b) w plane
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4.2.1

Figure 4.4
The degenerate

mapping w =

the line y = 2x + 4 in the z plane, the mapped point P” moves from P; to P; along the
line v = 2u — 4 in the w plane. It is usual to indicate this with the arrowheads as
illustrated in Figure 4.3.

Linear mappings

The mapping w = 2z + 6 in Example 4.1 is a particular example of a mapping
corresponding to the general complex linear function

w=oaz+f 4.2)
where w and z are complex-valued variables, and «zand fare complex constants. In this
section we shall investigate mappings of the z plane onto the w plane corresponding to

(4.2) for different choices of the constants ¢zand £ In so doing we shall also introduce
some general properties of mappings.

Case (a) =0
Letting =0 (or =0 +jO) in (4.2) gives
w=p

which implies that w = £, no matter what the value of z. This is quite obviously a
degenerate mapping, with the entire z plane being mapped onto the one point w =
in the w plane. If nothing else, this illustrates the point made earlier in this section,
that the image set may only be part of the entire w plane. In this particular case the
image set is a single point. Since the whole of the z plane maps onto w = 3, it follows
that, in particular, z =  maps to w = f The point f§ is thus a fixed point in this
mapping, which is a useful concept in helping us to understand a particular mapping.
A further question of interest when considering mappings is that of whether, given a
point in the w plane, we can tell from which point in the z plane it came under the
mapping. If it is possible to get back to a unique point in the z plane then it is said to
have an inverse mapping. Clearly, for an inverse mapping z = g(w) to exist, the point
in the w plane has to be in the image set of the original mapping w = f(z). Also, from
the definition of a mapping, each point w in the w plane image set must lead to a single
point z in the z plane under the inverse mapping z = g(w). (Note the similarity to the
requirements for the existence of an inverse function f~'(x) of a real function f(x).) For
the particular mapping w = fF considered here the image set is the single point w = fin
the w plane, and it is clear from Figure 4.4 that there is no way of getting back to just
a single point in the z plane. Thus the mapping w = f has no inverse.

Mapping w =8
—_—

?ﬁ

=Y

z plane w plane
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Figure 4.5
The mapping
w=(+)j)z

Case (b) =0, =0
With such a choice for the constants ¢zand £, the mapping corresponding to (4.2) becomes
w=az

Under this mapping, the origin is the only fixed point, there being no other fixed points
that are finite. Also, in this case there exists an inverse mapping

1
=—=w
(2%

that enables us to return from the w plane to the z plane to the very same point
from which we started under w = az. To illustrate this mapping at work, let us choose
a=1+], so that

w=(1+)z 4.3)

and consider what happens to a general point z, in the z plane under this mapping. In
general, there are two ways of doing this. We can proceed as in Example 4.1 and split
both z and w into real and imaginary parts, equate real and imaginary parts and hence
find the image curves in the w plane to specific curves (usually the lines
Re(z) = constant, Im(z) = constant) in the z plane. Alternatively, we can rearrange the
expression for w and deduce the properties of the mapping directly. The former course
of action, as we shall see in this chapter, is the one most frequently used.
Here, however, we shall take the latter approach and write =1 + j in polar form as

1+j = J2¢™
Then, if
z=re'’
in polar form it follows from (4.3) that
w = ry2e!Y 4.4)

We can then readily deduce from (4.4) what the mapping does. The general point in the
z plane with modulus » and argument 8is mapped onto an image point w, with modulus
r+2 and argument 6+ ZI;TE in the w plane as illustrated in Figure 4.5.

It follows that in general the mapping

w=aQz

maps the origin in the z plane to the origin in the w plane (fixed point), but effects
an expansion by || and an anticlockwise rotation by arg a. Of course, arg & need not
be positive, and indeed it could even be zero (corresponding to ¢ being real). The mapping
can be loosely summed up in the phrase ‘magnification and rotation, but no translation’.

y=1Im(z2) v=1m(w)

w=(l+]j)z

o x=Re{ 0 u=Re(w)

z plane w plane
P
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Figure 4.6
The mapping
w={+p

Certain geometrical properties are also preserved, the most important being that straight
lines in the z plane will be transformed to straight lines in the w plane. This is readily
confirmed by noting that the equation of any straight line in the z plane can always be
written in the form

|2—al=|z-b]
where a and b are complex constants (this being the equation of the perpendicular

bisector of the join of the two points representing a and b on the Argand diagram).
Under the mapping w = &z, the equation maps to

- —a

w
o

—|¥_
_’a b‘ (ax#0)

or
|w—aca|=|w-ba|
in the w plane, which is clearly another straight line.
We now return to the general linear mapping (4.2) and rewrite it in the form

w—f=az
This can be looked upon as two successive mappings: first,
{=oz

identical to w = &z considered earlier, but this time mapping points from the z plane to
points in the ¢ plane; secondly,
w={+pf 4.5)

mapping points in the ¢ plane to points in the w plane. Elimination of ¢ regains
equation (4.2). The mapping (4.5) represents a translation in which the origin in the ¢
plane is mapped to the point w = fin the w plane, and the mapping of any other point
in the ¢ plane is obtained by adding S to the coordinates to obtain the equivalent point
in the w plane. Geometrically, the mapping (4.5) is as if the { plane is picked up and,
without rotation, the origin placed over the point £ The original axes then represent the
w plane as illustrated in Figure 4.6. Obviously all curves, in particular straight lines,
are preserved under this translation.

We are now in a position to interpret (4.2), the general linear mapping, geometrically
as a combination of mappings that can be regarded as fundamental, namely

e translation
e rotation, and
e magnification

that is,
0

€ 2 Tagnification | 0(|ejn9z —>|a|ejgz + ,H= oz + ﬁ= w

translation

Z

rotation

e w={+8
—_—

op

=y

Cplane, (=) + )6 wplane, w=u+ ju



256 FUNCTIONS OF A COMPLEX VARIABLE

Example 4.2

Solution

It clearly follows that a straight line in the z plane is mapped onto a corresponding
straight line in the w plane under the linear mapping w = az + A second useful
property of the linear mapping is that circles are mapped onto circles. To confirm this,
consider the general circle

|z—z| =1

in the z plane, having the complex number z; as its centre and the real number r as its
radius. Rearranging the mapping equation w = oz + [ gives

=2 B (ar0
a o
so that
\ 1
Z—Zo=a—§—zo=a(w—wo)

where w, = az, + . Hence
|z—z|=7

implies
|w—wy| =|a|r

which is a circle, with centre w, given by the image of z; in the w plane and with radius
|cx|r given by the radius of the z plane circle magnified by |¢|.
We conclude this section by considering examples of linear mappings.

Examine the mapping
w={1+jz+1-]

as a succession of fundamental mappings: translation, rotation and magnification.

The linear mapping can be regarded as the following sequence of simple mappings:

mi4 jm/4 jm/4 .
z ez J2e™ 7 —> 2 +1-j=w
rotation magnification translation
anticlockwise 0—1-jor
! by /2 (0,0) = (1,-1)
by el

Figure 4.7 illustrates this process diagrammatically. The shading in Figure 4.7 helps to
identify how the z plane moves, turns and expands under this mapping. For example,
the line joining the points 0 + j2 and 1 + jO in the z plane has the cartesian equation

%y+x=1

Taking w = u + jv and z = x + jy, the mapping
w=1+jz+1-j

becomes

u+jv=_1+px+jy+1l—-j=x—-y+D+jx+y-1)
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Figure 4.7
The mappings of
Example 4.2.

Example 4.3
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z plane
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V2eltMz 4 ] — s
ae— % 2
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0 ! “ 22 =19 1 o2
-1t 1
)
-1-j3 3-j3
w plane

Equating real and imaginary parts then gives
u=x—-y+1, v=x+y—-1

which on solving for x and y gives
2x=u+v, 2y=v—u+2

Substituting for x and y into the equation %y + x = 1 then gives the image of this line in
the w plane as the line

3v+u=2

which crosses the real axis in the w plane at 2 and the imaginary axis at % Both lines
are shown dashed, in the z and w planes respectively, in Figure 4.7.

The mapping w = oz + f (e, [ constant complex numbers) maps the point z =1 + j
to the point w = j, and the point z =1 — j to the point w = —1.

(a) Determine ¢ and £

(b) Find the region in the w plane corresponding to the right half-plane Re(z) = 0
in the z plane.

(c) Find the region in the w plane corresponding to the interior of the unit circle
|z] < 1in the z plane.

(d) Find the fixed point(s) of the mapping.

In (b)—(d) use the values of & and £ determined in (a).
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Solution

(a)

(b)

The two values of z and w given as corresponding under the given linear mapping
provide two equations for ¢ and f as follows: z = 1 + j mapping to w =
implies

j=ad+)+p

while z =1 — j mapping to w = —1 implies

“l=a(l-j)+p

Subtracting these two equations in ¢ and 3 gives

jtl=a(d+j)—al-j)

so that

a=d=10-i)

Substituting back for S then gives

B=j-(+pa=j-3;01-7)=j-1

so that

w=s(-jr+j-1=0-jGz-1)

The best way to find specific image curves in the w plane is first to express
z(=x+jy) in terms of w (= u + jv) and then, by equating real and imaginary parts,
to express x and y in terms of u# and v. We have

w=(-jGz=1)
which, on dividing by 1 —j, gives

T =5z-1
Taking w = u + jv and z = x + jy and then rationalizing the left-hand side, we have
s+ =56 +jy) ~ 1

Equating real and imaginary parts then gives

u—-v=x-2, u+v=y (4.6)

The first of these can be used to find the image of x = 0. It is u — v = -2, which
is also a region bordered by the straight line # — v = =2 and shown in Figure 4.8.
Pick one point in the right half of the z plane, say z = 2, and the mapping gives
w = 0 as the image of this point. This allays any doubts about which side of
u — v = =2 corresponds to the right half of the z plane, x = 0. The two
corresponding regions are shown ‘hatched’ in Figure 4.8.

Note that the following is always true, although we shall not prove it here. If a

curve cuts the z plane in two then the corresponding curve in the w plane also cuts
the w plane in two, and, further, points in one of the two distinct sets of the z plane
partitioned by the curve correspond to points in just one of the similarly partitioned
sets in the w plane.
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Figure 4.8
The mappings of
Example 4.3.

'¢ \‘/ 'l
£ X . //\ .’ .
'\‘ X // O u
. /, /
|/ / ~
z plane w plane

(©)

(d)

In cartesian form, with z = x + jy, the equation of the unit circle |z| =1 is

X+y =1

Substituting for x and y from the mapping relationships (4.6) gives the image of
this circle as

w—v+2+w+vy=1

or

u2+v2+2u—2v+% =0

which, on completing the squares, leads to

w+12+@v-1>=}

As expected, this is a circle, having in this particular case centre (-1, 1) and radius

LIfx*+yi<1lthen (u+ 17+ (v —-1)7>< 1, so the region inside the circle
|z| = 1 in the z plane corresponds to the region inside its image circle in the w
plane. Corresponding regions are shown shaded in Figure 4.8.

The fixed point(s) of the mapping are obtained by putting w =z inw = az + f,
leading to

z=(z- D~}

that is,

2= 32— 32— 1 +]

so that
-1+j .
ZZI 1!:]2
3t3l]

is the only fixed point.

One final point is in order before we leave this example. In Figure 4.8 the images of

x =0 and x* + y* = 1 can also be seen in the context of translation, rotation (the line in
Figure 4.8 rotates about z = 2j) and magnification (in fact, shrinkage, as can be seen by
the decrease in diameter of the circle compared with its image in the w plane).
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4.2.2 Exercises

Find in the cartesian form y = mx + ¢ (m and c real
constants) the equations of the following straight
lines in the z plane, z = x + jy:

@ |z=2+j|=]z-j+3]
(b) z+z*+4j(z—z%)=6

where * denotes the complex conjugate.

Find the point of intersection and the angle of
intersection of the straight lines

|[z=1-j|=]z-3+]j]
|z=1+j|=]z-3-]j]

The function w = jz + 4 — 3j is a combination of
translation and rotation. Show this diagrammatically,
following the procedure used in Example 4.2. Find
the image of the line 6x + y =22 (z =x + jy) in the
w plane under this mapping.

Show that the mapping w = (1 — j)z, where
w=u+jv and z = x + jy, maps the region y >1
in the z plane onto the region u + v >2 in the
w plane. Illustrate the regions in a diagram.

Under the mapping w = jz + j, where w =u + jv
and z = x + jy, show that the half-plane x > 0
in the z plane maps onto the half-plane v > 1 in the
w plane.

For z = x + jy find the image region in the w plane
corresponding to the semi-infinite strip x > 0,

0 <y < 2 in the z plane under the mapping

w = jz + 1. [llustrate the regions in both planes.

Find the images of the following curves under
the mapping

w=(+.B3)+jf3 -1
(@ y=0 () x=0
) ¥+y’=1 d FP+y*+2y=1

where z =x + jy.

The mapping w = oz + S (a, S both constant
complex numbers) maps the point z =1+ j to
the point w = j and the point z = —1 to the point
w=1+]j.

(a) Determine ¢rand £

(b) Find the region in the w plane
corresponding to the upper half-plane
Im(z) >0 and illustrate diagrammatically.

(c) Find the region in the w plane corresponding to
the disc | z| < 2 and illustrate diagrammatically.

(d) Find the fixed point(s) of the mapping.

In (b)—(d) use the values of &and S determined
in (a).

4.2.3 Inversion

The inversion mapping is of the form

1
z

w=

4.7)

and in this subsection we shall consider the image of circles and straight lines in the
z plane under such a mapping. Clearly, under this mapping the image in the w plane of

the general circle

|z—2|=7r

in the z plane, with centre at z, and radius r, is given by

1
— —Zo| =T
w

4.8)

but it is not immediately obvious what shaped curve this represents in the w plane. To
investigate, we take w = u + jv and z, = x, + jy, in (4.8), giving
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LT
- A0 T 0
uw+y

=r

Squaring we have

u . : LAY >,
—Xo| + o =r
'+’ '+’

which on expanding leads to

2 2

u 2ux 2 v 2vy 2 2
2 22 2 02 ot — 55 T T3 02 =T
uw +v)y u+v (u"+v7) (u"+v7)
or
2 2
u +v 2vy0—2ux0_r2 2 y2
=r —=Xo= Yo
(Lt2+V2)2 W+
so that
W+ v —x3—yd) + 2ux, — 2vy, = 1 4.9)

The expression is a quadratic in u and v, with the coefficients of u* and v? equal and no
term in uv. It therefore represents a circle, unless the coefficient of u? +7 is itself zero,
which occurs when

xg+ys=r’ or |z|=r
and we have

2uxy —2vy, =1

which represents a straight line in the w plane.

Summarizing, the inversion mapping w = 1/z maps the circle |z — zy| = r in the z
plane onto another circle in the w plane unless |z,| = 7, in which case the circle is
mapped onto a straight line in the w plane that does not pass through the origin.

When |z,| # r, we can divide the equation of the circle (4.9) in the w plane by the
factor 7> — x3 — y} to give

2+ 2+ 2x0u 2y4v _ 1
u 4 2 2 2 2 2 2T 2 2 2
r—=—Xo=Yo r —Xo—Yo I —Xo= Yo

which can be written in the form
(u— u0)2 + (- v0)2 =R?

where (1, v,) are the coordinates of the centre and R the radius of the w plane circle. It
is left as an exercise for the reader to show that

X
(uo,mz[ SR j R= ol

2 2° 2 -2 2
r =zl "~z r =]z

Next we consider the general straight line

|z—a|=|z—a)
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in the z plane, where a, and a, are constant complex numbers with a, # a,. Under the
mapping (4.7), this becomes the curve in the w plane represented by the equation

‘ 1 (4.10)

- —a
w

=‘1

- —a,
w

Again, it is not easy to identify this curve, so we proceed as before and take
w=u+jv, a,=p+jq, a,=r+js

where p, g, r and s are real constants. Substituting in (4.10) and squaring both sides, we

have
2 2 2 2
u_ ), LA I u_ ), LA
w0 u o+ w4 w4

Expanding out each term, the squares of u/(u* + v?) and v/(u* + v?) cancel, giving

3 22upz_’_pz_|_ 22vq . +qi=— 22ur2+ 2 22vs 2_’_Sz
u +v u +v u +v u +v
which on rearrangement becomes
W +VPP+ @ —r =)+ 2u(r—p) +2v(g—s5)=0 4.11)

Again this represents a circle through the origin in the w plane, unless
PrPHg=r+s

which implies |a,| = | a,|, when it represents a straight line, also through the origin, in
the w plane. The algebraic form of the coordinates of the centre of the circle and its
radius can be deduced from (4.11).

We can therefore make the important conclusion that the inversion mapping
w = 1/z takes circles or straight lines in the z plane onto circles or straight lines in
the w plane. Further, since we have carried out the algebra, we can be more
specific. If the circle in the z plane passes through the origin (that is, | zy| = 7 in (4.9))
then it is mapped onto a straight line that does not pass through the origin in the w
plane. If the straight line in the z plane passes through the origin (|a,| = |a,| in
(4.11)) then it is mapped onto a straight line through the origin in the w plane.
Figure 4.9 summarizes these conclusions.

To see why this is the case, we first note that the fixed points of the mapping, determined
by putting w = z, are

1
z=-, or 77=1
Z

so that z = *1.

We also note that z =0 is mapped to infinity in the w plane and w = 0 is mapped to
infinity in the z plane and vice versa in both cases. Further, if we apply the mapping a
second time, we get the identity mapping. That is, if

w= -, and é/:v_lv
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Figure 4.9
The inversion
mapping w = 1/z.
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then

1
{= Tz Z
which is the identity mapping.

The inside of the unit circle in the z plane, |z| < 1, is mapped onto | 1/w| < 1 or
|w| > 1, the outside of the unit circle in the w plane. By the same token, therefore,
the outside of the unit circle in the z plane |z| > 1 is mapped onto |1/w| > 1 or
|w]| < 1, the inside of the unit circle in the w plane. Points actually on |z| =1 in the
z plane are mapped to points on |w| = 1 in the w plane, with £1 staying fixed, as
already shown. Figure 4.10 summarizes this property.

It is left as an exercise for the reader to show that the top half-boundary of |z| =1 is
mapped onto the bottom half-boundary of |w|= 1.

For any point z, in the z plane the point 1/z, is called the inverse of z, with respect
to the circle | z| = I; this is the reason for the name of the mapping. (Note the double
meaning of inverse; here it means the reciprocal function and not the ‘reverse’
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Figure 4.10 Mapping
of the unit circle under
w=1/z.

Example 4.4

Solution

z plane w plane

mapping.) The more general definition of inverse is that for any point z, in the z plane
the point r%/z, is the inverse of z, with respect to the circle |z| = r, where r is a real
constant.

Determine the image path in the w plane corresponding to the circle |z — 3| = 2 in the
z plane under the mapping w = 1/z. Sketch the paths in both the z and w planes and
shade the region in the w plane corresponding to the region inside the circle in the
z plane.

The image in the w plane of the circle |z — 3| = 2 in the z plane under the mapping
w = 1/z is given by

-3 -2

which, on taking w = u + jv, gives

u—jv
-31=2
W+ ‘

Squaring both sides, we then have
2 2

u _ + -V _4
w0 u o+

2 2
u +v 6u

(Lt2 + vz)2 '+

or

+5=0

which reduces to
1-6u+5u>+vH=0
or
(w—3y+vi= =
Thus the image in the w plane is a circle with centre (% , 0) and radius g . The corresponding
circles in the z and w planes are shown in Figure 4.11.
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Figure 4.11

The mapping of

Example 4.4.

4.2.4

Taking z = x + jy, the mapping w = 1/z becomes

1 x—jy

u+jv=
x+jy xz+y2

which, on equating real and imaginary parts, gives

X yo Y

u= s
x2+y2 x2+y2

We can now use these two relationships to determine the images of particular points
under the mapping. In particular, the centre (3, 0) of the circle in the z plane is mapped
onto the point u = % , v=_01n the w plane, which is inside the mapped circle. Thus, under
the mapping, the region inside the circle in the z plane is mapped onto the region inside
the circle in the w plane.

Further, considering three sample points A(1 + jO), B(3 — j2) and C(5 + jO) on the
circle in the z plane, we find that the corresponding image points on the circle in the w
plane are A’(1, 0), B'(%, % ) and C'(é , 0). Thus, as the point z traverses the circle in the
z plane in an anticlockwise direction, the corresponding point w in the w plane will also
traverse the mapped circle in an anticlockwise direction as indicated in Figure 4.11.

Bilinear mappings

A bilinear mapping is a mapping of the form

_az+b
cz+d

4.12)

where a, b, ¢ and d are prescribed complex constants. It is called the bilinear mapping
in z and w since it can be written in the form Awz + Bw + Cz + D = 0, which is linear
in both z and w.

Clearly the bilinear mapping (4.12) is more complicated than the linear mapping
given by (4.2). In fact, the general linear mapping is a special case of the bilinear
mapping, since setting ¢ =0 and d =1 in (4.12) gives (4.2). In order to investigate the
bilinear mapping, we rewrite the right-hand side of (4.12) as follows:

_az+b _ g(CZ+d)_Cl_:i+b
Ccz+d cz+d
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so that

a  bc—-ad
=4 — == 4.13
Y ¢ clcz+4d) ( )
This mapping clearly degenerates to w = a/c unless we demand that bc — ad # 0. We
therefore say that (4.12) represents a bilinear mapping provided the determinant

b
‘zad—bc
c d

is non-zero. This is sometimes referred to as the determinant of the mapping. When
the condition holds, the inverse mapping

Z_—dw+b
cw—a

obtained by rearranging (4.12), is also bilinear, since

—d b
=da—cb#0

C —a

Renaming the constants so that A = alc, ¢ = bc — ad, o= ¢* and = cd, (4.13)
becomes

U
oaz+ f

w=A+

and we can break the mapping down into three steps as follows:

g=az+pf
1
==
<1
w=A+ Uz,

The first and third of these steps are linear mappings as considered in Section 4.2.1,
while the second is the inversion mapping considered in Section 4.2.3. The bilinear
mapping (4.12) can thus be generated from the following elementary mappings:

1
. oz , o7+ f——
rotation translation inversion oz + ﬂ
and
magnification
) LM
magnification  ¢r7 + ﬂ translation oz + ﬂ

and
rotation

We saw in Section 4.2.1 that the general linear transformation w = oz + £ does not
change the shape of the curve being mapped from the z plane onto the w plane. Also,
in Section 4.2.3 we saw that the inversion mapping w = 1/z maps circles or straight lines
in the z plane onto circles or straight lines in the w plane. It follows that the bilinear
mapping also exhibits this important property, in that it also will map circles or straight
lines in the z plane onto circles or straight lines in the w plane.
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Example 4.5

Solution

Investigate the mapping

_z—1
z+1

by finding the images in the w plane of the lines Re(z) = constant and Im(z) = constant.
Find the fixed points of the mapping.

Since we are seeking specific image curves in the w plane, we first express z in terms
of w and then express x and y in terms of # and v, where z = x + jy and w =u + jv.
Rearranging

w=—
z+1

14w
1-w

Taking z = x + jy and w = u + jv, we have

_ltu+jvl-u+tjv
l—u—jv1-u+jv

which reduces to

1—u - . 2v

(1—u)+V’ J(1—u)2+v2

x+jy=

Equating real and imaginary parts then gives

1—u’=
x=—r (4.14a)
(1—u)+v
2
y=—=" (4.14b)
(1-u)"+v

It follows from (4.14a) that the lines Re(z) = x = ¢,, which are parallel to the imaginary
axis in the z plane, correspond to the curves

o = 1—u =V
-+

where c, is a constant, in the w plane. Rearranging this leads to
(1 =2u+w?+v)=1-u*—
or, assuming that 1 + ¢, #0,

2 2c,u ci—1 _

2
u+v =
l+c¢ ¢, +1
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which, on completing squares, gives

2 2
PR S Y.
1+c¢ 1+c¢,

It is now clear that the corresponding curve in the w plane is a circle, centre (1 =
¢,/(1 +¢,), v=0) and radius (1 +c,)™".

In the algebraic manipulation we assumed that ¢, # —1, in order to divide by 1 + c,.
In the exceptional case ¢, = —1, we have u = 1, and the mapped curve is a straight line
in the w plane parallel to the imaginary axis.

Similarly, it follows from (4.14b) that the lines Im(z) = y = ¢,, which are parallel to
the imaginary axis in the z plane, correspond to the curves

_ 2y
(1—u)’+v

C

where ¢, is a constant, in the w plane. Again, this usually represents a circle in the w
plane, but exceptionally will represent a straight line. Rearranging the equation we have
2y

A—uy+v==—
Ca

provided that ¢, # 0. Completing the square then leads to
2

(u1)2+(v—1—] =
%

which represents a circle in the w plane, centre (v = 1, v = 1/c,) and radius 1/c,.

In the exceptional case ¢, = 0, v = 0 and we see that the real axis y = 0 in the z plane
maps onto the real axis v = 0 in the w plane.

Putting a sequence of values to ¢, and then to c¢,, say —10 to +10 in steps of +1,
enables us to sketch the mappings shown in Figure 4.12. The fixed points of
the mapping are given by

Sl =

=2 !
z+1
Figure 4.12 v=1Im(w)A
The mapping of
Example 4.5. 2=l
z+ 1
y=Im {:}T .
|
|
e —_ _ s ——
Ol x=Re(z) u=Re (w)
|
z plane

w plane
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Example 4.6

Solution

that is,
Z=-1, or z=4%j

In general, all bilinear mappings will have two fixed points. However, although there
are mathematically interesting properties associated with particular mappings having
coincident fixed points, they do not impinge on engineering applications, so they only
deserve passing reference here.

Find the image in the w plane of the circle |z| = 2 in the z plane under the bilinear
mapping

Sketch the curves in both the z and w planes and shade the region in the w plane corresponding
to the region inside the circle in the z plane.

Rearranging the transformation, we have

Z:J‘4’+J
1-w

so that the image in the w plane of the circle |z| =2 in the z plane is determined by

‘jw+j
1—-w

‘ N (4.15)

One possible way of proceeding now is to put w = u + jv and proceed as in Example 4.4,
but the algebra becomes a little messy. An alternative approach is to use the property of
complex numbers that | z,/z,| = |z, |/|z,|, so that (4.15) becomes

|iw +i=2[1 - w]

Taking w = u + jv then gives
|[=v+ju+1D)|=2|(1-u)—jv|

which on squaring both sides leads to
v+ (1 +u)? = 4[(1 — u)* ++%]

or
W+ - %)u-i-l:O

Completing the square of the u term then gives
(=3P +v=1%

indicating that the image curve in the w plane is a circle centre (u = ; , v=0) and radius
‘3‘ . The corresponding circles in the z and w planes are illustrated in Figure 4.13. To
identify corresponding regions, we consider the mapping of the point z =0 + jO

inside the circle in the z plane. Under the given mapping, this maps to the point
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Figure 4.13
The mapping of
Example 4.6.

Example 4.7

Solution

in the w plane. It then follows that the region inside the circle | z| = 2 in the z plane maps
onto the region outside the mapped circle in the w plane.

Y J
2
/ .
Lol T 111717 L
_2\\0/2 x ol: 3 9 u
2

z plane w plane

An interesting property of (4.12) is that there is just one bilinear transformation that
maps three given distinct points z;, z, and z; in the z plane onto three specified distinct
points w,, w, and w; respectively in the w plane. It is left as an exercise for the reader
to show that the bilinear transformation is given by

(w = w))(w, — wsy) _ (z —z2)(20 — 23)
(w=w3)(w, —wy) (22— 23)(z20— 21)

(4.16)

The right-hand side of (4.16) is called the cross-ratio of z;, z,, z; and z. We shall illustrate
with an example.

Find the bilinear transformation that maps the three points z = 0, —j and —1 onto the
three points w = j, 1, O respectively in the w plane.

Taking the transformation to be

_az+b
cz+d

on using the given information on the three pairs of corresponding points we have

. a(0)+b _ b

1 =0 ra"a @172
_a(=)h+b
1= ) *d (4.17b)
_a(-)+b
0= D+ d “4.17¢)
From (4.17¢) a = b; then from (4.17a)
d= [Z =—jb=-ja

J
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10

11

12

13

and from (4.17b) ¢ = ja. Thus

_azt+ta _lz+1 .z+1

Cjaz—ja jz-1

z—1

Alternatively, using (4.16) we can obtain

w-PU-0_(=-0j+1)

(w=0)(1-j) (z+1)(=j-0)

or

2+ 1

Jz—l

as before.

4.2.5 Exercises

Show that if z = x + jy, the image of the half-plane
y > ¢ (c constant) under the mapping w = 1/z is the
interior of a circle, provided that ¢ > 0. What is
the image when ¢ = 0 and when ¢ < 07 Illustrate
with sketches in the w plane.

Determine the image in the w plane of the circle
z+3+j|=1
under the inversion mapping w = 1/z.

Show that the mapping w = 1/z maps the circle
|z — a| = a, with a being a positive real constant,
onto a straight line in the w plane. Sketch the
corresponding curves in the z and w planes,
indicating the region onto which the interior

of the circle in the z plane is mapped.

Find a bilinear mapping that maps z=0to w =j,
z=—jtow=1and z=-1 to w = 0. Hence sketch
the mapping by finding the images in the w plane
of the lines Re(z) = constant and Im(z) = constant in
the z plane. Verify that z = % (j- D(=1+£./3)are
fixed points of the mapping.

The two complex variables w and z are related
through the inverse mapping
1+
w=-—1
z
(a) Find the images of the points z=1, 1 —j and
0 in the w plane.
(b) Find the region of the w plane corresponding
to the interior of the unit circle |z| < 1 in the
Z plane.

14

15

16

17

(c) Find the curves in the w plane corresponding
to the straight lines x =y and x + y = 1 in the
z plane.

(d) Find the fixed points of the mapping.

Given the complex mapping

z+ 1
W:

z-1
where w = u + jv and z = x + jy, determine the
image curve in the w plane corresponding to the
semicircular arc 2> +y* = 1 (x < 0) described from
the point (0, —1) to the point (0, 1).

(a) Map the region in the z plane (z = x + jy) that
lies between the lines x =y and y = 0, with x < 0,
onto the w plane under the bilinear mapping

_ztj

T z-3
(Hint: Consider the point w = § to help identify
corresponding regions.)

(b) Show that, under the same mapping as in (a),
the straight line 3x + y = 4 in the z plane
corresponds to the unit circle |w| = 1 in the
w plane and that the point w = 1 does not
correspond to a finite value of z.

If w=(z—j)/(z +]j), find and sketch the image in
the w plane corresponding to the circle |z| =2 in the
z plane.

Show that the bilinear mapping
_ ejgo - Z;l
Z— 2y
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18

where 6, is a real constant 0 < 6, < 2m, z, a fixed
complex number and z§ its conjugate, maps the
upper half of the z plane (Im(z) > 0) onto the inside
of the unit circle in the w plane (|w| < 1). Find the
values of z, and 6, if w = 0 corresponds to z = j and
w =—1 corresponds to 7 = oo.

Show that, under the mapping

- iz
Z+]

19

circular arcs or the straight line through z =0 and
z =]j in the z plane are mapped onto circular arcs
or the straight line through w =0 and w =j in the
w plane. Find the images of the regions |z — % | < %
and |z| < |z —j|in the w plane.

Find the most general bilinear mapping that maps
the unit circle |z| = 1 in the z plane onto the unit
circle |w| =1 in the w plane and the point z = z, in
the z plane to the origin w = 0 in the w plane.

Example 4.8

4.2.6 The mapping w = z2

There are a number of other mappings that are used by engineers. For example, in
dealing with Laplace and z transforms, the subjects of Chapters 5 and 6 respectively, we
are concerned with the polynomial mapping

w=ay,+az+---+a,z"

where a, a,, . .

_P@)
Y00

., a, are complex constants, the rational function

where P and Q are polynomials in z, and the exponential mapping

w=ae”

where e = 2.71828 . . ., the base of natural logarithms. As is clear from the bilinear
mapping in Section 4.2.4, even elementary mappings can be cumbersome to analyse.
Fortunately, we have two factors on our side. First, very detailed tracing of specific
curves and their images is not required, only images of points. Secondly, by using complex
differentiation, the subject of Section 4.3, various facets of these more complicated
mappings can be understood without lengthy algebra. As a prelude, in this subsection
we analyse the mapping w = z%, which is the simplest polynomial mapping.

Investigate the mapping w = z by plotting the images on the w plane of the lines

x = constant and y = constant in the z plane.

Solution

There is some difficulty in inverting this mapping to get z as a function of w, since

square roots lead to problems of uniqueness. However, there is no need to invert here,
for taking w = u + jv and z = x + jy, the mapping becomes

w=u+jv=(x+jy)?= x> —y) +j2xy

which, on taking real and imaginary parts, gives

u=x -y

v =2xy

(4.18)
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If x = ¢, a real constant, then (4.18) becomes
u=a*-y? v=2ay

which, on eliminating y, gives

2

V
u=o*- —
40’
or
40’u=40' -V
so that

vi=4ot —40Pu=40%(0F - u)

This represents a parabola in the w plane, and, since the right-hand side must be
positive, & = u so the ‘nose’ of the parabola is at u = a* on the positive real axis in
the w plane.

If y = f, a real constant, then (4.18) becomes

u=x'-f, v=2xp3
which, on eliminating x, gives
v
u= E -5
or
4B =v* - 4"
so that
V=4 u+ 48 =45 u + B

This is also a parabola, but pointing in the opposite direction. The right-hand side, as
before, must be positive, so that u > —/* and the ‘nose’ of the parabola is on the
negative real axis. These curves are drawn in Figure 4.14.

Figure 4.14

v y
The mapping of
Example 4.8.
.‘I
w=2z? \
S ——

) O BN I O O B z

| —

w plane

=Y
=y

o
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20

21

22

We shall not dwell further on the finer points of the mapping w = 7. Instead, we note
that in general it is extremely difficult to plot images of curves in the z plane, even the
straight lines parallel to the axes, under polynomial mappings. We also note that we do

not often need to do so, and that we have done it only as an aid to understanding.

The exercises that follow should also help in understanding this topic. We shall then
return to examine polynomial, rational and exponential mappings in Section 4.3.4, after
introducing complex differentiation.

4.2.7 Exercises

Find the image region in the w plane corresponding
to the region inside the triangle in the z plane having
vertices at 0 + jO, 2 + jO and O + j2 under the
mapping w = z> Illustrate with sketches.

Find the images of the lines y = x and y = —x under
the mapping w = z>. Also find the image of the
general line through the origin y = mx. By putting
m = tan 6,, deduce that straight lines intersecting at
the origin in the z plane map onto lines intersecting
at the origin in the w plane, but that the angle
between these image lines is double that between
the original lines.

Consider the mapping w = z", where n is an integer
(a generalization of the mapping w = z?). Use the
polar representation of complex numbers to show
that

(a) Circles centred at the origin in the z plane are
mapped onto circles centred at the origin in the
w plane.

23

(b) Straight lines passing through the origin
intersecting with angle 6, in the z plane are
mapped onto straight lines passing through the
origin in the w plane but intersecting at an
angle né,.

If the complex function

_1+z2
Z

is represented by a mapping from the z plane onto
the w plane, find u in terms of x and y, and v in terms
of x and y, where z = x + jy, w = u + jv. Find the
image of the unit circle | z| = 1 in the w plane. Show
that the circle centred at the origin, of radius 7, in
the z plane (|z| =r) is mapped onto the curve

2 2 2 2
TE | L = =D
r+1 rr—1

in the w plane. What kind of curves are these? What
happens for very large r?

Complex differentiation

The derivative of a real function f(x) of a single real variable x at x = x, is given by the
limit

f’(xo) = lim {f(x) — f(xo):|

X=X X — Xo

Here, of course, x, is a real number and so can be represented by a single point on the
real line. The point representing x can then approach the fixed x, either from the left or
from the right along this line. Let us now turn to complex variables and functions
depending on them. We know that a plane is required to represent complex numbers,
S0 z,, 1s now a fixed point in the Argand diagram, somewhere in the plane. The definition
of the derivative of the function f(z) of the complex variable z at the point z, will thus be
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4.3.1

f'(z) = lim
-7

{f(z) —f(zo)}

Z— 2

It may appear that if we merely exchange z for x, the rest of this section will follow
similar lines to the differentiation of functions of real variables. For real variables taking
the limit could only be done from the left or from the right, and the existence of a
unique limit was not difficult to establish. For complex variables, however, the point that
represents the fixed complex number z, can be approached along an infinite number of
curves in the z plane. The existence of a unique limit is thus a very stringent requirement.
That most complex functions can be differentiated in the usual way is a remarkable
property of the complex variable. Since z = x + jy, and x and y can vary independently,
there are some connections with the calculus of functions of two real variables, but we
shall not pursue this connection here.

Rather than use the word ‘differentiable’ to describe complex functions for which a
derivative exists, if the function f{z) has a derivative f*(z) that exists at all points of a region
R of the z plane then f(z) is called analytic in R. Other terms such as regular or
holomorphic are also used as alternatives to analytic. (Strictly, functions that have
a power series expansion — see Section 4.4.1 — are called analytic functions. Since
differentiable functions have a power series expansion they are referred to as analytic
functions. However, there are examples of analytic functions that are not differentiable.)

Cauchy-Riemann equations

The following result is an important property of the analytic function.

If z=x+jy and f(z) =u(x, y) +jv(x, y), and f(z) is analytic in some region R of the
z plane, then the two equations

du _dv du _ dv

a"x &

known as the Cauchy—Riemann equations, hold throughout R.

4.19)

It is instructive to prove this result. Since f’(z) exists at any point z, in R,

f'(zp) = lim {JM}

-7, Z— 2

where z can tend to z, along any path within R. Examination of (4.19) suggests that
we might choose paths parallel to the x direction and parallel to the y direction, since
these will lead to partial derivatives with respect to x and y. Thus, choosing z — z, = Ax,
a real path, we see that

[f(zo + Ax) — f(z0)
Ax

f(z) = Aliglo

Since f(z) = u + jv, this means that

u(xo + Ax, yo) + jv(xo + Ax, yo) — u(xp, ¥o) — jv(Xo, ¥o)

[ (o) = Aliino =




276 FUNCTIONS OF A COMPLEX VARIABLE

or, on splitting into real and imaginary parts,

+ A , + Ax, yo) — ,
f(Zo)_ llm u(xo X, Yo) — u(Xo, Yo) JV(xo X, Yo) — v(Xg, Yo)
Ax Ax

giving

f(%)—{ +J§1 (420)

X

Starting again from the definition of f’(z,), but this time choosing z — z, = jAy for the
path parallel to the y axis, we obtain

oo [ fze + §AY) = f(zo)
[z = ji;gno _ TAy J

Once again, using f(z) = u + jv and splitting into real and imaginary parts, we see that

f(z) = llm u(Xo, Yo + Ay) + jv(xo, yo + Ay) — u(xo, yo) — jv(X0, Yo)
0 Ay—0 jAy

— lim 1u(xo, yo + Ay) — u(xo, )’0) V(Xp, Yo + Ay) — v(xg, Yo)
] Ay Ay

giving

1 ou &V} 4.21)

[(zo) = L—a—y + EX -

Since f’(z,) must be the same no matter what path is followed, the two values obtained
in (4.20) and (4.21) must be equal. Hence

&_u+.&_v 1 du &v_ 07_u+&_v
x Ak T jdy &y J&y dy

Equating real and imaginary parts then gives the required Cauchy—Riemann equations

u_v
ox oy ox  dy

at the point z = z,. However, z, is an arbitrarily chosen point in the region R; hence the

Cauchy—Riemann equations hold throughout R, and we have thus proved the required

result.

It is tempting to think that should we choose more paths along which to let z — z,
tend to zero, we could derive more relationships along the same lines as the Cauchy—
Riemann equations. It turns out, however, that we merely reproduce them or expressions
derivable from them, and it is possible to prove that satisfaction of the Cauchy—Riemann
equations (4.19) is a necessary condition for a function f{z) = u(x, y) + jv(x, y), z=x + jy,
to be analytic in a specified region. At points where f’(z) exists it may be obtained from
either (4.20) or (4.21) as

fo=2+i%



4.3 COMPLEX DIFFERENTIATION 277

Example 4.9

Solution

or

iy OV du
f(z)_:j'y .]&y

If 7 is given in the polar form z = re’ then
J(@) = u(r, 6) +jv(r, 6)
and the corresponding polar forms of the Cauchy—Riemann equations are

du _1odv v 1 du

T T8 I r b @-22)
At points where f’(z) exists it may be obtained from either of
() =ete| X4 4.23
f@)=e (8r+l&r (4.23a)
or
=edo| 1OV _]ou 4.23b
F@=e {ré’é’ r&é’} ¢ )

Verify that the function f(z) = z” satisfies the Cauchy—Riemann equations, and determine
the derivative f"(z).

Since z = x + jy, we have
f@=2"=(x+jy’ ==y +j2xy

so if f(z) = u(x, y) + jv(x, y) then
u=x>-y, v =2xy

giving the partial derivatives as

du du _
F-E Y
v v
;—Zy, —;—2)6

It is readily seen that the Cauchy—Riemann equations

u_ o
o oy dy ox
are satisfied.
The derivative f’(z) is then given by

o du | .dv oy
FR=~S +j5 =2x+j2y=2

as expected.
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Example 4.10

Solution

Verify that the exponential function f(z) = e, where « is a constant, satisfies the
Cauchy—Riemann equations, and show that /'(z) = are®.

f(2) =u+jv=e*=e) = e®el® = e (cos ary + j sin ay)
s0, equating real and imaginary parts,
u=e*cos ay, v =e%sin ay

The partial derivatives are

du v .

— = e cos ay, — = oe*sina

ox b ox Y

du . v

N =—oe*sin ay, 5= ae® cos ay
y

confirming that the Cauchy—Riemann equations are satisfied. The derivative f’(z) is
then given by

@@= % + j% = oe™ (cos ay + j sin ay) = ore™
so that
d%e“ = ae™ (4.24)

As in the real variable case, we have (see Section 4.3.1)
e’ =cosz+jsinz (4.25)

so that cos z and sin z may be expressed as

cosz = te
)
. ) (4.26a)
. et
Sin z = 2—J
Using result (4.24) from Example 4.10, it is then readily shown that
diz (sinz) =cosz
El% (cosz) =—sinzg
Similarly, we define the hyperbolic functions sinh z and cosh z by
sinhz = < _26 = —jsinjz
(4.26b)

z

e +e
coshz =

5 = cos jz
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from which, using (4.24), it is readily deduced that

i (sinhz) = coshz
dz

4 (coshz) =sinhz
dz

We note from above that e has the following real and imaginary parts:
Re(e®) =e‘cosy
Im(e”) =esiny

In real variables the exponential and circular functions are contrasted, one being
monotonic, the other oscillatory. In complex variables, however, the real and imaginary
parts of e* are (two-variable) combinations of exponential and circular functions, which
might seem surprising for an exponential function. Similarly, the circular functions of
a complex variable have unfamiliar properties. For example, it is easy to see that |cos z]|
and |sin z| are unbounded for complex z by using the above relationships between circular
and hyperbolic functions of complex variables. Contrast this with |cosx| < 1 and
[sinx| < 1 for a real variable x.

In a similar way to the method adopted in Examples 4.9 and 4.10 it can be shown
that the derivatives of the majority of functions f(x) of a real variable x carry over to the
complex variable case f(z) at points where f(z) is analytic. Thus, for example,

—d—z =nz"
dz”

for all z in the z plane, and

1
—1lnz= -
dz ¢ Z

for all z in the z plane except for points on the non-positive real axis, where Inz is
non-analytic.

It can also be shown that the rules associated with derivatives of a function of a real
variable, such as the sum, product, quotient and chain rules, carry over to the complex
variable case. Thus,

L@ + g(a)] = A2 4 8@

d _ dg(z) | df(z)
d—z[f(z)g(z)] —f(z)d—Z A d—zg(z)

—f(())—gdg

d|f2) | _ 8 [f12) - f(2)8'(z)
dz| g(z) [8(2)7?
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4.3.2

Example 4.11

Solution

Conjugate and harmonic functions

A pair of functions u(x, y) and v(x, y) of the real variables x and y that satisfy the
Cauchy—Riemann equations (4.19) are said to be conjugate functions. (Note here
the different use of the word ‘conjugate’ to that used in complex number work,
where z* = x — jy is the complex conjugate of z = x + jy.) Conjugate functions satisfy
the orthogonality property in that the curves in the (x, y) plane defined by u(x, y) =
constant and v(x, y) = constant are orthogonal curves. This follows since the gradient at
any point on the curve u(x, y) = constant is given by

dy| o |2
dx|, dy| dx

and the gradient at any point on the curve v(x, y) = constant is given by
_d_y_ v / v

_dx_v - _yy ox

It follows from the Cauchy—Riemann equations (4.19) that

dyl 1dy) —
|dx| |dx]
so the curves are orthogonal.

A function that satisfies the Laplace equation in two dimensions is said to be
harmonic; that is, u(x, y) is a harmonic function if

du  Jdu
ox  dy
It is readily shown (see Example 4.12) that if f(z) = u(x, y) + jv(x, y) is analytic, so that
the Cauchy—Riemann equations are satisfied, then both u and v are harmeonic functions.
Therefore u and v are conjugate harmonic functions. Harmonic functions have

applications in such areas as stress analysis in plates, inviscid two-dimensional fluid
flow and electrostatics.

0

Given u(x, y) = x* — y* + 2x, find the conjugate function v(x, y) such that f(z) =
u(x, y) + jv(x, y) is an analytic function of z throughout the z plane.

We are given u(x, y) = x> — y* + 2x, and, since f(z) = u + jv is to be analytic, the Cauchy—
Riemann equations must hold. Thus, from (4.19),

dv _ du
— == =2x+2
oy ox
Integrating this with respect to y gives
v=2xy+2y+ F(x)

where F(x) is an arbitrary function of x, since the integration was performed holding x
constant. Differentiating v partially with respect to x gives



4.3 COMPLEX DIFFERENTIATION 281

Example 4.12

Solution

v dF
— =2V + —
x T dx
but this equals —du/dy by the second of the Cauchy—Riemann equations (4.19). Hence
du 2y dF

c9_y ydx

But since u = x> — y* + 2x, du/dy = -2y, and comparison yields F(x) = constant. This
constant is set equal to zero, since no conditions have been given by which it can be
determined. Hence

u(x, y) +jv(x, ) = x* — y* + 2x + j(2xy + 2y)

To confirm that this is a function of z, note that f(z) is f(x + jy), and becomes just f(x)
if we set y = 0. Therefore we set y = 0 to obtain

fx +30) =f(x) = u(x, 0) + jv(x, 0) = x* + 2x
and it follows that
f=7+2z

which can be easily checked by separation into real and imaginary parts.

Show that the real and imaginary parts u(x, y) and v(x, y) of a complex analytic function
f(z) are harmonic.

Since
J(@) = ulx, y) + jv(x, y)
is analytic, the Cauchy—Riemann equations

d_ o
dx  dy ox dy

are satisfied. Differentiating the first with respect to x gives
Iv_ Ju_ Ju_ I
IX oy ox I ox

which is —@*v/6)?, by the second Cauchy-Riemann equation. Hence

PaY A% é’_z\} &_211 _

0

—=——, or +
&xz &)}2 &x2 ay2
and v is a harmonic function.
Similarly,

Ju__9dv __ (g __du
o’

A dyox o

so that

dy
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24

25

26

27

28

v I

ox~ dy
and u is also a harmonic function. We have assumed that both # and v have continuous
second-order partial derivatives, so that

du du v v

oxdy  dyox’ dxdy  dyox

0

4.3.3 Exercises

Determine whether the following functions are 29  Find the orthogonal trajectories of the following

analytic, and find the derivative where appropriate: families of curves:

(a) ze (b) sindz (a) ¥y —xy*=a (constant &)

(c) zz* (d) cos2z (b) e*cosy+xy=a (constant @)

Determine the constants a and b in order that 30  Find the real and imaginary parts of the functions
w=x*+ay’ — 2xy + j(bx® — y* + 2xy) (a) &%

be analytic. For these values of a and b find the (b) sin2z

derivative of w, and express both w and dw/dz as

functions of z = x + jy. Verify that they are analytic and find their

derivatives.
Find a function v(x, y) such that, given u =2x(1 —y),
(@) = u +jv is analytic in z. 31 Give a definition of the inverse sine function
sin”' z for complex z. Find the real and imaginary
Show that @(x, y) =e"(x cos y — y sin y) is a harmonic parts of sin™' z. (Hinz: Put z = sinw, split into
function, and find the conjugate harmonic function real and imaginary parts, and with w =u + jv
W(x’ y) Write ¢(x’ y) + _] W(x, y) as a function of and z=x +_]y solve for u and v in terms of x
z=x+jy only. and y.) Is sin™' z analytic? If so, what is its
derivative?
Show that u(x, y) = sinx cosh y is harmonic. Find the
harmonic conjugate v(x, y) and express w = u + jv as 32  Establish that if z = x + jy,
a function of z = x + jy. |sinhy| =< |sinz| < coshy.

4.3.4 Mappings revisited

In Section 4.2 we examined mappings from the z plane to the w plane, where in the
main the relationship between w and z, w = f(z) was linear or bilinear. There is an
important property of mappings, hinted at in Example 4.8 when considering the
mapping w = z°. A mapping w = f(z) that preserves angles is called conformal. Under
such a mapping, the angle between two intersecting curves in the z plane is the same as
the angle between the corresponding intersecting curves in the w plane. The sense of
the angle is also preserved. That is, if €is the angle between curves 1 and 2 taken in the
anticlockwise sense in the z plane then &1is also the angle between the image of curve
1 and the image of curve 2 in the w plane, and it too is taken in the anticlockwise sense.
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Figure 4.15
Conformal mappings.

Example 4.13

Solution

w=f(z)
—_—
Y et (conformal) UA
r f(curve 2)
(2]
Sflcurve 1)
fzg)
0 0 u
z plane w plane

Figure 4.15 should make the idea of a conformal mapping clearer. If f(z) is analytic
then w = f(z) defines a conformal mapping except at points where the derivative f’(z)
is zero.

Clearly the linear mappings

w=az+ [ (a#0)

are conformal everywhere, since dw/dz = ¢ and is not zero for any point in the z plane.
Bilinear mappings given by (4.12) are not so straightforward to check. However, as we
saw in Section 4.2.4, (4.12) can be rearranged as

U

w=A+ ZT B (o, u#0)
Thus

dw_ __ pa

dz (az+ p)

which again is never zero for any point in the z plane. In fact, the only mapping we have
considered so far that has a point at which it is not conformal everywhere is w = z*
(cf. Example 4.8), which is not conformal at z = 0.

Determine the points at which the mapping w = z + 1/z is not conformal and demon-
strate this by considering the image in the w plane of the real axis in the z plane.

Taking z = x + jy and w = u + jv, we have

X —jy
X+

w=u+jv=x+jy+

which, on equating real and imaginary parts, gives

u=x-+
X4y
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Figure 4.16 Image
of z=1+ €of
Example 4.13.

The real axis, y = 0, in the z plane corresponds to v = 0, the real axis in the w plane.
Note, however, that the fixed point of the mapping is given by

z=z+ -
z
or z = co. From the Cauchy—Riemann equations it is readily shown that w is analytic
everywhere except at z = 0. Also, dw/dz = 0 when

1-—

-0, thatis z==1

Z

which are both on the real axis. Thus the mapping fails to be conformal at z =0 and
z=1=1. The image of z =1 is w = 2, and the image of z = —1 is w = —2. Consideration
of the image of the real axis is therefore perfectly adequate, since this is a curve passing
through each point where w = z + 1/z fails to be conformal. It would be satisfying if we
could analyse this mapping in the same manner as we did with w = z? in Example 4.8.
Unfortunately, we cannot do this, because the algebra gets unwieldy (and, indeed, our
knowledge of algebraic curves is also too scanty). Instead, let us look at the image of
the point z = 1 + & where £is a small real number. £ > 0 corresponds to the point Q
just to the right of z = 1 on the real axis in the z plane, and the point P just to the
left of z = 1 corresponds to € < 0 (Figure 4.16).

If z=1 + ethen

1
w=1+€e+ —
1+¢

=l+e+(1+o"
=l+e+l—-e+e-+---
=2+ g

if | €] is much smaller than 1 (we shall discuss the validity of the power series expansion
in Section 4.4). Whether £is positive or negative, the point w = 2 + £ is to the right of
w =2 in the w plane as indicated by the point R in Figure 4.16. Therefore, as € - 0, a
curve (the real axis) that passes through z = 1 in the z plane making an angle 8 =7
corresponds to a curve (again the real axis) that approaches w = 2 in the w plane along
the real axis from the right making an angle 6= 0. Non-conformality has thus been
confirmed. The treatment of z = —1 follows in an identical fashion, so the details
are omitted. Note that when y =0 (v =0), u = x + 1/x so, as the real axis in the z plane
is traversed from x = —oo to x = 0, the real axis in the w plane is traversed from
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w plane

Figure 4.17 Image
in w plane of the real
axis in the z plane for
Example 4.13.

Example 4.14

Solution

u = —oo to —2 and back to u = —e again (when x = —1, u reaches —2). As the real
axis in the z plane is traversed from x = 0 through x = 1 to x = +oo, so the real axis in
the w plane is traversed from u = +oo to u =42 (x = 1) back to u = o again. Hence the
points on the real axis in the w plane in the range —2 < u < 2 do not correspond to real
values of z. Solving u = x + 1/x for x gives

x= %[uiAl(u2—4)]

which makes this point obvious. Figure 4.17 shows the image in the w plane of the real
axis in the z plane. This mapping is very rich in interesting properties, but we shall not
pursue it further here. Aeronautical engineers may well meet it again if they study the
flow around an aerofoil in two dimensions, for this mapping takes circles centred at the
origin in the z plane onto meniscus (lens-shaped) regions in the w plane, and only a
slight alteration is required before these images become aerofoil-shaped.

Examine the mapping
w=¢e°

by (a) finding the images in the w plane of the lines x = constant and y = constant in
the z plane, and (b) finding the image in the w plane of the left half-plane (x < 0) in the
z plane.

Taking z = x + jy and w = u + jv, for w = e* we have
u==ecosy
v=e'siny

Squaring and adding these two equations, we obtain
W= e

On the other hand, dividing the two equations gives
1%
- =tan
y y

We can now tackle the questions.

(a)  Since u* +1* = e*, putting x = constant shows that the lines parallel to the imaginary
axis in the z plane correspond to circles centred at the origin in the w plane. The
equation

Y
- =tan
0 y

shows that the lines parallel to the real axis in the z plane correspond to straight
lines through the origin in the w plane (v = utan & if y = ¢, a constant).
Figure 4.18 shows the general picture.



286 FUNCTIONS OF A COMPLEX VARIABLE

Figure 4.18 Mapping

y=Im(z) g
of lines under w = e for
Example 4.14. =<FFF--r--r--
---------r—--------
0 .t:l.{ci,:_!
PR S Y B ]
z plane

(b)

v=1Im{w)

u=Re(w)

w plane

Since u#* +v* = %, if x = 0 then u* + v* = 1, so the imaginary axis in the z plane

corresponds to the unit circle in the w plane. If x < O then ™ < 1, and as x — —oo,
e” — 0, so the left half of the z plane corresponds to the interior of the unit circle
in the w plane, as illustrated in Figure 4.19.

Figure 4.19 Mapping YA B v
w=¢
of half-plane under — Pavte1
w = e° for Example
4.14.
0 X -1 Q_Jl u
z plane w plane
4.3.5 Exercises
33  Determine the points at which the following 36  Consider the mapping w = sin z. Determine the
mappings are not conformal: points at which the mapping is not conformal.
By finding the images in the w plane of the
_ 2 —93_ 2
@ w=z-1 (®) w=2¢-21z+722+6 lines x = constant and y = constant in the z plane
_ 1 (z=x+]jy), draw the mapping along similar lines to
© w=82+ 5 Figures 4.14 and 4.18.
34 Foll(.)w Example 4.13 f(?r the maPping w=z- l/;. 37  Show that the transformation
Again determine the points at which the mapping is
not conformal, but this time demonstrate this by a2
looking at the image of the imaginary axis. =0+ 2
35  Find the region of the w plane corresponding to where z = x +jy and = Re!® maps a circle, with

the following regions of the z plane under the

exponential mapping w = e":
(a) 0sx<oo

(©) %nsysn,Osx<oo

b)0<x<10<ys<

1

centre at the origin and radius a, in the {'plane, onto
a straight-line segment in the z plane. What is the
length of the line? What happens if the circle in the
{'plane is centred at the origin but is of radius b,
where b # a?




4.4 COMPLEX SERIES 287

441

Complex series

In Modern Engineering Mathematics (MEM) we saw that there were distinct advantages in
being able to express a function f{x), such as the exponential, trigonometric and logarithmic
functions, of a real variable x in terms of its power series expansion

f(x) = Z ax" =ay+ax+ax*+...+ax +--- 4.27)
n=0

Power series are also very important in dealing with complex functions. In fact, any real
function f{x) which has a power series of the form in (4.27) has a corresponding complex
function f{z) having the same power series expansion, that is

fz) = Zanz" =a,+az+az’+---+az +--- (4.28)
n=0

This property enables us to extend real functions to the complex case, so that methods
based on power series expansions have a key role to play in formulating the theory of
complex functions. In this section we shall consider some of the properties of the power
series expansion of a complex function by drawing, wherever possible, an analogy with
the power series expansion of the corresponding real function.

Power series

A series having the form

Z a,z—z)'=ap+az—z) +az—z) ' +---+a,(z—z) +--- 4.29)
n=0

in which the coefficients a, are real or complex and z, is a fixed point in the complex
z plane is called a power series about z, or a power series centred on z,. Where z, =0,
the series (4.29) reduces to the series (4.28), which is a power series centred at the
origin. In fact, on making the change of variable z” = z — z,, (4.29) takes the form (4.28),
so there is no loss of generality in considering the latter below.

Tests for the convergence or divergence of complex power series are similar to those
used for power series of a real variable. However, in complex series it is essential that
the modulus |a,| be used. For example, the geometric series

has a sum to N terms

N-1 "
S
n=0

and converges, if | z| < 1, to the limit 1/(1 — z) as N — oo. If | z| = 1, the series diverges.
These results appear to be identical with the requirement that | x | < 1 to ensure convergence
of the real power series

1-2z"
1-z2
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Figure 4.20
Region of
convergence
of X0 yz".

1

-5
1-—x
n=0

However, in the complex case the geometrical interpretation is different in that the con-
dition |z| < 1 implies that z lies inside the circle centred at the origin and radius 1 in
the z plane. Thus the series Y.,_,z" converges if z lies inside this circle and diverges if
z lies on or outside it. The situation is illustrated in Figure 4.20.

P e lz|=1
Y
’ Y
‘4 Ay

’ \

I . )

¢ Series converges , Series
1
1

diverges

>
X

The existence of such a circle leads to an important concept in that in general there
exists a circle centred at the origin and of radius R such that the series

Sa:

n=0

, |convergesif |[z|<R
divergesif |z|>R

The radius R is called the radius of convergence of the power series; what happens
when |z| = R is normally investigated as a special case.

We have introduced the radius of convergence based on a circle centred at the
origin, while the concept obviously does not depend on the location of the centre of
the circle. If the series is centred on z;, as in (4.29) then the convergence circle would
be centred on z,. Indeed it could even be centred at infinity, when the power series
becomes

> “n a, a, a,
Zanz =ayt—+ S+t =
oy . z Z

which we shall consider further in Section 4.4.5.

In order to determine the radius of convergence R for a given series, various tests for
convergence, such as those introduced in MEM for real series, may be applied. In particular,
using d’Alembert’s ratio test, it can be shown that the radius of convergence R of the
complex series X.._,a,z" is given by
an

R = lim

n—

(4.30)

Ay

provided that the limit exists. Then the series is convergent within the disc |z] < R.
In general, of course, the limit may not exist, and in such cases an alternative method
must be used.
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Example 4.15

Solution

Find the power series, in the form indicated, representing the function 1/(z — 3) in the
following three regions:

(@ |z]<3; > "
n=0

oo

b |z-2|<1L; Zan(z—Z)"

n=0

Z

> Ay
© >3 Y
n=0

and sketch these regions on an Argand diagram.

We know that the binomial series expansion

n(n—l)zz+___+n(n—1)(”_2)"'(”_r+ I)Z’+...

(I1+z) =1+nz+ 7 7

is valid for |z| < 1. To solve the problem, we exploit this result by expanding
the function 1/(z — 3) in three different ways:

(1) — = —— =-ta-t " =1+lz+(d)’+ )"+ ]
3<

for |1z] < 1, thatis |z| < 3, giving the power series

1
Lo <y

1 1 (A _ 11
(b) Z—3_(Z—2)—1_[(Z 2)-1]

=—[l+@EZ=-2)+@-2°+---1 (Jz=2|<1D)

giving the power series

=l - G2 (2=2[ <)

1 1z 1 3 (3)2
© z—3_1—3/z_z{1+2+2 "

giving the power series

N

.....1....:1+.3.2+.9.2+... (|Z|>3)
z—-3 z z

2\l

The three regions are sketched in Figure 4.21. Note that none of the regions includes
the point z = 3, which is termed a singularity of the function, a concept we shall discuss
in Section 4.5.1.
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Figure 4.21 Regions
of convergence for the
series in Example 4.15.

Example 4.16

Solution

YA

z plane

In Example 4.15 the whole of the circle |z| = 3 was excluded from the three regions
where the power series converge. In fact, it is possible to include any selected point in
the z plane as a centre of the circle in which to define a power series that converges to
1/(z — 3) everywhere inside the circle, with the exception of the point z = 3. For example,
the point z = 4j would lead to the expansion of

1 1 1

z—4j+4j -3 4) -3 7 — 4
2+
4j -3

in a binomial series in powers of (z — 4j)/(4j — 3), which converges to 1/(z — 3) inside
the circle

|z—4j|=]4-3|=+(16+9) =5

We should not expect the point z = 3 to be included in any of the circles, since the
function 1/(z — 3) is infinite there and hence not defined.

Prove that both the power series ..., a,z" and the corresponding series of derivatives
> o na,z”" have the same radius of convergence.

Let R be the radius of convergence of the power series 2., ,a,z". Since lim,_,_. (a,z4) =0
(otherwise the series has no chance of convergence), if | zy| < R for some complex number
7, then it is always possible to choose

|aul <]z["

for n > N, with N a fixed integer. We now use d’Alembert’s ratio test, namely

. . a, i1 >
if  lim|—=|<1 then E a,7 converges
n—e° n
n=0
. a, i1 > .
if  lim|==|>1 then Z a,7  diverges
n—| a, o
p
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38

The differentiated series ..., na,z"" satisfies

oo

S [nas < Snlalle < S n
n=1 n=1

n=1

|Z|n71

| 2o]"

which, by the ratio test, converges if 0 < |zy| < R, since |z| < |z,| and |zy| can be as
close to R as we choose. If, however, |z| > R then lim,_,..(a,z") # 0 and thus
lim,_,.. (na,z"™") # 0 too. Hence R is also the radius of convergence of the differentiated
series Y. na,z"".

The result obtained in Example 4.16 is important, since if the complex function

f@=3 az'

n=0

converges in | z| < R then the derivative

f@=3 naz"
n=1
also converges in | z| < R. We can go on differentiating f(z) through its power series and
be sure that the differentiated function and the differentiated power series are equal
inside the circle of convergence.

4.4.2 Exercises

Find the power series representation for the function 39  Find the power series representation of the function

1/(z = j) in the regions

1

flz) =

(@ |z] <1 £+

b |z]>1 in the disc | z| < 1. Use Example 4.16 to deduce the
© |z-1-j|< J2 power series for

Deduce that the radius of convergence of the ) 1 1

power series representation of this function is @ (Z + 1)2 (+ 1)3

| zo — j|, where z = z, is the centre of the circle of

convergence (z, # j). valid in this same disc.

4.4.3 Taylor series

In MEM we introduced the Taylor series expansion

2 o n
- X o X ro T A 0)
fata)=f@) + H/ @+ 5 0@+ =Y ) (431)
n=0
of a function f(x) of a real variable x about x = @ and valid within the interval of
convergence of the power series. For the engineer the ability to express a function in
such a power series expansion is seen to be particularly useful in the development of
numerical methods and the assessment of errors. The ability to express a complex
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/ ( §3::]}e§ |c
N2

z plane

Figure 4.22 Region
of convergence of the
Taylor series.

Example 4.17

Solution

function as a Taylor series is also important to engineers in many fields of applications,
such as control and communications theory. The form of the Taylor series in the complex
case is identical with that of (4.31).

If f(z) is a complex function analytic inside and on a simple closed curve C (usually
a circle) in the z plane then it follows from Example 4.16 that the higher derivatives of
f(z) also exist inside C. If z; and z, + & are two fixed points inside C then

n

2
Fao 4 1) =z + B @) + 5P + b )

where f®(z,) is the kth derivative of f(z) evaluated at z = z,. Normally, z = z, + h is
introduced so that & = z — z,,, and the series expansion then becomes

1@ =) + @ - 2)f Ve + = Zo> @=20) o,y

(z zo) = (z— ZO)

=) = - —— "l (4.32)

n=0

The power series expansion (4.32) is called the Taylor series expansion of the complex
function f(z) about z,. The region of convergence of this series is |z — zy| <R, a disc
centred on z = z, and of radius R, the radius of convergence. Figure 4.22 illustrates
the region of convergence. When z, = 0, as in real variables, the series expansion about
the origin is often called a Maclaurin series expansion.

Since the proof of the Taylor series expansion does not add to our understanding
of how to apply the result to the solution of engineering problems, we omit it at this
stage.

Determine the Taylor series expansion of the function

1
f(z) = D
about the point z = j:

(a) directly up to the term (z —j)*,
(b) using the binomial expansion.

Determine the radius of convergence.

(a) The disadvantage with functions other than the most straightforward is that
obtaining their derivatives is prohibitively complicated in terms of algebra. It is
easier in this particular case to resolve the given function into partial fractions as

I SR i N S |
1@ = =5 [2_jz——2j ?]
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The right-hand side is now far easier to differentiate repeatedly. Proceeding to
determine £®(j), we have

1) =(L 1__ 1_), sothat f(j)=1
%0 = L lz} sothat fP()=0
) = l. 2z _ %} , sothat fP(j)=-2

1 6 6 .
O() = 5 |-———— + 5|, sothat fO(j)=0
/ 2| (z-2))° z“} S0

90 = ~ = so that f¥(j) =24

2j[(z-2)) z

1| 24 24}

leading from (4.32) to the Taylor series expansion

S S
2(z - 2j) 2!

=1-GE-+@E-)'+-

. 24 .
=)+ e=p'+

(b) To use the binomial expansion, we first express z(z —2j) as (z —j + )z —] — j)»
which, being the difference of two squares ((z — j)* — j%), leads to

1 1

= =[1+ —'2]71
-2) G-+l =)

f@=

Use of the binomial expansion then gives
f@=1-GC=-P+@-P'-@=)+ -
valid for |z —j| < 1, so the radius of convergence is 1.

The points where f(z) is infinite (its singularities) are precisely at distance 1 away
from z = j, so this value for the radius of convergence comes as no surprise.

Example 4.18  Suggest a function to represent the power series

2.7 4
1+Z+2_!+§+”'+H+'”

and determine its radius of convergence.

Solution  Set

2 3 n

z Z — 2
f@=1+z+ 5"'3—"":2“7
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Assuming we can differentiate the series for f(z) term by term, we obtain

n—

oo n—1 . 1
s nz z _
F@a=3=r=2e-m @

n=1 n=1

Hence f(z) is its own derivative. Since €* is its own derivative in real variables, and is
the only such function, it seems sensible to propose that

fy=y5=¢ (4.33)

the complex exponential function. Indeed the complex exponential ¢ is defined by the
power series (4.33). According to d’Alembert’s ratio test the series 2", a, is convergent
if |a,,/a,| = L <1 as n — oo, where L is a real constant. If ¢, = Z"/n! then |a,,,/a,| = |7/
(n + 1) which is less than unity for sufficiently large n, no matter how big || is. Hence
2" =0 Z'In! is convergent for all z and so has an infinite radius of convergence. Note that
this is confirmed from (4.30). Such functions are called entire.

In the same way as we define the exponential function e* by the power series expansion
(4.31), we can define the circular functions sinz and cos z by the power series expansions

Z3 ZS Z7 Z2n+|
nz=z—- >+~ -2 +... +(-1)"—=2>—_+...
R TR AT Py

ZZ Z4 Z6 Z2n
cosz=1—z-!+1-!—6-!+~-~+(—1)(2n)!+~~

both of which are valid for all z. Using these power series definitions, we can readily
prove the result (4.25), namely

e =cosz+jsinz

4.4.4 Exercises

40  Find the first four non-zero terms of the Taylor
series expansions of the following functions about
the points indicated, and determine the radius of
convergence in each case:

(a)

1 1 e
T =D ) s =2

1 .

(©) 5 G@=1+))
b4

41  Find the Maclaurin series expansion of the function

_
1+z+z2

flz) =

up to and including the term in z°.

Without explicitly finding each Taylor series
expansion, find the radius of convergence of
the function

fz) = -

z —1

about the three points z=0,z=1+jand z=2 +2j.
Why is there no Taylor series expansion of this
function about z =j?

Determine a Maclaurin series expansion
of f(z) = tanz. What is its radius of
convergence?
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Figure 4.23
The Riemann sphere.

Figure 4.24 Region of
validity of the Laurent
series.

Laurent series

Let us now examine more closely the solution of Example 4.15(c), where the power
series obtained was

1 1,3
—_— = 4 S + 5 + ..
-3 z 7z z
valid for |z| > 3. In the context of the definition, this is a power series about ‘z = oo’,
the ‘point at infinity’. Some readers, quite justifiably, may not be convinced that there
is a single unique point at infinity. Figure 4.23 shows what is termed the Riemann
sphere. A sphere lies on the complex z plane, with the contact point at the origin O. Let
O’ be the top of the sphere, at the diametrically opposite point to O. Now, for any
arbitrarily chosen point P in the z plane, by joining O” and P we determine a unique
point P” where the line O’P intersects the sphere. There is thus exactly one point P” on
the sphere corresponding to each P in the z plane. The point O itself is the only point on
the sphere that does not have a corresponding point on the (finite) z plane; we therefore
say it corresponds to the point at infinity on the z plane.

o

z plane

Returning to consider power series, we know that, inside the radius of convergence,
a given function and its Taylor series expansion are identically equal. Points at which a
function fails to be analytic are called singularities, which we shall discuss in Sec-
tion 4.5.1. No Taylor series expansion is possible about a singularity. Indeed, a Taylor
series expansion about a point z, at which a function is analytic is only valid within a
circle, centre z,, up to the nearest singularity. Thus all singularities must be excluded in
any Taylor series consideration. The Laurent series representation includes (or at least
takes note of) the behaviour of the function in the vicinity of a singularity.

If f(z) is a complex function analytic on concentric circles C, and C, of radii , and
r, (with r, < ry), centred at z;,, and also analytic throughout the region between the
circles (that is, an annular region), then for each point z within the annulus (Figure 4.24)
f(z) may be represented by the Laurent series

0y

%

z plane
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oo

fl@)= z c.(z—29)"

n=—oco

=... 4 Cor 4 Cortl 4o+ o @.34)

~1
(z—2)" (z—2) 1720

+ez—z)+---+tclz—z0) +---

where in general the coefficients c, are complex. The annular shape of the region is
necessary in order to exclude the point z = z;,, which may be a singularity of f(z), from
consideration. If f(z) is analytic at z = z, then ¢, =0 for n = -1, =2, . .. , —oo, and the
Laurent series reduces to the Taylor series.

The Laurent series (4.34) for f(z) may be written as

] o
f@) = 3 ez =20+ ez —20)
n=—oc n=0
and the first sum on the right-hand side, the ‘non-Taylor’ part, is called the principal
part of the Laurent series.

Of course, we can seldom actually sum a series to infinity. There is therefore often more
than theoretical interest in the so-called ‘remainder terms’, these being the difference
between the first n terms of a power series and the exact value of the function. For
both Taylor and Laurent series these remainder terms are expressed, as in the case of
real variables, in terms of the (n + 1)th derivative of the function itself.

Example 4.19  For f(z) = 1/7%(z + 1) find the Laurent series expansion about (a) z= 0 and (b) z = —1.
Determine the region of validity in each case.

Solution  As with Example 4.15, problems such as this are tackled by making use of the binomial

series expansion
nn-Do D=2 (ortl)

(1+z2) =1+nz+ 5 p

provided that |z| < 1.

(a) In this case z, =0, so we need a series in powers of z. Thus

2;212(1”)_1
Z(1+z2) z
1
==s(l-z+Z-2+'—-) (0<|z|<])
Z

Thus the required Laurent series expansion is

D S DR

2+ 2z



4.4 COMPLEX SERIES 297

Example 4.20

Solution

valid for 0 < | z| < 1. The value z = 0 must be excluded because of the first two
terms of the series. The region 0 < | z | < I is an example of a punctured disc,
a common occurrence in this branch of mathematics.

(b) In this case z, =—1, so we need a series in powers of (z + 1). Thus

1 p—
2iz+1)  (z+1)

-1 _ -2
_(z+1)[1 (z+ D]

= 1 2 .« e .
_(z+1)[1+2(Z+1)+3(Z+1) + ]

L +2+43@+ D) +4z+ 1)+
z+1

Zz+1-172

valid for 0 < |z + 1| < 1. Note that in a meniscus-shaped region (that is, the
region of overlap between the two circular regions |z| < 1 and |z + 1| < 1) both
Laurent series are simultaneously valid. This is quite typical, and not a cause for
concern.

Determine the Laurent series expansions of

1

D= e

valid for

(@ 1<]z1<3

() |z|>3
© 0<|z+l1]<2
@ |z|<1

(a) Resolving into partial functions,

1) = 3(=) - =)

Since |z| > 1 and |z| < 3, we express this as

11 1
f@= Z(l+1/z) ‘é{_H%ZJ

2z
1 1 1 1
:-..-1__+_2__3+... _é(l_%z*‘éZz—%f""“)
2z z 7 7
1 1 1 1 1 2 1 3
e S St e S S DA T
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o -4 -4

Since |z| > 3, we express this as

f2) = (1+1/z)_—2—12 1+3/z)

(
BIRFAGS)

(c) We can proceed as in Example 4.18. Alternatively, we can take z + 1 = u; then
0<]|u|<2and

1 1
(u) = =
f u(u+2)  2u(l+ju)
1
= E(lf%u+iuzféu3+-~-)
giving
@) = g~ h A+ Dzt D+ -

2(z+1)

1 1

() fz) = 2z+1)  2(z+3)

Since |z| < 1, we express this as

1
2(1+z) C6(1+ %)

=11+ -+l

flo)=

2 3 2 3
=3(l-z+2 -2+ )= (1 — 32+ — 52 +---)

13.2 403
37_Z+ﬁ —gc T

Example 4.21  Determine the Laurent series expansion of the function f(z) = z°e"* about
@ z=0
(b) z=a, afinite, non-zero complex number

() z=-oo

Solution (a) From (4.33),
2

T 4
e=ltzt s+ 0<|z[<e)
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(b)

(c)

Substituting 1/z for z, we obtain

=l it 0<|z] =)
z 2z

so that

. z 1 1
7e=7+7+>+—+

—+t—+... (0<|z| =)
21 31 417 517 <l

This series has infinitely many terms in its principal part, but stops at z* (it is
written back to front). Series with never-ending principal parts are a problem, and
fortunately are uncommon in engineering. Note also that the series is valid in an
infinite punctured disc.

The value of f(a) must be a* ¢, which is not infinite since a # 0. Therefore f(z)
has a Taylor series expansion

2
1@ =f@)+ @-a)f @+ a4 -
about z = a. We have
f(l)(Z) — a.dg(z3 ellz) — 3Z2 e1/2 _ Ze1/z

d , 1
Oy = D 220 _ ol _goalli _ gl LIk
f (Z)—dz(3Ze ze)=6ze" —4e +Z2e

giving the series as

Z361/2 — a3 el/zz + (Z _ a)(3a2ella —a el/a)

TR a)2(6a e gy L e”“) +o

which is valid in the region |z — a| < R, where R is the distance between the
origin, where f(z) is not defined, and the point a; hence R = |a|. Thus the region
of validity for this Taylor series is the disc |z — a| < |a|.

To expand about z = oo, let w = 1/z, so that
1 w
flz) = —¢©
w

Expanding about w = 0 then gives
2 3
f(l) :%(1+W+VL+VL+...)
Wi w 2! 3!

:i+i+L+l+E+... 0 <|w|<eo)

woow' 2w 31 4l

Note that this time there are only three terms in the principal part of f(z)(=f(1/w)).
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4.4.6 Exercises

44 Determine the Laurent series expansion of (a) z=0 (b)z=-00
f(z) = 1 (c) z = a, a finite non-zero complex number
N
z(z-1) (For (c), do not calculate the coefficients explicitly.)

about (a) z=0 and (b) z = 1, and specify the region

of validity for each. 46  Expand
45  Determine the Laurent series expansion of the fl@)= +

function (z=D2-2)

in a Laurent series expansion valid for

_ag ]l
foy=sin; @ [z]<1 ®1<]z]<2 (© |z]|>2

about the points @ |z-1]>1 () 0<|z-2|<1

Singularities and zeros

As indicated in Section 4.4.5 a singularity of a complex function f{(z) is a point of the
z plane where f(z) ceases to be analytic. Normally, this means f(z) is infinite at such a
point, but it can also mean that there is a choice of values, and it is not possible to pick
a particular one. In this chapter we shall be mainly concerned with singularities at
which f(z) has an infinite value. A zero of f(z) is a point in the z plane at which f(z) = 0.

Singularities can be classified in terms of the Laurent series expansion of f(z) about
the point in question. If f(z) has a Taylor series expansion, that is a Laurent series
expansion with zero principal part, about the point z = z,, then z; is a regular point of
f(@). If f(z) has a Laurent series expansion with only a finite number of terms in its
principal part, for example

a*m a- m
fO= = b vt aam ) i)
(z—20) (2= 20)
then f(z) has a singularity at z = z, called a pole. If there are m terms in the principal
part, as in this example, then the pole is said to be of order m. Another way of defining
this is to say that z; is a pole of order m if

lim (z - 2))"f(2) =, (4.35)

where a_, is finite and non-zero. If the principal part of the Laurent series for f(z) at
Z =7, has infinitely many terms, which means that the above limit does not exist for any
m, then z = z, is called an essential singularity of f(z). (Note that in Example 4.20 the
expansions given as representations of the function f(z) = 1/[(z + 1)(z + 3)] in parts (a)
and (b) are not valid at z = 0. Hence, despite appearances, they do not represent
a function which possesses an essential singularity at z = 0. In this case f(z) is regular
at z=0 with a value |.)
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Example 4.22

Solution

If f(z) appears to be singular at z =z, but it turns out to be possible to define a Taylor
series expansion there, then z = z; is called a removable singularity. The following
examples illustrate these cases.

(@) f(z) =z ' has a pole of order one, called a simple pole, at z = 0.
(b) f(z) = (z— 1) has a pole of order three at 7 = 1.

(©)  f(z) =" has an essential singularity at z = j.
(d) The function

z—1
()= ————
(z+2)(z—-3)
has a zero at z = 1, a simple pole at z =—2 and a pole of order two at z = 3.

(e) The function

is not defined at z = 0, and appears to be singular there. However, defining

, {(sin 2lz (z#20)
SINCzZ =
1 (z=0)

gives a function having a Taylor series expansion

2 4
Z Z

sincz:1—§+§—...
that is regular at z = 0. Therefore the (apparent) singularity at z = 0 has been
removed, and thus f(z) = (sin z)/z has a removable singularity at z = 0.

Functions whose only singularities are poles are called meromorphic and, by and
large, in engineering applications of complex variables most functions are meromorphic.
To help familiarize the reader with these definitions, the following example should
prove instructive.

Find the singularities and zeros of the following complex functions:

1 z—1
(@ — b) — -
S +))+j FoF(+)) 4]
in(z—1) 1
© sin(z d
-2 (1+j)+] [ =21 +)) +j1°
(a) For
£@) = s

(1 +j) +]
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(b)

(c)

the numerator is never zero, and the denominator is only infinite when z is
infinite. Thus f(z) has no zeros in the finite z plane. The denominator is zero
when

Zd-2(1+j)+j=0
which factorizes to give

@ -DE-)=0
leading to

Z=1orj
so that the singularities are at

2=+1, -1, (1 + /2, (-1 =2 (4.36)
all of which are simple poles since none of the roots are repeated.
The function

z—1

=21 +)) +]

f@)=

is similar to f{z) in (a), except that it has the additional term z — 1 in the numerator.
Therefore, at first glance, it seems that the singularities are as in (4.36). However, a
closer look indicates that f(z) can be rewritten as

z—1
(z—= D)z + Dlz+ S+ )1z S0 +))]

and the factor z — 1 cancels, rendering z = 1 a removable singularity, and reducing

f@to

flz)=

1
z)=
2+ Dlz+ S +1Lz= (1 +))]
which has no (finite) zeros and z = —1, «/%(1 +j) and A/%(—1 —j) as simple poles.

In the case of

sin(z—1)
PPN
z -z (1+))+]

@)=

the function may be rewritten as
_sin(z—1) 1
@D+ JO D= 0+

Now

sin(z—1) 51

as -1
z—1 .

so once again z = 1 is a removable singularity. Also, as in (b), z = —1, ﬁ 1+
and j% (=1 —j) are simple poles and the only singularities. However,

sin(z—1)=0
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47

has the general solution z=1+ N (N =0, 1, £2, .. .). Thus, apart from N =0,
all of these are zeros of f(z).

(d) For
1

f(@)

20T

factorizing as in (b), we have

f@=

1

- D'+ D'z + L+ )T 12— L +i7

so —1, +1, ﬁ (1+j) and A/% (=1 —j) are still singularities, but this time they are
triply repeated. Hence they are all poles of order three. There are no zeros.

4.5.1 Exercises

Determine the location of, and classify, the

singularities and zeros of the following functions.

Specify also any zeros that may exist.

(@) 2 y— L o2
3 (2 +))(z—) 71
(d) cothz (e) ZSLZZ (f) e/1-
7 +T
Z*l z +j
h —=> <
(g) Zz+1 ()(Z+2)3(1_3)
&) !

(2 —4z7+5)

48

49

Expand each of the following functions in a Laurent
series about z = 0, and give the type of singularity
(if any) in each case:

1—cosz
(@) -

e’
®) =

z
(¢) z'cosh 7!

(d) tan™(Z +2z+2)

Show that if f(z) is the ratio of two polynomials then
it cannot have an essential singularity.
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IO T G T LG M analysing AC circuits

In the circuit shown in Figure 4.25 we wish to find the variation in impedance Z and
admittance Y as the capacitance C of the capacitor varies from 0 to e. Here

@E

1 1 . 1
-==+jwC Y=—
" 5 Z R J ’ V4
R Writin
— g

Figure 4.25 1 _1+joCR

AC circuit of A R

Section 4.6.

we clearly have

R
Z=—"7 4.37
1+jwCR @.37)
Equation (4.37) can be interpreted as a bilinear mapping with Z and C as the two variables.
We examine what happens to the real axis in the C plane (C varies from 0O to o and, of
course, is real) under the inverse of the mapping given by (4.37). Rearranging (4.37),

we have
R-Z
=— 4.
¢ JORZ (4.38)
Taking Z = x + jy
— foij — x+jy7R :(x+jyfR)(y+jx) (4.39)
JOR(x+jy)  @R(y-jx) OR(xX* + )
Equating imaginary parts, and remembering that C is real, gives
0=x+y"— Rx (4.40)

which represents a circle, with centre at (%R, 0) and of radius ;R. Thus the real axis
in the C plane is mapped onto the circle given by (4.40) in the Z plane. Of course, C is
positive. If C = 0, (4.40) indicates that Z = R. The circuit of Figure 4.25 confirms
that the impedance is R in this case. If C — oo then Z — 0, so the positive real axis in
the plane is mapped onto either the upper or lower half of the circle. Equating real parts
in (4.39) gives

-y
R
(X’ +y%)

so C > 0 gives y < 0, implying that the lower half of the circle is the image in the Z
plane of the positive real axis in the C plane, as indicated in Figure 4.26. A diagram
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Figure 4.26 Mapping
for the impedance Z.

Figure 4.27 Mapping
for the admittance Y.

5 R

2=
| + jwCR
—
C=0 C>oo C=oo C=0
> -
0] (0] R
C plane Z plane
A A .
Y= -.,I?- + jiC _ _
— C increasing
Cc=0 C—>o0 C=0
— > -
(8] 0 1
C plane Y plane

such as Figure 4.26 gives an immediate visual impression of how the impedance Z
varies as C varies.
The admittance Y = 1/Z is given by

1 .
Y==-+j0C
¢

which represents a linear mapping as shown in Figure 4.27.

N X P T R T TN W use of harmonic functions

In this section we discuss two engineering applications where use is made of the
properties of harmonic functions.

4.7.1 A heat transfer problem

We saw in Section 4.3.2 that every analytic function generates a pair of harmonic
functions. The problem of finding a function that is harmonic in a specified region
and satisfies prescribed boundary conditions is one of the oldest and most important
problems in science-based engineering. Sometimes the solution can be found by
means of a conformal mapping defined by an analytic function. This, essentially, is a
consequence of the ‘function of a function’ rule of calculus, which implies that every
harmonic function of x and y transforms into a harmonic function of # and v under the

mapping
w=u+jv=[f(x+jy) =f(2)

where f(z) is analytic. Furthermore, the level curves of the harmonic function in the
z plane are mapped onto corresponding level curves in the w plane, so that a harmonic
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Temperature 0 °C

(3

r=03R
Temperature 100°C

Figure 4.28
Schematic diagram of
heat transfer problem.

Figure 4.29
The mapping
w=(z-3)/(3z-1).

function that has a constant value along part of the boundary of a region or has a zero
normal derivative along part of the boundary is mapped onto a harmonic function with
the same property in the w plane.

For heat transfer problems the level curves of the harmonic function correspond
to isotherms, and a zero normal derivative corresponds to thermal insulation. To
illustrate these ideas, consider the simple steady-state heat transfer problem shown
schematically in Figure 4.28. There is a cylindrical pipe with an offset cylindrical cavity
through which steam passes at 100 °C. The outer temperature of the pipe is 0 °C. The
radius of the inner circle is 13—0 of that of the outer circle, so by choosing the outer radius
as the unit of length the problem can be stated as that of finding a harmonic function
T(x, y) such that

T JT
—2+—2 =0
ox-  dy

in the region between the circles |z|=1and |z—0.3|=0.3,and T=0on |z|=1 and
T=1000n|z—-03|=03.
The mapping

_ z-3
3z-1

transforms the circle |z| = 1 onto the circle |w| =1 and the circle |z — 0.3| = 0.3 onto
the circle |w| = 3 as shown in Figure 4.29. Thus the problem is transformed into the
axially symmetric problem in the w plane of finding a harmonic function 7(u, v) such
that 7(u, v) = 100 on |w| =1 and T(u, v) = 0 on |w| = 3. Harmonic functions with such
axial symmetry have the general form

Tu,v)=Aln (> +v*) +B

where A and B are constants.

Here we require, in addition to the axial symmetry, that T(u, v) = 100 on u*> + v’ = 1
and T(u, v) =0 on > +v*=9. Thus B =100 and A = —1001n 9, and the solution on the
w plane is

_ 100[1 = In(u’ +v?)]
In9

T(u, v)

We need the solution on the z plane, which means in general we have to obtain « and v
in terms of x and y. Here, however, it is a little easier, since u* +v* = |w|’ and

7
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4.7.2

Figure 4.30

(a) Schematic diagram
for an insulated-gate
field-effect transistor;
(b) an appropriate
coordinate system for
the application.

»_|z2=3 1 1z-3 _ (x-3)+)’
|W| - - 2 2 2
3z-1 [3z—11° (Bx—1)"+9y
Thus
_ 100 . A L o
T(x,y)—lng{l In[(x—3)>+ ] - In[Gx — 1)> + 9*]}

Current in a field-effect transistor

The fields (K, E,) in an insulated-gate field-effect transistor are harmonic conjugates
that satisfy a nonlinear boundary condition. For the transistor shown schematically in
Figure 4.30 we have

JE, _JE, JE, —JE,
x Iy’ dy  x

with conditions

E.=0 on the electrodes

E. (EV + ﬂ)) — on the channel
Y h 2UEE,

E).—>—% as x> - 0<y<h

Vi—V
E,— C‘f as x> (0<y<h)

where Vj is a constant with dimensions of potential, / is the insulator thickness, I is the
current in the channel, which is to be found, z, & and & have their usual meanings, and
the gate potential V, and the drain potential V; are taken with respect to the source
potential.

The key to the solution of this problem is the observation that the nonlinear
boundary condition

Vo

2E, (Ey + I) =

!
HEE:

contains the harmonic function (now of E, and E,)

H(E, E,) = 2EX(E_V + %)

¥
Gate electrode 8., Th R,

G- [ D : P A B Q.

- |

|
. R 1
Source electrode Channel  Drain electrode Ly Ly
— 3

(a) (b)
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A harmonic conjugate of H is the function
2
G(E,E)= (E_v + %’) - E?

Since E, and E, are harmonic conjugates with respect to x and y, so are G and H. Thus
the problem may be restated as that of finding harmonic conjugates G and H such that

H =0 on the electrodes

H=- [ on the channel
HEE:
Vo — Vi)’
G- 5 as x> (0<y<h)

_ 2
Ge(y%-—‘/g) as x—>—e0 (0<y<h)

Using the sequence of mappings shown in Figure 4.31, which may be composed into
the single formula

bz 2
_ae —a

bz
ae —1

where a = e*** and b = t/h, the problem is transformed into finding harmonic-conjugate
functions G and H (on the w plane) such that

H=0 on v=0 >0 (4.41)
H= _,U;o z on v=0 @m<O0) 4.42)
G= (VO—;Y-%) ’ at w=et (4.43)
G= (W}z at w=1 (4.44)

The conditions (4.41), (4.42) and (4.44) are sufficient to determine H and G completely
_ Targ(w)
T Mu&E

G = Iln|w| +(vo+ Vy— vg)z
TUEE, h
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Figure 4.31 YA
Sequence of mappings S h R
to simplify the
problem. z plane
p A B Q
=1 L >
409 4 !
s h R
z 5 z+14!
p A B Q
_
0 L
S n R
z = mnz/h
P A B Q
'—
0 nL/h
F—
R S{p & B Q
0 | (FE
z—=z-1|
R sp|A B Q
: E——
=19 a’ - |
z—=zla’-1)
R SP|A B Q
a2 -0 1
z 1/z
P.S R[QB 8
—~Ha?-1) 0 |
b‘“
z—=1-z2
A BIQrR s .
T 11 '!T
w plane 0 ! a:

while the condition (4.43) determines the values of 1

&€&,
I= ”L—(;q @V, =2V, + VoV,

This example shows the power of complex variable methods for solving difficult
problems arising in engineering mathematics. The following exercises give some
simpler examples for the reader to investigate.
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50

51

52

4.7.3 Exercises

Show that the transformation w = 1/z, w = u + jv,
7 =x+ jy, transforms the circle x* + y* = 2ax in the
z plane into the straight line u = 1/2a in the w plane.
Two long conducting wires of radius a are placed
adjacent and parallel to each other, so that their
cross-section appears as in Figure 4.32. The

wires are separated at O by an insulating gap of
negligible dimensions, and carry potentials £V,
as indicated. Find an expression for the potential
at a general point (x, y) in the plane of the cross-
section and sketch the equipotentials.

«

Figure 4.32 Conducting wires of Exercise 50.

Find the images under the mapping

_z+l
1-z
z=x+]jy, of

(a) the points A(-1, 0), B(0, 1), C(3, %) and
D(Z , 0) in the z plane,

(b) the straight line y =0,

(c) the circle x> +y> = 1.

Ilustrate your answer with a diagram showing the
z and w planes and shade on the w plane the region
corresponding to x* +y* < 1.

A semicircular disc of unit radius, [(x, y):
X +y* <1,y = 0], has its straight boundary at
temperature 0 °C and its curved boundary at 100 °C.
Prove that the temperature at the point (x, y) is

- 2
T = Mtan{%}
T 1-x"—y

(a) Show that the function
G(x, y)=2x(1 - y)

satisfies the Laplace equation and construct
its harmonic conjugate H(x, y) that satisfies
H(0, 0) = 0. Hence obtain, in terms of z, where
Z =X+ jy, the function F such that W = F(z)
where W= G + jH.

(b) Show that under the mapping w = In z, the
harmonic function G(x, y) defined in (a) is
mapped into the function

53

54

G(u, v) = 2e"cos v — e*sin 2v
Verify that G(u, v) is harmonic.

(c) Generalize the result (b) to prove that under
the mapping w = f(z), where f’(z) exists, a
harmonic function of (x, y) is transformed
into a harmonic function of (u, v).

Show that if w = (z+ 3)/(z — 3), w=u+jv,
7 =x+ jy, the circle u* + v* = k? in the w plane
is the image of the circle

1+

K

X+y +6 x+9=0 (k*=#1
in the z plane.

Two long cylindrical wires, each of radius
4 mm, are placed parallel to each other with their
axes 10 mm apart, so that their cross-section
appears as in Figure 4.33. The wires carry potentials
1V, as shown. Show that the potential V(x, y) at the
point (x, y) is given by

Y 2321 A2 a2
V—ln4{1n[(x+3) +y ] —In[(x—-3)"+y]}

ey
&

Figure 4.33 Cylindrical wires of Exercise 53.

ﬂm
1

} >
\i/ X

Find the image under the mapping

_jd-2)
T 1+z

z=x+jy,w=u+jv,of

(a) the points A(1, 0), B(0, 1), C(0, —1) in the
z plane,

(b) the straight line y = 0,

(c) the circle ¥* +y* = 1.

A circular plate of unit radius, [(x, y): ¥* +y* < 1],
has one half (with y > 0) of its rim, x> +* = 1, at

temperature 0 °C and the other half (with y < 0) at
temperature 100 °C. Using the above mapping, prove
that the steady-state temperature at the point (x, y) is

2 2
T = lQQtanfl(lfx_*y)
b 2y
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55  The problem shown schematically in TA
Figure 4.34 arose during a steady-state heat E D.C B
transfer investigation. T is the temperature. 1 \\ N
By applying the successive mappings F 3TAINT | A Ry
-1 G|H 4
""" el w=z+1
cm VA
2 -1 o2,
5cm f f f f >
G.L F| E D C''B’" A" H.
4
=0
Figure 4.34 Schematic representation of YA
Exercise 55.
7= Z—+L4 , w=lIng _,1 } . X
Z- J4 T T T >
G.. F E D CB A
show that the temperature at the point (x, y) in the o4l
shaded region in the figure is given by A VA
2 2 -1 1
T(x, y) = 30 In M : : U
In3 X + (4—y) C’ D ElF G A B
56  The functions
1 1 Figure 4.35 Mappings of Exercise 56.
w=z+ =, w= "
Z z—-1

perform the mappings shown in Figure 4.35. A long
bar of semicircular cross-section has the temperature Y
of the part of its curved surface corresponding to
the arc PQ in Figure 4.36 kept at 100 °C while the
rest of the surface is kept at 0 °C. Show that the
temperature 7 at the point (x, y) is given by

| - - >

v
/\.,
Y2

e

_ 100 > _ 2
r= T larg(@ 2+ 1) —arg(@ —z+ D] Figure 4.36 Cross-section of bar of Exercise 56.

4.8 Review exercises (1-19)

1  Find the images of the following points under the 2 Under each of the mappings given in Review
mappings given: exercise 1, find the images in the w plane of the
ioht li
@ z=1+] under w=(l+i)z+] two straight lines
(b) z=1-3j2 under w=j3z+j+1 @ y=2x

() z=1 under w=1(1-jz+1(1+j) (b) x+y=1
1
2

d z=j2 under w=1(1-jz+ %(1 +]) in the z plane, z = x + jy.
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The linear mapping w = &z + 3, where ¢rand [ are
complex constants, maps the point z =2 — j in the
z plane to the point w = 1 in the w plane, and the
point z = 0 to the point w = 3 +j.

(a) Determine ¢rand £

(b) Find the region in the w plane corresponding to
the left half-plane Re(z) =< 0 in the z plane.

(c) Find the region in the w plane corresponding to
the circular region 5|z| < 1 in the z plane.

(d) Find the fixed point of the mapping.

Map the following straight lines from the
z plane, z = x + jy, to the w plane under the
inverse mapping w = j/z:

(@) x=y+1

(b) y=3x

(c) the line joining A(1 + j) to B(2 + j3) in the
z plane

(@ y=4

In each case sketch the image curve.

Two complex variables w and z are related by the
mapping

—_

+

ol

w =

[al
—_

Sketch this mapping by finding the images
in the w plane of the lines Re(z) = constant and
Im(z) = constant. Find the fixed points of the

mapping.

The mapping

1-7°

Z

w =

takes points from the z plane to the w plane. Find
the fixed points of the mapping, and show that the
circle of radius r with centre at the origin in the

z plane is transformed to the ellipse
2 2

ur’ vt
r—1 r+1

in the w plane, where w = u + jv. Investigate what
happens when r = 1.

Find the real and imaginary parts of the complex
function w = z*, and verify the Cauchy-Riemann
equations.

10

11

12

13

Find a function v(x, y) such that, given
u(x, y) = xsinx coshy — ycos xsinh y

f(z) = u + jvis an analytic function of z, f(0)=0.

Find the bilinear transformation that maps the three
points z =0, j and % (1 +)) in the z plane to the
three points w = oo, —j and 1 — j respectively in the
w plane. Check that the transformation will map
(a) the lower half of the z plane onto the upper
half of the w plane
(b) the interior of the circle with centre z = _]%
and radius % in the z plane onto the half-plane
Im(w) < —1 in the w plane.

Show that the mapping
2
a

= + —

=& a¢
where z = x + jy and {'= R e'? maps the circle

R = constant in the {'plane onto an ellipse in the

z plane. Suggest a possible use for this mapping.

Find the power series representation of the
function

1
1+7

in the disc |z| < 1. Deduce the power series for
1
(1+2)’

valid in the same disc.

Find the first four non-zero terms of the Taylor
series expansion of the following functions about
the point indicated, and determine the radius of
convergence of each:

1

1-z _ -
@ {3 @=0  ® 5~ G=D
© =7 &=)

Find the radius of convergence of each Taylor
series expansion of the following function about the
points indicated, without finding the series itself:

1
2+ 1)

at the points z=1, =1, 1 +j, 1 +ji and 2 +j3.

fz)=
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14

15

16

17

Determine the Laurent series expansion of the
function

f(@) = —
(z"+ 1)z
about the points (a) z=0 and (b) z=1, and
determine the region of validity of each. 18

Find the Laurent series expansion of the function
f(z) =¢€sin (L)
1-z

about (a) z=0, (b) z=1 and (c) z = oo, indicating the 19
range of validity in each case. (Do not find terms
explicitly; indicate only the form of the principal

part.)

Find the real and imaginary parts of the functions

(a) e‘sinhz (b) cos2z

sin z

©) (d) tanz

Determine whether the following mappings are
conformal, and, if not, find the non-conformal points:

@ w=—
Z

(b) w=22+372+6(1—jz+1

(c) w:64z+l3
b4

Consider the mapping w = cos z. Determine the points
where the mapping is not conformal. By finding the
images in the w plane of the lines x = constant and
y = constant in the z plane (z = x + jy), draw the
mapping similarly to Figures 4.14 and 4.18.

Determine the location of and classity the
singularities of the following functions:

sin z 1

— b —
(@) 7 (b) @8y
(©) Z4+1 (d) sechz

P

. (1
(e) sinhz (f) sm(z) (g z






\ 5 Laplace Transforms

Chapter 5 Contents

5.1 Introduction 316
5.2 Step and impulse functions 320
5.3 Transfer functions 356
5.4 Solution of state-space equations 378
5.5 Engineering application: frequency response 390
5.6 Engineering application: pole placement 398

5.7 Review exercises (1-18) 401



316 LAPLACE TRANSFORMS

W8 Introduction

The Laplace transform was introduced in Chapter 11 of Modern Engineering Mathe-
matics (MEM), and a brief summary of that material serves to introduce further useful
properties and their applications to engineering. In most engineering applications it is
useful at the outset to think of the Laplace transform in terms of an input to a system
and the subsequent response, see Figure 5.1.

Figure 5.1 Schematic

representation of a u(t) x()
system. SYSTEM
Input or Output or
excitation response

5.1.1 Definition and notation
Definition 5.1:

The Laplace transform of a function f{#) can be defined as

oo

A D)} =J e "f(r)dt (5.1)

0

where the symbol & is the Laplace transform operator.

It is an operator performed upon the function f(r) and the output is a function F(s) where

F(s) = J e "f(r)dt (5.2)
0

This relationship is depicted graphically in Figure 5.2.

Figure 5.2 P}
The Laplace transform
operator.

t domain s domain

(time domain) (frequency domain)

The Heaviside step function is in fact where this chapter actually starts in earnest a
bit later with new applications; however, it is defined as

0 (+<0)
H(t) = 5.3
© {1 (1> 0) &)
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Figure 5.3

Graph of f(¢) and
its causal equivalent
function.

and it is useful in representing any function f{t) as H(#)f(t) where f(¢) is defined for all ¢
but, for practical applications, focus is on values # > 0, see Figure 5.3.

A AINH()

In MEM the two-sided Laplace transform is defined for the cases where the behaviour
of f(¢) for t < 0 is of interest. Behaviour at = 0 is addressed later when impulses are
introduced. In MEM various elementary properties of the Laplace transform are
derived. A short list of the Laplace transforms of some elementary function is given
in the table below.

F(s) f(0)
1
s 1
1 t’l 1
shn=1,2,. (n—1)!
1 K
s—k c
s
g cos(at)
a .
g sin(at)
P ke
Gt k)z e c Y cos(at)
_a ks
Gt k)2 g ¢ ¥ sin(at)

A more extensive one is available in specialist books (see, for example, Phil Dyke, An
Introduction to Laplace Transforms and Fourier Series, second edition, London,
Springer, 2014, or online).

Of course it is also important to know if the Laplace transform of a given function
actually exists, and this is assured as long as the following inequality is true: that there
exists a real number o and positive constants M and T such that

If(Hl< Me”
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Theorem 5.1

5.1.2

for all + > T. This is called f(¢) being of exponential order. This means almost all rea-
sonable functions are included, but functions that grow faster than exponential such as
e" are excluded. Functions that have jumps are not excluded, see later, but of course
there cannot be gaps, that is values of r where f(¢) is not defined.

The Laplace transform is linear, in other words & obeys the rule

Llafl) +pg(0} = aL{fin} +BL{g(D)}

This enables results to be combined, finding the Laplace transform of 2 sin 3¢ +
3 cos 2t for example. Another useful property is the first shift theorem (MEM Theorem
11.2).

First shift theorem

If £(¢) is a function having Laplace transform F(s), with Re(s) > o then the function
e” () has a Laplace transform given by

F{c" f(t)} = F(s —a) Re(s) > o. + Re(a)

end of theorem

This is a useful result as shown through the examples in MEM.

Other results from MEM

Treating the Laplace transform as a mapping from the ¢ domain to the s domain, one
needs to consider the reverse mapping from the s domain to the + domain. The formal
process involves complex variable theory and is too technical (but again see specialist
books such as that by Phil Dyke referred to above), so in these two texts the process is
to use tables either in the old fashioned way, or to use MATLAB or MAPLE to help
with the details. This is covered in MEM.

One of the useful applications of Laplace transforms is to the solution of differential
equations, so taking the Laplace transform of a derivative is required. Here is a useful
result:

f{g} = sF(s)—f(0)
dt

Straight away it is apparent that the process of using the Laplace transform operator
eliminates the derivative. In MEM this result is proved using integration by parts to
integrate out the derivative. The Laplace transform of the second derivative uses inte-
gration by parts twice and the result is

f{g} = $*F(s) — sf(0) —f/(0)

where the dash denotes differentiation with respect to r. These results can be applied
to solving both single-variable differential equations and simultaneous differential
equations. The application to the solution of partial differential equations is covered in
Section 9.3.3.
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Another result, perhaps not quite so useful, is the Laplace transform of an integral:

f{f f(r)dr} = %F(s)
0

One of the most important applications to the solution of either single or simultaneous
differential equations is the detection of resonance and other vibrations in either elec-
trical or mechanical systems, and there is a lot of space devoted to this in MEM. This
brings us up to speed and we are now ready to embark on new results and applications
of the very powerful Laplace transform. We start with more about the step function.

(Section 5.2 follows on the next page)
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Step and impulse functions

5.2.1 The Heaviside step function

Figure 5.4
Heaviside unit
step function.

Figure 5.5
Piecewise-continuous
function.

In Sections 11.3.3 and 11.3.5 of MEM we considered linear differential equations in
which the forcing functions were continuous. In many engineering applications the
forcing function may frequently be discontinuous, for example a square wave result-
ing from an on/off switch. In order to accommodate such discontinuous functions, we
use the Heaviside unit step function H(f), which, as we saw in Section 5.2.1, or in
section 11.2.1 of MEM, is defined by

{0 (t < 0)
H(1) =
1 (=0

and is illustrated graphically in Figure 5.4(a). The Heaviside function is also frequently
referred to simply as the unit step function. A function representing a unit step at t = a
may be obtained by a horizontal translation of duration a. This is depicted graphically
in Figure 5.4(b), and defined by

0 (t<a)
H(t—a)=

1 (t=a)

H(n) Hir—a)
| | :
= —_
0 t O a t
(al (b)

The product function f(¢)H(t — a) takes values

0 (t < a)

f@ @=a

so the function H(f — a) may be interpreted as a device for ‘switching on’ the function
f(t) at t = a. In this way the unit step function may be used to write a concise

formulation of piecewise-continuous functions. To illustrate this, consider the
piecewise-continuous function f(¢) illustrated in Figure 5.5 and defined by

f(t)H(t—a)={

fn
St
Nt
f3n)

et ISR

o
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Figure 5.6
Top hat function.

fi)y (0O=1t<r)
f() =10 (st <t)
£ (=1)

To construct this function f(¢), we could use the following ‘switching’ operations:

(a) switch on the function f,(¢) at ¢ = 0;

(b) switch on the function f,(¢) at ¢ = ¢, and at the same time switch off the function

fi(@®);

(c) switch on the function f;(¢) at ¢ = t, and at the same time switch off the function

(D).

In terms of the unit step function, the function f(¢) may thus be expressed as

f@) =fi(OH@) + [ L) = LOIH(E = 1) + [ /() = HL(OIH(t - 1)

Alternatively, f(#) may be constructed using the top hat function H(r — a) — H(t — b).

Clearly,
1 (ast<b)
H(t—a)-H(t-b) = )
0 otherwise
which, as illustrated in Figure 5.6, gives
(1) (a<t<Db)
SOIH(t—a)-H(t-b)] = {f

0 otherwise

H(t—a)—H(t-b)

1 —_—

T

0 a b

Using this approach, the function f(#) of Figure 5.5 may be expressed as

F(t) = fiOIH() = H(t = 1)] + fOIH( — 1) = H(t = 1)] + f()H( ~ 1)
giving, as before,

J@) = (OH (1) + [ /(1) = LOIH(E = 1) + [ /(1) = [H(OIH (1 — 1)

54

It is easily checked that this corresponds to the given formulation, since for 0 < ¢ <1,

H() =1, H(t—-t)=H(t—-1)=0
giving

f=f1) O=<1<1)
while for, =t <t,

Ht)y=H(t-1t)=1, H(it-1)=0
giving

JO=fO+ A0 -fiDI=L0) ¢ <s1<1)
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and finally for t = 1,

Ht)=H(t—-t)=H{t—-1t)=1

giving

J@) =fi() + L0 = D] + /() = LD =fi(1) (1= 1)

Example 5.1 Express in terms of unit step functions the piecewise-continuous causal function

2 (0=1t<3)
f(t) =3t+4 (B3<1t<5)
9 (t=5)
Figure 5.7 fi A
Piecewise-continuous 1
function of 18 !
Example 5.1. 1l '
67T : '.
O 1 2 3 4 5 6 71T 8 1

Solution  f(r) is depicted graphically in Figure 5.7, and in terms of unit step functions it may be

expressed as

FfO=20Ht) + (t+4-2tHH(t - 3) + (9 —t—4HH(1 - 5)

That is,

fO)=20Ht)+ (4 +t=2tHH( - 3) + (5 - DH(t - 5)

Example 5.2 Express in terms of unit step functions the piecewise-continuous causal function

0

f() =

1
3
2
0

(t<1)
(1=<1r<3)
B=r<5)
53=t<6)
(t=6)

Solution  f(¢) is depicted graphically in Figure 5.8, and in terms of unit step functions it may be

expressed as

fO=1Ht-1)+B-1H¢-3)+(2-3)H(t-5)+ (0—-2)H(t - 6)

That is,

f)=1H@t—-1)+2H(t—-3) - 1H(t—5)—2H(t - 6)
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Figure 5.8
Piecewise-continuous
function of

Example 5.2.

S A
4 -

d
L
T

L
e

&

L

I el e i, e,
SR e

-y

5.2.2 Laplace transform of unit step function

By definition of the Laplace transform, the transform of H(t — a), a = 0, is given by

LH(l-a)} = J H(t—a)edt = jOe”dtwLJ l1edr
0 0 a
T l=s| T s
That is,
f{H(t—a)}=e; (a=0) (5.5)

and in the particular case of a =0

LHODY =+ (5.6)

This may be implemented in MATLAB using the commands

syms s t
H=sym ( ‘Heaviside (t) ')
laplace (H)

which return
ans=1/s
It may also be obtained directly using the command
laplace (sym( ‘Heaviside(t)’))
Likewise to obtain the Laplace transform of H(t-2) we use the commands

H2=sym( ‘Heaviside (t-2) ')
laplace (H2)
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Example 5.3

Solution

M)
K

0 a b

Figure 5.9
Rectangular pulse.

Example 5.4

Solution

which return
ans=exp (-2*s) /s
In MAPLE the results are obtained using the commands:

with (inttrans) :
laplace (Heaviside (t) ,t,s);
laplace (Heaviside (t-2),t,s) ;

Determine the Laplace transform of the rectangular pulse

0 (t<a)
f(t) =4K (a=<1t<b) Kconstant, b >a >0
0 (t=0>)

The pulse is depicted graphically in Figure 5.9. In terms of unit step functions, it may
be expressed, using the top hat function, as

f()=KI[H(t—a)— H(t - b)]
Then, taking Laplace transforms,
Af)} =KAH({t—-a)} - KL H(t-Db)}

which, on using the elementary properties of the Laplace transform, specifically (11.23)
in MEM, gives

—bs

e ™ e
-K
s

N

Afy=K
That is,

ALD} =5 -

Determine the Laplace transform of the piecewise-constant function f(#) shown in
Figure 5.8.

From Example 5.2 f(¢) may be expressed as
f@)=1H(t—-1)+2H(t—-3)—- 1H(t—-5)-2H(t—6)
Taking Laplace transforms,
Af(0)} = 1AH@ - 1D} +2AH(@ - 3)} - LAH{ - 5)} - 2AH(t - 6))}

which, on using the result (5.5), gives
5 65

-5 -3 55 —
f{f(t)}zgs--l—Ze—s——eT—Z%—

That is,

LD} = % (e +2e ¥ -e”-2e")
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Check that the same answer is obtained using the MATLAB sequence of commands

symsst
Hl=sym( ‘Heaviside (t-1)"

H3=sym( ‘Heaviside (t-3)’) ;
H5=sym( ‘Heaviside (t-5
H6=sym( ‘Heaviside (t-6

)
)
laplace (H1-2*H3-H5-2*H6
In MAPLE the commands

with (inttrans) :
laplace (Heaviside (t-1) +Heaviside (t-3)*2 - Heaviside (t-5)
- Heaviside (t-6)*2,t,s);

)
) &
) 7
).
)

7

return the answer

o (38) _ (59 _ 5 (69

+2e

S

5.2.3 The second shift theorem

This theorem is dual to the first shift theorem given as Theorem 5.1, and is sometimes
referred to as the Heaviside or delay theorem.

Theorem 5.2  If A f(r)} = F(s) then for a positive constant a

Aft—a)H(t—a)} =e“F(s)

Proof By definition,

oo

LLf(t-a)H(i—a)} = J Flt-a)H(t—a)e " di

0
J f(t—a)e ™ dt

Making the substitution 7= ¢ — a,

oo

<>?{f(t_a)li(l‘—a)} = J f(T)e*S(T-*—a)dT

0

= eJ f(Tye'dr
0

oo

Since F(s)=Z{f(t)} = J f(T) e, it follows that

Aft - H(t - a)} = e F(s)

end of theorem
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It is important to distinguish between the two functions f()H(t — a) and f(t — a)H(t — a).
As we saw earlier, f(#)H(t — a) simply indicates that the function f(¢) is ‘switched on’
at time ¢ = a, so that

FOH(t—a) = {0 (r=a)
IO ED

On the other hand, f(# — a)H(t — a) represents a translation of the function f(z) by a units
to the right (to the right, since a > 0), so that

fi—a)H(i—a) = {O (< a)
f(t—a) (t=a)

The difference between the two is illustrated graphically in Figure 5.10. f(z — a)H(t — a)
may be interpreted as representing the function f(#) delayed in time by a units. Thus, when
considering its Laplace transform e “F(s), where F(s) denotes the Laplace transform of
f(t), the component €™ may be interpreted as a delay operator on the transform F(s),
indicating that the response of the system characterized by F(s) will be delayed in time
by a units. Since many practically important systems have some form of delay inherent
in their behaviour, it is clear that the result of this theorem is very useful.

finH(r-a) A ft—a)H(t-a) A

0O a

= I — B
! (8] a ! (0] a t

Figure 5.10 Illustration of f(t — a)H (t — a).

Example 5.5

Solution

flr)

o b t

Figure 5.11
Sawtooth pulse.

Determine the Laplace transform of the causal function f(#) defined by

£(1) = t (0=sr<b
o (t=0b)

f(¢#) is illustrated graphically in Figure 5.11, and is seen to characterize a sawtooth pulse
of duration b. In terms of unit step functions,

f(t) =tH(t) — tH(t — b)

In order to apply the second shift theorem, each term must be rearranged to be of the
form f(t — a)H(t — a); that is, the time argument ¢ — a of the function must be the same
as that of the associated step function. In this particular example this gives

f(t) =tH(t) — (t — b)H(t — b) — bH(t — b)
Taking Laplace transforms,

A0} = AH®D)} — At - bH( - b)} — bAH( - b)}
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Example 5.6

Solution

which, on using the second shift theorem, Theorem 5.2, leads to

1 s e—bs 1 e—h.v e—bs
i’{f(t)}:—z—e At)—b ==- Z—b
S S N S S
giving
1 —DSs b —DSs
Afr==1-e")-=¢e”
S S

It should be noted that this result could have been obtained without the use of the
second shift theorem, since, directly from the definition of the Laplace transform,

e b =
FfHr=| f(e'dr= J te“dt+J Oe"dr
Jo b

e e [ e
e s " s = s s
L 0 0 0

as before.

Obtain the Laplace transform of the piecewise-continuous causal function

2 (0<1<3)
f@) =3t+4 B =<t<5)
9 (t=5)

considered in Example 5.1.

In Example 5.1 we saw that f(¢#) may be expressed in terms of unit step functions as
f)=2H(@t) - Q12— t—4HHE - 3) - (t - 5H(E - 5)

Before we can find # f(¢)}, the function 2¢* — t — 4 must be expressed as a function of
t — 3. This may be readily achieved as follows. Let z =t — 3. Then

20— 1-4=2(z+30-(z+3)—4
=277+ 11z + 11
=2(t-3)+11(t-3)+ 11
Hence
f(t)=2t2H(t) — [2(t = 3)* + 11(t = 3) + 11]H(t — 3) — (t — S)H(t — 5)
Taking Laplace transforms,
Af)) =2LAH@)} — A2t —3)* + 11(t = 3) + 11]H(t — 3)}
- A - 5)H(-5)}
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which, on using Theorem 5.2, leads to

2 -3 2 —Ss
2;_6 L2+ 11+ 11} —e " At}

4 3(4 11 11] e ™
——€¢ | =+—5+— |-

3 3 2 2
N N N N N

Af0}

Again this result could have been obtained directly from the definition of the Laplace
transform, but in this case the required integration by parts is a little more tedious.

Having set up s and ¢ as symbolic variables and specified #, H1 and H5 then the
MATLAB commands
laplace (2*t"2*H- (2*t*2-t-4) *H3- (t-5) *H5) ;
pretty (ans)

generate
ans= 4/s’-1lexp(-3s)/s-1lexp(-3s)/s’-4exp(-3s)/s*-exp(-5s) /s’
In MAPLE the commands

with (inttrans) :
laplace (Heaviside (t) *2*t"2 - Heaviside (t-3)* (2*t*2-t-4)
- Heaviside(t-5)* (t-5),t,s);
return the answer

e a- P18’ +115+4)

s? s?

5.2.4 Inversion using the second shift theorem

We have seen in Examples 5.3 and 5.4 that, to obtain the Laplace transforms of piece-
wise-continuous functions, use of the second shift theorem could be avoided, since it is
possible to obtain such transforms directly from the definition of the Laplace transform.

In practice, the importance of the theorem lies in determining inverse transforms,
since, as indicated earlier, delays are inherent in most practical systems and engineers
are interested in knowing how these influence the system response. Consequently, by
far the most useful form of the second shift theorem is

FYeF(s)} = f(t — a)H(t — a) (5.7)

Comparing (5.7) with the result (11.11) (see p. 918 of MEM), namely
L HF(s)} =f(HH(1)
we see that

FHe™F(s)) =[f(t —a)H(t —a)] with ¢ — a instead of ¢
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Example 5.7

Solution

indicating that the response f(¢) has been delayed in time by a units. This is why the
theorem is sometimes called the delay theorem.

This is readily implemented in MATLAB using the command ilaplace.

: | 4e™
Det ! .
etermine {s(s " 2)}

This may be written as £ '{e™*F(s)}, where

4
T os(s+2)

F(s)

First we obtain the inverse transform f(¢) of F(s). Resolving into partial fractions,

2 2
F = — e —
(s) s s+2

which, on inversion, gives
f(=2-2¢e*

a graph of which is shown in Figure 5.12(a). Then, using (5.7), we have

f'{e‘“s(si 2)} =9 e " F(s)} = f(t—4)H(t—4)

=2 -2e"NH(t - 4)

giving

1) 4e® 0 (r<4)
L
{s(s+2)} {2(1 —e Yy 1= 4

which is plotted in Figure 5.12(b).

Using MATLAB confirm that the commands

ilaplace (4*exp(-4*s)/(s*(s+2)));
pretty (ans)

generate the answer
2H(t-4)(l-exp (-2t+8))
The same answer is obtained in MAPLE using the commands

with (inttrans) :
invlaplace (4*exp(-4*s)/(s* (s+2)),s,t) ;
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Figure 5.12 Inverse 10
transforms of » "_'
Example 5.7.
1 +
L I 2 3 4 5 6 7 8 ‘

(a) Graph of f(1)

v o

(e~ HHE —4) |
2

o I 2 3 4 5 6 7 8

(b) Graph of f(r —4)H(r-4)

Example 5.8  Determine fl{w}
s(s”"+1)

Solution This may be written as ¥ '{e*"F(s)}, where

Fls) = 33
() s(s2+1)

Resolving into partial fractions,

3 3s 1
F(s)==- +
s s+1 sS+1

which, on inversion, gives
f(t)=3—-3cost+sint
a graph of which is shown in Figure 5.13(a). Then, using (5.7), we have
gl{e_—_”gs a 3)} = e "F(s)} = f(t-m)H(1—7)
s(s"+1)
=[3—-3cos(t—m) +sin(t — m)|H(t — T)

=B +3cost—sint)H(t — )

-y
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10 )
10

0
-5 t t 1 { t t +—
0 2 n 4 6 8 10 12 14 1
(a)
St — m)H(t — 7n) A
10 1
5 R
0
-5 } f } f f ; t -
0 2 T 4 6 8 10 12 14 t
(b)

Figure 5.13 Inverse transforms of Example 5.8.

5.2.5

giving
Ve e "(s+3)| _ )0 (r<m
2 - .
s(s”+1) 3+3cost—sint (t=m)

which is plotted in Figure 5.13(b).

Differential equations

We now return to the solution of linear differential equations for which the forcing
functionf(f) is piecewise-continuous, like that illustrated in Figure 5.5. One approach
to solving a differential equation having such a forcing function is to solve
it separately for each of the continuous components f;(¢), f,(¢), and so on, comprising
f(2), using the fact that in this equation all the derivatives, except the highest, must
remain continuous so that values at the point of discontinuity provide the
initial conditions for the next section. This approach is obviously rather tedious, and
a much more direct one is to make use of Heaviside step functions to specify f(z). Then
the method of solution follows that used in Section 11.3 of MEM and we shall simply
illustrate it by examples.
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Example 5.9

Solution

Method 1

Obtain the solution x(¢), t = 0, of the differential equation

x 58 6 pen 5-8)
' dt

where f(¢) is the pulse function

o - 3 (0<1<6)
o (@ =6)

and subject to the initial conditions x(0) = 0 and x(0) = 2.

To illustrate the advantage of using a step function formulation of the forcing function
f(#), we shall first solve separately for each of the time ranges.

For 0 < 1 < 6, (5.8) becomes

with x(0) = 0 and x(0) = 2.
Taking Laplace transforms gives

(5* + 55 + 6)X(s) = sx(0) + £(0) + 5x(0) + % =2+ %

That is,

P
s+2 s+3

2543 3
X() _s(s+2)(s+3)_s+

which, on inversion, gives
1 1 = _
x()=3+3e—e” (0<1<6)

We now determine the values of x(6) and x(6) in order to provide the initial conditions
for the next stage:

x(6)=1+ieP-e=0 i6)=-e+3e=4

For t = 6 we make the change of independent variable 7 = — 6, whence (5.8) becomes

2
—+5—+6x=0
dT dT

subject to x(T=0)= vand X(T=0) = 5
Taking Laplace transforms gives

(*4+55+60)X(s)=sx(T=0)+x(T=0)+5x(T=0)=as + Sa+ p
That is,

_as+5a+f _ p+3a p+2a
X = D63 - 512 513
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which, on taking inverse transforms, gives
xT)=(B+3we™ - (f+20)e™"

Substituting the values of rand £ and reverting to the independent variable ¢ gives
x(t) = (% + %é”) 20— (1+e™e™® (=6

That is,
x(t) = (%eizt - efh) + (% e 673076)) (t=6)

Thus the solution of the differential equation is
%+%e—2t_e—3t (0<t<6)
x(1) = (

1 -2t 3¢ 3 -2(1-6) ~3(1-6)
—e —e )+(Te —e )(t>6)

The forcing function f(#) and response x(¢) are shown in Figures 5.14(a) and (b)

respectively.
Figure 5.14 VIGN \ x(7) A
Forcing function 0.6 +
and response of 6T
Example 5.9.
0.4 1
34—
X 0.2 -
I
I
I
f f f —> f f f f >
O 3 6 9 12t O 2 4 6 8 10 ¢
(a) (b)

Method 2 In terms of Heaviside step functions,
f(t)=3H(t) - 3H(t - 6)
so that, using (5.5),

Af}=3-2e*

Taking Laplace transforms in (5.8) then gives

3 3

(s> + 55 + 6)X(s) = 5x(0) + %(0) + 5x(0) + A f(1)}) =2+ T ;e’“
That is,
X(s) = 25+ 3 65 3

S+2)(+3) © s(s+2)(s+3)

%4_ % __1_ _676S i_ % +L
s s+2 s+3 s s+2 s+43

Taking inverse Laplace transforms and using the result (5.7) gives

x(t) = (% +Le? - 373[)— (L + 220y 673(’76))11(1‘ - 6)

2
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which is the required solution. This corresponds to that obtained in Method 1, since,
using the definition of H(# — 6), it may be written as

ltle? - (0<71<6)

x(t) =
1 -2t -3t 3 -2(t-6) _-3(1-6)
(Te — € )+(Te —¢ ) (t=6)

This approach is clearly less tedious, since the initial conditions at the discontinuities
are automatically taken account of in the solution.

It seems that the standard dsolve command is unable to deal with differential
equations having such Heaviside functions as their forcing function. To resolve this
problem use can be made of the maple command in MATLAB, which lets us access
MAPLE commands directly. Confirm that the following commands produce the
correct solution:

maple (‘de:=diff (x ,£82) +5*diff (x(t),t)+6*x(t)
-3*Heav1s1de 3*Heav151de(t 6);")

ans=

de := diff( , Y ))+5*diff (x(t),t)+6*x(t)

= 3*Heav151de 3*Heav151de(t—6)
maple (‘dsolve ({de,x(0)=0,D(x) (0)=2},x(t)) ,method=1laplace;”’)

In MAPLE the answer may be obtained directly using the commands

with (inttrans) :

de:=diff (x(t),t$2) +5*diff (x(t),t)+6*x(t)
-3*Heaviside- 3*Heaviside(t 6);

dsolve ({de,x(0)=0,D(x) (0)=2},x(t)),method=1laplace;

Example 5.10 Determine the solution x(¢), ¢ = 0, of the differential equation
d’x
d—+2—+5x—f(t) (5.9
where

_jt (Ost=m)
f(t)_{o (t =)

and subject to the initial conditions x(0) = 0 and x(0) = 3.

Solution Following the procedures of Example 5.5, we have
f(1) = tH(t) — tH(t — )
=tH(t)- (t—n)H(t — 1) — tH(t — ™)
so that, using Theorem 5.2,

€ e

Apmy=Loe T lz-e“(slﬁgj
N

N N N
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5.2.6

Taking Laplace transforms in (5.9) then gives

(8% + 25 + 5)X(s) = 5x(0) + %(0) + 2x(0) + A f(1)}
=3+lze’”(—12—+7—t]

s 5T s

using the given initial conditions.
Thus

357+ 1 s 1+sm
s (" +2s+5) s (55 +2s+5)

X(s) =

which, on resolving into partial fractions, leads to

{_2+§+_2S+_74_} GMFR2+§_(5n2)s+(10n+1)}
4

1
X(s) = — —
() =3 s s (s+ 1)+ 250 5§ (s+1)+4

11 2,5 2(s+1)+72
250 5 s (s+1)+4

B e_”‘[STE_g+§ (5n=2)(s+ 1)+(5n+3)}
250 s S (s+1) ' +4
Taking inverse Laplace transforms and using (5.7) gives the desired solution:
x(f) = 3 (=2 + 5t + 2 e cos 2¢ + 36 e sin 21)
— L[5t =2) +5(~m) — (51 —2) e"™ cos 2(t — T)
— 151 +3) e sin2(t — m)H(t — T0)
That is,
x(t) = 55 [51 — 2 + 2 e7(cos 2 + 18 sin 27)]
— L{51—2—e"e"[(5n—2) cos2t+ 5 (5T + 3)sin 2]} H (1 — )

or, in alternative form,

o %[5t—2+267’(cos 2t+18sin2t)] (0 =t < m)
x(t) =

e {(2+(5n—2)e") cos 2t + [36 +3(5m+3)e" ] sin 2t} (t = m)

Periodic functions

We have already determined the Laplace transforms of periodic functions, such
as sin @t and cos wt, which are smooth (differentiable) continuous functions. In many
engineering applications, however, one frequently encounters periodic functions that
exhibit discontinuous behaviour. Examples of typical periodic functions of practical
importance are shown in Figure 5.15.

Such periodic functions may be represented as infinite series of terms involving step
functions; once expressed in such a form, the result (5.5) may then be used to obtain
their Laplace transforms.
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Figure 5.15 T
Typical practically I'd
important periodic : : : : : i
functions: (a) square 1 i i 1 ) i
wave; (b) sawtooth o | | i | | . .
wave; (c) repeated oEpT AT : VT ' | 3T !
pulse wave; (d) half- i . } - ! -
wave rectifier. =k ; : : ! ' !
(a)
K+ . :
i L} i 1
: ' | i
1 I I i
o | ! | | >
T 2T ir 4T t
(b)
VONY
K4 ‘ . i
1 ] i 1 [l
1 ] i i []
1 L} 1 1 1
1 ] I | ]
0 —— — — —
T T 2T 1
(c)
U
0o p——4 | —— —
iT T 2T t

Example 5.11 Obtain the Laplace transform of the square wave illustrated in Figure 5.15(a).

Solution In terms of step functions, the square wave may be expressed in the form

f(t)=KH(t) - 2KH (r - %T) +2KH(t—-T)-2KH (r - %T) +2KH({t-2T)+- - -

=K[H(t) - 2H (t——;—T) +2H(t-T) - 2H(t— %T) +2H@-2T)+ -]
Taking Laplace transforms and using the result (5.5) gives

FLF()Y = F(s) = K(l_zefmz_'_zef.vr_gesxr/z_’_gefzsr ... )
s s s S s

4

_ ZTK [1- o2 (eﬂm)z _ (eﬁsm)3 " (ef.vr/z) . _f
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The series inside the square brackets is an infinite geometric progression with first

term 1 and common ratio —e™*"2, and therefore has sum (1 + ¢™*7?)"!. Thus,

2K 1 K_Kl-¢&'™

Fls) == ——p -2 = 2 Sy
s 1+e” s S1+e”’

That is,

LI} =F(s) =X tanh LsT

N

The approach used in Example 5.11 may be used to prove the following theorem, which
provides an explicit expression for the Laplace transform of a periodic function.

Theorem 5.3 If f(¢), defined for all positive ¢, is a periodic function with period 7, that is

f(t+ nT) =f(¢) for all integers n, then

SLf)} = —— J e V(1) dr

1-¢ a

Proof If, as illustrated in Figure 5.16, the periodic function f(7) is piecewise-continuous over
an interval of length 7, then its Laplace transform exists and can be expressed as a series
of integrals over successive periods; that is,

oo

Afn)} = J f(nyed

0

= J S e dr + J f(1) e dr + J f(0) e 'dr+ - - -

0 T 2T
nT
+ J f(He'dt+---
(n-1)T
If in successive integrals we make the substitutions
t=7+nT (n=0,1,2,3,...)

then

T
AfD)}= if Az+nT)e ™ dr
n=0

0

Figure 5.16 flr)
Periodic function
having period T.

e i

~ Y
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fi(0)

0 T t

Figure 5.17

Plot of periodic
function within one
period.

Example 5.12

Solution

Since f(¢) is periodic with period 7,

f(r+nT)=f(t) (n=0,1,2,3,...)

so that
T T
A= ZJ fln)e* e dr = [Z eS"T] J f(r) efdr
n=0 0 n=0 0
The series Xroe ™ =1+e "+ e +e "+ .. is an infinite geometric progression

with first term 1 and common ratio €. Its sum is given by (1 —e™7)”', so that

Af}= 1.VTJ flr)ye'dr

1-e o

Since, within the integral, 7is a ‘dummy’ variable, it may be replaced by ¢ to give the
desired result.

end of theorem

We note that, in terms of the Heaviside step function, Theorem 5.3 may be stated as
follows:

If f(#), defined for all positive ¢, is a periodic function with period 7" and

H(@) =f()(H(1) - H(t = T))

then

A} =1 - ALfi(n)

This formulation follows since f(¢) is periodic and f,(¢) = 0 for t > T. For the periodic
function f(#) shown in Figure 5.16 the corresponding function fi(f) is shown in
Figure 5.17. We shall see from the following examples that this formulation simplifies
the process of obtaining Laplace transforms of periodic functions.

Confirm the result obtained in Example 5.11 using Theorem 5.3.

For the square wave f(¢) illustrated in Figure 5.15(a), f(¢) is defined over the period
0<t<Tby

K (0<t<im

f(t)={ 1
K (T<:t<T)

Hence we can write f,(t) = K[H(t) — 2H(t — %T) + H(t — T)], and thus

1 2 1 K .
g{fl(t)}:K(E,Ee T/2+Ee T) =;(lfe T/2)2
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Example 5.13

Using the result of Theorem 5.3,
K( 1 _ e—sT/Z)Z

K(l _ e—.vT/Z)Z

ANy =5t =

_I_{l_e—sTﬂ K
sl+e

s(1

—sT/2 =
N

_ e—sT/Z)(l + e—sT/Z)

— tanh i sT

confirming the result obtained in Example 5.11.

sin @t
S ={

(0 <t <rnlw)

Determine the Laplace transform of the rectified half-wave defined by

0 (rlo <t <2n/w)

f(t+2nm/w) =f(¢t) for all integers n

Solution

f(¢) is illustrated in Figure 5.15(d), with T = 21t/@w. We can express f,(¢) as
fi(t) =sin wt[H(t) — H(t — T/ w)]

=sin wtH(t) + sinw(t — ©/w)H(t — /W)

So
[0} —st/® w w —sTtlw
L fin)}y = +e = (1+e™™)
: S+ @ S+ sSH@
Then, by the result of Theorem 5.3,
®w 1+e’™ ®
A f)} = =
S2 + C()2 1 _ e—ZM/w (S2 + 0)2)(1 _ e—sn/a))

5.2.7 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

A function f(¢) is defined by

[t 0=r=1)
f(t)—{o ‘=1

Express f(¢) in terms of Heaviside unit step
functions and show that

Afnr=S0-e9-te
S S

Express in terms of Heaviside unit step functions the
following piecewise-continuous causal functions. In
each case obtain the Laplace transform of the
function.

2

3t n<r=s4
(a) f(t) = 42t-3 (4<t<6)

5 (t>6)

t on=str<l
(b) g(r) =42—-1t (1<t<2)

0 (t>2)

Obtain the inverse Laplace transforms of the
following:

s e
e’ 3e

b —_—
(s=2)* ( )(s+3)(s+l)

(a)
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2s;i—l e @ 2s+l ™
sT(s"+1) sT+s+1

© = S g4l f) 62(12—6 )
s +25 s(s7+1)

Given that x = 0 when ¢ = 0, obtain the solution of
the differential equation

dx _ -
THx=f) (=0

where f(¢) is the function defined in Exercise 1.
Sketch a graph of the solution.

Given that x = 1 and dx/d¢ = 0, obtain the solution

of the differential equation
93 + dx +x=g(t)
' dr

where g() is the piecewise-continuous function

defined in Exercise 2(b).

(1=0)

Show that the function
0 0=<t<in
ﬂn={, ’
sin ¢

may be expressed in the form f(¢) = cos (r — %n)
H(t— %TC), where H(t) is the Heaviside unit step
function. Hence solve the differential equation

d’x dx

— +3=+2x=f(1)

dit dr

(1 = 3m)

where f(¢) is given above, and x = 1 and
dx/dt =—1 when = 0.

Express the function
3 0=r<4)
fn=
(t=4)
in terms of Heaviside unit step functions and obtain
its Laplace transform. Obtain the response of the
harmonic oscillator

2t-5

X+ x=£(t)

to such a forcing function, given that x = 1 and
dx/dt =0 when t = 0.

The response 6,() of a system to a forcing function
O(t) is determined by the second-order differential
equation

6,+66,+108,=6 (1= 0)

Suppose that () is a constant stimulus applied for
a limited period and characterized by

{3 (0<t<a)
o(n =
0 (t=a)

10

11

12

Determine the response of the system at time ¢
given that the system was initially in a quiescent
state. Show that the transient response at time
T(>a)is

—2e{cos T+ 3sinT —e*[cos (T~ a)
+ 3sin (T — a)]}
The input &(¢) and output €,(¢) of a servomechanism
are related by the differential equation
6,+86,+166,=6 (1= 0)
and initially 6,(0) = 90(0) =0. For @ =f(t), where

[1-1 (0<i<1)
f(t)_{o (t>1)
Show that
Aomy=+Lle
S S

and hence obtain an expression for the response of
the system at time .

During the time interval ¢, to #,, a constant
electromotive force ¢, acts on the series RC circuit
shown in Figure 5.18. Assuming that the circuit is
initially in a quiescent state, show that the current
in the circuit at time ¢ is

€y ~(1=1))/RC

i(1)=2fe H(t-1)—e " H(t- 1))

Sketch this as a function of time.

[
R
— ||

e“_,o /r i(r)

Figure 5.18 Circuit of Exercise 10.

A periodic function f(¢), with period 4 units, is
defined within the interval 0 < 7 < 4 by

3t (0=1<2)
fm_{s 2<1<4)

Sketch a graph of the function for 0 < r < 12 and
obtain its Laplace transform.

Obtain the Laplace transform of the periodic
sawtooth wave with period 7, illustrated in
Figure 5.15(b).
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5.2.8

Figure 5.19
Impulse function.

The impulse function

Suppose a hammer is used to strike a nail then the hammer will be in contact with the
nail for a very short period of time, indeed almost instantaneously. A similar situation
arises when a golfer strikes a golf ball. In both cases the force applied, during this short
period of time, builds up rapidly to a large value and then rapidly decreases to zero.
Such short sharp forces are known as impulsive forces and are of interest in many
engineering applications. In practice it is not the duration of contact that is important
but the momentum transmitted, this being proportional to the time integral of the force
applied. Mathematically such forcing functions are represented by the impulse function.
To develop a mathematical formulation of the impulse function and obtain some insight
into its physical interpretation, consider the pulse function ¢(¢) defined by

0 (0<t<a-iT)
#(1) ={AIT (a-iT<rt<a+iT)
0 (t=a+iT)

and illustrated in Figure 5.19(a). Since the height of the pulse is A/T and its duration (or
width) is 7, the area under the pulse is A; that is,

o a+T/2 A
J #(t)dr = J %dt=A
S a-T/2

If we now consider the limiting process in which the duration of the pulse approaches
zero, in such a way that the area under the pulse remains A, then we obtain a
formulation of the impulse function of magnitude A occurring at time ¢ = a. It is
important to appreciate that the magnitude of the impulse function is measured by
its area.

The impulse function whose magnitude is unity is called the unit impulse function
or Dirac delta function (or simply delta function). The unit impulse occurring at
t = a is the limiting case of the pulse ¢(#) of Figure 5.19(a) with A having the value unity.
It is denoted by &t — a) and has the properties

0t—a)=0 (#a)

j Nt—a)dr=1

Likewise, an impulse function of magnitude A occurring at z = a is denoted by Ad(t — a)
and may be represented diagrammatically as in Figure 5.19(b).

An impulse function is not a function in the usual sense, but is an example of a class
of what are called generalized functions, which may be analysed using the theory of

o(r) Ad{r—a)
A
T |

U
I
I
|
|
|
|
T

-
’

~ Y

a-Taa+iT 1« a
(a) (b)
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5.2.9

(1)
(1)
1
L
| e | > = =
0 a-T a a+T t —-iT O -iT t
Figure 5.20 Approximation to a unit pulse. Figure 5.21 Pulse at the origin.

generalized calculus. (It may also be regarded mathematically as a distribution and
investigated using the theory of distributions.) However, its properties are such that,
used with care, it can lead to results that have physical or practical significance and
which in many cases cannot be obtained by any other method. In this context it provides
engineers with an important mathematical tool. Although, clearly, an impulse function
is not physically realizable, it follows from the above formulation that physical signals
can be produced that closely approximate it.

We noted that the magnitude of the impulse function is determined by the area under
the limiting pulse. The actual shape of the limiting pulse is not really important,
provided that the area contained within it remains constant as its duration approaches
zero. Physically, therefore, the unit impulse function at r = a may equally well be
regarded as the pulse ¢,(¢) of Figure 5.20 in the limiting case as T approaches zero.

In some applications we need to consider a unit impulse function at time ¢ = 0. This
is denoted by () and is defined as the limiting case of the pulse @,(¢) illustrated in
Figure 5.21 as T approaches zero. It has the properties

o)=0 (t#0)

J o()de=1

The sifting property

An important property of the unit impulse function that is of practical significance is
the so-called sifting property, which states that if f(¢) is continuous at ¢ = a then

oo

J f(D)t—a)dt =f(a) (5.10)

This is referred to as the sifting property because it provides a method of isolating, or
sifting out, the value of a function at any particular point.

For theoretical reasons it is convenient to use infinite limits in (5.10), while in reality
finite limits can be substituted. This follows since for & < a < f, where o and [ are
constants,

B
J f()6(t—a)dt = f(a) (5.11)

o
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5.2.10

For example,

2n
J cos td(t —im)dr = cos 1w =1
0

Laplace transforms of impulse functions

By the definition of the Laplace transform, we have for any a > 0

Aé(t-a)} = J O(t—a)e'dt
0

which, using the sifting property, gives the important result
Adt-a)}=e* (5.12)
or, in terms of the inverse transform,

FUe™) = 8(t - a) (5.13)

As mentioned earlier, in many applications we may have an impulse function J(¢) at
t =0, and it is in order to handle such a function that we must carefully specify whether
the lower limit in the Laplace integral defined in Section 5.1.1 is 0~ or 0". Adopting the
notation

oo

LA} =f f(nedr

oo

L0} = J fear

0

we have

0* o

L{f}= J f(oedr + J f(re"de

0

If f(¢) does not involve an impulse function at ¢ = 0 then clearly Z.{f()} = L {f()}.
However, if f(#) does involve an impulse function at ¢ = 0 then

J f(ydr#0

0

and it follows that

SAVIOIEEAVIO)
We adopt the definition (see Section 11.2 of MEM)

Af)} = Z{f@0)}
so that (5.12) and (5.13) hold for a = 0, giving

oo

FLS()} =J Snetdr=e’=1

0
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so that

A} =1 (5.14)

or, in inverse form,

Z1y=60) (5.15)

This transform can be implemented in MATLAB using the sequence of commands

syms s t
del=sym(‘Dirac(t)’) ;
laplace (del)

Likewise for (5.12); for example, if a = 2 then the Laplace transform of d(z — 2) is
generated by the commands

del2=sym(‘Dirac(t-2)") ;
laplace (del2)

or directly using the command
laplace (sym(‘Dirac(t-2)"))

giving the answer exp (-2+*s) in each case.
In MAPLE the commands

with (inttrans) :
laplace (Dirac(t-2), t, s);

return the answer e,

2
Example 5.14  Determine fl{ zs }
s*+4

Solution Since

s _s2+4—4_1_ 4
sS+4 s +4 s +4
we have
s 4
L= =1 -9
s +4 s +4
giving

2
$1{ = }=§(t)2sin2t
s +4
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In MATLAB this is obtained directly, with the commands

ilaplace (s”2/(s%2+4)) ;
pretty (ans)

generating the answer
Dirac(t) -2sin2t
The answers may also be obtained in MAPLE using the commands

with (inttrans) :
invlaplace (s®2/(s%2+4), s, t);

Example 5.15  Determine the solution of the differential equation

d’x dx
—S+3=+2x=1+d81-4) (5.16)
dr dr

subject to the initial conditions x(0) = x(0) = 0.

Solution Taking Laplace transforms in (5.16) gives
[s°X(s) — sx(0) — %(0)] + 3[sX(s) — x(0)] + 2X(s) = A1} + LAt —4)}

which, on incorporating the given initial conditions and using (5.12), leads to
(4 3s+2)X(s) = % +e™
giving

1 45 1

XO=G6+0 7 GioeeD

Resolving into partial fractions, we have

1 1 1 2 —4s 1 1
X(s) =3 ~+——=———|+ _
(5) {s s+2 s+ J © [s+1 S+2J
which, on taking inverse transforms and using the result (5.7), gives the required
response:
x(t) = %(1 +e -2+ (e - e H(I - 4)
or, in an alternative form,
l+e™-2e") (0=<t<4)
x(t) = 4 —1 8 -2t
st —De'—(e-He” (=4

We note that, although the response x(¢) is continuous at ¢ = 4, the consequence of the
impulsive input at ¢ = 4 is a step change in the derivative x(z).
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5.2.11

As was the case in Example 5.9, when considering Heaviside functions as forcing
terms, it seems that the dsolve command in MATLAB cannot be used directly in
this case. Using the maple command the following commands:

maple (‘de:=diff (x(t),t$2)+3*diff (x(t),t)+2*x(t)

= 1+Dirac(t-4);")

ans=

de := diff(x(t),’$’ (t,2))+3*diff (x(t),t)+2*x(t)

= l+Dirac(t-4)

maple (‘dsolve ({de,x(0)=0,D(x)(0)=0},x(t)),

method=laplace;’)
output the required answer:

x(t)=1/2-exp(-t)+1/2%*exp(-2*t)-Heaviside (t-4) *
exp (-2*t+8) +Heaviside (t-4) *exp (-t+4)

Relationship between Heaviside step and
impulse functions

From the definitions of H(¢) and &(¢), it can be argued that
H(t) = J A ndr (5.17)

since the interval of integration contains zero if # > 0 but not if # < 0. Conversely, (5.17)
may be written as

d

Hley= dt

H(t)=H'(1) (5.18)

which expresses the fact that H'(¢) is zero everywhere except at # = 0, when the jump
in H(t) occurs.

While this argument may suffice in practice, since we are dealing with generalized
functions a more formal proof requires the development of some properties of
generalized functions. In particular, we need to define what is meant by saying that two
generalized functions are equivalent.

One method of approach is to use the concept of a test function 6(¢), which is a
continuous function that has continuous derivatives of all orders and that is zero outside
a finite interval. One class of testing function, adopted by R. R. Gabel and R. A. Roberts
(Signals and Linear Systems, New York, Wiley, 1973), is

—d*1(d*-
o) =€ (|t] <d), where d = constant
0 otherwise

For a generalized function g(¢) the integral
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G(6) :J O(t)g(t)dt

is evaluated. This integral assigns the number G(6) to each function 6(¢), so that G(6)
is a generalization of the concept of a function: it is a linear functional on the space of
test functions €(¢). For example, if g(¢) = &(¢) then

G(6) =J 6(1) 5() dt = 6(0)

so that in this particular case, for each weighting function 6(t), the value 6(0) is
assigned to G(6).

We can now use the concept of a test function to define what is meant by saying that
two generalized functions are equivalent or ‘equal’.

Definition 5.2: The equivalence property

If g,(¢) and g,(¢) are two generalized functions then g,(¢) = g,(¢) if and only if

J 0(1)g (1) dr = J 0(1)g,(1) dt
for all test functions 6(t) for which the integrals exist.

The test function may be regarded as a ‘device’ for examining the generalized
function. Gabel and Roberts draw a rough parallel with the role of using the output of
a measuring instrument to deduce properties about what is being measured. In such an
analogy g,(f) = g,(¢) if the measuring instrument can detect no differences between
them.

Using the concept of a test function (), the Dirac delta function &(z) may be
defined in the generalized form

J a(r)o(r) dt = 6(0)

Interpreted as an ordinary integral, this has no meaning. The integral and the function
O(t) are merely defined by the number 6(0). In this sense we can handle &(¢) as if it
were an ordinary function, except that we never talk about the value of J(¢); rather we
talk about the value of integrals involving (7).
Using the equivalence property, we can now confirm the result (5.18), namely that
81 = & H() = H'(1)
dr

To prove this, we must show that
J a(1)o(r)dr = J O(t)H’ (1) dt (5.19)

Integrating the right-hand side of (5.19) by parts, we have
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Figure 5.22
Piecewise-continuous
function with jump
discontinuities.

oo

J H(I)H'(t)dt:[H(I)H(t)]i,—J H(1) @ (1) dt

—oco

=0 J & (t)dr  (by the definitions of 6(r) and H(z))

=-16(n)]s = 6(0)

Since the left-hand side of (5.19) is also 8(0), the equivalence of d(¢) and H(¢) is proved.
Likewise, it can be shown that

5t —a) = (% H(t—a)=H'(t - a) (5.20)

The results (5.18) and (5.20) may be used to obtain the generalized derivatives of
piecewise-continuous functions having jump discontinuities d,, d,, ... , d, at times
t), b, ..., t, respectively, as illustrated in Figure 5.22. On expressing f(¢) in terms of
Heaviside step functions as in Section 5.2.1, and differentiating using the product rule,
use of (5.18) and (5.20) leads to the result

£ =g+ dst-1) (5.21)

where g’(#) denotes the ordinary derivative of f(¢) where it exists. The result (5.21) tells
us that the derivative of a piecewise-continuous function with jump discontinuities
is the ordinary derivative where it exists plus the sum of delta functions at the disconti-
nuities multiplied by the magnitudes of the respective jumps.

fin

|dl 1: :4 dy i* dy

o
el |}
i
)
Doy

By the magnitude d; of a jump in a function f(¢) at a point 7, we mean the difference
between the right-hand and left-hand limits of f(#) at #;; that is,

d;=f(t;+0)—f(t, - 0)

It follows that an upward jump, such as d, and d, in Figure 5.22, is positive, while a
downward jump, such as d; in Figure 5.22, is negative.

The result (5.21) gives an indication as to why the use of differentiators in practical
systems is not encouraged, since the introduction of impulses means that derivatives
increase noise levels in signal reception. In contrast, integrators have a smoothing effect
on signals, and are widely used.
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Example 5.16

Figure 5.23 Piecewise-
continuous function of
Example 5.16.

Solution

Example 5.17

Solution

Obtain the generalized derivative of the piecewise-continuous function

20+1 (0=<t<3)
[y =qt+4  (3=t<5)
4 (r=5)
FIGNY
194 |
:ll:’.
10+ j .
! Y S
I ' ' L L 1 i -
0] 1 2 3 4 5 6

f() is depicted graphically in Figure 5.23, and it has jump discontinuities of
magnitudes 1, —12 and —5 at times t = 0, 3 and 5 respectively. Using (5.21), the
generalized derivative is

F() =gt +18(1) — 128(t — 3) — 55(t — 5)

where
4r (0<1<3)
g =11 @B<st<5)
0 (@@=)5)

A system is characterized by the differential equation model

SEE S R L (5.22)
dt t dt

Determine the response of the system to a forcing function u(¢) = e™ applied at time
t =0, given that it was initially in a quiescent state.

Since the system is initially in a quiescent state, the transformed equation
corresponding to (5.22) is

(s> + 55+ 6)X(s) = 3s + DHU(s)
giving
3s+1

X(s) =
sS+55+6

U(s)

In the particular case when u(t) =e™, U(s) = 1/(s + 1), so that

_ (3s+1) _ -1 + 5 4
(s+D(s+2)(s+3) s+1 s+2 s+3

X(s)
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which, on taking inverse transforms, gives the desired response as
x(t)=—e'+5eF —4e (¢=0)

One might have been tempted to adopt a different approach and substitute for u(z)
directly in (5.22) before taking Laplace transforms. This leads to

—+5=+6x=¢"'-3e"'=-2¢"

which, on taking Laplace transforms, leads to

2
2 —  ——
(s + 55 + 6)X(s) P
giving
-2 -1 2 1

X = DG+ )63 551 572 533

which, on inversion, gives
x()=—e"+2e - (¢=0)

Clearly this approach results in a different solution, and therefore appears to lead to a
paradox. However, this apparent paradox can be resolved by noting that the second
approach is erroneous in that it ignores the important fact that we are dealing with
causal functions. Strictly speaking,

u(t) = eH(t)

and, when determining du/dt, the product rule of differential calculus should be
employed, giving

du__ —t —ti
T e H(t)+e dtH(t)

=—e"H(t) +e'0()
Substituting this into (5.22) and taking Laplace transforms gives

=3s+1

2 1 (7 1 )
(s"+55s+6)X(s) =——+3 S——+1+1 1

s+1

That is,

3s+1
§) = 5
(s+1)(s"+5s+6)

leading to the same response
x(t)=—e"+5eF—4e¥ t=0)

as in the first approach above.
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13

14

The differential equation used in Example 5.17 is of a form that occurs frequently in
practice, so it is important that the causal nature of the forcing term be recognized.

The derivative ¢’(¢) of the impulse function is also a generalized function, and, using
the equivalence property, it is readily shown that

oo

J Jf) &' (1) dr =—f"(0)

or, more generally,

oo

J f()6'(t—a)dt = —f"(a)

provided that /() is continuous at 7 = a.
Likewise, the nth derivative satisfies

J f(S"(t—a)dt = (-1)"f"(a)

provided that £ “(¢) is continuous at ¢ = a.
Using the definition of the Laplace transform, it follows that

At - a)) =s"e

and, in particular,

A6"()}y =" (5.23)

5.2.12 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

2
Obtain the inverse Laplace transforms of the (c) d—)zc +7 dx +12x = 6(t-3)
following: dr d
2 2 2
(a) 25 +1 (b) s -1 s +2 subjecttox:landd—leattzo
(s+2)(s+3) sS+4 s +2s+5 d

Solve for r = 0 the following differential equations,

subject to the specified initial conditions: 15  Obtain the generalized derivatives of the following

piecewise-continuous functions:

(a) (if+7d—x+12x:2+§(t72) )
dt dt 3t 0O=1r<4)
, dx (@) f()=42t-3 (4<1<6)
subjecttox:Oanda:Oatt:O 5 (t=6)
(b)c—l-%c+6gz+l3x:§(172rc) t (O=1r<1)
e di (b) g =12-1 (1=1<2)
subjecttoszandd—xZOatIZO 0 (t=2)

dt
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2

2t+5 (0=1r<2 d
B ( ) —f +@x=f(t) (¢=0)
(c) f(H=479-3t (2<1t<4) t
2
! (t=4) Show that

16 Solve for = 0 the differential equation

d’x dx

du x(1) = %}iH(tfnT) sinw(t—nT) (1 =0)

“E+7‘—+10X:2M+3“ n=0

dr

subject to x = 0 and dx/df =2 at t = 0 and where

u(t) =eH().

dr
and sketch the responses from 7 = 0 to t = 61/ for
the two cases (a) T=n/wand (b) T =2n/m

17 A periodic function f(¢) is an infinite train of unit 18  Animpulse voltage ES(¢) is applied at time £ =0
impulses at # = 0 and repeated at intervals of t = T. to a circuit consisting of a resistor R, a capacitor
Show that C and an inductor L connected in series. Prior to

application of this voltage, both the charge on

1
HAfn}= — the capacitor and the resulting current in the
1-e circuit are zero. Determine the charge ¢(¢) on the
The response of a harmonic oscillator to such a periodic capacitor and the resulting current i(¢) in the circuit
stimulus is determined by the differential equation at time £.
5.2.13 Bending of beams

Figure 5.24
Transverse deflection
of a beam: (a) initial
position; (b) displaced
position.

So far, we have considered examples in which Laplace transform methods have been
used to solve initial-value-type problems. These methods may also be used to solve
boundary-value problems, and, to illustrate, we consider in this section the application
of Laplace transform methods to determine the transverse deflection of a uniform thin
beam due to loading.

Consider a thin uniform beam of length / and let y(x) be its transverse displacement,
at distance x measured from one end, from the original position due to loading. The
situation is illustrated in Figure 5.24, with the displacement measured upwards. Then,
from the elementary theory of beams, we have

dly
El— = -W(x) (5.29)
dx

where W(x) is the transverse force per unit length, with a downwards force taken to be
positive, and EI is the flexural rigidity of the beam (E is Young’s modulus of elasticity
and [ is the moment of inertia of the beam about its central axis). It is assumed that the
beam has uniform elastic properties and a uniform cross-section over its length, so that
both E and [ are taken to be constants.

2. 0.
[ x O\Wx

(a) (b)
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Equation (5.24) is sometimes written as
4
Eld—ﬁ = W(x)
dx

where y(x) is the transverse displacement measured downwards and not upwards as
in (5.24).

In cases when the loading is uniform along the full length of the beam, that is
W(x) = constant, (5.24) may be readily solved by the normal techniques of integral
calculus. However, when the loading is non-uniform, the use of Laplace transform
methods has a distinct advantage, since by making use of Heaviside unit functions and
impulse functions, the problem of solving (5.24) independently for various sections of
the beam may be avoided.

Taking Laplace transforms throughout in (5.24) gives

EI[s*Y(s) — 5’y(0) — 5°y,(0) — sy,(0) — y5(0)] = —W(s) (5.25)
where
_(dy _(dy _(dy
y1(0) = [dxj O, ¥2(0) [dxzj > y3(0) [dfj
x= x=0 x=0

and may be interpreted physically as follows:
Ely;(0) is the shear atx =0
Ely,(0) is the bending moment at x =0
,(0) is the slope at x =0
¥(0) is the deflection at x =0

Solving (5.25) for y(s) leads to
V(o) = W) 3(0) 31(0) L 2(0) 3 (0)

2 3 4
Els s K K K

(5.26)

Thus four boundary conditions need to be found, and ideally they should be the shear,
bending moment, slope and deflection at x = 0. However, in practice these boundary
conditions are not often available. While some of them are known, other boundary
conditions are specified at points along the beam other than at x = 0, for example
conditions at the far end, x = I/, or conditions at possible points of support along
the beam. That is, we are faced with a boundary-value problem rather than an initial-
value problem.

To proceed, known conditions at x = 0 are inserted, while the other conditions among
¥(0), y,(0), ¥,(0) and y;(0) that are not specified are carried forward as undetermined
constants. Inverse transforms are taken throughout in (5.7) to obtain the deflection y(x),
and the outstanding undetermined constants are obtained using the boundary conditions
specified at points along the beam other than at x = 0.

The boundary conditions are usually embodied in physical conditions such as the
following:

(@) The beam is freely, or simply, supported at both ends, indicating that both the
bending moments and deflection are zero at both ends, so that y = d*y/dx* = 0 at
bothx=0and x = 1.

(b)  Atboth ends the beam is clamped, or built into a wall. Thus the beam is horizontal
at both ends, so that y = dy/dx =0 at both x =0 and x = [.
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Example 5.18

Figure 5.25
Loaded beam of
Example 5.18.

Solution

(c) The beam is a cantilever with one end free (that is, fixed horizontally at one end,
with the other end free). At the fixed end (say x = 0)

=(—12=0

I atx=0

y

and at the free end (x = [), since both the shearing force and bending moment are

Zero,
2 3

Gy_dy_o arx=1

dx” dx

If the load is not uniform along the full length of the beam, use is made of Heaviside
step functions and impulse functions in specifying W(x) in (5.24). For example, a
uniform load w per unit length over the portion of the beam x = x; to x = x, is specified
as wH(x — x;) — wH(x — x,), and a point load w at x = x, is specified as wd(x — x;).

Figure 5.25 illustrates a uniform beam of length [, freely supported at both ends, bending
under uniformly distributed self-weight W and a concentrated point load P at x = %l.
Determine the transverse deflection y(x) of the beam.

! R
R G o e o > 2
i x
e--2-- o W
R >

As in Figure 5.24, the origin is taken at the left-hand end of the beam, and the deflection
y(x) measured upwards from the horizontal at the level of the supports. The deflection
y(x) is then given by (5.24), with the force function W(x) having contributions from the
weight W, the concentrated load P and the support reactions R, and R,. However, since
we are interested in solving (5.24) for 0 =< x < [, point loads or reactions at the end
x = [ may be omitted from the force function.

As a preliminary, we need to determine R,. This is done by taking static moments
about the end x = /, assuming the weight W to be concentrated at the centroid x = %l,
giving

R\l =3WI+ Pl
or
R, =3W+3P

The force function W(x) may then be expressed as
W) = —ZWH(x) # PO =11 = LW+ 2 P)S(x)

with a Laplace transform

W(s) = %@ Pe™ _(W+1P)



5.2 STEP AND IMPULSE FUNCTIONS 355

Since the beam is freely supported at both ends, the deflection and bending moments
are zero at both ends, so we take the boundary conditions as

y=0 atx=0andx=1

dzy
—=0 atx=0andx=/
dx

The transformed equation (5.26) becomes

1 W P 1 (0) (0)
Y(s) = — Le ”3—(§W+§P)—4 +)’12 +)’34
El Is’ s s S S

Taking inverse transforms, making use of the second shift theorem (Theorem 5.2), gives

the deflection y(x) as

y(x) =~ EI[“VIV P H(x - '1)-%(%W+§P)x3J
+31(0)x + 5 y3(0)x’

To obtain the value of the undetermined constants y,(0) and y;(0), we employ the
unused boundary conditions at x =/, namely y(/) = 0 and y,(/) = 0. For x > %l

1w
y(x) = E{;lx‘# P(x— 11)3—é(%W+§P)x3}+y1(0)x+gl,y3(0)x3
d’ 1
L=y =—— “2’—x+P( _-z)_[-W+—23£jx + y5(0).

Thus taking y,(I) = 0 gives y;(0) = 0, and taking y(/) = 0 gives

21(24 WE+ &Pl - Swi - pr )+y1(0)l=0

so that
2

1
y1(0) = 1(24W+81P)

Substituting back, we find that the deflection y(x) is given by

W x* P P ’
y(0) =~ (- &) - D e 40) - x40 ) H(x- 41

or, for the two sections of the beam,

71111(2%1711_2)8 ilzx)fgl(%lzxféxﬁ (0<x<—;—l)
V(x):
4
—Elll(z%l—ll—zf 21—412)()—EEI(%lzx-i-l—lgf—éle—él}) (%l<x<l)
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19

20

5.2.14 Exercises

Find the deflection of a beam simply supported at its
ends x = 0 and x =/, bending under a uniformly
distributed self-weight M and a concentrated load
Watx=11

A cantilever beam of negligible weight and of
length [ is clamped at the end x = 0. Determine the
deflection of the beam when it is subjected to a load

21

per unit length, w, over the section x = x, to x = x,.
What is the maximum deflection if x, = 0 and x, = [?

A uniform cantilever beam of length / is subjected
to a concentrated load W at a point distance b from
the fixed end. Determine the deflection of the beam,
distinguishing between the sections 0 < x < b and
b<x=IL

Input

9.3

5.3.1

System Output

U(s)
—» G(s)

X(s)

Figure 5.26

Transfer function block

diagram.

Transfer functions

Definitions

The transfer function of a linear time-invariant system is defined to be the ratio of
the Laplace transform of the system output (or response function) to the Laplace
transform of the system input (or forcing function), under the assumption that all the
initial conditions are zero (that is, the system is initially in a quiescent state).

Transfer functions are frequently used in engineering to characterize the input—
output relationships of linear time-invariant systems, and play an important role in the
analysis and design of such systems.

Consider a linear time-invariant system characterized by the differential equation

d"x d"'x d"u
a,— +a,.;——+ - -+ax=>b,—

— - (5.27)
dr dr ¢

+ -+ bou

where n = m, the as and bs are constant coefficients, and x(¢) is the system response or
output to the input or forcing term u(¢) applied at time ¢ = 0. Taking Laplace transforms
throughout in (5.27) will lead to the transformed equation. Since all the initial condi-
tions are assumed to be zero, using the relationship between the Laplace transform and
derivatives as shown in MEM (11.14) we see that, in order to obtain the transformed
equation, we simply replace d/d¢ by s, giving

(@, s"+a, ;s"" +---+a)X(s)=(b,s" + -+ by)U(s)

where X(s) and U(s) denote the Laplace transforms of x(f) and u(¢) respectively.
The system transfer function G(s) is then defined to be

_X(s) _ b,s"+---+b, (5.28)

a,s"+---+a,
with (5.28) being referred to as the transfer function model of the system characterized
by the differential equation model (5.27). Diagramatically this may be represented by the
input—output block diagram of Figure 5.26.
Writing
P(s)=b,s"+---+b,

o)=a,s"+---+a,
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Example 5.19

the transfer function may be expressed as

_ P&
G =56

where, in order to make the system physically realizable, the degrees m and n of the
polynomials P(s) and Q(s) must be such that n = m. This is because it follows from
(5.23) that if m > n then the system response x(¢) to a realistic input u(f) will involve
impulses.

The equation Q(s) = 0 is called the characteristic equation of the system; its order
determines the order of the system, and its roots are referred to as the poles of the
transfer function. Likewise, the roots of P(s) = O are referred to as the zeros of the
transfer function.

It is important to realize that, in general, a transfer function is only used to
characterize a linear time-invariant system. It is a property of the system itself, and is
independent of both system input and output.

Although the transfer function characterizes the dynamics of the system, it provides
no information concerning the actual physical structure of the system, and in fact
systems that are physically different may have identical transfer functions; for example,
the mass—spring—damper system of Figure 11.12 in MEM and the LCR circuit of
Figure 11.8 in MEM both have the transfer function

X(») _ 1
Uls) as’+fs+y

G(s) =

In the mass—spring—damper system X(s) determines the displacement x(f) of the mass
and U(s) represents the applied force F(z), while & denotes the mass, S the damping
coefficient and y the spring constant. On the other hand, in the LCR circuit X(s)
determines the charge ¢(7) on the condenser and U(s) represents the applied emf e(?),
while o denotes the inductance, S the resistance and ythe reciprocal of the capacitance.
In practice, an overall system may be made up of a number of components each
characterized by its own transfer function and related operation box. The overall system
input—output transfer function is then obtained by the rules of block diagram algebra.
Since G(s) may be written as

Gs) = Lu (52200 2) = (- 2)

Ay, (s_pl)(s_p2) e (s_pn)

where the z;s and p;s are the transfer function zeros and poles respectively, we observe
that G(s) is known, apart from a constant factor, if the positions of all the poles and
zeros are known. Consequently, a plot of the poles and zeros of G(s) is often used as
an aid in the graphical analysis of the transfer function (a common convention is to
mark the position of a zero by a circle O and that of a pole by a cross X). Since the
coefficients of the polynomials P(s) and Q(s) are real, all complex roots always occur in
complex conjugate pairs, so that the pole-zero plot is symmetrical about the real axis.

The response x(7) of a system to a forcing function u(f) is determined by the differential
equation
2
CRENEP I L P LU
dr dr dr
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Solution

Figure 5.27
Pole (x)—zero (O) plot
for Example 5.19.

(a)
(b)

©

(a)

(b)

(©)

Determine the transfer function characterizing the system.

Write down the characteristic equation of the system. What is the order of the
system?

Determine the transfer function poles and zeros, and illustrate them
diagrammatically in the s plane.

Assuming all the initial conditions to be zero, taking Laplace transforms throughout
in the differential equation

2
L ESETLE ST PP LU
dr dt dt
leads to

(9s® + 125 + 13)X(s) = (25 + 3)U(s)
so that the system transfer function is given by

:X(s) _ 25 +3
U(s) 95>+ 125+ 13

G(s)

The characteristic equation of the system is

9s*+ 125 +13=0

and the system is of order 2.

The transfer function poles are the roots of the characteristic equation
9s*+ 125 +13=0

which are

= vE J(144—468)  —2+i3
B 18 T3

That is, the transfer function has simple poles at
s:—_% +j and sz—% -]

The transfer function zeros are determined by equating the numerator polynomial
2s + 3 to zero, giving a single zero at

§=-
The corresponding pole—zero plot in the s plane is shown in Figure 5.27.

Im(s) A
34

=15
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5.3.2

A transfer function (tf) is implemented within MATLAB using the commands

s = tf(’s’)
G = G(s)

Thus, entering G= (2*s+3) / (9*s*2+12*s+13) generates

2s + 3

transfer function = —
98" + 125 + 13

The command poly (G) generates the characteristic polynomial, whilst the commands
pole (G) and zero (G) generate the poles and zeros respectively. The command
pzmap (G) draws the pole—zero map.

Stability

The stability of a system is a property of vital importance to engineers. Intuitively, we
may regard a stable system as one that will remain at rest unless it is excited by an
external source, and will return to rest if all such external influences are removed. Thus
a stable system is one whose response, in the absence of an input, will approach zero
as time approaches infinity. This then ensures that any bounded input produces a
bounded output; this property is frequently taken to be the definition of a stable linear
system.

Clearly, stability is a property of the system itself, and does not depend on the
system input or forcing function. Since a system may be characterized in the s domain
by its transfer function G(s), it should be possible to use the transfer function to specify
conditions for the system to be stable.

In considering the time response of

P(s)

X =GOUW,  Gs) = 55

to any given input u(?), it is necessary to factorize the denominator polynomial
O)=a,s"+a, s""'+---+a,

and various forms of factors can be involved.

Simple factor of the form s + ¢, with « real

This corresponds to a simple pole at s = —¢, and will in the partial-fractions expansion
of G(s) lead to a term of the form c/(s + &) having corresponding time response
ce “H(t), using the strict form of the inverse given in (11.11) of MEM. If @ > 0, so
that the pole is in the left half of the s plane, the time response will tend to zero as
t — oo, If @ < 0, so that the pole is in the right half of the s plane, the time response
will increase without bound as t — oo. It follows that a stable system must have real-
valued simple poles of G(s) in the left half of the s plane.

o = 0 corresponds to a simple pole at the origin, having a corresponding time
response that is a step cH(f). A system having such a pole is said to be marginally
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stable; this does not ensure that a bounded input will lead to a bounded output, since,
for example, if such a system has an input that is a step d applied at time ¢ = O then the
response will be a ramp cdtH(f), which is unbounded as ¢t — co.

Repeated simple factors of the form (s + «)", with a real

This corresponds to a multiple pole at s = —¢, and will lead in the partial-fractions
expansion of G(s) to a term of the form ¢/(s + @)" having corresponding time response
[c/(n — 1)!]t"" e"H(f). Again the response will decay to zero as t — oo only if &> 0,
indicating that a stable system must have all real-valued repeated poles of G(s) in the
left half of the s plane.

Quadratic factors of the form (s + &)* + *, with & and £ real

This corresponds to a pair of complex conjugate poles at s = -+ jf, s =—a— jf, and
will lead in the partial-fractions expansion of G(s) to a term of the form

c(s+a)+dp
(s+a)+f

having corresponding time response
e “(ccos fr+ dsin ) = Ae “sin (bt + )
where A = (¢’ +d°) and y=tan™'(c/d).

Again we see that poles in the left half of the s plane (corresponding to ¢ > 0) have
corresponding time responses that die away, in the form of an exponentially damped
sinusoid, as t — oo. A stable system must therefore have complex conjugate poles
located in the left half of the s plane; that is, all complex poles must have a negative
real part.

If o= 0, the corresponding time response will be a periodic sinusoid, which will not
die away as t — oo. Again this corresponds to a marginally stable system, and will, for
example, give rise to a response that increases without bound as ¢ — e when the input
is a sinusoid at the same frequency S

A summary of the responses corresponding to the various types of poles is given in
Figure 5.28.

The concept of stability may be expressed in the form of Definition 5.3.

Definition 5.3

A physically realizable causal time-invariant linear system with transfer function
G(s) is stable provided that all the poles of G(s) are in the left half of the s plane.

The requirement in the definition that the system be physically realizable, thatis n = m
in the transfer function G(s) of (5.28), avoids terms of the form s™™ in the partial-
fractions expansion of G(s). Such a term would correspond to differentiation of
degree m — n, and were an input such as sin ¢ used to excite the system then the
response would include a term such as @™ sin @f or @™ cos wt, which could be made
as large as desired by increasing the input frequency @.

m—n
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Figure 5.28 Poles of G(s) in Poles in complex Corresponding Nature of response
Relationship between form o + jw s plane time response
transfer function poles
and time response. @ T I
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In terms of the poles of the transfer function G(s), its abscissa of convergence o,
corresponds to the real part of the pole located furthest to the right in the s plane. For
example, if

s+ 1

)= TG T2

then the abscissa of convergence o, = 2.
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Example 5.20

Solution

It follows from Definition 5.3 that the transfer function G(s) of a stable system has an
abscissa of convergence o, = —¢, with & > 0. Thus its region of convergence includes
the imaginary axis, so that G(s) exists when s = jax We shall return to this result when
considering the relationship between Laplace and Fourier transforms in Section 8.4.1.

According to Definition 5.3, in order to prove stability, we need to show that all the
roots of the characteristic equation

o)=a,s" + a,HS'H +-4+as+a,=0 (5.29)

have negative real parts (that is, they lie in the left half of the s plane). Various criteria
exist to show that all the roots satisfy this requirement, and it is not necessary to solve
the equation to prove stability. One widely used criterion is the Routh-Hurwitz criterion,
which can be stated as follows:

A necessary and sufficient condition for all the roots of equation (5.29)
to have negative real parts is that the determinants A, A,,. .., A, are
all positive, where

A,y a, 0 0 ... 0
a,_s a,, 4, a, ... 0
5.30
Ar = a,s Apy ap3 an_2 0oo 0 ( )
an—(Zr—l) an_zy An_2r-1 Ay_2r2 ay—r

it being understood that in each determinant all the as with subscripts
that are either negative or greater than n are to be replaced by zero.

Show that the roots of the characteristic equation
5*+ 95 + 3357+ 515 +26=0

all have negative real parts.

In this case n =4, a, = 26, a, =51,a,=33,a;,=9,a,=1and a, =0 (r > 4). The
determinants of the Routh—Hurwitz criterion are

A =la, | =a|=]9|=9 >0

Ay a, asz dy
A2 = =
an3 Ay a, a
9 1
= =246 >0
51 33
a,, a, 0 a; ags 0O
Ay =la,; a,, a,|=|a a a;
Ap-s  dyy 0y3 a, 4ap a
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Example 5.21

Solution

an-y a, O O as ay O O
a,—3 a,—» a,—y a, a a, as ay
A4 = =
aps dyy dy3 Ay a, a a a4
Ap7 Ay Qu5 dypy as do, 4 4
9 1 0 0
51 33 9 1
= = 26A; >0
0 26 51 37
0 0 0 26

Thus A, > 0, A, > 0, A; > 0 and A, > 0, so that all the roots of the given characteristic
equation have negative real parts. This is readily checked, since the roots are -2, —1,
-3 +j2and -3 —j2.

The steady motion of a steam-engine governor is modelled by the differential equations
mij+b4+dn—ew=0 (5.31)
I, =—fn (5.32)

where 77 is a small fluctuation in the angle of inclination, @ a small fluctuation in the
angular velocity of rotation, and m, b, d, e, f and I, are all positive constants. Show that
the motion of the governor is stable provided that

bd _ ef
m I,

Differentiating (5.31) gives
mi] + bij+dn —ew =0
which, on using (5.32), leads to

ef

mij + bij + dnj+ 7 =0
0

for which the corresponding characteristic equation is
ms® + bs* +ds + j—f=0
0

This is a cubic polynomial, so the parameters of (5.29) are

n=3, a,= ;—f, a,=d, a,=b, a;=m (a,=0,r>3)
0
The determinants (5.30) of the Routh—Hurwitz criterion are
A =la=b>0

a, as

Azz

bom — pd_mef
eflly d 1

ap a
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5.3.3

(and so A, > 0 provided that bd — mef/l, > 0 or bd/m > efll,), and

a, a; O
As=|a, a; a|=aA, >0 ifA,>0
0 0 a

Thus the action of the governor is stable provided that A, > 0; that is,

bd _ ¢f
m I,

Impulse response

From (5.28), we find that for a system having transfer function G(s) the response x()
of the system, initially in a quiescent state, to an input u(¢) is determined by the trans-
formed relationship

X(s) = G(s)U(s)

If the input u(?) is taken to be the unit impulse function &(¢) then the system response
will be determined by

X(s) = G()Z{6(1)} = G(s)

Taking inverse Laplace transforms leads to the corresponding time response A(¢), which
is called the impulse response of the system (it is also sometimes referred to as the
weighting function of the system); that is, the impulse response is given by

h(t) = L H{X(s)} = L{G(s)} (5.33)

We therefore have the following definition.

Definition 5.4: Impulse response

The impulse response A(f) of a linear time-invariant system is the response of the
system to a unit impulse applied at time ¢ = 0 when all the initial conditions are zero.
It is such that £{h(¢)} = G(s), where G(s) is the system transfer function.

Since the impulse response is the inverse Laplace transform of the transfer function,
it follows that both the impulse response and the transfer function carry the same
information about the dynamics of a linear time-invariant system. Theoretically,
therefore, it is possible to determine the complete information about the system by
exciting it with an impulse and measuring the response. For this reason, it is common
practice in engineering to regard the transfer function as being the Laplace transform of
the impulse response, since this places greater emphasis on the parameters of the
system when considering system design.

We saw in Section 5.3.2 that, since the transfer function G(s) completely characterizes
a linear time-invariant system, it can be used to specify conditions for system stability,
which are that all the poles of G(s) lie in the left half of the s plane. Alternatively,
characterizing the system by its impulse response, we can say that the system is stable
provided that its impulse response decays to zero as t — oo.
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Example 5.22

Solution

5.3.4

Theorem 5.4

Determine the impulse response of the linear system whose response x(f) to an input
u(t) is determined by the differential equation

d*x dx
— + 5=+ 6x = 5u(1) (5.34)
dt dt

The impulse response A(f) is the system response to u(f) = o(¢f) when all the initial
conditions are zero. It is therefore determined as the solution of the differential equation

‘ﬁ; +59 1 6n = 5501) (5.35)
dr dr
subject to the initial conditions 2(0) = / (0) = 0. Taking Laplace transforms in (5.35) gives
(s*+5s+6)H(s) =5L{d()} =5
so that
5 __5 5
(s+3)(s+2) s+2 s+3
which, on inversion, gives the desired impulse response
h(t) =5 —e™)
Alternatively, the transfer function G(s) of the system determined by (5.34) is
_5
s +55+6

so that i(f) = L G(s)} = 5(e* - e™) as before.

H(s) =

G(s) =

Note: This example serves to illustrate the necessity for incorporating 0~ as the lower
limit in the Laplace transform integral, in order to accommodate for an impulse applied
at t=0. The effect of the impulse is to cause a step change in X(¢) at t = 0, with the initial
condition accounting for what happens up to 0™.

In MATLAB a plot of the impulse response is obtained using the commands
s=tf(’s’)
G=G(s)
impulse (G)

Initial- and final-value theorems

The initial- and final-value theorems are two useful theorems that enable us to predict
system behaviour as t — 0 and # — oo without actually inverting Laplace transforms.

The initial-value theorem

If f(z) and f(¢) are both Laplace-transformable and if lim sF(s) exists then

lim f(1) = f(0) = lim sF(s)
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Proof

Example 5.23

From MEM (11.12) or simply by direct integration,

oo

Af0)= J 7 f(0edt=sF(s) - f(07)

0

where we have highlighted the fact that the lower limit is 0”. Hence

lim [sF(s) = f(07)] = lim J fede
.

oo

0+
= lim J fe™der+ limj f(e™de (5.36)
§—>o0 o §—o0 o

If £(¢) is discontinuous at the origin, so that f(0%) # f(0"), then, from (5.21), f(¢) contains
an impulse term [ f(0%) — f(07)]15(¢), so that

n

0
lim J fne™de=f(0") - f(07)

0

Also, since the Laplace transform of f(f) exists, it is of exponential order and we have

oo

lim J e dt=0
0+

so that (5.36) becomes
lim sF(s) - £(07) = f(0") - £(0")
giving the required result:

lim sF(s) = £(0°)

If f(¢) is continuous at the origin then f(r) does not contain an impulse term, and the
right-hand side of (5.36) is zero, giving

lim sF(s) = (07) = f(0%)
end of theorem

It is important to recognize that the initial-value theorem does not give the initial
value f(0") used when determining the Laplace transform, but rather gives the value of
f(® as t — 0". This distinction is highlighted in the following example.

The circuit of Figure 5.29 consists of a resistance R and a capacitance C connected in
series together with constant voltage source E. Prior to closing the switch at time 7 =0,
both the charge on the capacitor and the resulting current in the circuit are zero.
Determine the current i(f) in the circuit at time ¢ after the switch is closed, and
investigate the use of the initial-value theorem.
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Solution

Figure 5.29
RC circuit of
Example 5.23.

Theorem 5.5

Proof

Applying Kirchhoff’s law to the circuit of Figure 5.29, we have
N
Ri+ EJ idt =E,

which, on taking Laplace transforms, gives the transformed equation

Ri(s) + 116) _ Ei
c s K
Therefore
E /R
I(s) = —2——
()= ST 1/RC

Taking inverse transforms gives the current i(f) at t = 0 as
E,
i(t) = ﬁ e ke (5.37)

Applying the initial-value theorem,

o . . SEJR . E,/R E,
= 1 = 1 = =%
lim i(z) = lim sI(s) = lim —="p = lim -=="p = = &
That is,
i) = 20

R

a result that is readily confirmed by allowing t — 0" in (5.37). We note that this is
not the same as the initial state i{(0) = 0 owing to the fact that there is a step change in
i(t)att=0.

The final-value theorem

If £(z) and f(¢) are both Laplace-transformable and ;1_{{10 f(¢) exists then

%ijnf(t) = lirr(l)sF(s)

From (11.12) of MEM, the Laplace transform of a derivative,

ot

Af0} = j 7f'(t) edr=sF(s) - f(07)

0

Taking limits, we have

oo oo

lim [sF(s) — £(0)] = lim J f’(t)e‘”dt=J F@dr= @l

0

= lim f(t) - f(0")
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Example 5.24

Solution

giving the required result:
lim f(r) = lim sF(s)
end of theorem

The restriction that lim f(#) must exist means that the theorem does not hold for
functions such as e’,’_{;hich tends to infinity as t — oo, or sin @f, whose limit is
undefined. Since in practice the final-value theorem is used to obtain the behaviour of f(¢)
as t — oo from knowledge of the transform F(s), it is more common to express the
restriction in terms of restrictions on F(s), which are that sF(s) must have all its
poles in the left half of the s plane; that is, sF(s) must represent a stable transfer
function. It is important that the theorem be used with caution and that this
restriction be fully recognized, since the existence of 1[1_1)2 sF(s) does not imply that
f(#) has a limiting value as t — oo.

Investigate the application of the final-value theorem to the transfer function

1

F&) =563

(5.38)

li = lim e =
SE) = I 3 O

so the use of the final-value theorem implies that for the time function f(f) corresponding
to F(s) we have

lim /() =0
However, taking inverse transforms in (5.38) gives

f = (e - e )
implying that f(f) tends to infinity as ¢ — co. This implied contradiction arises since the
theorem is not valid in this case. Although lirr(l) sF(s) exists, sF(s) has a pole at s = 3,
which is not in the left half of the s plane. "

The final-value theorem provides a useful vehicle for determining a system’s steady-
state gain (SSG) and the steady-state errors, or offsets, in feedback control systems,
both of which are important features in control system design.

The SSG of a stable system is the system’s steady-state response, that is the response
as t — oo, to a unit step input. For a system with transfer function G(s) we have,
from (5.28), that its response x(¢) is related to the input u(#) by the transformed equation

X(s) = G(s)U(s)

For a unit step input

u(t)=1H(®) giving U(s) = %



5.3 TRANSFER FUNCTIONS 369

Example 5.25

Solution

R(s) E(s) X(s)
m

Figure 5.30 Unity
feedback control
system.

Example 5.26

Solution

so that

From the final-value theorem, the steady-state gain is

SSG = gn x(t) = lirré sX(s) = liII}) G(s)

Determine the steady-state gain of a system having transfer function

20(1 +35)

G(s)=7
s +7s+ 10

The response x(¢) to a unit step input u(f) = 1H(¢) is given by the transformed equation

20(1 +3s) 1

X(s) = G(s)U(s) = 5
s +7s+10s

Then, by the final-value theorem, the steady-state gain is given by

SSG = limx(1) = lim sX(s) = lim 22U *+35) _,
t—>o0 s—0 s—)OS +7S+10
Note that for a step input of magnitude K, that is u(¢) = KH(?), the steady-state response
will be hn(l) kG(s) = 2K; that is,

steady-state response to step input = SSG X magnitude of step input

A unity feedback control system having forward-path transfer function G(s), reference
input or desired output r(¢) and actual output x(¢) is illustrated by the block diagram
of Figure 5.30. Defining the error to be e(f) = r(f) — x(¢), it follows that

G(s)E(s) = X(s) = R(s) — E(s)
giving

_ _RG)
ES) =176

Thus, from the final-value theorem, the steady-state error (SSE) is

L . _ .. _SR(s)
SSE = lim e(7) = lyl_I>I}) SE(s) = I}_)Hé T2G06) (5.39)

Determine the SSE for the system of Figure 5.30 when G(s) is the same as in
Example 5.19 and r(?) is a step of magnitude K.

Since () = KH(t), we have R(s) = K/s, so, using (5.39),

. sK/s K
SSE =1 =
T+ G(s)  1+SSG
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22

23

24

25

where SSG = 2 as determined in Example 5.25. Thus

SSE= 1K

It is clear from Example 5.26 that if we are to reduce the SSE, which is clearly
desirable in practice, then the SSG needs to be increased. However, such an increase
could lead to an undesirable transient response, and in system design a balance must be
achieved. Detailed design techniques for alleviating such problems are not considered
here; for such a discussion the reader is referred to specialist texts (see, for example
J. Schwarzenbach and K. F. Gill, System Modelling and Control, third edition,
Oxford, Butterworth-Heinemann, 1992).

5.3.5 Exercises

The response x(¢) of a system to a forcing function
u(t) is determined by the differential equation model
2
d—);+2d—x+5x:3d—u+2u
dr dt dr

(a) Determine the transfer function characterizing
the system.

(b) Write down the characteristic equation of the
system. What is the order of the system?

(c) Determine the transfer function poles and
zeros, and illustrate them diagrammatically in
the s plane.

Repeat Exercise 22 for a system whose response
x(?) to an input u(f) is determined by the differential
equation

d’x | dx dx d’u du

—3+5—2+17—+13x = —2+5—+6
dr dr dt dr dt

Which of the following transfer functions represent
stable systems and which represent unstable systems?

@ s—1 (s+2)(s—2)
(s+2)(s"+4) (s+D(s=1D)(s+4)
© s—1 6
(s+2)(s+4) (s"+s+1)(s+1)°
5(s+10)

(s+5)(s"—s+10)

Which of the following characteristic equations are
representative of stable systems?

(a) s —4s+13=0
(b) 55+ 135 +31s+15=0

26

27

28

29

) S$+s2+s5+1=0
(d) 24s* + 115> + 265> + 455 + 36 = 0
(e) $+2%+2s+1=0

The differential equation governing the motion of a
mass—spring—damper system with controller is

where m, ¢, K and r are positive constants. Show
that the motion of the system is stable provided that
r<clm.

The behaviour of a system having a gain controller

is characterized by the characteristic equation
S22+ (K+2)s*+7s+K=0

where K is the controller gain. Show that the system

is stable provided that K > 2.1.

A feedback control system has characteristic equation
s+ 15Ks* + 2K — 1)s + 5K =0

where K is a constant gain factor. Determine the
range of positive values of K for which the system
will be stable.

Determine the impulse responses of the linear
systems whose response x(7) to an input u(?) is
determined by the following differential equations:

2
(a) d_)zc+ 15(1_x+ 56x = 3u(t)
dr dr

2
(b) d—f + 8d—x +25x = u(t)
dr dt
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&Px dx 31  Verify the initial-value theorem for the functions
(©) —5—-2—-8x=4u(r)
dr dt (a) 2—3cost (b) (3t—1)* (c) t+3sin2t
d’x  dx . .
(d) F - 45 +13x = u(1) 32  Verify the final-value theorem for the functions

(a) 1+3e”sin2¢ (b) t2e™

What can be said about the stability of each of the

systems? () 3-2e¥ +e’cos2t
30  The response of a given system to a unit step 33  Use the initial- and final-value theorems to find the
u(t) = 1H(¢) is given by jump at # =0 and the limiting value as ¢ — oo for the
X =1- % ot % e é iy solution of the initial-value problem
What is the transfer function of the % +5y=4+e+25()
system?
with y(07) =—1.
5.3.6 Convolution

Convolution is a useful concept that has many applications in various fields of
engineering. In Section 5.3.7 we shall use it to obtain the response of a linear system to
any input in terms of the impulse response.

Definition 5.5: Convolution

Given two piecewise-continuous functions f(f) and g(t), the convolution of f(f) and
g(?), denoted by f = g(t), is defined as

00

fxg) = J f(Dgt—ndr

In the particular case when f(f) and g(¢) are causal functions

f@O=g0)=0 (z<0), gt-9=0 (r>1)

and we have

g = J f(D)g(t—ndr (5.40)
0

The notation f x g(¢) indicates that the convolution f « g is a function of ¢#; that is, it could
also be written as ( f * g)(f). The integral [~ f(7) g(t — 7) dris called the convolution
integral. Alternative names are the superposition integral, Duhamel integral, folding
integral and faltung integral.

Convolution can be considered as a generalized function, and as such it has many of
the properties of multiplication. In particular, the commutative law is satisfied, so that

fxg(0) =g f0)
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Example 5.27

Solution

Theorem 5.6

or, for causal functions,

J f(D)g(t—1)dr= J ft—1)g(r)dr (5.41)

0 0

This means that the convolution can be evaluated by time-shifting either of the two
functions. The result (5.41) is readily proved, since by making the substitution 7; =¢— 7
in (5.40) we obtain

0 t
fgl)= J ft = 1)g(7)(=d7) = J Jt=7n)g(n)dr = g = f(1)

0

For the two causal functions
f@)=tH(?),  g(t)=sin2tH(t)
show that f x g(¥) = g = f(?).

t

fxgl®)= J f(D)g(t— 1)dr= J 7sin2(t — 7)dr

0 0
Integrating by parts gives
fxg)= [% Tcos2(t— 7) + i sin2(t — 7)), = %t—i sin 2¢

gxf(t)= J ft—Dg(ndr= J (t— 1sin2zrdr
0

0
= [—%(t— T)cos 27— i sin 27y = %t— i sin 2¢

so that f = g(t) = g = f(¢).

The importance of convolution in Laplace transform work is that it enables us to
obtain the inverse transform of the product of two transforms. The necessary result for
doing this is contained in the following theorem.

Convolution theorem for Laplace transforms

If f(#) and g(¢) are of exponential order o, piecewise-continuous on ¢ = 0 and
have Laplace transforms F'(s) and G(s) respectively, then, for s > o,

55” f(Dg(t—1) dt} =ZL{f=g(D)} = F(s)G(s)
0

or, in the more useful inverse form,

LHF$)G(9)} =f g0 (5.42)
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Proof

Figure 5.31
Regions of integration.

Example 5.28

Solution

By definition,

F(s)G(s) = Z{f(0}E£{g(D)} = [J e " f(x) dXI [J e g(y) dy]

0 0

where we have used the ‘dummy’ variables x and y, rather than ¢, in the integrals to
avoid confusion. This may now be expressed in the form of the double integral

oo

J e fx)g(y) dxdy = jJ e fx)g(y) dxdy
0

R

F(s)G(s) = J

0

where R is the first quadrant in the (x, y) plane, as shown in Figure 5.31(a). On making
the substitution
x+y=t, y=1

the double integral is transformed into

F(s)G(s) = J J e f(t — Dg(D)drdr

Ry

where R, is the semi-infinite region in the (7, ¢) plane bounded by the lines 7= 0 and
=1, as shown in Figure 5.31(b). This may be written as

F(s)G(s) = J e‘"( J ft=1)g(7) dTJ dr= J e g fO]dt = L{g = f(1)}
0 0

0

0 O
(a) Region R (b) Region R,

and, since convolution is commutative, we may write this as

F(5)G(s) = A [+ g(D)}

which concludes the proof.

end of theorem

Using the convolution theorem, determine £~ ! 2;2 .
s (s+2)

We express 1/s%(s + 2)* as (1/s%)[1/(s + 2)*]; then, since

x{;}:%, Ate™} = L

s (s +2)
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5.3.7

Figure 5.32
Approximation to a
continuous input.

taking f(¢) = t and g(f) = te™ in the convolution theorem gives

11 ' ' N

which on integration by parts gives

3—1{%(—:2)2} = [—%e—Zr[(t—T)T+%(t—21')—%]](’): i[f— 1+ (1 + De?]
S (s

We can check this result by first expressing the given transform in partial-fractions form
and then inverting to give
1 1 1 1
1 — = -
TS =TSt
s (s+2) s s s+2 (s+2)

so that

2

ifl{sz—(sl—-Jrz)z} =dadrrie e = -1+ (t+ 1)e]

as before.

System response to an arbitrary input

The impulse response of a linear time-invariant system is particularly useful in practice
in that it enables us to obtain the response of the system to an arbitrary input using the
convolution integral. This provides engineers with a powerful approach to the analysis
of dynamical systems.

Let us consider a linear system characterized by its impulse response A(t). Then
we wish to determine the response x(¢) of the system to an arbitrary input u(#) such as
that illustrated in Figure 5.32(a). We first approximate the continuous function u() by
an infinite sequence of impulses of magnitude u(nAT), n =0, 1, 2, ..., as shown in
Figure 5.32(b). This approximation for u(f) may be written as

u(t) = i u(nAT)S(t — nAT) AT (5.43)
n=0

uir) T

O AT 3AT
2AT
(a) (b)

-y
~ Y

Since the system is linear, the principle of superposition holds, so that the response of
the system to the sum of the impulses is equal to the sum of the responses of the system
to each of the impulses acting separately. Depicting the impulse response A(?) of the
linear system by Figure 5.33, the responses due to the individual impulses forming the
sum in (5.43) are illustrated in the sequence of plots in Figure 5.34.
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Figure 5.33 81 ) hit)
Impulse response o) I e ki)
of a linear system. system
|
— o
0 4 0 '
Output
Input :
u (MATH(r) ATu(0)h (1)
’ —_—> LS [—>
u(MAT
0 , 0 7]
Output
Input WAT)AT ATu(AT)
xd(r—AT) xh(1— AT)
— LS B——>»
I w(AT)AT
0 a7 f O ar t
Output
Tiigiit Wi2ATIAT ATu(2AT)
xd(r—2AT) xh(t - 2AT)
—_—» IS5 }—
t W(2ATIAT /\
o) 2AT t (0] EAIT T
: Output
Input u (nAT)AT ATu(nAT)
xd(t - nAT) shit— nAT)
ulnAry AT
o nAT 1 a ui‘\T r!

Figure 5.34 Responses due to individual impulses.

Summing the individual responses, we find that the response due to the sum of the
impulses is

i u(nATYh(t — nAT) AT (5.44)
n=0
Allowing AT — 0, so that nAT approaches a continuous variable 7, the above sum will
approach an integral that will be representative of the system response x(f) to the
continuous input u(f). Thus

x(1) = J u(Dh(t — rydz = J u(t)h(t — 7)dr (since h(¢) is a causal function)
0

0
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That is,
x(t) = u = h(r)

Since convolution is commutative, we may also write

t

x(t) =h =+ u(t) = J h(Du(t — 7)d7

0

In summary, we have the result that if the impulse response of a linear time-invariant
system is A(f) then its response to an arbitrary input u(z) is

t

x(f) = J w(Dh(t — r)dz= J h(Du(t — 7)d7 (5.45)

0 0

It is important to realize that this is the response of the system to the input u(f) assuming
it to be initially in a quiescent state.

Example 5.29 The response 6,(#) of a system to a driving force 6(7) is given by the linear differential

equation
2
d 92°+2d6°+500= )
dr dr

Determine the impulse response of the system. Hence, using the convolution integral,
determine the response of the system to a unit step input at time ¢ = 0, assuming that it
is initially in a quiescent state. Confirm this latter result by direct calculation.

Solution The impulse response A(?) is the solution of

d’h . dh B
17 +2dt +5h = (1)

subject to the initial conditions A(0) = 4 (0) = 0. Taking Laplace transforms gives
(s> + 25+ 5)H(s) = A5} =1

so that

1 | 2

H(s)= =3
SS+25+5 C(s+1)7+27

which, on inversion, gives the impulse response as
=L atg
h(t) = 5 e”'sin2t

Using the convolution integral

0,(1) = J D6 - ndr

0

with 8(r) = 1H(¢) gives the response to the unit step as

t
o,1) = ;J e ’sin2rd7

0
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Integrating by parts twice gives

t

O,(t)=—1e’sin2t —e"cos2t + 1 - ZJ e ’sin2rdr

0

=—lesin2r —e’cos2t + 1 —46,1)

Hence

G, (1) = 1 (1 —e”cos 2t — Le™'sin21)

(Note that in this case, because of the simple form of 6(f), the convolution integral
Joh(r)8(t — 7)dris taken in preference to [{ Q(T)h(r — 7)dT)
To obtain the step response directly, we need to solve for + = 0 the differential

equation
2
d€°+2d9"+560 =1
dr dr

subject to the initial conditions 6,(0) = 6,(0) = 0. Taking Laplace transforms gives

(s*+ 25+ 5)0(s) = 1

so that

1

s(sP+25+5)

which, on inversion, gives

s+2

Y(s+1)Y+4

o, = é - é e(cos 2t + 1sin2t) = é (1 —e"cos2t - Le™sin21)

confirming the previous result.

We therefore see that a linear time-invariant system may be characterized in the fre-
quency domain (or s domain) by its transfer function G(s) or in the time domain by its
impulse response h(f), as depicted in Figures 5.35(a) and (b) respectively. The
response in the frequency domain is obtained by algebraic multiplication, while the
time-domain response involves a convolution. This equivalence of the operation of
convolution in the time domain with algebraic multiplication in the frequency domain
is clearly a powerful argument for the use of frequency-domain techniques in

engineering design.

U(s)

—_— G —

X(s) = G(s)U(s)
(a)

X(s)

u(t)

x(t)

—_—

hy |

x(t) = u* h(t)

(b)

Figure 5.35 (a) Frequency-domain and (b) time-domain representations of a linear

time-invariant system.
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34

33

36

5.3.8 Exercises

For the following pairs of causal functions f(¢) and
g(1) show that f = g(¢) = g = f(1):

@ foO=t g(t) = cos 3t
(b) fO=t+1, gny=e™
© fln=1% g(f) = sin2t
(d) f(n=¢", g(t) =sint

Using the convolution theorem, determine the
following inverse Laplace transforms. Check your
results by first expressing the given transform in
partial-fractions form and then inverting using the
standard results:

(@) f‘{ 1 }
s(s+3)

Ny —
(s=2)(s+3)

() 31{2 : }
s (s+4)

Taking f(4) = A and g(1) = ™, use the inverse form
(5.42) of the convolution theorem to show that the
solution of the integral equation

() = J AePdA

0

37

38

is
y)=(@—-1)+e.

Find the impulse response of the system
characterized by the differential equation
2
d—’2‘+ 79 4 2% = u(n)
dr dt

and hence find the response of the system to the

pulse input u(t) = A[H(¢) — H(t — T)], assuming that
it is initially in a quiescent state.

The response 6,() of a servomechanism to a driving
force 6(z) is given by the second-order differential
equation

d’e, do
2+4—1+56,=6, (1=0)
dt dr

Determine the impulse response of the system,
and hence, using the convolution integral, obtain the
response of the servomechanism to a unit step
driving force, applied at time ¢ = 0, given that the
system is initially in a quiescent state.

Check your answer by directly solving the
differential equation

d’6, de,

ERRTRERE
1 t

subject to the initial conditions §,= 8, =0
when = 0.

Solution of state-space equations

In this section we return to consider further the state-space model of dynamical systems
introduced in Section 1.9. In particular we consider how Laplace transform methods
may be used to solve the state-space equations.

5.4.1 SISO systems

In Section 1.9.1 we saw that the single-input—single-output system characterized by the
differential equation (1.63) may be expressed in the state-space form

X =Ax + bu

y=c'x

(5.46a)
(5.46b)
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Example 5.30

Solution

where x = x(f) = [x; x,...x,]" is the state vector and y the scalar output, the
corresponding input—output transfer function model being

Y(s) _ bmsm +.--+b, «— cC
UGs)  s"+a, s+ - +a, <A

G(s) = (5.47)
where Y(s) and U(s) are the Laplace transforms of y(#) and u(f) respectively. Defining
A and b as in (1.63), that is, we take A to be the companion matrix of the left-hand side
of (1.63) and take b = [0 0. .. 0 1]™. In order to achieve the desired response, the vector
¢ is chosen to be

c=[byb,...b,0...00 (5.48)

a structure we can confirm to be appropriate using Laplace transform notation. Defining
X(s) = L{x(1)} and taking
1

n—1

s"ta, s+ +ag

Xi(s) = U(s)

we have
X,(5) = sX,(5), X;5(5) = sX,(5) = s°X,(s5), . . ., X,(s) = sX,_,(s) = 5" X,(5)
so that
Y(s) = boX,(s) + b Xo(s) +- - - + b, X,,,..(5)
_bo+bys+bys’+- - b,s"

n—1 U(S)

s'+a, 5"+ +a

which confirms (5.48).

Note that adopting this structure for the state-space representation the last row in A
and the vector ¢ may be obtained directly from the transfer function (5.47) by reading
the coefficients of the denominator and numerator backwards as indicated by the
arrows, and negating those in the denominator.

For the system characterized by the differential equation model

dy+6 +11dy+3 —55‘-’1+51ﬂ+ (5.49)
dr dx? dr

considered in Example 1.40, obtain

(a) a transfer function model,
(b) a state-space model

(a)  Assuming all initial conditions to be zero, taking Laplace transforms throughout
in (5.49) leads to

(° + 652 + 115 + 3)Y(s) = (5s* + s + DU(s)
so that the transfer-function model is given by

_Y(s) _ 55 +s5+1 —c
UGs)  F+6s5°+11s+3 < A
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0 1 0 0
(b) Taking A to be the companion matrix A = | ( 0 1| and b = |0| then
-3 -11 -6 1

¢ =[115]" and the corresponding state-space model is given by (5.46).

Note: The eigenvalues of the state matrix A are given by the roots of the
characteristic equation | Al — A| = LB+ 62+ 111+ 3 =0, which are the same as
the poles of the transfer function G(s).

Defining

£} X, (s)
FLi{x (1)} X5 (s)

L{x(n)} = = X(s)

L{x.(0)} X, (s)

and then taking the Laplace transform throughout in the state equation (5.46a) gives
sX(s) —x(0) = AX(s) + bU(s)

which on rearranging gives
(s1— A)X(s) = x(0) + bU(s)

where I is the identity matrix. Premultiplying throughout by (s/ — A)™' gives
X(s) = (sI— Ay 'x(0) + (sI = A)'bU(s) (5.50)

which on taking inverse Laplace transforms gives the response as
x(t) = L7 (sl - A" }x(0) + L7 (sl - A 'bU(s)} (5.51)

Having obtained an expression for the system state x(¢) its output, or response, y() may
be obtained from the linear output equation (5.46b).
Taking the Laplace transform throughout in (5.46b) gives

Y(s) = ¢"X(s) (5.52)
Assuming zero initial conditions in (5.50) we have

X(s) = (sl - A)'bU(s)
which, on substitution in (5.52), gives the input—output relationship

Y(s) = ¢"(sl— Ay 'bU(s) (5.53)
From (5.53) it follows that the system transfer function G(s) may be expressed in the form

c¢"adj(sI- A)b

— o Trof — AV1p —
G(s)=c'(sl-A)'b = detsT—A)

which indicates that the eigenvalues of A are the same as the poles of G(s), as noted at
the end of Example 5.30. It follows, from Definition 5.2, that the system is stable pro-
vided all the eigenvalues of the state matrix A have negative real parts.
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Example 5.31

Solution

On comparing the solution (5.51) with that given in (1.78), we find that the transition
matrix @(t) = e*' may also be written in the form

D)= (sl- A"}
As mentioned in Section 1.10.3, having obtained @&(¢),

A(r—
D1, 1) ="

may be obtained by simply replacing ¢ by t — t,.

Using the Laplace transform approach, obtain an expression for the state x(¢) of the
system characterized by the state equation

o Fal b e
X,(1) 1 =3||x(?) 1

when the input u(¢) is the unit step function

0 (t<0)

u(t) = H(t) = {1 =0

and subject to the initial condition x(0) =[1 1]

In this case

-1 0 1
A={1 _3}, bzm, ult)=H@), x,=[1 11"

Thus

sl—Az{Hl 0}, det(sl— A) = (s + D)(s +3)

-1 s+3
giving
1 0
- 1 s+3 0 s+1
SI-AY ' = — =
=4 (s+1>(s+3){1 s+1} | L

2(s+1) 2(s—3) s+3
which, on taking inverse transforms, gives the transition matrix as

e’ 0

-t 1 -3t e—Sr

=L HsI-A) "y =
56 —3¢

2
so that the first term in the solution (5.51) becomes

-t

LA dx= | _ = (5.54)
(]
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39

40

41

Since U(s) = A H®)} = 1/s,

(sl-A)"'bU(s) =

2

1

(s+1)(s+3)

1

1

Rl

s+3
s(s+1)(s+3)|5+2

U | —

s+ 1

1

5_2(s+1)_6(s+3)

so that the second term in (5.51) becomes

L H(sI-A)'bU(s)} =

(5.55)

5.4.2 Exercises

A system is modelled by the following differential
equations

X+ 5% +x,=2u
X, —=3x;+x,=5u

coupled with the output equation
y=x +2x,
Express the model in state-space form and obtain

the transfer function of the system.

Find the state-space representation of the second
order system modelled by the transfer function

= Y(s)
U(s)

s+1

G(s) sl
s t7s+6

Obtain the dynamic equations in state-space form
for the systems having transfer-function models

ST +35+2
s +45>+3s

s 43545

@ 5————
s +6s +5s5+7

42

using the companion form of the system matrix in
each case.

In formulating the state-space model (5.46) it is
sometimes desirable to specify the output y to

be the state variable x,; that is, we take

¢"=[1 0...0]%If Ais again taken to be

the companion matrix of the denominator then it
can be shown that the coefficients b,, b,, . . ., b, of
the vector b are determined as the first n coefficients
in the series in s' obtained by dividing the
denominator of the transfer function (5.47) into the
numerator. [llustrate this approach for the transfer-
function model of Figure 5.36.

Uts) Ss2 45+ | ¥(s)

sP4+652+ 115+ 6

Figure 5.36 Transfer-function model of Exercise 44.
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43

44

45

A system is governed by the vector—matrix 46 A third-order single-input-single-output system is
differential equation characterized by the transfer-function model
3 4 0 1 Y(s) _  35°+2s+1
X(I)Z 2 1 x(t)+ 1 1 u(t) (IBO) U(S) S3+6SZ+11S+6

where x(1) and u(?) are respectively the state Express the system model in the state-space form

and input vectors of the system. Use Laplace X =Ax +bu (5.56a)
transforms to obtain the state vector x(¢) for the .
input u(r) = [4 3]" and subject to the initial y=cx (5.56b)

condition x(0) =1 2]%. where A is in the companion form. By making a

suitable transformation x = Mz, reduce the state-

Given that the differential equations modelling a space model to its canonical form, and comment
certain control system are on the stability, controllability and observability
of the system.

Xi=x = 3n+u Given that
X,=2x,—4x,+u ) . o
(1) anecessary and sufficient condition for

use (5.51) to determine the state vector the system (5.56) to be controllable is
x =[x, x,]" for the control input u = ™, that the rank of the Kalman matrix
applied at time ¢ = 0, given that x, = x, = 1 at time [b Ab A% ...A"'b]be the same
t=0. as the order of A, and

) . (i) a necessary and sufficient condition for it to
Using the Paplace transform approach, obtain be observable is that the rank of the Kalman
an expression for the state x(r) (?f the system matrix e ATe (A" . .. (AT)y"'c] be the
characterized by the state equation same as the order of A,
{ff 1} _ { 0 1] {X 1} + {2} " evaluate the ranks of the relevant Kalman matrices

-2 -3 0 to confirm your earlier conclusions on the

controllability and observability of the given
=0 system.

_x':

X X

where the input is
47  Repeat Exercise 46 for the system characterized by

u(t) = {0 (t<0) the transfer-function model
e’ (=0
( ) s +35+5
and subject to the initial condition x(0) =[1 0]~ s+ 65 +5s

5.4.3 MIMO systems

As indicated in (1.66) the general form of the state-space model representation of an
nth-order multi-input-multi-output system subject to r inputs and / outputs is

x =Ax +Bu (5.57a)
y =Cx + Du (5.57b)

where x is the n-state vector, u is the r-input vector, y is the [-output vector, A is the
n X n system matrix, B is the n X r control (or input) matrix and C and D are respectively
I x n and [ X r output matrices, with the matrix D relating to the part of the input that is
applied directly into the output.
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Defining
L0l [ne
oy = | TN 2ROy
OO0
Ll [Uis)
umny = | 7N PO g

Hu ()} U,(s)

and taking Laplace transforms throughout in the state equation (5.57a), following the
same procedure as for the SISO case, gives

X(s) = (sl — AY'x(0) + (sI — A)'BU(s) (5.58)
Taking inverse Laplace transforms in (5.58) gives
x(1) =L (sl- A" 1x(0) + £ {(sI - A)'BU(s)} (5.59)

The output, or response, vector y(f) may then be obtained directly from (5.57b).

We can also use the Laplace transform formulation to obtain the transfer matrix
G(s), between the input and output vectors, for a multivariable system. Taking Laplace
transforms throughout in the output equation (5.57b) gives

Y(s) = CX(s) + DU(s) (5.60)
Assuming zero initial conditions in (5.58) we have

X(s) = (sl — AY'BU(s)
Substituting in (5.60), gives the system input—output relationship

Y(s) = [C(sI - A)'B + D1U(s)

Thus the transfer matrix G(s) model of a state-space model defined by the quadruple
{A,B,C,D} is

G(s) = C(sI - A'B +D (5.61)

The reverse problem of obtaining a state-space model from a given transfer matrix
is not uniquely solvable. For example, in Section 1.10.6 we showed that a state-space
model can be reduced to canonical form and indicated that this was without affecting the
input—output behaviour. In Section 1.10.6 it was shown that under the transformation
x =Tz, where T is a non-singular matrix, (5.57) may be reduced to the form

2=Az+Bu
y=Cz+Du (5.62)
where z is now a state vector and

A=T'AT, B=T"'B,C=CT,D=D
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Example 5.32

Figure 5.37 Network
of Example 5.32.

Solution

From (5.61), the input—output transfer matrix corresponding to (5.62) is
G(s)=C(sl- A'B+D
=CT(sI-T'AT)'T'B+D
=CT(sTIT-T'AT)'T'B+D
=CT[T '(sI-AT]'T'B+D
=CT[T '(sI- A)'T]IT'B+ D (using the commutative property)
=C(sI-A)'B+D
=G(s)

where G(s) is the transfer matrix corresponding to (5.57), confirming that the input—output
behaviour of the state-space model defined by the quadruple {A, B, C, D} is the same as
that defined by the quadruple (A, B, C, D). The problem of finding state-space models
that have a specified transfer-function matrix is known as the realization problem.

It follows from (5.61) that

Cadj(s/-A)B ,

D
det(sl-A)

G(s) =
Clearly, if s = p is a pole of G(s) then it must necessarily be an eigenvalue of the state
matrix A, but the converse is not necessarily true. It can be shown that the poles of G(s)
are identical to the eigenvalues of A when it is impossible to find a state-space model
with a smaller state dimension than » having the same transfer-function matrix. In such
cases the state-space model is said to be in minimal form.

(a)  Obtain the state-space model characterizing the network of Figure 5.37. Take the
inductor current and the voltage drop across the capacitor as the state variables,
take the input variable to be the output of the voltage source, and take the output
variables to be the currents through L and R, respectively.

(b) Find the transfer-function matrix relating the output variables y, and y, to the
input variable u. Thus find the system response to the unit step u(f) = H(f), assuming
that the circuit is initially in a quiescent state.

(a) The current i in the capacitor is given by
ic=Cve=Ck
Applying Kirchhoff’s second law to the outer loop gives

e=R\(i,+ic) +Vve+ Ry =R\(x, + Cx) + x; + R,Cx,



386 LAPLACE TRANSFORMS

(b)

leading to

1 R1 e
- - +
C(R, +R,)"' C(R,+Ry) " C(R +R,)

X, =

Applying Kirchhoff’s second law to the left-hand loop gives
e=R\(i, +ic) + Li, = R(x, + C,) + L,

leading to

i, = R, . R\R, % e R,
L(R,+R,) L(R,+R)) LR +R,

Also,

Yi=X

Y, =Cx, = ! Ry ¢

- - +
R+R " R +R7" R +R,

Substituting the given parameter values leads to the state-space representation

RE R N
J[3)

which is of the standard form

[\CIE ]

Gl

Y2 T3

T 1

=

L ]
11

1

Sle ©
|

Sle =

|

| e——

EE

x=Ax +bu
y=Cx+du

From (5.61), the transfer-function matrix G (s) relating the output variables y, and
¥, to the input u is

Gis)=C(sI-A'b+d

Now
- A= s+2 4
-2 s+11
giving
- 1 s+11 -4
I-A) ' = — —
1= <s+3><s+10){ > s+z}

ol A | 0 1][s+11 -4][2
GI=A) b= 3G+ 10) BN T

1 %S+15
T (5+3)(s+10)| g4

3
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so that
Us+15
11 e
Gs) 1 sHISE 10 | GG I10)
(s+3)(s+10) —%25—4 % —%25—4

2
GI3)eti0) "

The output variables y, and y, are then given by the inverse Laplace transform of
Y(s) = G(s)U(s)
where U(s) = FAu(r)] = LH(1)] = 1/s; that is,

Ys+15
s(s+3)(s+10)
42
s(s+3)(s+10) 155

Y(s) =

4

1 1
2 14
L __7
s s+3 s+10
iz 2 4 2
15 35 21 15

s s+3 s+10 s

which on taking inverse Laplace transforms gives the output variables as

1 1 -3t 4
Vi 3tme —3¢
= (t=0)
2 =3t 4 —10t
Y2 e e

—-10¢

In MATLAB the function tf£2ss can be used to convert a transfer function to state-
space form for SISO systems. At present there appears to be no equivalent function
for MIMO systems. Thus the command

[A,B,C,D] = tf2ss(b,a)

returns the A, B, C, D matrices of the state-form representation of the transfer function

m-1
b,s +---+b, ;8s+b,

G(s) = C(sI—-A) 'B+D = .
a,s +---+a,,8+a,

where the input vector a contains the denominator coefficients and the vector b
contains the numerator coefficients, both in ascending powers of s.

(Note: The function tf£ss can also be used in the case of single-input-multi-output
systems. In such cases the matrix numerator must contain the numerator coefficients
with as many rows as there are outputs.)

To illustrate consider the system of Example 5.30, for which

55°+s+1

o el
s +6s +11s+3



388 LAPLACE TRANSFORMS

In this case the commands

b= [51 1];
a = [1 6 11 3];
[A,B,C,D] = tf2ss(b,a)

return

A = =6 =11 =3
1 0 O
0 1 0

B =1
0
0

c =511

D =0

giving the state-space model

X1 -6 —11 -=3[|x| |1 Xy
Xl =11 0 O|x+|0lu;y=1[5 1 1]|x,
%3 0 1 Of|xs| |O X3

(Note: This state-space model differs from the one given in the answer to
Example 5.30. Both forms are equivalent to the given transfer function model, with
an alternative companion form taken as indicated in Section 1.9.1.)

Likewise, in MATLAB the function ss2tf converts the state-space
representation to the equivalent transfer function/matrix representation (this being
applicable to both SISO and MIMO systems). The command

[b,al] = ss2tf(A,B,C,D,1iu)
returning the transfer function/matrix
G(s)=C(sI- A'B+D

from the iu-th input. Again the vector a contains the coefficients of the denominator
in ascending powers of s and the numerator coefficients are returned in array b with
as many rows as there are outputs.

(Note: The entry iu in the command can be omitted when considering SISO
systems so, for example, the commands

A = [-6 -11 -3; 1 0 0; O 1 0];
B=[1;0;0];

C=[5 1 1];

D=0;

[b,al=ss2tf (A,B,C,D)

return

b 0 5.0000 1.0000 1.0000
a = 1.0000 6.0000 11.0000 3.0000
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giving the transfer function representation

555 +s5+1

GGs) = 57—
sT+6s +11s+3

which confirms the answer to the above example. As an exercise confirm that the
state-space model obtained in the answer to Example 5.30 is also equivalent to this
transfer function representation.)

To illustrate a MIMO system consider the system in Exercise 49, in which the
state-space model is

X1 0 1 0 o0llx

0 0
I S I W R S OH
W 0 0 0 1l|x |0 0f|u
Wl Lo 1 -1 -k o 1

and we wish to determine the equivalent transfer matrix. The commands

A =[0100;-1 -1 01;000 1;0 1 -1 -17;
B=[0 0;1 0;0 0;0 11;

C=[1 000 ; 001 0];

D=[0 0 ;0 O];

[bl,a] = ss2tf(A,B,C,D,1)

return the response to u,

bl =0 0O 1.0000 1.0000 1.0000
0O 0.0000 0.0000 1.0000 0.0000
a = 1.0000 2.0000 2.0000 2.0000 1.0000

and the additional command
[b2,a] = ss2tf(A,B,C,D,2)
returns response to u,

b2 = 0 0.0000 0.0000 1.0000 0.0000
0 0.0000 1.0000 1.0000 1.0000
A = 1.0000 2.0000 2.0000 2.0000 1.0000

leading to the transfer matrix model

1 sS+s+1 s

G(s) =
sTH25° + 257+ 25+ 1 s 45+l

1 sS4 s+1 s

s+ 1’ +D] S+s+l
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48

49

50

5.4.4 Exercises

Determine the response y = x, of the system
governed by the differential equations

X ==2x,+u;—u, } (t=0)

X=X, —=3x,+u; +u,

to an input u = [, u,]"=[1 #]" and subject to
the initial conditions x,(0) = 0, x,(0) = 1.

Consider the 2-input-2-output system modelled by
the pair of simultaneous differential equations

Vityi—ytyi=u
Nty —yitm=u

Taking the state vectortobex =[y; y ¥ y, 1"
express the model as a state-space model of the form

X=Ax +Bu
y=Cx

Determine the transfer matrix and verify that its
poles are identical to the eigenvalues of the state
matrix A.

Considering the network of Figure 5.38
(a) Determine the state-space model in the form
X=Ax+Bu

y=Cx

Figure 5.38 Network of Exercise 50.

(b)

(©)

Take the inductor currents in L,, L, and L as
the state variables x,, x,, x; respectively; take
the input variables u, and u, to be the outputs
of the current and voltage sources respectively;
and take the output variables y, and y, to be the
voltage across R, and the current through L,
respectively.

Determine the transfer matrix G(s) relating the
output vector to the input vector.

Assuming that the circuit is initially in a
quiescent state, determine the response y(f)
to the input pair

(1) = H(1)
u(t) = tH(1)

where H(t) denotes the Heaviside function.

I 2 P CET T T DTN frequency response

Frequency-response methods provide a graphical approach for the analysis and design
of systems. Traditionally these methods have evolved from practical considerations,
and as such are still widely used by engineers, providing tremendous insight into overall
system behaviour. In this section we shall illustrate how the frequency response can be
readily obtained from the system transfer function G(s) by simply replacing s by ja
Methods of representing it graphically will also be considered.

Consider the system depicted in Figure 5.26, with transfer function

K(s—z)(s—25) ... (s—2,)

N

G(s) =

(s=p)(s—py)...(s—p,)

(m =< n) (5.63)

When the input is the sinusoidally varying signal

u(t) = A sin wt
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applied at time ¢ = 0, the system response x(#) for # = 0 is determined by
X(s) = G(s)ZL{A sin wt}
That is,
Aw
X(S) = G(S)2—2
s+

_ KAC!)(S*Zl)(S*ZZ) t (szm)
(s=p)(s=p2) - (s—p)(s—jw)(s+jw)

which, on expanding in partial fractions, gives

a a n A

X(o)= 2 B 5 B
S—j@ s+jO  Ls—p

where &, &, B, B . . . , B, are constants. Here the first two terms in the summation are
generated by the input and determine the steady-state response, while the remaining
terms are generated by the transfer function and determine the system transient response.

Taking inverse Laplace transforms, the system response x(f), t = 0, is given by

x(t) = o & + o, e + Z Ber (t=0)
i=1
In practice we are generally concerned with systems that are stable, for which the poles
pri=1,2,..., n, of the transfer function G(s) lie in the left half of the s plane.
Consequently, for practical systems the time-domain terms Se”’,i=1,2, ..., n, decay
to zero as ¢ increases, and will not contribute to the steady-state response x(f) of the
system. Thus for stable linear systems the latter is determined by the first two terms as

x () = o e+ o, e

Using the ‘cover-up’ rule for determining the coefficients ¢; and ¢, in the partial-
fraction expansions gives

| (s—jw)G(s)Aw A .
%‘{Uﬂmu+j@}ﬂ;‘ﬁc“@

(s+ja))G(s)Aa)} _ _%G(_jw)
s=—j@

2‘{@ijs+jw>
so that the steady-state response becomes

A

. ; A . ;
— jor _ A~ —jwt
1) = 5 Gy e = 5 Gljoye (5.64)

G(jw) can be expressed in the polar form
G(jo) = |G(jo)] e/*=60

where |G(jw)| denotes the magnitude (or modulus) of G(jw). (Note that both the
magnitude and argument vary with frequency @) Then, assuming that the system has
real parameters,

G(-jo) = |G(jow)| e >
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Example 5.33

Solution

and the steady-state response (5.64) becomes

xss(t) = % [lG(jw)lejargG(jw)] ejwr _ % [|G(JCU) |e—jargG(ja))]e—ja)t
= é |G( ]w) |[ej[wr+arg G(jo)] _ o-jlwrtarg G( ja))]]
2j

That is,
X,(t) = A|G(jw) | sin [t + arg G(jw) | (5.65)

This indicates that if a stable linear system with transfer function G(s) is subjected to a
sinusoidal input then

(a) the steady-state system response is also a sinusoid having the same frequency @
as the input;

(b) the amplitude of this response is |G(jw)| times the amplitude A of the input
sinusoid; the input is said to be amplified if |G(jw)| > 1 and attenuated if
|G(jo)| < 1

(c) the phase shift between input and output is arg G(jw). The system is said to lead
if arg G(jw) > 0 and lag if arg G(jw) < 0.

The variations in both the magnitude |G(jw)| and argument arg G(jw) as the
frequency w of the input sinusoid is varied constitute the frequency response of the
system, the magnitude |G(jw)| representing the amplitude gain or amplitude ratio
of the system for sinusoidal input with frequency @, and the argument arg G(jw)
representing the phase shift.

The result (5.65) implies that the function G(jw) may be found experimentally by
subjecting a system to sinusoidal excitations and measuring the amplitude gain and
phase shift between output and input as the input frequency is varied over the range
0 < @ < . In principle, therefore, frequency-response measurements may be used to
determine the system transfer function G(s).

In Chapters 7 and 8, dealing with Fourier series and Fourier transforms, we shall see
that most functions can be written as sums of sinusoids, and consequently the response
of a linear system to almost any input can be deduced in the form of the corresponding
sinusoidal responses. It is important, however, to appreciate that the term ‘response’ in
the expression ‘frequency response’ only relates to the steady-state response behaviour
of the system.

The information contained in the system frequency response may be conveniently
displayed in graphical form. In practice it is usual to represent it by two graphs: one
showing how the amplitude |G(jw)| varies with frequency and one showing how the
phase shift arg G(jw) varies with frequency.

Determine the frequency response of the RC filter shown in Figure 5.39. Sketch the
amplitude and phase-shift plots.

The input—output relationship is given by

E,(s) =

1
E.
Res7100)
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R
—

ety C= e,

Figure 5.39 RC filter.

Figure 5.40
Frequency-response

plots for Example 5.33:

(a) amplitude plot;
(b) phase-shift plot.

so that the filter is characterized by the transfer function

1
GO) = resT1
Therefore
. 1 1-jRCw
G = =
(@) RCjo+1 14+ R Co’
_ 1 | RCw
1+R°C& "1+RCw

giving the frequency-response characteristics

amplitude ratio = |G(jw)|

1 R C'w’
(1+R2C2w2)2 2 2.2

(1+RC’&)

1
J(1+RCo)

phase shift = arg G(jw) = —tan™' (RCw)

Note that for =0
|G(jw)| =1, arg G(jw) =0

and as @ —> o
|G(jw)| — 0, argG(ja))—>—%n

Plots of the amplitude and phase-shift curves are shown in Figures 5.40(a) and (b)
respectively.

arg G(je) A
1G(jw) | 90° T
1
! RC
i (8] T :
3 450 L D o
i o _45
i Vst .
| =3 S| SRR R Bes
Q 1. 2 @
RC RC
(a) (b)

For the simple transfer function of Example 5.33, plotting the amplitude and phase-
shift characteristics was relatively easy. For higher-order transfer functions it can be
a rather tedious task, and it would be far more efficient to use a suitable computer
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Example 5.34

Solution

package. However, to facilitate the use of frequency-response techniques in system
design, engineers adopt a different approach, making use of Bode plots to display
the relevant information. This approach is named after H. W. Bode, who developed
the techniques at the Bell Laboratories in the late 1930s. Again it involves drawing
separate plots of amplitude and phase shift, but in this case on semi-logarithmic graph
paper, with frequency plotted on the horizontal logarithmic axis and amplitude, or phase,
on the vertical linear axis. It is also normal to express the amplitude gain in decibels
(dB); that is,

amplitude gain in dB = 201log|G(jw)|
and the phase shift arg G(jw) in degrees. Thus the Bode plots consist of

(a) aplot of amplitude in decibels versus log @,and

(b) aplot of phase shift in degrees versus log w.

Note that with the amplitude gain measured in decibels, the input signal will be
amplified if the gain is greater than zero and attenuated if it is less than zero.

The advantage of using Bode plots is that the amplitude and phase information can
be obtained from the constituent parts of the transfer function by graphical addition. It
is also possible to make simplifying approximations in which curves can be replaced by
straight-line asymptotes. These can be drawn relatively quickly, and provide sufficient
information to give an engineer a ‘feel’ for the system behaviour. Desirable system
characteristics are frequently specified in terms of frequency-response behaviour, and
since the approximate Bode plots permit quick determination of the effect of changes,
they provide a good test for the system designer.

Draw the approximate Bode plots corresponding to the transfer function

3
Gs) = X105 +5)

"~ 5(100 +5)(20 + 5) (5.66)

First we express the transfer function in what is known as the standard form, namely

~ 10(1 +0.25)
G = T T0015)(1 7 0.05%)
giving
. 10(1+j0.2w
G(jo) = LL20)

jo(1+j0.01w)(1 +0.05w)
Taking logarithms to base 10,
201og|G(jw)| =201og 10 + 201og |1 +jO.2w| - 201og |je|
—20log |1 +j0.01w|—-20log|1 +j0.05|
arg G(jw) = arg 10 + arg (1 +j0.2w) — arg jo— arg (1 + j0.01 w)
—arg(l +j0.05w) (5.67)

The transfer function involves constituents that are again a simple zero and simple
poles (including one at the origin). We shall now illustrate how the Bode plots can be
built up from those of the constituent parts.
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20 log Il + jutl

Corner frequency

w= I/t

Consider first the amplitude gain plot, which is a plot of 20 log |G(jw)| versus log @:

(a) for a simple gain k a plot of 20 log k is a horizontal straight line, being above the
0dB axis if kK > 1 and below it if £k < 1;

(b) for a simple pole at the origin a plot of —201log w is a straight line with slope
—20 dB/decade and intersecting the 0 dB axis at @ = 1;

(c) for a simple zero or pole not at the origin we see that

. 0 as @— 0
20log|l +jT| —
20logzw =20logw—201log(1/7) as @—> o

Note that the graph of 20log 7w is a straight line with slope 20 dB/decade and
intersecting the 0dB axis at @ = 1/7. Thus the plot of 20log|l + jTw| may be
approximated by two straight lines: one for @ < 1/7and one for @ > 1/7. The frequency
at intersection @= 1/7is called the breakpoint or corner frequency; here |1 + jtw| =
J2, enabling the true curve to be indicated at this frequency. Using this approach,
straight-line approximations to the amplitude plots of a simple zero and a simple pole,
neither at zero, are shown in Figures 5.41(a) and (b) respectively (actual plots are also
shown).

—20log |1 + jear! A

10+

P ;] 20 dB/decade ; : .

-5 1 55

10 + NG
f——Decade —3{ 3
FRACk =131 -20 dB/decade” ™~ _
} —— t t > -20 } i o
2 34 5 10 20 2 20
wirad 57! wirad s

a) (b)

Figure 5.41 Straight-line approximations to Bode amplitude plots: (a) simple zero; (b) simple pole.

Using the approximation plots for the constituent parts as indicated in (a)—(c)
earlier, we can build up the approximate amplitude gain plot corresponding to (5.66) by
graphical addition as indicated in Figure 5.42. The actual amplitude gain plot, produced
using a software package, is also shown.

The idea of using asymptotes can also be used to draw the phase-shift Bode plots,
again taking account of the accumulated effects of the individual components making
up the transfer function, namely that

(i) the phase shift associated with a constant gain k is zero;

(i) the phase shift associated with a simple pole or zero at the origin is +90 ° or —90°
respectively;

(iii) for a simple zero or pole not at the origin

O 0 as w—0
tan~ (w7) >
90° as w— e

tan"'(w7) =45° when wr=1
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Figure 5.42

Amplitude Bode
plots for the G(s)
of Example 5.34.

Figure 5.43

Approximate Bode

phase-shift plots:
(a) simple zero;
(b) simple pole.

arg (| + jeut)

log | G (jew) | 40 >
""
"’
30 _
*
\\\ ',r' 20log 11 +j0.2t |
N ’ |
20 \ 4 M E II.
s .1 20 log 10
- 4 T b
b~~ \\ "l
10 Qs’ Ry +*
~~~ \c..:“ o'\_
Lr N\
e 114 bt NG\ ~20log | 1 +j0.0les |
.. ~. \'\\. ..
~9~ ’yQ \'<~ ~~‘
Feof [-2010g 11 +j0.050 1 "L N N
_ID -~ « . ~
Yo Ll 1.
-2 log | jw! \,. ~ ‘\.
20 | | | b * o tL
10-1 1Y 10! 102 103
wirad s~

== Approxirmate plot Actual plot

With these observations in mind, the following approximations are made. For
frequencies w less than one-tenth of the corner frequency @w= 1/7 (that is, for @ < 1/107)
the phase shift is assumed to be 0°, and for frequencies greater than ten times the corner
frequency (that is, for @ > 10/7) the phase shift is assumed to be £90°. For frequencies
between these limits (that is, 1/107 < ® < 10/7) the phase-shift plot is taken to be a
straight line that passes through 0° at w= 1/107, +45 ° at w= 1/7, and £90° at w= 10/7.
In each case the plus sign is associated with a zero and the minus sign with a pole. With
these assumptions, straight-line approximations to the phase-shift plots for a simple zero
and pole, neither located at the origin, are shown in Figures 5.43(a) and (b) respectively
(the actual plots are represented by the broken curves).

Using these approximations, a straight-line approximate phase-gain plot
corresponding to (5.67) is shown in Figure 5.44. Again, the actual phase-gain plot,
produced using a software package, is shown.

arg [ 111 + jeut)] A
90° g B
45° =T
no e _900 .

(b)
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Figure 5.44
Phase-shift Bode
plot for the G(s)
of Example 5.34.

=

E]

arg G (jw) 90° T
L]
—arg (1 +)0.2w)
50°
0°F---t--r1-rF1Fdt--- |—H
~arg (1 +j0.05w) ‘ ‘ —arg (1 +j0.01w)
LHLL ¥
1] i | |
e Bl
100° —arg (jw) i L
! 1
-150° i
-180° L1
101 100 10! 102 103
wirad 57!
Approximate plot Actual plot

In MATLAB the amplitude and phase-gain plots are generated using the commands
s=tf(’s’)
G=4*10"3* (5+5) / (s* (100+s) * (20+s) ) ;
bode (G)

In the graphical approach adopted in this section, separate plots of amplitude gain
and phase shift versus frequency have been drawn. It is also possible to represent the
frequency response graphically using only one plot. When this is done using the pair of
polar coordinates (|G(jw)|, arg G(Gw)) and allowing the frequency @to vary, the resulting
Argand diagram is referred to as the polar plot or frequency-response plot. Such a
graphical representation of the transfer function forms the basis of the Nyquist approach
to the analysis of feedback systems. In fact, the main use of frequency-response methods
in practice is in the analysis and design of closed-loop control systems. For the unity
feedback system of Figure 5.30 the frequency-response plot of the forward-path
transfer function G(s) is used to infer overall closed-loop system behaviour. The Bode
plots are perhaps the quickest plots to construct, especially when straight-line
approximations are made, and are useful when attempting to estimate a transfer
function from a set of physical frequency-response measurements. Other plots used in
practice are the Nichols diagram and the inverse Nyquist (or polar) plot, the first of
these being useful for designing feedforward compensators and the second for
designing feedback compensators. Although there is no simple mathematical
relationship, it is also worth noting that transient behaviour may also be inferred from
the various frequency-response plots. For example, the reciprocal of the inverse M
circle centred on the —1 point in the inverse Nyquist plot gives an indication of the
peak overshoot in the transient behaviour (see, for example, G. Franklin, D. Powell
and A. Naeini-Emami, Feedback Control of Dynamic Systems, seventh edn, Boston,
MA, Pearson, 2015).

Investigation of such design tools may be carried out in MATLAB, incorporating
Control Toolbox, using the command rltool (G).
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I A P T T TN D pole placement

5.6.1

5.6.2

In Chapter 1 we examined the behaviour of linear continuous-time systems modelled in
the form of vector-matrix (or state-space) differential equations. In this chapter we have
extended this, concentrating on the transform domain representation using the Laplace
transform. In Chapter 6 we shall extend the approach to discrete-time systems using the
z transform. So far we have concentrated on system analysis; that is, the question ‘Given
the system, how does it behave?’ In this section we turn our attention briefly to consider
the design or synthesis problem, and while it is not possible to produce an exhaustive
treatment, it is intended to give the reader an appreciation of the role of mathematics in
this task.

Poles and eigenvalues

By now the reader should be convinced that there is an association between system
poles as deduced from the system transfer function and the eigenvalues of the system
matrix in state-space form. Thus, for example, the system modelled by the second-order
differential equation

d’y , 1dy

1
+t3=—gy=u

df “dr

has transfer function

The system can also be represented in the state-space form
X =Ax + bu, y=c"x (5.68)

where

x=[x x] A= F 11} , b=10 114 c=[1 0"

2 2
It is easy to check that the poles of the transfer function G(s) are at s =—1 and s = %,
and that these values are also the eigenvalues of the matrix A. Clearly this is an unsta-
ble system, with the pole or eigenvalue corresponding to s = 5 located in the right half
of the complex plane. In Section 5.6.2 we examine a method of moving this unstable
pole to a new location, thus providing a method of overcoming the stability problem.

The pole placement or eigenvalue location technique

We now examine the possibility of introducing state feedback into the system. To do
this, we use as system input

u=k'x +u

ext
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Figure 5.45 Feedback
connections for eigen-
value location.

where k = [k, k,]" and u,, is the external input. The state equation in (5.68) then
becomes

. 0 1
X=1 Xt [(kxy + koxy) + Uy ]
3 73 1
That is,
. 0 1 0
X = ] | X+ Uy
ki+s5 k- 5 1

Calculating the characteristic equation of the new system matrix, we find that the
eigenvalues are given by the roots of

L= (ky=3)A=(ky+3)=0

Suppose that we not only wish to stabilize the system, but also wish to improve the
response time. This could be achieved if both eigenvalues were located at (say) A= -5,
which would require the characteristic equation to be

A +101+25=0
In order to make this pole relocation, we should choose
—(ky—3)=10,  —(k;+3)=25

indicating that we take k, = —521 and k, = —1«29 . Figure 5.45 shows the original system and
the additional state-feedback connections as dotted lines. We see that for this example
at least, it is possible to locate the system poles or eigenvalues wherever we please in
the complex plane, by a suitable choice of the vector k. This corresponds to the choice
of feedback gain, and in practical situations we are of course constrained by the need
to specify reasonable values for these. Nevertheless, this technique, referred to as pole
placement, is a powerful method for system control. There are some questions that
remain. For example, can we apply the technique to all systems? Also, can it be extended
to systems with more than one input? The following exercises will suggest answers to
these questions, and help to prepare the reader for the study of specialist texts.

x50 X, ()

Uayll)  + O =

)

©HS

©
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51

52

53

5.6.3 Exercises

An unstable system has Laplace transfer function

1

H(s)= ——
=6

Make an appropriate choice of state variables to
represent this system in the form

x=Ax+bu, y=c'x
where
. 0 1
X = [xl xz] ) A = 1 1
2 2
b=[0 171" c=[1 0

This particular form of the state-space model in
which A takes the companion form and b has a
single 1 in the last row is called the control
canonical form of the system equations, and
pole placement is particularly straightforward
in this case.

Find a state-variable feedback control of the
form u = k"x that will relocate both system poles
at s = —4, thus stabilizing the system.

Find the control canonical form of the state-space
equations for the system characterized by the
transfer function

_ 2
C(s+1)(s+D)

G(s)

Calculate or (better) simulate the step response

of the system, and find a control law that relocates
both poles at s = —5. Calculate or simulate the step
response of the new system. How do the two
responses differ?

The technique for pole placement can be adapted
to multi-input systems in certain cases. Consider
the system

y=c'x

x =Ax + Bu,
where
u=[u ”z]T

x =[x, xz]T,

A=[O 1}, B=[1 0}, e=[1 0]
6 1 11

54

55

Writing Bu = b,u, + b,u,, where b, = [1  1]" and
b,=[0 1] enables us to work with each input
separately. As a first step, use only the input u,

to relocate both the system poles at s = —5.
Secondly, use input u, only to achieve the same
result. Note that we can use either or both inputs
to obtain any pole locations we choose, subject of
course to physical constraints on the size of the
feedback gains.

The bad news is that it is not always possible to
use the procedure described in Exercise 53. In the
first place, it assumes that a full knowledge of the
state vector x(¢) is available. This may not always be
the case; however, in many systems this problem
can be overcome by the use of an observer. For
details, a specialist text on control should be
consulted.

There are also circumstances in which the
system itself does not permit the use of the
technique. Such systems are said to be
uncontrollable, and the following example, which
is more fully discussed in J. G. Reed, Linear System
Fundamentals (Tokyo, McGraw-Hill, 1983),
demonstrates the problem. Consider the system

2 I

y=[0 1]x

with

Find the system poles and attempt to relocate both
of them, at, say, s = —2. It will be seen that no gain
vector k can be found to achieve this. Calculating
the system transfer function gives a clue to the
problem, but Exercise 55 shows how the problem
could have been seen from the state-space form of
the system.

In Exercise 46 it was stated that the system
X =Ax+bu
y=c'x

where A is an n X n matrix, is controllable provided
that the Kalman matrix

M= Ab A% A"'b]
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56

is of rank n. This condition must be satisfied if
we are to be able to use the procedure for pole
placement. Calculate the Kalman controllability
matrix for the system in Exercise 54 and confirm
that it has rank less than n = 2. Verify that the
system of Exercise 53 satisfies the controllability
condition.

We have noted that when the system equations
are expressed in control canonical form, the
calculations for pole relocation are particularly
easy. The following technique shows how to
transform controllable systems into this form.
Given the system

X=Ax+bu, y=c'x

calculate the Kalman controllability matrix M,
defined in Exercise 55, and its inverse M~".
Note that this will only exist for controllable
systems. Set v" as the last row of M~' and form
the transformation matrix

T —1
v A"

A transformation of state is now made by introducing
the new state vector z(f) = Tx(f), and the resulting
system will be in control canonical form. To illustrate
the technique, carry out the procedure for the system
defined by

S

and show that this leads to the system

= el

Finally, check that the two system matrices have
the same eigenvalues, and show that this will always
be the case.

5.7 Review exercises (1-18)

Check your answers using MATLAB or MAPLE whenever possible.

1

(a) Given that ¢ris a positive constant, use the
second shift theorem to

(i) show that the Laplace transform of

sint H(t — @) is

—as COS @+ 5 sin &
€ 2
s +1
(i) find the inverse transform of
—as
se
S +25+5

(b) Solve the differential equation

dzy dy . .
—5 +2—=+Sy=sint—sintH(t — )
dr t

given that y = dy/ds =0 when 7 = 0.

Show that the Laplace transform of the
voltage v (), with period 7, defined by

. v(t+T) =v(t)

1 (0<1<3iT)
v(t) =
-1 GIT'=s:<T)

is

11— e—sT/Z
V(s) = = —~

(S) S 1+ e—sT/Z

This voltage is applied to a capacitor of 100 uF and

a resistor of 250 Q in series, with no charge initially

on the capacitor. Show that the Laplace transform

I(s) of the current i(¢) flowing, for ¢ = 0, is

1 1— e—JT/Z

1) = 555730y 7

and give an expression, involving Heaviside step
functions, for i(f) where 0 < ¢ < 2T. For T=10"s,
is this a good representation of the steady-state
response of the circuit? Briefly give a reason for
your answer.
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The response x(#) of a control system to a forcing
term u(?) is given by the differential equation
d’x | dx

EE+2d—+2x =u(t) @=0)
t t

Determine the impulse response of the system, and
hence, using the convolution integral, obtain the
response of the system to a unit step u(f) = 1H(z)
applied at # = 0, given that initially the system is in
a quiescent state. Check your solution by directly
solving the differential equation
2
Q_)zc+2§§+2x =1 (=0
dt dt

with x =dx/dft =0 at r = 0.

A light horizontal beam, of length 5 m and constant
flexural rigidity EI, built in at the left-hand end
x =0, is simply supported at the point x = 4 m and
carries a distributed load with density function

12kNm™' (0 < x < 4)

W(x) ={ 1
24KkNm™' (4<x<5)

Write down the fourth-order boundary-value
problem satisfied by the deflection y(x). Solve this
problem to determine y(x), and write down the
resulting expressions for y(x) for the cases 0 < x
< 4 and 4 < x < 5. Calculate the end reaction
and moment by evaluating appropriate derivatives
of y(x) at x = 0. Check that your results satisfy
the equation of equilibrium for the beam as a
whole.

(a) Sketch the function defined by
0 (0=:<1)
=31 (1s=st<2)
0 (r>2)
Express f(#) in terms of Heaviside step

functions, and use the Laplace transform to
solve the differential equation

dx

T = t

AR 1)
given that x =0 at = 0.

(b) The Laplace transform I(s) of the current i(f)
in a certain circuit is given by

____E

s[Ls+ R/(1+ Cs)]

where E, L, R and C are positive constants.
Determine (i) lin}) i(f) and (i1) lim i(7).
— 1—>o0

I(s) =

Show that the Laplace transform of the half-
rectified sine-wave function

{sint 0=t
v(t) =

(n=t

1)
21)

=
=

of period 2m, is
.t
(1+s)(1—e™)

Such a voltage v(7) is applied to a 1 Q resistor and
a 1 H inductor connected in series. Show that the
resulting current, initially zero, is X.;_, f(t — nm),
where f(f) = (sint — cos ¢ + e ")H(f). Sketch a
graph of the function £(z).

(a) Find the inverse Laplace transform of
1/s*(s + 1)* by writing the expression in
the form (1/s*)[1/(s + 1)*] and using the
convolution theorem.

(b) Use the convolution theorem to solve the
integral equation

y(@®)=t+ ZJ y(u)cos(t—u)du

0

and the integro-differential equation

J Y )y'(t—uydu=y()
0

where y(0) = 0 and y’(0) = y,. Comment on
the solution of the second equation.

A beam of negligible weight and length 3/ carries a
point load W at a distance / from the left-hand end.
Both ends are clamped horizontally at the same
level. Determine the equation governing the
deflection of the beam. If, in addition, the beam

is now subjected to a load per unit length, w,

over the shorter part of the beam, what will then
be the differential equation determining the
deflection?

(a) Using Laplace transforms, solve the
differential equation
2
dx 3 3y —H(-a) @>0)
dr dr
where H() is the Heaviside unit step function,
given that x =0 and dx/dr =0 at r = 0.

(b) The output x(#) from a stable linear control
system with input sin @t and transfer function
G(s) is determined by the relationship

X(s) = G(s)Lsin wr}
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10

11

where X(s) = £{x(f)}. Show that, after a long
time ¢, the output approaches x,(#), where

x,(1) = Re(@)

Consider the feedback system of Figure 5.46, where
K is a constant feedback gain.

G(s)

Ues) + X(s)

1
(s=1D(s+3)

Y

Figure 5.46 Feedback system of Review
exercise 10.

(a) Inthe absence of feedback (that is, K = 0) is the
system stable?

(b) Write down the transfer function G,(s) for the
overall feedback system.

(c) Plot the locus of poles of G,(s) in the s plane
for both positive and negative values of K.

(d) From the plots in (c), specify for what range of
values of K the feedback system is stable.

(e) Confirm your answer to (d) using the
Routh—Hurwitz criterion.

(a) For the feedback control system of
Figure 5.47(a) it is known that the impulse
response is i(f) = 2 e sinz. Use this to
determine the value of the parameter c.

(b) Consider the control system of Figure 5.47(b),
having both proportional and rate feedback.
Determine the critical value of the gain K for
stability of the closed-loop system.

G(s)

U(s) 5 X(s)
+O s2+oas+3

(a)

O =
+ s(s=1)

(b)

U(s) X(s)

Figure 5.47 Feedback control systems of
Review exercise 11.

12

13

14

A continuous-time system is specified in
state-space form as

#(1) = Ax(f) + bu(?)
y(@) = c'x(t)

where

ol -l

(a) Draw a block diagram to represent the
system.

(b) Using Laplace transforms, show that
the state transition matrix is given by

6 6_2[* 6 e—3r
3 e—3r7 2 e—2t

-3t -2t

-2 -3
A |3e T —2e
e =

e —e

(c) Calculate the impulse response of the system,
and determine the response y(#) of the system to
an input u(f) = 1 ( = 0), subject to the initial
state x(0) =[1  O]".

A single-input-single-output system is represented
in state-space form, using the usual notation, as
x(1) = Ax(?) + bu(r)
¥(1) = "x(t)

For

show that

A e '(cos t— sin t) —e'sint
2¢ 'sint e '(cos t+ sin 1)
and find x(7) given the x(0) = 0 and u(?) = 1 (t = 0).
Show that the Laplace transfer function of the
system is

_Y(s) _ AV
H(s) = U0 =c(sI-A)"'db
and find H(s) for this system. What is the system
impulse response?

A controllable linear plant that can be
influenced by one input u(z) is modelled by
the differential equation

x(1) = Ax(?) + bu(r)
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15

where x(1) = [x,(t) x,(2) ... x,(0)]" is

the state vector, A is a constant matrix with
distinct real eigenvalues 4,, A,, . . ., 4, and
b=[b, b,...b,"isa constant vector.

By the application of the feedback control

u(t) = Kvgx(o)

where vy is the eigenvector of AT corresponding

to the eigenvalue A, of AT (and hence of A), the
eigenvalue A, can be changed to a new real value py
without altering the other eigenvalues. To achieve
this, the feedback gain K is chosen as

Px— A
Pk

K=

where py = vib.
Show that the system represented by

1 2 0 0
x(t)=| 0 -1 0(x(2)+ | 1|u()
=3 =3 =2 0

is controllable, and find the eigenvalues and
corresponding eigenvectors of the system matrix.
Deduce that the system is unstable in the absence
of control, and determine a control law that will
relocate the eigenvalue corresponding to the
unstable mode at the new value —5.

A second-order system is modelled by the
differential equations
X+ 2%, —4x,=u
X=X =u
coupled with the output equation
y=X
(a) Express the model in state-space form.

(b) Determine the transfer function of the system
and show that the system is unstable.

(c) Show that by using the feedback control law
u(t) = (1) — ky(?)

where k is a scalar gain, the system will be
stabilized provided k > .

(d) If r(r) = H(?), a unit step function, and k > %

show that y(f) — 1 as t — oo if and only if k = % .

16

(An extended problem) The transient response
of a practical control system to a unit step input
often exhibits damped oscillations before reaching
steady state. The following properties are some
of those used to specify the transient response
characteristics of an underdamped system:

rise time, the time required for the response
to rise from O to 100% of its final value;

peak time, the time required for the response
to reach the first peak of the overshoot;

settling time, the time required for the response
curve to reach and stay within a range about
the final value of size specified by an absolute
percentage of the final value (usually 2% or 5%);

maximum overshoot, the maximum peak
value of the response measured from unity.

U(s)

X(s)

Figure 5.48 Feedback control system of Review
exercise 16.

Consider the feedback control system of
Figure 5.48 having both proportional and
derivative feedback. It is desirable to choose the
values of the gains K and K, so that the system
unit step response has a maximum overshoot of
0.2 and a peak time of 1s.

(a) Obtain the overall transfer function of the
closed-loop system.

(b) Show that the unit step response of the
system, assuming zero initial conditions,
may be written in the form

[oNS

x(f) = 1—¢ "| cos wyt + sin @yt

¢
N(1-&)

where @, = 0,A/(1 - &), @, = K and
20,6=1+ KK,.

(c) Determine the values of the gains K and K, so
that the desired characteristics are achieved.

(d) With these values of K and K|, determine the
rise time and settling time, comparing both
the 2% and 5% criteria for the latter.
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17

18

(An extended problem) The mass M, of the
mechanical system of Figure 5.49(a) is subjected to
a harmonic forcing term sin @t. Determine the
steady-state response of the system.

Figure 5.49 Vibration absorber of
Review exercise 17.

It is desirable to design a vibration absorber to
absorb the steady-state oscillations so that in the
steady state x(f) = 0. To achieve this, a secondary
system is attached as illustrated in Figure 5.49(b).

(a) Show that, with an appropriate choice of M,
and K, the desired objective may be achieved.

(b) What is the corresponding steady-state
motion of the mass M,?

(c) Comment on the practicality of your design.

(An extended problem) The electronic amplifier
of Figure 5.50 has open-loop transfer function G(s)
with the following characteristics: a low-frequency
gain of 120dB and simple poles at 1 MHz, 10 MHz
and 25 MHz. It may be assumed that the amplifier
is ideal, so that KA1 + Kf) = 1/f3, where fis

the feedback gain and K the steady-state gain
associated with G(s).

Input Output
G(s) >

Figure 5.50 Electronic amplifier of Review
exercise 18.

(a) Construct the magnitude versus log frequency
and phase versus log frequency plots (Bode
plots) for the open-loop system.

(b) Determine from the Bode plots whether or
not the system is stable in the case of unity
feedback (that is, f= 1).

(c) Determine the value of S for marginal stability,
and hence the corresponding value of the
closed-loop low-frequency gain.

(d) Feedback is now applied to the amplifier to
reduce the overall closed-loop gain at low
frequencies to 100 dB. Determine the gain
and phase margin corresponding to this
closed-loop configuration.

(e) Using the given characteristics, express G (s)
in the form

K
(1+s7)(1+ s5)(1 + 573)

G(s) =

and hence obtain the input—output transfer
function for the amplifier.

(f) Write down the characteristic equation for the
closed-loop system and, using the Routh—
Hurwitz criterion, reconsider parts (b) and (c).






,

The z Transform

Chapter 6 Contents

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

Introduction

The z transform

Properties of the z transform

The inverse z transform

Discrete-time systems and difference equations

Discrete linear systems: characterization

The relationship between Laplace and z transforms
Solution of discrete-time state-space equations
Discretization of continuous-time state-space models
Engineering application: design of discrete-time systems
Engineering application: the delta operator and the & transform

Review exercises (1-18)

408

409

414

420

428

435

455

456

464

470

473

480



408 THE ZTRANSFORM

6.1

Introduction

In this chapter we focus attention on discrete-(time) processes. With the advent of fast
and cheap digital computers, there has been renewed emphasis on the analysis and
design of digital systems, which represent a major class of engineering systems. The
main thrust of this chapter will be in this direction. However, it is a mistake to believe
that the mathematical basis of this area of work is of such recent vintage. The first
comprehensive text in English dealing with difference equations was The Treatise of the
Calculus of Finite Differences by George Boole and published in 1860. Much of the
early impetus for the finite calculus was due to the need to carry out interpolation and
to approximate derivatives and integrals. Later, numerical methods for the solution of
differential equations were devised, many of which were based on finite-difference
methods, involving the approximation of the derivative terms to produce a difference
equation. The underlying idea in each case so far discussed is some form of
approximation of an underlying continuous function or continuous-time process. There
are situations, however, where it is more appropriate to propose a discrete-time model
from the start.

Digital systems operate on digital signals, which are usually generated by sampling
a continuous-time signal, that is a signal defined for every instant of a possibly infinite
time interval. The sampling process generates a discrete-time signal, defined only at
the instants when sampling takes place so that a digital sequence is generated. After
processing by a computer, the output digital signal may be used to construct a new
continuous-time signal, perhaps by the use of a zero-order hold device, and this in
turn might be used to control a plant or process. Digital signal processing devices
have made a major impact in many areas of engineering, as well as in the home. For
example, compact disc players, which operate using digital technology, offered
such a significant improvement in reproduction quality that the 1980s saw them
rapidly take over from cassette tape players and vinyl record decks. DVD players
have taken over from video players and digital radios are setting the standard for
broadcasting. Both of these are based on digital technology.

We have seen in Chapter 5 that the Laplace transform was a valuable aid in the
analysis of continuous-time systems, and in this chapter we develop the z transform,
which will perform the same task for discrete-time systems. We introduce the transform in
connection with the solution of difference equations, and later we show how difference
equations arise as discrete-time system models.

The chapter includes two engineering applications. The first is on the design of
digital filters, and highlights one of the major applications of transform methods as
a design tool. It may be expected that whenever sampling is involved, performance will
improve as sampling rate is increased. Engineers have found that this is not the full
story, and the second application deals with some of the problems encountered. This
leads on to an introduction to the unifying concept of the & transform, which brings
together the theories of the Laplace and z transforms.
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The z transform

6.2.1

Since z transforms relate to sequences, we first review the notation associated with
sequences, which were considered in more detail in Chapter 7 of Modern Engineering
Mathematics (MEM). A finite sequence {x.}, is an ordered set of n + 1 real or
complex numbers:

{xk}g = {xo, Xis Xy vvn s )Cn}

Note that the set of numbers is ordered so that position in the sequence is important.
The position is identified by the position index k, where k is an integer. If the number
of elements in the set is infinite then this leads to the infinite sequence

{xk}g = {x()s X Xpy et }

When dealing with sampled functions of time ¢, it is necessary to have a means of
allowing for ¢ < 0. To do this, we allow the sequence of numbers to extend to infinity
on both sides of the initial position x,, and write

{32 =0 .. X X, X X, Xy, .. )

Sequences {x,}~. for which x, = 0 (k < 0) are called causal sequences, by analogy
with continuous-time causal functions f(#)H(¢) defined in Section 11.2.1 of MEM as

0 (t<0)

H(p) =
S()H(1) {f(t) (1=0)

While for some finite sequences it is possible to specify the sequence by listing all the
elements of the set, it is normally the case that a sequence is specified by giving a
formula for its general element x;,.

Definition and notation

The z transform of a sequence {x,}”. is defined in general as

Fn). =X =3 % 6.1)

e <

whenever the sum exists and where z is a complex variable, as yet undefined.

The process of taking the z transform of a sequence thus produces a function
of a complex variable z, whose form depends upon the sequence itself. The symbol
& denotes the z-transform operator; when it operates on a sequence {x,} it
transforms the latter into the function X(z) of the complex variable z. It is usual to
refer to {x,}, X(2) as a z-transform pair, which is sometimes written as {x,} <
X(z). Note the similarity to obtaining the Laplace transform of a function in Section
11.2.1 of MEM. We shall return to consider the relationship between Laplace and z
transforms in Section 6.7.
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Example 6.1

Solution

For sequences {x;}”. that are causal, that is
x=0 (k<0

the z transform given in (6.1) reduces to

oo

Fn}=X@) =Y = (6.2)

k=0

In this chapter we shall be concerned with causal sequences, and so the definition
given in (6.2) will be the one that we shall use henceforth. We shall therefore from now
on take {x,} to denote {x,}; . Non-causal sequences, however, are of importance, and
arise particularly in the field of digital image processing, among others.

Determine the z transform of the sequence

{x} =12} *=0
From the definition (6.2),

a0

which we recognize as a geometric series, with common ratio » = 2/z between successive
terms. The series thus converges for |z| > 2, when

= (g)k o)t 1
kz_:; ) kse 127 1-2/7
leading to
{2 == (z]>2) (6.3)
z—2
so that
{x} = {2}
_ X
(2 = 72

is an example of a z-transform pair.

From Example 6.1, we see that the z transform of the sequence {2} exists provided
that we restrict the complex variable z so that it lies outside the circle |z| = 2 in the
z plane. From another point of view, the function
Z
X(z) = —= >2
@) == (z[>2)
may be thought of as a generating function for the sequence {2*}, in the sense that the
coefficient of z™* in the expansion of X(z) in powers of 1/z generates the kth term of the
sequence {2}. This can easily be verified, since
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Example 6.2

Solution

z _ 1 _(1,2)’1
z-2 1-2/7 z

and, since |z| > 2, we can expand this as

(1—%)7' - 1+§+(§)2 +...+@)k oo

and we see that the coefficient of z* is indeed 2%, as expected.
We can generalize the result (6.3) in an obvious way to determine %{a*}, the z
transform of the sequence {a*}, where a is a real or complex constant. At once

k
a 1
“*

Hdt=Y S =1y (zl>laD
k=0

so that
ko %
gz{a}_zfa (|z] > |a]) (6.4)
Show that
2z
A =577 (>0

Taking a = —% in (6.4), we have

(5"

[NIE

IINCUEE = _Z 1
FL(-DHY 203 =g >
so that
1k 2z 1
Ay =57 (21> D

Further z-transform pairs can be obtained from (6.4) by formally differentiating
with respect to a, which for the moment we regard as a parameter. This gives

d iy _ g)da'| _ d(_2_
da2ta )= fff{a} rt=r)

leading to

Z
(z—a)’

In the particular case a = 1 this gives

Hlkad '} =

(|z[>1a]) (6.5)

Zky=—— (|z|>1) (6.6)
(z—-1)
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Example 6.3  Find the z transform of the sequence

[2k} ={0,2,4,6,8, ...

Solution From (6.6),

Hky =2{0,1,2,3,...}

»IW

3=

i < (Z—l)

Using the definition (6.1),

20.2.468..1=0+2+348: 8, ook
z 7z 7z ~ 7
so that
2z
K2k} = 290k} = ——— 6.7)
(z—1)

Example 6.3 demonstrates the ‘linearity’ property of the z transform, which we shall
consider further in Section 6.3.1.
A sequence of particular importance is the unit pulse or impulse sequence

{a)={1}={1,0,0,...}
It follows directly from the definition (6.4) that

Har=1 (6.8)

In MATLAB, using the Symbolic Math Toolbox, the z transform of the sequence
{x.} is obtained by entering the commands

syms k z
ztrans (x;)

As for Laplace transforms (see Section 11.2.2 of MEM), the answer may be
simplified using the command simple (ans) and reformatted using the pretty
command. Considering the sequence {x,} = {2} of Example 6.1, the commands

syms k z
ztrans (2°k)

return
ans=1/2*z/(1/2*z-1)

Entering the command
simple (ans)

returns

ans=z/ (z-2)
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6.2.2

Figure 6.1 Sampling
of a continuous-time
signal.

Example 6.4

Solution

z transforms can be performed in MAPLE using the ztrans function; so the
commands:
ztrans (2°k,k, z) ;
simplify (%) ;
return
V4

z—2

Sampling: a first introduction

Sequences are often generated in engineering applications through the sampling of
continuous-time signals, described by functions f(#) of a continuous-time variable 7.
Here we shall not discuss the means by which a signal is sampled, but merely suppose
this to be possible in idealized form.

SKT) A y=f
l"
L4
L4
’
I4
4
’
’
,
o -
O T 2T 3T 4T 5T 6T kT !

Figure 6.1 illustrates the idealized sampling process in which a continuous-time
signal f(7) is sampled instantaneously and perfectly at uniform intervals 7, the sampling
interval. The idealized sampling process generates the sequence

{f(KT)} = {f(0), (]), f2T), ..., f(nT), ... }

Using the definition (6.1), we can take the z transform of the sequence (6.9) to give

(6.9)

ey =y Lo (6.10)

k=0

whenever the series converges. This idea is simply demonstrated by an example.

The signal f{¢) = eH(¢) is sampled at intervals 7. What is the z transform of the resulting
sequence of samples?

Sampling the causal function f(#) generates the sequence

{f(D)} = {f(0), AT), f2T), ..., f(nT), ... }

_ -T ,-2T ,-3T —nT
={l,e,e,e,...,e", ... }
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Then, using (6.1),

kT

HSUD} =3 =3 (i_
k=0 Z

so that

ff{efkT} — Z -
z—¢€

(z]>e™)

(6.11)

It is important to note in Example 6.4 that the region of convergence depends on the

sampling interval T.

In MATLAB the commands
syms k T z

L]

ztrans (exp (-k*T) ) ;
pretty (simple (ans))

return
ans = z/(z-exp(-T))
which confirms (6.11).

In MAPLE the commands:
ztrans (exp (-k*T) ,k, z) ;
simplify (%) ;

return
ZCT
ze' -1

6.2.3 Exercises

1  Calculate the z transform of the following sequences, 2
stating the region of convergence in each case:
@ {(3)) (b) {3") (© {(=2)}
@ (=@ (o) {3k}

The continuous-time signal f(¢) = e™>*, where wis a
real constant, is sampled when ¢ = 0 at intervals 7.
Write down the general term of the sequence

of samples, and calculate the z transform of the
sequence.

Properties of the z transform

In this section we establish the basic properties of the z transform that will enable us to
develop further z-transform pairs, without having to compute them directly using the

definition.



6.3 PROPERTIES OF THE Z TRANSFORM 415

6.3.1

Example 6.5

Solution

The linearity property
As for Laplace transforms, a fundamental property of the z transform is its linearity,

which may be stated as follows.

If {x,} and {y,} are sequences having z transforms X(z) and Y(z) respectively and if
o and S are any constants, real or complex, then

Roax+ Pyl = aBix} + Ay} = aX ) + fY() (6.12)

As a consequence of this property, we say that the z-transform operator & is a linear
operator. A proof of the property follows readily from the definition (6.4), since

O

X
_k

|"<
w

Flax+ Py} = zan;ﬂyk i

%=0
= aX(z) + fY(2)

The region of existence of the z transform, in the z plane, of the linear sum will be the
intersection of the regions of existence (that is, the region common to both) of the
individual z transforms X(z) and Y(z).

The continuous-time function f(¢#) = cos @wt H(t), w a constant, is sampled in the
idealized sense at intervals T to generate the sequence {coskaT}. Determine the z
transform of the sequence.

Using the result cos kT = § (e*“" + e ") and the linearity property, we have
FH(cos kaT} = F(yel" + Je T} = L Flete} + § e}

Using (6.7) and noting that |e*“"| = |e™**"| = 1 gives

Hcos kalT} = 5—— +3——— (]z| > 1)
z—¢€ z—¢€
_ lZ(Z e—ij) + Z(Z_eja)T)
2 Z2 ( JaIT+e J(UT)Z+1
leading to the z-transform pair
HeoskaT) = oSG8 @D) 15 ) (6.13)

72 —2zcos wT+ 1

In a similar manner to Example 6.5, we can verify the z-transform pair

HsinkaT} = zsin 0T

(lz| > 1) (6.14)
72 —2zcos wT+ 1 <]

and this is left as an exercise for the reader (see Exercise 3).
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6.3.2

Check that in MATLAB the commands

syms k z o T
ztrans (cos (k*®*T) ) ;
pretty(simple (ans))

return the transform given in (6.13) and that the MAPLE commands:

ztrans (cos (k*®*T) ,k, z) ;
simplify (%) ;

do likewise.

The first shift property (delaying)

In this and the next section we introduce two properties relating the z transform of a
sequence to the z transform of a shifted version of the same sequence. In this section
we consider a delayed version of the sequence {x,}, denoted by {y,}, with

Vi = Xk,

Here k, is the number of steps in the delay; for example, if k, = 2 then y, = x;_,,
so that

Yo=Xo, Vi=Xgs Y2=Xo Y3=X

and so on. Thus the sequence {y,} is simply the sequence {x,} moved backward, or
delayed, by two steps. From the definition (6.1),

SRR e

k=0 k=0
where we have written p = k — k. If {x;} is a causal sequence, so that x,=0 (p <0), then

oo

Pyd= Y 3= 3 2= 2x0)
p=0

p=0

where X(z) is the z transform of {x,}.
We therefore have the result

Pxi,} = 1 Hind (6.15)

which is referred to as the first shift property of z transforms.

If {x,} represents the sampled form, with uniform sampling interval 7, of the con-
tinuous signal x(¢) then {x;_, } represents the sampled form of the continuous signal
x(t — k,T) which, as illustrated in Figure 6.2, is the signal x(¢) delayed by a multiple
k, of the sampling interval 7. The reader will find it of interest to compare this result
with the results for the Laplace transforms of integrals [see Section 11.3.2 of MEM, in
particular (11.15)].
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Figure 6.2
Sequence and its
shifted form.

Example 6.6

Solution

6.3.3

{x:) A {5k, ) A
& Tirar nT 8 o koT (ko +mT *
The causal sequence {x,} is generated by
%=0G) k=0
Determine the z transform of the shifted sequence {x,_,}.
By the first shift property,
1 1.k
Hxat = 5 2H(GG) 1
z
which, on using (6.4), gives
1 Z 1 1 2Z 2 1
Huar=5— Izl >3 =5 = (zl >3
Zz-1 22201 z(2z-1) ’

We can confirm this result by direct use of the definition (6.1). From this, and the fact

that {x,} is a causal sequence,

1=10,0,1,5,3,...)

{xia) = {x g Xy, X0, X1 -

Thus,
&"’{xk,z}=O+O+12+Lg+i4+-~=l2 1+i+%+---
77 27 4z Z 2z 4z
_ 1 z > 1 _ Z > 1
=S (|z] 5) = ———— (Iz] 3
25 2(2z-1)

The second shift property (advancing)

In this section we seek a relationship between the z transform of an advanced version
of a sequence and that of the original sequence. First we consider a single-step
advance. If {y,} is the single-step advanced version of the sequence {x.} then {y.} is

generated by

=

(k= 0)

Yie = X1
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6.34

Then

Kyt = iﬁ—,ﬁ = i)%=zz
k=0 k=0

k=0

Xir1
k+1

A\l

and putting p = k + 1 gives

[N A R 3
Fly} = ZZZ_P =z Zz—p—xo = zX(z) — zx,
p=1

=0

where X(z) is the z transform of {x,}.
We therefore have the result

H X} = 2X(2) — 2% (6.16)
In a similar manner it is readily shown that for a two-step advanced sequence {x,,,}

Hxi} = 2°X(@2) — 2%, — 2%, 6.17)
Note the similarity in structure between (6.16) and (6.17) on the one hand and those for

the Laplace transforms of first and second derivatives (Section 11.3.1 of MEM). In
general, it is readily proved by induction that for a kj-step advanced sequence {x; }

ko—1
Hxir,} = X (@) = Y x0T (6.18)

n=0

In Section 6.5.2 we shall use these results to solve difference equations.

Some further properties

In this section we shall state some further useful properties of the z transform, leaving
their verification to the reader as Exercises 9 and 10.

(i) Multiplication by a*
If Z{x,} = X(z) then for a constant a

Hdx) = X(a'2) (6.19)

(ii) Multiplication by k"

If #{x,} = X(z) then for a positive integer n

Hk'x} = (—zadg) X(z) (6.20)
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Note that in (6.20) the operator —z d/dz means ‘first differentiate with respect
to z and then multiply by —z’. Raising to the power of » means ‘repeat the
operation n times’.

(iii) Initial-value theorem

If {x,} is a sequence with z transform X(z) then the initial-value theorem states
that

lim X(z) = x, (6.21)

200

(iv) Final-value theorem

If {x,} is a sequence with z transform X(z) then the final-value theorem states
that

lim x, = lim (1 - ZHX(2) (6.22)

provided that the poles of (1 — z7')X(z) are inside the unit circle.

6.3.5 Table of z transforms

Figure 6.3 A short
table of z transforms.

It is appropriate at this stage to draw together the results proved so far for easy access.
This is done in the form of a table in Figure 6.3.

{x.} (k= 0) Hix) Region of existence
1 (k=0
5 = ( ) 1 All z
0 (k>0)
(unit pulse sequence)
x, = 1 (unit step sequence) z-fT [z|>1
x, = d* (a constant) z%a |z]> |a|
xe=k : 21)2 [z]> 1
72—
X, = ka*™" (a constant) ( & < |z]>a
z-a
x, = e *" (T constant) g - |z|>eT
z-¢
X, = cos kaT (@, T constants) _din— s Gl [z]>1

72— 2zcos wT + 1

zsin oT 2] > 1

X, = sinkaT (@, T constants) —
7 —2zcos wT + 1




420 THE ZTRANSFORM

6.3.6 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

3 Use the method of Example 6.5 to confirm (6.14), 6  Determine Ef{(%)"}. Using (6.6), obtain the z
namely transform of the sequence {k(%)k }.
zsin @T 7 Show that for a constant &

HsinkoTt = —"— 0 .
ZZ,ZZ cos wT + 1 (a) %{sinhka} = _ zsinh &

Z"—2zcosha+1
where @ and T are constants. 2 zcoshar

(b) Hcoshko} = -—————
4 Use the first shift property to calculate the z ¢ -2zcoshatl

transform of the sequence {y,}, with 8  Sequences are generated by sampling a causal
continuous-time signal u(¢) (+ = 0) at uniform
V= {0 (k<3) intervals 7. Write down an expression for u,, the
X3 (k=3) general term of the sequence, and calculate the

corresponding z transform when u(?) is
where {x,} is causal and x, = (%)k. Confirm your
result by direct evaluation of Z{y,} using the
definition of the z transform. 9  Prove the initial- and final-value theorems given in
(6.21) and (6.22).

(a) e (b) sint (c) cos2t

5  Determine the z transf f th
cterttiic the  franstorms Ot tle sequeflces 10  Prove the multiplication properties given in (6.19)

(@ {(-5)"}  (b) {coskm} and (6.20).

m The inverse ~ transform

In this section we consider the problem of recovering a causal sequence {x,} from
knowledge of its z transform X(z). As we shall see, the work on the inversion of Laplace
transforms in Section 11.2.7 of MEM will prove a valuable asset for this task.

Formally the symbol & '[X(z)] denotes a causal sequence {x,} whose z transform is
X(z); that is,

if Xx} =Xz then {x}=2"[X()]

This correspondence between X(z) and {x,} is called the inverse z transformation,
{x.} being the inverse transform of X(z), and &' being referred to as the inverse
z-transform operator.

As for the Laplace transforms in Section 11.2.8 of MEM, the most obvious way of
finding the inverse transform of X(z) is to make use of a table of transforms such as that
given in Figure 6.3. Sometimes it is possible to write down the inverse transform
directly from the table, but more often than not it is first necessary to carry out some
algebraic manipulation on X(z). In particular, we frequently need to determine the
inverse transform of a rational expression of the form P(z)/Q(z), where P(z) and Q(z)
are polynomials in z. In such cases the procedure, as for Laplace transforms, is first to
resolve the expression, or a revised form of the expression, into partial fractions and
then to use the table of transforms. We shall now illustrate the approach through some
examples.
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6.4.1

Example 6.7

Solution

Example 6.8

Solution

Inverse techniques

Find

From Figure 6.3, we see that z/(z — 2) is a special case of the transform z/(z — a), with
a=2. Thus

||z .
Q’TL—Z}={2}

Find

1 4
z {(1_1)@_2)}

Guided by our work on Laplace transforms, we might attempt to resolve
Y(z) = ——:

(z-1)(z-2)

into partial fractions. This approach does produce the correct result, as we shall show
later. However, we notice that most of the entries in Figure 6.3 contain a factor z in the
numerator of the transform. We therefore resolve

Yo 1

z (z-1)(z-2)

into partial fractions, as

Yo _ 1 1
Z z—-2 z-1
so that
Y(sy= 2 __Z
@) z—2 z—1

Then using the result &'[z/(z — a)] = {a"} together with the linearity property, we have

rven=2(Z5-) =2 (F) -2 (F)
=(2- (1 *«=0

so that

1 4 _ k -
z [m} ={2-1} (k=0) (6.23)
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=

Suppose that in Example 6.8 we had not thought so far ahead and we had simply
resolved Y(z), rather than Y(z)/z, into partial fractions. Would the result be the same?
The answer of course is ‘yes’, as we shall now show. Resolving

Z
Y(z) = —~—
O =D
into partial fractions gives
2 1
Y(z) = — - —
(@) z-2 z-1

which may be written as

1 2z 1 z
Y = —
@) zz-2 zz-1

Since
[ 27 _ 1(_2 ) _ k
z Z_—mi} =2 (Z—Z) =2{2"}

it follows from the first shift property (6.15) that

|1 22 ] ={{2-2“} (k > 0)
1222 0 (k = 0)
Similarly,
[l 2] ={{1“}={1} (k > 0)
22— 1] 0 (k =0)

Combining these last two results, we have

'Y () =2 F ﬁ} _QfHF L}
72z-2

={{2"1} (k > 0)

0 (k = 0)

which, as expected, is in agreement with the answer obtained in Example 6.8.

We can see that adopting this latter approach, while producing the correct result,
involved extra effort in the use of a shift theorem. When possible, we avoid this by
‘extracting’ the factor z as in Example 6.8, but of course this is not always possible, and
recourse may be made to the shift property, as Example 6.9 illustrates.

The inverse z transform {x,} of X(z) is returned in MATLAB using the command
iztrans (X (z),k)

(Note: The command iztrans(X(z)) by itself returns the inverse transform
expressed in terms of n rather than k.)
For the z transform in Example 6.8 the MATLAB command

iztrans (z/((z-1)*(z-2)),k)
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returns
ans=-1+2"k

as required.
The inverse z transform can be performed in MAPLE using the invztrans func-
tion, so that the command

invztrans (z/ (z"2-3*z4+2) z,k) ;
also returns the answer
2k — 1

Example 6.9  Find
1 2z+1
Zz [(Z-i— )(z- 3)}

Solution In this case there is no factor z available in the numerator, and so we must resolve

2z+1

@)= e

into partial fractions, giving

|N
B

1 7 1
=i——t;—==
Y(@) ‘241 “4z-3

EN
2| =
IS
+
—_
™~
|
w

Since

7! {;ﬁ-ﬂ = {1} *k=0)

7! {L} ={3} *k=0)
z-3
it follows from the first shift property (6.15) that

P [1 L} _ {{(—U“} (k> 0)
zz+1 0 (k= 0)

|l 2 |37 ®k>0
zz-3 0 (k=0)
Then, from the linearity property,

7' [Y(2)] =i£f{l~%} +%ff{1—~%}

zz+ 22—
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Example 6.10

Solution

giving

[ 2z01 ] [GEDT 3T (k> 0)
(z+1)(z=3) 0 (k= 0)

In MATLAB the command
iztrans ((2*z+1) / ((z+1) *(z-3)) ,k)
returns
ans=-1/3*charfen[0] (k)-1/4* (-1) *k+7/12*3%k
(Note: The charfcn function is the characteristic function of the set A, and is defined
to be
1 if kis in A

charfcn[A](k) = - )
0 if kis not in A

Thus charfen [0](k) = 1 if £ = 0 and O otherwise.)
It is left as an exercise to confirm that the answer provided using MATLAB
concurs with the calculated answer.

It is often the case that the rational function P(z)/Q(z) to be inverted has a quadratic
term in the denominator. Unfortunately, in this case there is nothing resembling the
first shift theorem of the Laplace transform which, as we saw in Section 11.2.9 of
MEM, proved so useful in similar circumstances. Looking at Figure 6.3, the only two
transforms with quadratic terms in the denominator are those associated with the
sequences {coskwl} and {sinkwT}. In practice these prove difficult to apply in
the inverse form, and a “first principles’ approach is more appropriate. We illustrate this
with two examples, demonstrating that all that is really required is the ability to handle
complex numbers at the stage of resolution into partial fractions.

Invert the z transform

Z
Y(z) =
Z2+a2

where «a is a real constant.

In view of the factor z in the numerator, we resolve Y(z)/z into partial fractions, giving

Y _ 1 _ 1 v 1 1
z  Z+d  (z+ja)z—ja) j2a(z—ja) j2a(z+]ja)

That is

1
Y(z) = — | % ___%
@ Jza(z—ja z+jaj
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Example 6.11

Solution

Using the result Z'[2/(z — a)] = {a*}, we have

z—ja

3{[ < } = {(ja)'t = {j*a"}

zf[ < } = {(Ha)'} = {(-))'d"}

z+]ja
From the relation e'’ = cos §+ j sin 6, we have
j= e _j = e

so that

- L - ja} = {a'(e"™)'} = {a"d"™"} = {a"(cos 3km + sin 3km) }

7! L fja} = {a"(cos Lkm —j sin 1km)}

The linearity property then gives
k
I 'Y(2)] = {jaal(cos kT +jsin Jkm — cos 3k + jsin %kn)}

= {d"" sin Jkm}

Whilst MATLAB or MAPLE may be used to obtain the inverse z transform when
complex partial fractions are involved, it is difficult to convert results into a simple
form, the difficult step being that of expressing complex exponentials in terms of
trigonometric functions.

Invert

Z
Y(z) = ———
F-z+1

The denominator of the transform may be factorized as

2 2
In exponential form we have } + j1./3 = ¢7™, so the denominator may be written as

Z2 —z+1= (Z _ ejn/?»)(Z _ e—jn/})

We then have

Y(2) _ 1
z (Z_eJTcIS)(Z_e—Jﬂ:/S)
which can be resolved into partial fractions as
Y(z) _ 1 1 1 1

jn/3 —jm/3 jn/3 + —jn/3 jn/3 —jm/3
Z (& —€ Zz—¢€ € —¢€ z—¢€



426 THE ZTRANSFORM

Noting that sin 8= (e’ — €79)/j2, this reduces to
Y(z) _ 1 Z B 1 Z
z  j2sinimz-e™ j2sinlmz-e

“inl3

Using the result Z'[z/(z — a)] = {d"}, this gives

ZY(2)] = “lﬁ (&~ e ) = (2, [T sin L)
j

We conclude this section with two further examples, illustrating the inversion tech-
nique applied to frequently occurring transform types.

Example 6.12  Find the sequence whose z transform is

Solution  F(z) is unlike any z transform treated so far in the examples. However, it is readily
expanded in a power series in 7' as
F(z) =1+ 2 + l}
z z

Using (6.4), it is then apparent that
FNF@1=1{f}=1{1,2,0,1,0,0,...}

The MATLAB command
iztrans ((z"3+2*z"2+1) /z"3,k)
returns
charfcen[0] (k) +2*charfen (1] (k) +charfen[3](k)
which corresponds to the sequence
{1,2,0,1,0,0,...}

Example 6.13  Find % '[G(z)] where
Z(l _ e—aT)
(z—D(z-¢")

where a and T are positive constants.

G(z) =

Solution Resolving into partial fractions,
G __1 1
z z—=1 z-e

—aT
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11

12

giving
1 1
z-1 z-e

Using the result Z'[z/(z — a)] = {d'}, we have

ZNG@I= {1 - )}

(k=0

In this particular example G(z) is the z transform of a sequence derived by sampling the

continuous-time signal

fo=1-¢"

at intervals T.

The MATLAB commands

syms k z a T

iztrans ((z* (l-exp(-a*T)))/ ((z-1)* (z-exp(-a*T))) , k) ;

pretty (simple (ans))

return
ans=1-exp (-aT)*
In MAPLE the command

invztrans ((z* (1-exp(-aT)))/((z-1)*(z-exp(-aT))),z,k);

returns

k
@ -
(S

6.4.2 Exercises

Confirm your answers using MATLAB or MAPLE whenever possible.

Invert the following z transforms. Give the general
term of the sequence in each case.

Z Z Z
(a) Z—ji (b) ;-—l—_l (©) Z———%
d) == = f) —=
(d) 5= @5 O3
1 z+2
() m (h) Z+—1

By first resolving Y(z)/z into partial fractions, find
Z'[Y(z)] when Y(z) is given by

Z Z
@ ThHe ®) D
Z 2z
___z d) —=%
© T Y
Z

(e) [Hint: 22+ 1= (z+j)(z—)]

Z+1

13

z (2) 27777
-2 3z+4 (z-1*(z-3)

2
<

(zfl)z(zzfz +1)

(f)

(h)

Find Z7'[Y(z)] when Y(2) is given by

1 2 3 2
Z 2 oz
2 5
(c) 3z+z5+5z (d) l-i;z_'_ 3z
z Z 3z+1
(&) 227+ 67+5z+1 2777747
ZQ2z+1) (z-1)’(z-2)
-3
(g) _£=5
Z-37+2
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6.5.1

Figure 6.4 Discrete-
time signal processing
system.

Discrete-time systems and difference equations

In Chapter 11 of MEM and Chapter 5 the Laplace transform technique was
examined, first as a method for solving differential equations, then as a way of
characterizing a continuous-time system. In fact, much could be deduced concerning the
behaviour of the system and its properties by examining its transform-domain
representation, without looking for specific time-domain responses at all. In this section
we shall discuss the idea of a linear discrete-time system and its model, a difference
equation. Later we shall see that the z transform plays an analogous role to the
Laplace transform for such systems, by providing a transform-domain representation
of the system.

Difference equations

First we illustrate the motivation for studying difference equations by means of an
example.

Suppose that a sequence of observations {x,} is being recorded and we receive
observation x, at (time) step or index k. We might attempt to process (for example,
smooth or filter) this sequence of observations {x,} using the discrete-time feedback
system illustrated in Figure 6.4. At time step k the observation x, enters the system as
an input, and, after combination with the ‘feedback’ signal at the summing junction S,
proceeds to the block labelled D. This block is a unit delay block, and its function is to
hold its input signal until the ‘clock’ advances one step, to step k + 1. At this time the
input signal is passed without alteration to become the signal y,,,, the (k + 1)th member
of the output sequence {y,}. At the same time this signal is fed back through a scaling
block of amplitude « to the summing junction S. This process is instantaneous, and at
S the feedback signal is subtracted from the next input observation x,,, to provide the
next input to the delay block D. The process then repeats at each ‘clock’ step.

To analyse the system, let {r,} denote the sequence of input signals to D; then, owing
to the delay action of D, we have

Vieret = T
Also, owing to the feedback action,
T =X, — Oy,
where « is the feedback gain. Combining the two expressions gives
Vi1 = X — O
or
Vi + O = X (6.24)

Equation (6.24) is an example of a first-order difference equation, and it relates adjacent
members of the sequence {y,} to each other and to the input sequence {x,}.
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Example 6.14

Figure 6.5 The system
for Example 6.14.

Solution

A solution of the difference equation (6.24) is a formula for y,, the general term of
the output sequence {y,}, and this will depend on both k and the input sequence {x,} as
well as, in this case, the feedback gain o

Find a difference equation to represent the system shown in Figure 6.5, having input
and output sequences {x.} and {y,} respectively, where D is the unit delay block and a
and b are constant feedback gains.

Introducing intermediate signal sequences {7} and {v,} as shown in Figure 6.5, at each
step the outputs of the delay blocks are

Yir1 = Vi (6.25)

Viel =l (6.26)
and at the summing junction

1= X —avy + by, (6.27)
From (6.25),

Yierz = Viern

which on using (6.26) gives
Yirr = T
Substituting for r, from (6.27) then gives
Viz = X — av, + by,
which on using (6.25) becomes
Yz = X — @Yy + DYy
Rearranging this gives
Yiwz + @Yt = by = X, (6.28)

as the difference equation representing the system.

The difference equation (6.28) is an example of a second-order linear constant-
coefficient difference equation, and there are strong similarities between this and a second-
order linear constant-coefficient differential equation. It is of second order because the
term involving the greatest shift of the {y,} sequence is the term in y,,,, implying a shift
of two steps. As demonstrated by Example 6.14, the degree of shift, or the order of the
equation, is closely related to the number of delay blocks in the block diagram.
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6.5.2

Example 6.15

Solution

The solution of difference equations

Difference equations arise in a variety of ways, sometimes from the direct modelling of
systems in discrete time or as an approximation to a differential equation describing the
behaviour of a system modelled as a continuous-time system. We do not discuss this
further here; rather we restrict ourselves to the technique of solution but examples of
applications will be apparent from the exercises. The z-transform method is based upon
the second shift property (Section 6.3.3), and it will quickly emerge as a technique
almost identical to the Laplace transform method for ordinary differential equations
introduced in Section 11.3.3 of MEM. We shall introduce the method by means of an
example.

If in Example 6.14, a = 1, b = 2 and the input sequence {x,} is the unit step sequence
{1}, solve the resulting difference equation (6.28).

Substituting for a, b and {x;} in (6.28) leads to the difference equation
Yt Vi =20 =1 (k= 0) (6.29)
Taking z transforms throughout in (6.29) gives
Lt Ve — 20 =1L 1, 1,...}
which, on using the linearity property and the result Z{1} = z/(z — 1), may be written as
Heah + 2y} 22000 = =5
Using (6.16) and (6.17) then gives
[£2Y(@) = 20 = 0] + [2Y(@) = 23] = 2V(@) = =
which on rearranging leads to
@ +2- V@ = = +2y0+ A+ ) (6.30)

To proceed, we need some further information, namely the first and second terms y, and
y, of the solution sequence {y,}. Without this additional information, we cannot find a
unique solution. As we saw in Section 11.3.3 of MEM, this compares with the use of
the Laplace transform method to solve second-order differential equations, where the
values of the solution and its first derivative at time ¢ = 0 are required.

Suppose that we know (or are given) that

Y0=0, =1
Then (6.30) becomes

(2 +7-)YV(@) =7+ =
z—1

or
@+2)@- DY@ =z+ ——
z—-1
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and solving for Y(z) gives
2
z + z Z

Y(z) = 3= 2
(z+2)(z-1) (z+2)(z—-1) (z+2)(z—-1)

(6.31)

To obtain the solution sequence {y,}, we must take the inverse transform in (6.31).
Proceeding as in Section 6.4, we resolve Y(z)/z into partial fractions as

Y(z) _ z 1 1 » 1 5 1
— = 373 35 5
z (z+2)(z—-1) (z—1) z—1 z+2
and so
Y(Z) :% 4 é Z _g 4

+
(z=1)? "z-1 z+2

Using the results Z7'[z/(z — a)] = {a*} and & '[z/(z — 1)*] = {k} from Figure 6.3, we
obtain

{nd = Ghk+3-3(-2)"F (k=0)

as the solution sequence for the difference equation satisfying the conditions y, = 0
andy, = 1.

The method adopted in Example 6.15 is called the z-transform method for solving
linear constant-coefficient difference equations, and is analogous to the Laplace
transform method for solving linear constant-coefficient differential equations.

To conclude this section, two further examples are given to help consolidate
understanding of the method.

Such difference equations can be solved directly in MAPLE using the rsolve
command. In the current version of the Symbolic Math Toolbox in MATLAB there
appears to be no equivalent command for directly solving a difference equation.
However, as we saw in Section 5.2.5, using the maple command in MATLAB lets
us access MAPLE commands directly. Hence, for the difference equation in Exam-
ple 6.15, using the command

maple (‘rsolve ({y (k+2) +y (k+1) -2*y (k)
=1,y (0)=0,y(1)=1},y(k))")

in MATLAB returns the calculated answer
-2/9* (-2) "k+2/9+1/3*k

In MAPLE difference equations can be solved directly using rsolve, so that
the command

rsolve ({y (k+2)+y (k+1)—2*y (k)=1,y (0)=0,y(1)=1},y (k) ) ;

returns
k
2 22,k
9 9 3
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Example 6.16  Solve the difference equation
8V = OV + =9 (k= 0)

given that y,= 1 and y, = %

Solution Taking z transforms
8 Yo} — 6y} + Ay} = 9Z(1}
Using (6.16) and (6.17) and the result Z{1} = z/(z — 1) gives

B2 — 29 = 0] = 612V — 2l + V@) =
which on rearranging leads to
(82 — 62+ 1)Y(2) = 82y + 82y, — 627, + 2251
We are given that y,=1 and y, = %, SO
2 2 9z
8z°—6z+ 1)Y(z) =8z"+ 62+ 1
or
YO w6 9
2 (4z-1D2z-1) (4z-DH2z-D(z-1)
3 9
i+3 8

= 1 1 + 1 1
(z-=@E=-3) (-PE-3)(E-1)
Resolving into partial fractions gives
Yo _ 5 4,69 3

z z-3 z-3 z-3; z—3 z-1
2 4 3
= e T
z—; z—5 z-1
and so
2 4z 3z
Y@ = — -+
-7 -3

Using the result Z'{z/(z — a)} = {a*} from Figure 6.3, we take inverse transforms, to
obtain

g = 20 -4 +31 k=0

as the required solution.

Check that in MATLAB the command

maple (' rsolve ({8*y (k+2) -6*y (k+1) +y (k) =9,y (0) =1,
y(1)=3/2},y (X)) ")
returns the calculated answer or alternatively use the command rsolve in MAPLE.
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Example 6.17

Solution

Solve the difference equation
Vet 2y, =0 (k=0)

given that y,=1 and y, = J2.

Taking z transforms, we have
[2°Y(2) = 2%y — 2y1] + 2Y(2) = 0

and substituting the given values of y, and y, gives
Y@ - 22— 22+ 2Y(@2) =

or
@ +2)Y() =27 + 2z

Resolving Y(z)/z into partial fractions gives

Y(2) _ 242 _ 2+ 42
2 D42 (2+j2)(z—]j2)

Following the approach adopted in Example 6.13, we write
]ﬁ — ﬁ eI, —J«/é — ﬁe—jn/z

Y(2) _ 2+ 42 _(+pi2 - (-pl2

z _(Z—A/Eej"/z)(z—ﬁe’jm) Z_ﬁejn/Z Z—ﬁe”‘m

Thus

—(1=))

. Z
. ﬁ o 2

Y(z) = |:(1+J) [ nia

which on taking inverse transforms gives

vt = {2"/2 |:(1 + )el“m (1 _j)ejkn/z]}

= {2"*(cos }km + sin dkm)} (k= 0)

as the required solution.

The solution in Example 6.17 was found to be a real-valued sequence, and this
comes as no surprise because the given difference equation and the ‘starting’ values y,
and y, involved only real numbers. This observation provides a useful check on the

algebra when complex partial fractions are involved.
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15

If complex partial fractions are involved then, as was mentioned at the end of
Example 6.10, it is difficult to simplify answers when determining inverse z
transforms using MATLAB. When such partial fractions arise in the solution of
difference equations use of the command evalc alongside rsolve in MAPLE
attempts to express complex exponentials in terms of trigonometric functions,
leading in most cases to simplified answers.

Considering the difference equation of Example 6.17, using the command

maple (' rsolve ({y (k+2) +2*y (k) =0,y (0) =1,y (1)

=2"(1/2) },y(k))")

in MATLAB returns the answer

(1/2+1/2*1i)* (-i*2%(1/2)) "k+ (1/2-1/2*1i) * (i*2"(1/2)) "k

whilst using the command

maple ('evalc (rsolve ({y (k+2)+2*y (k) =0,y (0) =1,y (1)

=2"(1/2) },y(k))) ")

returns the answer

exp(1/2*1log(2) *k) *cos (1/2*k*pi) +exp (1/2*1og (2) *k)

*gin(1/2*k*pi)

Noting that €8 = 2 it is readily seen that this corresponds to the calculated

answer

2"*(cosykm + sin Lkm)

6.5.3 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

Find difference equations representing the discrete-
time systems shown in Figure 6.6.

Figure 6.6 The systems for Exercise 14.

Using z-transform methods, solve the following
difference equations:

(@) Yio — 2V + ¥ =0 subject toy,=0,y, =1
) Yo — 8,1 — 9y, =0 subject to y, =2, y, =1
() Yo +4y,=0subjecttoy, =0,y =1

(d) 2y40 — 5yi1 — 3y =0 subject to y, =3, y, =2
Using z-transform methods, solve the following
difference equations:

(@) 6y + Vi1 — Y= 3 subjecttoy, =y, =0

() Vio — Sy + 6y, =5 subject to y, =0, y, =1
(©) Y2 = 5V + 6, = (5)" subject to y, =y, =0
(d) Ypo — 3V, + 3y, =1 subjecttoy,=1,y, =0

©) 2y, — 3V, — 2y,=6n+ 1 subjectto y, =1,
=2

() Y2 —4y,=3n -5 subject to y, =y, =0
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17

18

19

A person’s capital at the beginning of, and expenditure
during, a given year k are denoted by C, and E;
respectively, and satisfy the difference equations

Cu=1.5C,—E,
Ep =021C, + 0.5E,

(a) Show that eventually the person’s capital grows
at 20% per annum.

(b) If the capital at the beginning of year 1 is £6000
and the expenditure during year 1 is £3720 then
find the year in which the expenditure is a
minimum and the capital at the beginning of
that year.

The dynamics of a discrete-time system are
determined by the difference equation

Ve = Vit + 0¥ = 1y
Determine the response of the system to the unit
step input

{o (k < 0)
U, =
1 (k=0)

given that y, =y, = 1.

As a first attempt to model the national economy,
it is assumed that the national income /, at year k
is given by

I,=C,+P+G,

where C, is the consumer expenditure, P, is private
investment and G, is government expenditure.

It is also assumed that the consumer spending is
proportional to the national income in the previous
year, so that

20

Co=al,, 0<a<]l

It is further assumed that private investment is
proportional to the change in consumer spending
over the previous year, so that

P=bC=C) O<bsT

Show that under these assumptions the national
income I, is determined by the difference equation

Iy, —a(l + D), + abl, = Gy,

Ifa= % ,b=1, government spending is at a constant
level (that is, G, = G for all k) and [, = 2G,
I, = 3G, show that

L,=2[1+ (3)"sin ; kn]G
Discuss what happens as k — oo.
The difference equation for current in a particular
ladder network of N loops is
Rty + Rl = 8) + Rolisr = 112) =0
O=n=N-2)

where i, is the current in the (n + 1)th loop, and R,
and R, are constant resistors.

(a) Show that this may be written as
ipo—2coshai,, +i,=0 (0 Sns=N-2)

where

. R
= cosh 1(1 +—Lj
(04 COSs 2R2

(b) By solving the equation in (a), show that

. isinhna—i;sinh(n—1)o
1, =

SRS
" sinh o 2=n<N

DI CH I CEIEYR G characterization

In this section we examine the concept of a discrete-time linear system and its difference
equation model. Ideas developed in Chapter 5 for continuous-time system modelling
will be seen to carry over to discrete-time systems, and we shall see that the z transform
is the key to the understanding of such systems.

6.6.1

z transfer functions

In Section 5.3, when considering continuous-time linear systems modelled by differential
equations, we introduced the concept of the system (Laplace) transfer function. This is a
powerful tool in the description of such systems, since it contains all the information
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on system stability and also provides a method of calculating the response to an
arbitrary input signal using a convolution integral. In the same way, we can identify a z
transfer function for a discrete-time linear time-invariant system modelled by a difference
equation, and we can arrive at results analogous to those of Chapter 5 and Chapter 11
of MEM.

Let us consider the general linear constant-coefficient difference equation model for
a linear time-invariant system, with input sequence {u,} and output sequence {y,}. Both
{u,} and {y,} are causal sequences throughout. Such a difference equation model takes
the form

@ Yien T Q1 Yiwn1 T Qpa Vi T 000+ QoY
= bmukﬂn + bm—luk+m—l + bm—Zuk-Hn—Z tet bOuk (6'32’)

where k = 0 and n, m (with n = m) are positive integers and the a; and b; are constants.
The difference equation (6.32) differs in one respect from the examples considered in
Section 6.5 in that the possibility of delayed terms in the input sequence {u,} is also
allowed for. The order of the difference equation is n if a,# 0, and for the system
to be physically realizable, n = m.

Assuming the system to be initially in a quiescent state, we take z transforms
throughout in (6.32) to give

(anzn + an—lzn_l tee+ aO)Y(Z) = (mem + bm—lzm_l teet bO)U(Z)

where Y(z) = Z{y,} and U(z) = Z{u, }. The system discrete or z transfer function G(z)
is defined as

Y(z) _ b+ b, 2"+ + by

G(z) = =
( ) U(Z) anzn + an_lzn_l +- - +a (6.33)

and is normally rearranged (by dividing numerator and denominator by a,) so that the
coefficient of z" in the denominator is 1. In deriving G(z) in this form, we have assumed
that the system was initially in a quiescent state. This assumption is certainly valid for

the system (6.32) if
Yo=y=:=y=0
M0=M1="'=Mm-1=0

This is not the end of the story, however, and we shall use the term ‘quiescent’ to mean
that no non-zero values are stored on the delay elements before the initial time.
On writing

P(z)=b,z"+b, 2"+ -+ b,
Q(Z) = anzn + a, |2 i t--F ay

the discrete transfer function may be expressed as

As for the continuous model in Section 5.3.1, the equation Q(z) = 0 is called the
characteristic equation of the discrete system, its order, n, determines the order of the
system, and its roots are referred to as the poles of the discrete transfer function.
Likewise, the roots of P(z) = 0 are referred to as the zeros of the discrete transfer
function.
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Example 6.18

Solution

Figure 6.7

(a) The basic second-
order block diagram
substructure; and

(b) block diagram
representation of (6.34)
of Example 6.18.

Figure 6.8 (a) The
z-transform domain
basic second-order
block diagram
substructure; and

(b) the z-transform
domain block

diagram representation
of (6.34) of

Example 6.18.

Draw a block diagram to represent the system modelled by the difference equation

Yisz F 3Vpar — Vi = Uy (6.34)

and find the corresponding z transfer function.

The difference equation may be thought of as a relationship between adjacent members
of the solution sequence {y,}. Thus at each time step k we have from (6.34)

Yirr = =3Vt + Vi + Uy (6.35)

which provides a formula for y,,, involving y,, y,,; and the input u,. The structure shown
in Figure 6.7(a) illustrates the generation of the sequence {y,} from {y,,} using two
delay blocks.

S: {Vks2! E] (Y1) El fyel

(a) (b)

We now use (6.35) as a prescription for generating the sequence {y,,,} and arrange
for the correct combination of signals to be formed at each step k at the input summing
junction S of Figure 6.7(a). This leads to the structure shown in Figure 6.7(b), which is
the required block diagram.

We can of course produce a block diagram in the z-transform domain, using a similar
process. Taking the z transform throughout in (6.34), under the assumption of a quiescent
initial state, we obtain

2°Y(2) + 3zY(2) - Y(2) = U(2) (6.36)
or

2°Y(z) = -3zY(2) + Y(2) + U(2) (6.37)

The representation (6.37) is the transform-domain version of (6.35), and the z-transform
domain basic structure corresponding to the time-domain structure of Figure 6.7(a) is
shown in Figure 6.8(a).

Y(z)

{a) (b)

The unit delay blocks, labelled D in Figure 6.7(a), become ‘1/z’ elements in the
z-transform domain diagram, in line with the first shift property (6.15), where a number
k, of delay steps involves multiplication by .

It is now a simple matter to construct the ‘signal’ transform z2¥(z) from (6.37) and
arrange for it to be available at the input to the summing junction S in Figure 6.8(a).

The resulting block diagram is shown in Figure 6.8(b).
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Example 6.19

Solution

The z transfer function follows at once from (6.36) as

_ Y@ _ 1

2 (6.38)
U(z) z+3z-1

G(2)

A system is specified by its z transfer function

z—1

GZ = —
@) 43242

What is the order n of the system? Can it be implemented using only » delay elements?
INlustrate this.

If {u,} and {y,} denote respectively the input and output sequences to the system
then

G(z) = Y(2) = - z—1
U(z) z+3z+2
so that
(2 +3z+2)Y(2) = (z— DHU(z)

Taking inverse transforms, we obtain the corresponding difference equation model
assuming the system is initially in a quiescent state

Yisz + 3Vt + 2V = Uy — 1y (6.39)

The difference equation (6.39) has a more complex right-hand side than the difference
equation (6.34) considered in Example 6.18. This results from the existence of z
terms in the numerator of the transfer function. By definition, the order of the
difference equation (6.39) is still 2. However, realization of the system with two delay
blocks is not immediately apparent, although this can be achieved, as we shall now
illustrate.

Introduce a new signal sequence {r,} such that

(2> +32+2)R(2) =U() (6.40)

where R(z) = Z{r,}. In other words, {r.} is the output of the system having transfer
function 1/(z* + 3z + 2).
Multiplying both sides of (6.40) by z, we obtain

2%+ 32+ 2)R(z) = zU(z)
or

(2> + 32+ 2)zR(z) = zU(2) (6.41)
Subtracting (6.40) from (6.41) we have

(22 + 32+ 2)zR(2) — (%> + 3z + 2)R(2) = zU(2) — U(z)
giving

(22 + 32+ 2)[zR(2) = R()] = (z = DU()
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(c)

Figure 6.9 The z-transform block diagrams for (a) the system (6.40), (b) the system (6.39), and (c) the time-domain
realization of the system in Example 6.19.

Finally, choosing
Y(z) = zR(z) — R(z) (6.42)
(2% + 32+ 2)Y(2) = (z - DU(2)

which is a realization of the given transfer function.

To construct a block diagram realization of the system, we first construct a block
diagram representation of (6.40) as in Figure 6.9(a). We now ‘tap off’ appropriate
signals to generate Y(z) according to (6.42) to construct a block diagram representation
of the specified system. The resulting block diagram is shown in Figure 6.9(b).

In order to implement the system, we must exhibit a physically realizable time-domain
structure, that is one containing only D elements. Clearly, since Figure 6.9(b) contains
only ‘1/7” blocks, we can immediately produce a realizable time-domain structure as
shown in Figure 6.9(c), where, as before, D is the unit delay block.

Example 6.20 A system is specified by its z transfer function

Z

G(Z) -
Z+03z+0.02

Draw a block diagram to illustrate a time-domain realization of the system. Find a
second structure that also implements the system.

Solution  We know that if Z{u,} = U{z} and Z{ y,} = Y(z) are the z transforms of the input and
output sequences respectively then, by definition,

_ Y@ _ z

G(2) 5
U(z) z +03z+0.02

(6.43)
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Y(z) {3

lr}m—l } {rk}

(b)

Figure 6.10 (a) The z-transform block diagram for the system of Example 6.20; and (b) the time-domain
implementation of (a).

which may be rewritten as
(z2+0.3z+ 0.02)Y(z) = zU(2)

Noting the presence of the factor z on the right-hand side, we follow the procedure of
Example 6.19 and consider the system

(2> 4 0.3z + 0.02)R(2) = U(z) (6.44)
Multiplying both sides by z, we have
(2> + 0.3z + 0.02)zR(2) = zU(2)

and so, if the output Y(z) = zR(z) is extracted from the block diagram corresponding to
(6.44), we have the block diagram representation of the given system (6.43). This is
illustrated in Figure 6.10(a), with the corresponding time-domain implementation
shown in Figure 6.10(b).

To discover a second form of time-domain implementation, note that

Z 2 1

G(Z): 5 = —
77+03z+0.02 z+02 z+0.1

We may therefore write

Y2 = 6V = (s - =L Ue)
so that
Y(z) = R\(2) — Ry(2)
where
R\(z) = HLOQU(z) (6.45a)
1
Ry(z) = WU(Z) (6.45b)

From (6.45a), we have

(z+0.2)R\(z) =2U(2)
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Figure 6.11 The block
diagrams for (a) the
subsystem (6.45a),

(b) the subsystem
(6.45b), and (c) an
alternative z-transform
block diagram for

the system of
Example 6.20.

6.6.2

which can be represented by the block diagram shown in Figure 6.11(a). Likewise,
(6.45b) may be represented by the block diagram shown in Figure 6.11(b).

Recalling that Y(z) = R,(z) — R,(2), it is clear that the given system can be represented
and then implemented by an obvious coupling of the two subsystems represented by
(6.45a, b). The resulting z-transform block diagram is shown in Figure 6.11(c). The
time-domain version is readily obtained by replacing the ‘1/7” blocks by D and the
transforms U(z) and Y(z) by their corresponding sequences {u,} and { y,} respectively.

The impulse response

In Example 6.20 we saw that two quite different realizations were possible for the
same transfer function G(z), and others are possible. Whichever realization of the
transfer function is chosen, however, when presented with the same input sequence
{u,}, the same output sequence {y,} will be produced. Thus we identify the system as
characterized by its transfer function as the key concept, rather than any particular
implementation. This idea is reinforced when we consider the impulse response sequence
for a discrete-time linear time-invariant system, and its role in convolution sums.
Consider the sequence

{8)=1{1,0,0,...}

that is, the sequence consisting of a single ‘pulse’ at k = 0, followed by a train of zeros.
As we saw in Section 6.2.1, the z transform of this sequence is easily found from the
definition (6.1) as

Hoy=1 (6.46)

The sequence {4} is called the impulse sequence, by analogy with the continuous-
time counterpart J(f), the impulse function. The analogy is perhaps clearer on
considering the transformed version (6.46). In continuous-time analysis, using Laplace
transform methods, we observed that Z{d(r)} = 1, and (6.46) shows that the ‘entity’
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Example 6.21

Solution

with z transform equal to unity is the sequence {d}. It is in fact the property that
Z{ 9.} = 1 that makes the impulse sequence of such great importance.

Consider a system with transfer function G(z), so that the z transform Y(z) of the
output sequence { y,} corresponding to an input sequence {u,} with z transform U(z) is

Y(z) = G()U(2) (6.47)

If the input sequence {y,} is the impulse sequence {d,} and the system is initially
quiescent, then the output sequence {y; } is called the impulse response of the system.
Hence

Hyst=Ys(2)=G(2) (6.48)

That is, the z transfer function of the system is the z transform of the impulse response.
Alternatively, we can say that the impulse response of a system is the inverse z
transform of the system transfer function. This compares with the definition of the
impulse response for continuous systems given in Section 5.3.3.

Substituting (6.48) into (6.47), we have

Y(z) = Y5(2)U(2) (6.49)

Thus the z transform of the system output in response to any input sequence {u,} is the
product of the transform of the input sequence with the transform of the system impulse
response. The result (6.49) shows the underlying relationship between the concepts of
impulse response and transfer function, and explains why the impulse response (or the
transfer function) is thought of as characterizing a system. In simple terms, if either of
these is known then we have all the information about the system for any analysis we
may wish to do.

Find the impulse response of the system with z transfer function

4

G(Z):—
+3z+2

Using (6.48),

Z — Z
Z43z+2 (z+2)(z+1)

Ys5(z) =

Resolving Y;(z)/z into partial fractions gives

Ys(Z)= 1 _ 11
Z (z+2)(z+1) z+1 z+2

which on inversion gives the impulse response sequence

z+1 z+2

¥} = 9?[ - —i}

={-D-(2)"t (k=0)
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Example 6.22

Solution

Since the impulse response of a system is the inverse z transform of its transfer func-
tion G(z) it can be obtained in MATLAB using the command

syms k z
iztrans (G(z), k)

so for the G(z) of Example 6.21

syms k z
iztrans (z/ (z"2+3*z+2) ,k)

returns
ans=(-1) “k-(-2) “k
A plot of the impulse response is obtained using the commands
z=tf(’z’,1);
G=G(z) ;
impulse (G)

Likewise in MAPLE the command
invztrans (z/ (z"2+3*z+2) ,z,k) ;

returns the same answer
(-1)* = (=2)*

A system has the impulse response sequence

{vs) = {d —0.54

where a > 0 is a real constant. What is the nature of this response when (a) a = 0.4,
(b) a = 1.2? Find the step response of the system in both cases.

When a =0.4
{y[;k} = {0.4* - 0.5}

and, since both 0.4* — 0 as k — oo and 0.5 — 0 as k — o, we see that the terms of the
impulse response sequence go to zero as k — oo.

On the other hand, when a = 1.2, since (1.2)f — oo as k — oo, we see that in this case
the impulse response sequence terms become unbounded, implying that the system
‘blows up’.

In order to calculate the step response, we first determine the system transfer function
G(z), using (6.48), as

G(z) = Yz2) = Z{d" - 0.5%)

giving

Z z
G(z) = ——
(2) z—a z-0.5

The system step response is the system response to the unit step sequence {4} =
{1, 1, 1, ... } which, from Figure 6.3, has z transform
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6.6.3

Py = Z_Ll

Hence, from (6.46), the step response is determined by

Y(z)=G(Z)5f{hk}:( - - ) :

z—a_z—O.S z—1

so that
Y(@) _ 2 _ 2
z (z=a)(z-1) (z-05)(z-1)
- L (o )L
a—-1z—a z-0.5 1-a/z—-1
giving
a z Z 1 Z
Y,: —_— (_2 b E——
(2) a—-1z—a sz.SJr +17 z—-1

which on taking inverse transforms gives the step response as

{yk}={ a ak(0~5)k+(—2+i~}—-} (6.50)

a—1

Considering the output sequence (6.50), we see that when a = 0.4, since (0.4) = 0
as k — oo (and (0.5)F — 0 as k — <o), the output sequence terms tend to the constant
value

= 0.3333

In the case of a = 1.2, since (1.2)" — oo as k — oo, the output sequence is unbounded,
and again the system ‘blows up’.

Stability

Example 6.22 illustrated the concept of system stability for discrete systems. When a
= 0.4, the impulse response decayed to zero with increasing k, and we observed that
the step response remained bounded (in fact, the terms of the sequence approached
a constant limiting value). However, when a = 1.2, the impulse response became
unbounded, and we observed that the step response also increased without limit. In fact,
as we saw for continuous systems in Section 5.3.3, a linear constant-coefficient
discrete-time system is stable provided that its impulse response goes to zero as ¢ — oo,
As for the continuous case, we can relate this definition to the poles of the system
transfer function

_ P
“&=50

As we saw in Section 6.6.1, the system poles are determined as the n roots of its
characteristic equation

0@ =a,z"+a, 2"+ - -+a=0 (6.51)
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For instance, in Example 6.19 we considered a system with transfer function

having poles determined by z* + 3z + 2 = 0, that is poles at z =—1 and z = —2. Since the
impulse response is the inverse transform of G(z), we expect this system to ‘blow up’
or, rather, be unstable, because its impulse response sequence would be expected to
contain terms of the form (—1)* and (-2)*, neither of which goes to zero as k — oo.
(Note that the term in (—1)* neither blows up nor goes to zero, simply alternating
between +1 and —1; however, (—2)* certainly becomes unbounded as k — .) On
the other hand, in Example 6.20 we encountered a system with transfer function

Z

G(Z) - -
2 +0.3z+0.02

having poles determined by
0()=7z>+03z+002=(z+02)(z+0.1)=0

that is poles at z = —0.2 and z = —0.1. Clearly, this system is stable, since its impulse
response contains terms in (—0.2) and (—0.1)*, both of which go to zero as k — .

Both of these illustrative examples gave rise to characteristic polynomials Q(z)
that were quadratic in form and that had real coefficients. More generally, Q(z) = 0
gives rise to a polynomial equation of order n, with real coefficients. From the theory
of polynomial equations, we know that Q(z) =0 has n roots ¢; (i =1, 2, ..., n), which
may be real or complex (with complex roots occurring in conjugate pairs).

Hence the characteristic equation may be written in the form

0@ =alz-o)z-0) - (2-0)=0 (6.52)

The system poles ¢; (i=1, 2, ..., n) determined by (6.52) may be expressed in the polar
form

a=re% (i=1,2,...,n)

where 8. =0 or & if ¢ is real. From the interpretation of the impulse response as the
inverse transform of the transfer function G(z) = P(2)/Q(z), it follows that the impulse
response sequence of the system will contain terms in

A I T R
Since, for stability, terms in the impulse response sequence must tend to zero as
k — oo, it follows that a system having characteristic equation Q(z) = 0 will be stable

provided that

<l for i=1,2,...,n

Therefore a linear constant-coefficient discrete-time system with transfer function
G(z) is stable if and only if all the poles of G(z) lie within the unit circle |z| < 1 in
the complex z plane, as illustrated in Figure 6.12. If one or more poles lie outside
this unit circle then the system will be unstable. If one or more distinct poles lie on
the unit circle |z| = 1, with all the other poles inside, then the system is said to be
marginally stable.
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Figure 6.12 Region of
stability in the z plane.

Example 6.23

Solution

Im (z) A
1

/‘\< Unit circle | z| =1

QJI Re (2)

Which of the following systems, specified by their transfer function G(z), are stable?

1 Z Z
JE— b) G(z) = ———— (c) G(z) =
z+0.25 ( ) Z2—7+05 ) G 2-37+25z-1

(a) G(z) =

(a) The single pole is at z =—0.25, so r; = 0.25 < 1, and the system is stable.
(b)  The system poles are determined by
22—z+05=[z-0.51+)Iz-05(1-j)1=0

giving the poles as the conjugate pair z; = 0.5(1 + j), z, = 0.5(1 — j). The
amplitudes r; = r, = 0.707 < 1, and again the system is stable.

(c) The system poles are determined by
22 =32+25z-1=(z-2)[z—0.5(1 +j)1[z— 0.5(1 = j)]

giving the poles as z;, = 2, z, = 0.5(1 +j), z; = 0.5(1 —j), and so their amplitudes
are r, =2, r,=r;=0.707. Since r, > 1, it follows that the system is unstable.

According to our definition, it follows that to prove stability we must show that all
the roots of the characteristic equation

0@ =z"+a,, 2"+ +a,=0 (6.53)

lie within the unit circle |z| = 1 (note that for convenience we have arranged for the
coefficient of z" to be unity in (6.53) ). Many mathematical criteria have been developed
to test for this property. One such method, widely used in practice, is the Jury stability
criterion introduced by E. 1. Jury in 1963. This procedure gives necessary and
sufficient conditions for the polynomial equation (6.53) to have all its roots inside the
unit circle |z] = 1.

The first step in the procedure is to set up a table as in Figure 6.13 using information
from the given polynomial equation (6.53) and where

1 Ay by b Co  Cpoi
bk = ) Cr = ) dk = ’ ’
Ay Ay b, by () Ck
ro I
to -
r, Iy
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Figure 6.13 Jury
stability table for the
polynomial equation
(6.53).

Example 6.24

Solution

Row z" ! 7 7 2 z' 2
1 1 (] ay i a a ay
2 a, a, a, a, a,., a, 1
3 A = b, b, b, by b, b,

4 b, b, b, bk b, by

5 Ay =¢ € € Ci Cna

6 Cpa Cp3 Cpg [ Co

7 A;=d, d, d, dy

8 s dyy s dysi

?

?

2n -5 A, 5=, K S, 53

2n—-4 53 S, K So

2n -3 A, ,=1 r r,

2n -2 r, r Ty

2n—1 A=t

Note that the elements of row 2j + 2 consist of the elements of row 2j + 1 written in the
reverse order for j =0, 1, 2, ..., n; that is, the elements of the even rows consist of the
elements of the odd rows written in reverse order. Necessary and sufficient conditions
for the polynomial equation (6.53) to have all its roots inside the unit circle |z| =1 are
then given by

®
(ii)

(1) > 0,

=D'o(-1)>0
A>0, A>0, A0,

.

A,>0, A_>0

Show that all the roots of the polynomial equation

lie within the unit circle |z| = 1.

The corresponding Jury stability table is shown in Figure 6.14. In this case

®

(i)

_ 3,1 2 1 1 _
F@)=z"+32"— ;32— 3 =0

D FD = D1+ + ] -

5)>0

143 1432 4
Al=m>0, A2=(m)—§>0

(6.54)

Thus, by the criteria (6.54), all the roots lie within the unit circle. In this case this is

readily confirmed, since the polynomial F(z) may be factorized as

So the roots are z, = 3, z,

F(2)=(@—3)z+3)z+3)=0

and z; =—3.
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Figure 6.14 Jury
stability table for
Example 6.24.

Example 6.25

Figure 6.15 Jury
stability table for
Example 6.25.

Solution

Row ZS Z2 1 0

Z Z
1 1 1
1 1 3 -3 -5
1 71 1
2 v ) 3 1
1 1 1
I -5 L L3
3 A =
1 1 1 1 1
51 53 5 i
- -3 -2
T 144 16 )
2 5 143
4 5 Ia T
432
144 9
5 Az =
2w
5 144
=0.93678

The Jury stability table may also be used to determine how many roots of the
polynomial equation (6.53) lie outside the unit circle. The number of such roots is
determined by the number of changes in sign in the sequence

17 Al’ AZ, L] Anfl

Show that the polynomial equation
F(2)=z7"-37>- iz+ % =0

has roots that lie outside the unit circle |z| = 1. Determine how many such roots there are.

Row 23 72 Z! 2
1 1 -3 -1 :
2 2 -3 -3 1
3 A= -8 2

4 2 -5 z

5 A=

The corresponding Jury stability table is shown in Figure 6.15. Hence, in this case

F)=1-3-1+3="3

)'FD) =D -1-3+;+3)=3

As F(1) < 0, it follows from (6.54) that the polynomial equation has roots outside the
unit circle |z| = 1. From Figure 6.15, the sequence 1, A}, A, is 1, 17—6 —% , and since
there is only one sign change in the sequence, it follows that one root lies outside the
unit circle. Again this is readily confirmed, since F(z) may be factorized as

F@)=(—-3)z+3)z—-3)=0

showing that there is indeed one root outside the unit circle at z = 3.
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Example 6.26  Consider the discrete-time feedback system of Figure 6.16, for which 7 is the sampling
period and k£ > 0 is a constant gain:

(a) Determine the z transform G(z) corresponding to the Laplace transform G(s).

(b) Determine the characteristic equation of the system when 7 =1 and k = 6 and
show that the discrete-time system is unstable.

(c) For T=1 show that the system is stable if and only if 0 < k < 4.33.

(d) Removing the sampler show that the corresponding continuous-time feedback
system is stable for all k > 0.

Solution (a) Firstinvert the Laplace transform to give the corresponding time-domain function
f(®) and then determine the z transform of f(¢):

_ k _k_k
Gls) = s(s+1) T s s+1
f(t) =k — ke
kz kz kz(1—e")

Gu(2) = Z{k} - Z{ke "} = 22— = .
! =1z’ (z-D(z-e’)
(b) Withk=6and T=1
6(1-¢e)z
(z=D(z-e")
The closed-loop transfer function is

Gu(z)
1+Gy(2)

Gd(Z) =

giving the characteristic equation

1+Gyx)=0as(z—Dz—e)+6(1 —e)z=0
or

2Z24+zl6(l—eH—A+eHl+e'=0
which reduces to

27 +2.3242+0.368 =0

The roots of this characteristic equation are z; = —0.171 and z, = —2.153. Since
one of the roots lies outside the unit circle | z| = 1 the system is unstable.

Figure 6.16
Discrete-time system LT ‘
of Example 6.26. >( ok
+ Sampler s+ 1)
- G(s)
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6.6.4

(c) For T=1 and general gain k > 0 the characteristic equation of the system is
F@)=@-DE-eH+k(1-e")z=0
which reduces to
F(z) = 7%+ (0.632k — 1.368)z + 0.368 = 0
By Jury’s procedure conditions for stability are:

F(1) =1+ (0.632k — 1.368) + 0.368 > 0 since k > 0
2736

—1)*)F(-1)=2.736 - 0. > i <= =4
(—1)'F(=1) = 2.736 — 0.632k > 0 provided k < T=5 = 4.33
AIZ‘ 1 0.368‘>0

0.568 1

Thus F(1) > 0, (<1))F(=1) > 0 and A, > 0 and system stable if and only if k < 4.33.

(d) In the absence of the sampler the characteristic equation of the continuous-time
feedback system is 1 + G(s) = 0, which reduces to

sS+s+k=0
All the roots are in the negative half of the s-plane, and the system is stable, for
all k> 0.
Convolution

Here we shall briefly extend the concept of convolution introduced in Section 5.3.6 to
discrete-time systems. From (6.45), for an initially quiescent system with an impulse
response sequence {ys } with z transform Y(z), the z transform Y(z) of the output
sequence {y,} in response to an input sequence {u,} with z transform U(z) is given by

¥(2) = Ys(2)U(2) (6.49)

For the purposes of solving a particular problem, the best approach to determining {y,}
for a given {u,} is to invert the right-hand side of (6.49) as an ordinary z transform with
no particular thought as to its structure. However, to understand more of the theory of
linear systems in discrete time, it is worth exploring the general situation a little further.
To do this, we revert to the time domain.

Suppose that a linear discrete-time time-invariant system has impulse response
sequence {ys }, and suppose that we wish to find the system response {y,} to an input
sequence {u,}, with the system initially in a quiescent state. First we express the
input sequence

{u} = {ug, uy, ttyy ... 1y, ... } (6.55)
as
{w} =uo{ 6} + u{ 0} + m{ g} + - +u {0} + - (6.56)
where
5, = {0 (k)
L (k=)
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Example 6.27

In other words, {d,;} is simply an impulse sequence with the pulse shifted to k = .
Thus, in going from (6.55) to (6.56), we have decomposed the input sequence {u,}
into a weighted sum of shifted impulse sequences. Under the assumption of an ini-
tially quiescent system, linearity allows us to express the response {y,} to the input
sequence {u,} as the appropriately weighted sum of shifted impulse responses. Thus,
since the impulse response is {y; }, the response to the shifted impulse sequence
{0} will be {ng}, and the response to the weighted impulse sequence u;{d; ;}
will be simply u;{ y(;kfl_}. Summing the contributions from all the sequences in (6.56),
we obtain

Dt =S wiys )} (6.57)
=0

as the response of the system to the input sequence {u,}. Expanding (6.57), we have

v =ulyst +u{ys b+ + Mj{y(ikfj} +--

=M0{y50, )’5,, )’52, cee )’5h» }
+u{0, ys, Yoo oo Vo _0ee )

+u{0,0, y5.---n Vo _,-e- )

+u,{0,0, 0, ....0,y5, Ys,---}
T

+-. - hth position

From this expansion, we find that the Ath term of the output sequence is
determined by

h

Yn = z u;ys, (6.58)

J=0

That is,

k
{n} = {Z ujysk,} (6.59)

J=0

The expression (6.58) is called the convolution sum, and the result (6.59) is analogous
to (5.45) for continuous systems.

A system has z transfer function

G(z) = ——
4

2

What is the system step response? Verify the result using (6.59).
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Solution

From (6.46), the system step response is
Y(2) = G()Z i}
where {h,} = {1, 1, 1, ... }. From Figure 6.3, Z{h,} = z/(z — 1), so

z  z
¥(z) = g~
Z+t32— 1
Resolving Y(z)/z into partial fractions gives

Y(Z): Z 2 1 +1 1

: G@HhE-1 Cz-1 Y7+l
SO
Y(z) =22 41 2
3.1 3Z+%

Taking inverse transforms then gives the step response as
)= G+300
Using (6.59), we first have to find the impulse response, which, from (6.48), is given by

Z+5

{5} =26 =2" {“E"T}
so that

{ys}=1{(-H"1

Taking {u,} to be the unit step sequence {#,}, where h, = 1 (k = 0), the step response
may then be determined from (6.59) as

(i} = {2 ”j)’zs“} = {Z B (—%>k"}

J=0

= {(—%)" 2 <—%>’} = {(—%)k ) (—2>"}
Jj=0 =0

Recognizing the sum as the sum to k + 1 terms of a geometric series with common ratio
-2, we have

1- (72)k+1

O ={ b AT - vt e - Geedy

which concurs with the sequence obtained by direct evaluation.

Example 6.27 reinforces the remark made earlier that the easiest approach to
obtaining the response is by direct inversion of (6.32). However, (6.59), together with
the argument leading to it, provides a great deal of insight into the way in which the
response sequence {y,} is generated. It also serves as a useful ‘closed form’ for the
output of the system, and readers should consult specialist texts on signals and systems
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for a full discussion (P. Kraniauskas, Transforms in Signals and Systems, Wokingham,
Addison-Wesley, 1992).

The astute reader will recall that we commenced this section by suggesting that we
were about to study the implications of the input—output relationship (6.49), namely

Y(z) = Ys(2)U(z)

We have in fact explored the time-domain input—output relationship for a linear system,
and we now proceed to link this approach with our work in the transform domain. By
definition,

=) ,k u, u u
U(Z)ZZMAZ :u0+_l+_§+...+_;:+...

= 0z b4
d . Vs, Vs, Vs,
Ys(2) :Zygkzk:y50+_‘+_2-+...+_k"+...
par z Z Z
sO
1 1
Y{(2)U(2) = ugys, + (upys, +u1yso)z + (Ugys, +uys, +iys)=5 +--- (6.60)
Z

Considering the kth term of (6.60), we see that the coefficient of z™¥is simply

k
Z UiYs
Jj=0

However, by definition, since Y(z) = Ys(z)U(z), this is also y(k), the kth term of the
output sequence, so that the latter is

ik = {Z "‘j)’&k,}

as found in (6.59). We have thus shown that the time-domain and transform-domain
approaches are equivalent, and, in passing, we have established the z transform of the
convolution sum as

ff{z ”j"k—j} =U(2)V(z) 6.61)
=0

where
Awu}=U@R), HAwn}=V@)
Putting p = k — j in (6.61) shows that

k k
z Ui = Z UiV, (6.62)
j=0 p=0

confirming that the convolution process is commutative.
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6.6.5 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

21  Find the transfer functions of each of the following
discrete-time systems, given that the system is
initially in a quiescent state:

(@) Yieo = 3Vt + 20 = 1
(®) Yirr = 3Vt + 20k = Uy — Uy
(©) Vi3 = Yz + 2Vt + Vi = g + Uy

22 Draw a block diagram representing the discrete-
time system

Yz 0.5 + 025y, = uy

Hence find a block diagram representation of the
system

Yz + 0.5 + 0.25y, = uy — 0.614,,

23  Find the impulse response for the systems with
z transfer function

2

(a) 2; b) ZZ—
8z +6z+1 7z —3z+3

2 2
© = Z d 52z —12z
77-0.2z-0.08 77 —6z+8

24 Obtain the impulse response for the systems of
Exercises 21(a, b).

25  Which of the following systems are stable?
@) o + Iy + 29 = 1y
(b) o = 3y = 2y =
(©) 2Yi2 = 2yt + Vi = gy — Uy
(d) 200 + 3y = Ve = 1y
(©) Ao = 3Vpr = Vi = Uy — 214
26  Use the method of Example 6.27 to calculate

the step response of the system with transfer
function

Verity the result by direct calculation.

27  Following the same procedure as in Example 6.26
show that the closed-loop discrete-time system of
Figure 6.17, in which £ > 0 and 7> 0, is stable if
and only if

0<k<200th(%)

T
X k
—_— >~
+ sampler s(zs +1)
- k>0,7>0

Figure 6.17 Discrete-time system of Exercise 27.

28 A sampled data system described by the difference
equation

Ynel = Yo = Uy

is controlled by making the input u, proportional to
the previous error according to

u,= K(—l- 7yn—l)
2n

where K is a positive gain. Determine the range of
values of K for which the system is stable. Taking
K= é , determine the response of the system given

Yo=y1=0.

29  Show that the system

Y2t Wt + 2y, =ty (n=0)

has transfer function

Z

D(Z):2—
7 +2z+2

Show that the poles of the system are at z =—1 +
and z = —1 — j. Hence show that the impulse
response of the system is given by

h,=Z"'D(z) = 2" sin ; n
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The relationship between Laplace and ~transforms

Figure 6.18 Sampled
function (7).

Throughout this chapter we have attempted to highlight similarities, where they occur,
between results in Laplace transform theory and those for z transforms. In this section
we take a closer look at the relationship between the two transforms. In Section 6.2.2
we introduced the idea of sampling a continuous-time signal f(#) instantaneously at
uniform intervals 7 to produce the sequence

{f(nT)} = {f0), A(T), f2T), ..., f(nT), ... } (6.63)

An alternative way of representing the sampled function is to define the continuous-
time sampled version of f(#) as f(f) where

1) = if(t)é‘(t—nT) =if(nT)§(t—nT) (6.64)
n=0 n=0

The representation (6.64) may be interpreted as defining a row of impulses located at
the sampling points and weighted by the appropriate sampled values (as illustrated in
Figure 6.18). Taking the Laplace transform of f (¢), following the results of Section 5.2.10,
we have

oo

Ef{f(t)}:J if(kT)&(t—kT) e dr
0 | k=0

oo

- i FKT) J S(t—kT)e ™ dt
k=0 B

0
giving
HI0y=Y fUne™’ (6.69)

k=0

Making the change of variable z = ¢’" in (6.65) leads to the result

H S0} =Y fT) * = F(2) (6.66)

k=0

[ y=f()

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

>

O T 2T 3T 4T 5T 6T kT

~
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6.8.1

where, as in (6.10), F(z) denotes the z transform of the sequence { f(k7)}. We can there-
fore view the z transform of a sequence of samples in discrete time as the Laplace
transform of the continuous-time sampled function f(#) with an appropriate change of
variable

) 1
z=¢T or s=T1nz

In Chapter 4 we saw that under this transformation the left half of the s plane, Re(s) < 0,
is mapped onto the region inside the unit circle in the z plane, |z| < 1. This is
consistent with our stability criteria in the s and z domains.

Solution of discrete-time state-space equations

The state-space approach to the analysis of continuous-time dynamic systems, developed
in Section 5.4, can be extended to the discrete-time case. The discrete form of the state-
space representation is quite analagous to the continuous form.

State-space model
Consider the nth-order linear time-invariant discrete-time system modelled by the
difference equation

Yeen t Gyt Yienat + Qg Yiena + 0 F AoV = bolty (6.67)
which corresponds to (6.32), with b,= 0 (i > 0). Recall that { y,} is the output sequence,
with general term y,, and {«,} the input sequence, with general term u,. Following the
procedure of Section 1.9.1, we introduce state variables x,(k), x,(k), . . . , x,(k) for the
system, defined by

() =y 00 =Y s XK = Vi (6.68)

Note that we have used the notation x,(k) rather than the suffix notation x;, for clarity.
When needed, we shall adopt the same convention for the input term and write u(k) for
u, in the interests of consistency. We now define the state vector corresponding to this
choice of state variables as x(k) = [x,(k) x,(k) ... x,(k)]". Examining the system
of equations (6.68), we see that

xi(k+ 1) =y, = x,(k)

Xk + 1) = yip = x3(k)

X1k + 1) = Yy = x,(k)
Xk +1) = Yy,
= Uy Vi1 = G2V =+~ oY+ Dolly
=—a,_x,(k) — a, ,x,_,(k) — - - - = ayx,(k) + byu(k)

using the alternative notation for u,.
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Example 6.28

Solution

We can now write the system in the vector—matrix form

xk+D] o 1 0o 0o - 0o |l [o]
x(k+1) 0 0 1 0 - 0 ||lx
x(k+1) = . = : : : : : oL uk)
' O 0 0 0 1 ' :
x,(k+1) —a, -a, —-a, —as; --- —a,; ||x.(k) b,

(6.69)

which corresponds to (1.57) for a continuous-time system. Again, we can write this
more concisely as

x(k + 1) = Ax(k) + bu(k) (6.70)

where A and b are defined as in (6.69). The output of the system is the sequence {y,},
and the general term y, = x,(k) can be recovered from the state vector x(k) as

yk)y=x(k)=[1 0 0 --- 0]x(k)=c"x(k) (6.71)

As in the continuous-time case, it may be that the output of the system is a combination
of the state and the input sequence {u(k)}, in which case (6.71) becomes

y(k) = ¢"x(k) + du(k) (6.72)

Equations (6.70) and (6.72) constitute the state-space representation of the system,
and we immediately note the similarity with (1.60a, b) derived for continuous-time
systems. Likewise, for the multi-input-multi-output case the discrete-time state-space
model corresponding to (1.66a, b) is

x(k+ 1) = Ax(k) + Bu(k) (6.73a)

y(k) = Cx(k) + Du(k) (6.73b)

Determine the state-space representation of the system modelled by the difference
equation

Vi + 0.2y + 0.3y, = 1y (6.74)

We choose as state variables
(k) =y X(k) = Y
Thus
X,k + 1) = x,(k)
and from (6.74),
x,(k + 1) =—0.3x,(k) — 0.2x,(k) + u(k)
The state-space representation is then

x(k+ 1) = Ax(k) + bu(k),  y(k) = c"x(k)
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Figure 6.19 Block
diagram of system
with transfer
function G(z) =

(z— DIZ*+3z7+2).

with
N R N R L |
03 —02 |

We notice, from reference to Section 6.6.1, that the procedure used in Example 6.28
for establishing the state-space form of the system corresponds to labelling the output
of each delay block in the system as a state variable. In the absence of any reason for
an alternative choice, this is the logical approach. Section 6.6.1 also gives a clue
towards a method of obtaining the state-space representation for systems described by
the more general form of (6.32) with m > 0. Example 6.19 illustrates such a system,
with z transfer function

-1
G(Z):Z—
Z+3z+42

The block diagram for this system is shown in Figure 6.9(c) and reproduced for
convenience in Figure 6.19. We choose as state variables the outputs from each delay
block, it being immaterial whether we start from the left- or the right-hand side of the
diagram (obviously, different representations will be obtained depending on the choice
we make, but the different forms will yield identical information on the system).
Choosing to start on the right-hand side (that is, with x,(k) the output of the right-hand
delay block and x,(k) that of the left-hand block), we obtain

X,k + 1) = x,(k)
Xy(k + 1) = =3x,(k) — 2x,(k) + u(k)
with the system output given by
y(k) = =x,(k) + x,(k)
Thus the state-space form corresponding to our choice of state variables is
x(k+ 1) = Ax(k) + bu(k), y(k) = c"x(k)

with

A{O 1}, bﬂ, Fort )
-2 -3 1

We notice that, in contrast with the system of Example 6.28, the row vector¢™ = [-1 1]
now combines contributions from both state variables to form the output y(k).
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6.8.2

Example 6.29

Solution

Solution of the discrete-time state equation

As in Section 1.10.1 for continuous-time systems, we first consider the unforced or
homogeneous case

x(k+1)=Ax(k) (6.75)
in which the input u(k) is zero for all time instants k. Taking k = 0 in (6.75) gives

x(1) = Ax(0)
Likewise, taking k = 1 in (6.75) gives

x(2) = Ax(1) = A%(0)

and we readily deduce that in general
x(k) =A%) (k= 0) (6.76)

Equation (6.76) represents the solution of (6.75), and is analogous to (1.77) for the
continuous-time case. We define the transition matrix @(k) of the discrete-time sys-
tem (6.75) by

D(k) = A*
and it is the unique matrix satisfying
Dk+1)=ADk), D0)=1

where [ is the identity matrix.
Since A is a constant matrix, the methods discussed in Section 1.7 are applicable for
evaluating the transition matrix. From (1.31a),

Al = a0l + (DA + o(A* + - - - + a, (H)A™ 6.77)

where, using (1.31b), the k) (k = 0, ... , n — 1) are obtained by solving
simultaneously the n equations

A= ayk) + o (A + o (A + - - - + o, (AT (6.78)

where /1j (j=1,2,...,n)are the eigenvalues of A. As in Section 1.7, if A has repeated
eigenvalues then derivatives of A* with respect to A will have to be used. The method
for determining A* is thus very similar to that used for evaluating e*’ in Section 1.10.3.

Obtain the response of the second-order unforced discrete-time system

x,(k) 3 0
x(k+1) = 200 = » 1x(k)

subject to x(0) =[1 1]"

In this case the system matrix is
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having eigenvalues A, = § and A, = ;. Since A is a 2 X 2 matrix, it follows from (6.77)
that

Al = o ()l + a,(HA
with ¢(k) and «,(k) given from (6.78),

Af=ayk)+ (A, (j=1,2)
Solving the resulting two equations

() = o) + Dk, (5= k) + () (k)
for o (k) and o, (k) gives

(k) =3(5) = 2G) etk =6[(3)" - (3)]

Thus the transition matrix is

, O) 0
dj(k) =Af= k k k
OO NG

Note that @(0) = I, as required.
Then from (6.76) the solution of the unforced system is

k k

1 0 1 1
x(k+1)= ) = )

6l(H M1 O[] |7 -6

Having determined the solution of the unforced system, it can be shown that the
solution of the state equation (6.73a) for the forced system with input u(k), analogous
to the solution given in (1.78) for the continuous-time system

x =Ax+ Bu

is

x(k) = A*x(0) + ki A" Bu( j) (6.79)

J=0

Having obtained the solution of the state equation, the system output or response y (k)
is obtained from (6.73b) as

y(k) = CA*x(0) + cki A"7"'Bu(j) + Du(k) (6.80)

j=0

In Section 5.4.1 we saw how the Laplace transform could be used to solve the state-
space equations in the case of continuous-time systems. In a similar manner, z
transforms can be used to solve the equations for discrete-time systems.
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Example 6.30

Defining Z{x(k)} = X(z) and Z{u(k)} = U(z) and taking z transforms throughout in
the equation

x(k+1) = Ax(k) + Bu(k)
gives
72X(z) — zx(0) = AX(z) + BU(2)
which, on rearranging, gives
(zl = A)X(z) = zx(0) + BU(2)
where I is the identity matrix. Premultiplying by (zI — A)™' gives
X(z) = z2(zl = A)"'%(0) + (zI - A)'BU(2) (6.81)

Taking inverse z transforms gives the response as
x(k) = ZHX(@)} = Z a(ed = Ay '1x(0) + ZH{(zl - A)'BU(2)} (6.82)

which corresponds to (5.51) in the continuous-time case.
On comparing the solution (6.82) with that given in (6.79), we see that the transition
matrix @(r) = A* may also be written in the form

D) =A"=F 72z - A}

This is readily confirmed from (6.81), since on expanding z(z/ — A)™' by the binomial
theorem, we have

A’ A
+_2+...+_.r_+...

< <

i _ = Z{A}

2Zd-A)y' =1+

&

|2

I3\l

Using the z-transform approach, obtain an expression for the state x(k) of the system
characterized by the state equation

2 5 1
xtk+1)= x(k) + u(k k=0
(k+1) {_3 _J() M() (k= 0)
when the input is the unit step function

$ (k < 0)
u(k) =
1 (k=0)

and subject to the initial condition x(0) = [1 —1]"
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Solution In this case

giving
_ 1 z+6 5
@-Ay'2 — —
(z+D(z+3)| 3 ;-2
5 3 5 5
2 _ 2 2 _ 2
_|z+1 z+3 z+1 z+3
_3 3 _3 5
2 + 2 2 + 2
z+1 z+3 z+1 z+3
Then
5 Z 3 Z 5 Z 5 Z
2z+1 ?z+3 2z4+1 2z+3
FM - A"y =5
3% L3 = 3% L5 %
Zz41 *z+3 Zz+1 2z+3

FED =33 SED 33

SED H+IEDT SED

so that, with x(0) = [1 —1], the first term in the solution (6.82) becomes

k

1 . (-3)"
F @l - A x(0) = 3 (6.83)

Since U(z) = Huk)} =z/(z - 1),

i . ~ ; z+6 5 IL
(zI - AY'BU(z) = (Z+1)(Z+3){—3 z—j LL_I

_ z z+ 11
S @-DE+DE+3)|z-5

3 Z 5 Z + Z
2z—1 2z+1 z+43
1z 3 2 Z
—_— +— —

2z—1 2z4+1 z+3
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30

31

32

so that the second term in the solution (6.82) becomes

Iz -A)Y'BU(z)} =

373D+ (=3
1 (6.84)
2

—3 43D = (-3
Combining (6.83) and (6.84), the response x(k) is given by

- +2(-3)
x(k)=|
2

+3(-1)" = 2(=3)

Having obtained an expression for a system’s state x(7), its output, or response, y(f) may

be obtained from the linear transformation (6.73b).

6.8.3 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

Use z transforms to determine A* for the matrices

0 1 -1 3 -1 1
b
@l o o el

Solve the discrete-time system specified by
x(k + 1) = =Tx(k) + 4y(k)
Yk + 1) = =8x(k) + y(k)

with x(0) = 1 and y(0) = 2, by writing it in the form
x(k+ 1) = Ax(k). Use your answer to calculate x(1)
and x(2), and check your answers by calculating
x(1), (1), x(2), y(2) directly from the given
difference equations.

Using the z-transform approach, obtain an
expression for the state x(k) of the system
characterized by the state equation

x(k+1)= { 0 1}x(k) + {1} u(k)
-0.16 -1 1

33

when the input is the unit step function

{o (k< 0)
u(k) =
1 (k=0

and subject to the initial condition x(0) = [1 —17~

The difference equation
Yk +2) =y(k+ 1) + y(k)

with y(0) =0, and y(1) = 1, generates the Fibonacci
sequence { y(k)}, which occurs in many practical
situations. Taking x,(k) = y(k) and x,(k) = y(k + 1),
express the difference equation in state-space form
and hence obtain a general expression for y(k).
Show that as k — oo the ratio y(k + 1)/y(k) tends

to the constant % (5 + 1). This is the so-called
Golden Ratio, which has intrigued mathematicians
for centuries because of its strong influence on art
and architecture. The Golden Rectangle, that is one
whose two sides are in this ratio, is one of the most
visually satisfying of all geometric forms.
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6.9.1

Discretization of continuous-time state-space models

In Sections 1.10 and 5.6 we considered the solutions of the continuous-time state-space
model

x (1) = Ax(?) + Bu(1) (6.852)
y(® = Cx(2) (6.85b)

If we wish to compute the state x(¢) digitally then we must first approximate the continuous
model by a discrete-time state-space model of the form

x[(k + DT = Gx(kT) + Hu(kT) (6.862)
y(kT) = Cx(kT) (6.86b)

Thus we are interested in determining matrices G and H such that the responses to the
discrete-time model (6.86) provide a good approximation to sampled-values of the
continuous-time model (6.85). We assume that sampling occurs at equally spaced
sampling instances t = kT, where T > 0 is the sampling interval. For clarification we use
the notation x(kT') and x[(k + 1)T] instead of k and (k + 1) as in (6.73).

Euler’s method
A simple but crude method of determining G and H is based on Euler’s method
considered in Section 10.6 of MEM. Here the derivative of the state is approximated by
(0 = x(t+ T)T—x(T)
which on substituting in (6.85a) gives
’i(-’i-T-T)-‘-’f-(f-) = Ax(f) + Bu(f)
which reduces to
x(t+T)=(TA + I)x(t) + TBu(t) (6.87)
Since ¢ is divided into equally spaced sampling intervals of duration 7 we take ¢ = kT,
where k is the integer index k=0, 1, 2, . . ., so that (6.87) becomes
x[(k+ 1)T]=(TA + I)x(kT) + TBu(kT) (6.88)
Defining
G=G,=(TA+I)andH=H,=TB (6.89)

(6.86) then becomes the approximating discrete-time model to the continuous-time
model (6.85). This approach to discretization is known as Euler’s method and simply
involves a sequential series of calculations.
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Example 6.31  Consider the system modelled by the second-order differential equation

(a)
(b)

©

Solution (a)

(b)

J(@) + 3y(0) + 2y = 2u(r)
Choosing the state-vector x = [y ¥]" express this in a state-space form.

Using Euler’s method, determine the approximating discrete-time state-space
model.

[lustrate by plotting the responses y(#), for both the exact continuous response
and the discretized responses, for a step input u(f) = 1 and zero initial conditions,
taking 7= 0.2

Since x, =y, x, = y we have that
X=y=x
X,=¥=-2x,—3x,+2u

so the state-space model is

B o
-0 o]

From (6.89)

G =TA+1=| ! T
T —3T+1

H =TB= 0
2T
so the discretized state-space model is
xl(k+ DT _ | 1 T ||}k
x[(k+1)T] 2T 3T +1] |%:(kT)

ykT) = [1 0] {xmm}

0
LT} u(kT)

X, (kT)

Using the MATLAB commands:

A = [0,1;-2,-3]; B = [0;2]; C = [1,0];
K = 0;

for T = 0.2

k =k + 1;

Gl = [1,T;-2*T,-3*T+1]; H1 = [0;2*T];
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Figure 6.20

The continuous model
and Euler discretized

model of Example 6.31.

6.9.2

T = T*[0:30];

y = step(aA,B,C,0,1,t); yd = dstep(G1l,H1,C,0,1,31);
plot(t,y,t,yd, 'x")

end

Step responses for both the continuous model and the Euler discretized model are
displayed in Figure 6.20 with ‘X’ denoting the discretized response.

09} < X .

0.7 - B

06 X -

Step response
(=)
W
T
1

04} .

02F B

0.1F B

Step-invariant method

To determine the matrices G and H in the discrete-time model (6.86), use is made of
the explicit solution to the state equation (6.85a). From (1.78) the solution of (6.85a) is
given by

A(r—1,) ' A1)
x(t) =e x(t)+ | e Bu(t) dr, (6.90)
)

Taking #, = kT and ¢ = (k + 1)T in (6.90) gives

(k+1)T
Al(+1)T-17,
€

x[(k+ T] = eATx(kT)+J 'Bu(r) dz,

kT

Making the substitution 7= 7; — kT in the integral gives

T

x[(k+1T] = eATx(kT)+J ' PBu(kT+ 1) dt (6.91)

0
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The problem now is: How do we approximate the integral in (6.91)? The simplest
approach is to assume that all components of u(7) are constant over intervals between
two consecutive sampling instances so

ukT+ D =u(kT), 0<7<T, k=0,1,2,...

The integral in (6.91) then becomes

U "B dr} u(k7)
0

Defining
G=¢e" (6.92a)
T T
and H= J e" "B dr = J ¢*'B dr, using substitution 1= (T'— 7)  (6.92b)
0 0
then (6.91) becomes the discretized state equation
x[(k+ 1)T] = Gx(kT) + Hu(kT) (6.93)

The discretized form (6.93) is frequently referred to as the step-invariant method.

Comments
1. From Section 5.6.1 we can determine G using the result
= (sl- A"} (6.94)

2. If the state matrix A is invertible then from (1.34)
T
H= J e"Bdr =A(G-1)B=(G-1A'B (6.95)
0

3. Using the power series expansion of e*’ given in (1.24) we can express G and H
as the power series

T°A’ = T'A’
G=1]+TA + 2!_+“'=Zr! (6.96)
r=0
2 o rar—1
H= (Tl + Tz—f