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Preface

The first edition of this book appeared in 1993, and it could be assumed, wrongly, that
its time has passed as 24 years have now elapsed. It is true that all the original authors
apart from myself have retired but, in the intervening years the text has been regularly
updated and we have now reached the fifth edition. The words of my colleague and
predecessor as editor, Professor Glyn James, still ring true. Here is an excerpt from his
preface to the fourth edition (2011):

Throughout the course of history, engineering and mathematics have developed in
parallel. All branches of engineering depend on mathematics for their description and
there has been a steady flow of ideas and problems from engineering that has stimu-
lated and sometimes initiated branches of mathematics. Thus, it is vital that engineer-
ing students receive a thorough grounding in mathematics, with the treatment related
to their interests and problems. As with the previous editions, this has been the moti-
vation for the production of this latest edition – a companion text to the fifth edition
of Modern Engineering Mathematics, this being designed to provide a first-level core
studies course in mathematics for undergraduate programmes in all engineering dis-
ciplines. Building on the foundations laid in the companion text, this book gives an
extensive treatment of some of the more advanced areas of mathematics that have
applications in various fields of engineering, particularly as tools for computer-based
system modelling, analysis and design. Feedback, from users of the previous edi-
tions, on subject content has been highly positive indicating that it is sufficiently
broad to provide the necessary second-level, or optional, studies for most engineering
programmes, where in each case a selection of the material may be made. Whilst
designed primarily for use by engineering students, it is believed that the book is also
suitable for use by students of applied mathematics and the physical sciences.

Although the pace of the book is at a somewhat more advanced level than the com-
panion text, the philosophy of learning by doing is retained with continuing emphasis
on the development of students’ ability to use mathematics with understanding to
solve engineering problems. Recognizing the increasing importance of mathematical
modelling in engineering practice, many of the worked examples and exercises incor-
porate mathematical models that are designed both to provide relevance and to rein-
force the role of mathematics in various branches of engineering. In addition, each
chapter contains specific sections on engineering applications, and these form an
ideal framework for individual, or group, study assignments, thereby helping to rein-
force the skills of mathematical modelling, which are seen as essential if engineers
are to tackle the increasingly complex systems they are being called upon to analyse
and design. The importance of numerical methods in problem solving is also recog-
nized, and its treatment is integrated with the analytical work throughout the book.
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The position of software use is an important aspect of engineering education. The deci-
sion has been taken to use mainly MATLAB but also MAPLE. Students are encouraged
to make intelligent use of software and, where appropriate, codes are included, but there
is a health warning. The pace of technology shows little signs of lessening, and so in
the space of six years, the likely time lapse before a new edition of this text, it is prob-
able that software will continue to be updated, probably annually. There is therefore a
real risk that much coding though correct and working at the time of publication could
be broken by these updates. Therefore, in this edition the decision has been made not
to over-emphasise specific code but to direct students to the companion website or to
general principles instead. The software packages, particularly MAPLE, have become
easier to use without the need for programming skills. Much is menu driven these days.
Here’s more from Glyn on the subject that is still true:

Much of the feedback from users relates to the role and use of software packages,
particularly symbolic algebra packages. Without making it an essential requirement
the authors have attempted to highlight throughout the text situations where the user
could make effective use of software. This also applies to exercises and, indeed, a
limited number have been introduced for which the use of such a package is essential.
Whilst any appropriate piece of software can be used, the authors recommend the use
of MATLAB and/or MAPLE. In this edition reference to the use of these two
packages is made throughout the text, with commands or codes introduced and
illustrated. When indicated, students are strongly recommended to use these
packages to check their solutions to exercises. This is not only to help develop
proficiency in their use, but also to enable students to appreciate the necessity of
having a sound knowledge of the underpinning mathematics if such packages are to
be used effectively. Throughout the book two icons are used:

• An open screen  indicates that the use of a software package would be useful
(e.g. for checking solutions) but not essential.

• A closed screen  indicates that the use of a software package is essential or
highly desirable.

Specific changes in this fifth edition are an improvement in many of the diagrams, tak-
ing advantage of present day software, and modernization of the examples and lan-
guage. Also, the chapter on Applied Probability and Statistics has been significantly
modernized by interfacing the presentation with the very powerful software package R.
Simply search for ‘R Software’ and it is a free download. I have been much aided in
getting this edition ready for publication by my hardworking colleagues Matthew, Tim
and Julian who have joined the editorial team.
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2 MATRIX ANALYSIS

Introduction
In this chapter we turn our attention again to matrices, first considered in Chapter 5
of Modern Engineering Mathematics (MEM), and their applications in engineering.
At the outset of the chapter we review the basic results of matrix algebra and briefly
introduce vector spaces.

As the reader will be aware, matrices are arrays of real or complex numbers, and
have a special, but not exclusive, relationship with systems of linear equations. Such
systems occur quite naturally in the process of numerical solution of ordinary differ-
ential equations used to model everyday engineering processes. In Chapter 9 we shall
see that they also occur in numerical methods for the solution of partial differential
equations, for example those modelling the flow of a fluid or the transfer of heat.
Systems of linear first-order differential equations with constant coefficients are at the
core of the state-space representation of linear system models. Identification, analy-
sis and indeed design of such systems can conveniently be performed in the state-
space representation, with this form assuming a particular importance in the case of
multivariable systems.

In all these areas it is convenient to use a matrix representation for the systems under
consideration, since this allows the system model to be manipulated following the rules
of matrix algebra. A particularly valuable type of manipulation is simplification in some
sense. Such a simplification process is an example of a system transformation, carried
out by the process of matrix multiplication. At the heart of many transformations are
the eigenvalues and eigenvectors of a square matrix. In addition to providing the means
by which simplifying transformations can be deduced, system eigenvalues provide vital
information on system stability, fundamental frequencies, speed of decay and long-term
system behaviour. For this reason, we devote a substantial amount of space to the
process of their calculation, both by hand and by numerical means when necessary. Our
treatment of numerical methods is intended to be purely indicative rather than complete,
because a comprehensive matrix algebra computational tool kit, such as MATLAB, is
now part of the essential armoury of all serious users of mathematics.

In addition to developing the use of matrix algebra techniques, we also demonstrate
the techniques and applications of matrix analysis, focusing on the state-space system model
widely used in control and systems engineering. Here we encounter the idea of a function
of a matrix, in particular the matrix exponential, and we see again the role of the
eigenvalues in its calculation. This edition also includes a section on singular value
decomposition and the pseudo inverse, together with a brief section on Lyapunov stability
of linear systems using quadratic forms.

Review of matrix algebra
This section contains a summary of the definitions and properties associated with matrices
and determinants. A full account can be found in chapters of MEM or elsewhere. It is
assumed that readers, prior to embarking on this chapter, have a fairly thorough under-
standing of the material summarized in this section.

1.1

1.2
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1.2.1 Definitions

(a) An array of real numbers

is called an m × n matrix with m rows and n columns. The aij is referred to as the
(ij)th element and denotes the element in the ith row and jth column. If m = n
then A is called a square matrix of order n. If the matrix has one column or one
row then it is called a column vector or a row vector respectively.

(b) In a square matrix A of order n the diagonal containing the elements a11, a22, . . . ,
ann is called the principal or leading diagonal. The sum of the elements in this
diagonal is called the trace of A, that is

(c) A diagonal matrix is a square matrix that has its only non-zero elements along the
leading diagonal. A special case of a diagonal matrix is the unit or identity matrix I
for which a11 = a22 = . . . = ann = 1.

(d) A zero or null matrix 0 is a matrix with every element zero.

(e) The transposed matrix AT is the matrix A with rows and columns interchanged,
its i, jth element being aji.

(f ) A square matrix A is called a symmetric matrix if AT = A. It is called skew
symmetric if AT = −A.

1.2.2 Basic operations on matrices

In what follows the matrices A, B and C are assumed to have the i, jth elements aij, bij

and cij respectively.

Equality

The matrices A and B are equal, that is A = B, if they are of the same order m × n
and

aij = bij, 1 < i < m, 1 < j < n

Multiplication by a scalar

If λ is a scalar then the matrix λA has elements λaij.

A

a11 a12 a13 . . . a1n  

a21 a22 a23 . . . a2n  

am1 am2 am3 . . . amn  

=

trace A aii

i=1

n

=
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Addition

We can only add an m × n matrix A to another m × n matrix B and the elements of the
sum A + B are

aij + bij, 1 < i < m; 1 < j < n

Properties of addition

(i) commutative law: A + B = B + A

(ii) associative law: (A + B ) + C = A + (B + C )

(iii) distributive law: λ(A + B ) = λA + λB, λ scalar

Matrix multiplication

If A is an m × p matrix and B a p × n matrix then we define the product C = AB as the
m × n matrix with elements

, i = 1, 2, . . . , m; j = 1, 2, . . . , n

Properties of multiplication

(i) The commutative law is not satisfied in general; that is, in general AB ≠ BA.
Order does matter and we distinguish between AB and BA by the terminology:
pre-multiplication of B by A to form AB and post-multiplication of B by A to
form BA.

(ii) Associative law: A(BC ) = (AB )C

(iii) If λ is a scalar then

(λA)B = A(λB ) = λAB

(iv) Distributive law over addition:

(A + B )C = AC + BC A(B + C ) = AB + AC

Note the importance of maintaining order of multiplication as in property (i).

(v) If A is an m × n matrix and if Im and In are the unit matrices of order m and n
respectively then

ImA = AIn = A

Properties of the transpose

If AT is the transposed matrix of A then

(i) (A + B )T = AT + BT

(ii) (AT)T = A

(iii) (AB )T = BTAT

cij = aikbkj

k=1

p


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1.2.3 Determinants

The determinant of a square n × n matrix A is denoted by det A or | A |.
If we take a determinant of a matrix and delete row i and column j then the deter-

minant remaining is called the minor Mij of the (ij)th element. In general we can take
any row i (or column) and evaluate an n × n determinant | A | as

A minor multiplied by the appropriate sign is called the cofactor Aij of the (ij)th
element so Aij = (−1)i+j Mij and thus

Some useful properties

(i) | AT | = | A |

(ii) | AB | = | A | | B |

(iii) A square matrix A is said to be non-singular if | A | ≠ 0 and singular if | A | = 0.

1.2.4 Adjoint and inverse matrices

Adjoint matrix

The adjoint of a square matrix A is the transpose of the matrix of cofactors, so for a
3 × 3 matrix A

Properties

(i) A (adj A) = | A |I

(ii) | adj A | = | A | n−1, where n is the order of A

(iii) adj (AB ) = (adj B )(adj A)

Inverse matrix

Given a square matrix A if we can construct a square matrix B such that

BA = AB = I

then we call B the inverse of A and write it as A−1.

| A | −1( )i+j aijMij

j=1

n

=

| A | aij Aij

j=1

n

=

adj A
A11 A12 A13

A21 A22 A23

A31 A32 A33

T

=
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Properties

(i) If A is non-singular then |A | ≠ 0 and A−1 = (adj A)/|A |.

(ii) If A is singular then |A | = 0 and A−1 does not exist.

(iii) (AB )−1 = B−1A−1.
 

All the basic matrix operations may be implemented in MATLAB using simple
commands. In MATLAB a matrix is entered as an array, with row elements sepa-
rated by spaces (or commas) and each row of elements separated by a semicolon(;),
or the return key to go to a new line. Thus, for example,

A=[1 2 3; 4 0 5; 7 4 2]

gives

A=
1 2 3
4 0 5
7 4 2

Having specified the two matrices A and B the operations of addition, subtraction
and multiplication are implemented using respectively the commands

C=A+B, C=A-B, C=A*B

The trace of the matrix A is determined by the command trace(A), and its
determinant by det(A).

Multiplication of a matrix A by a scalar is carried out using the command *, while
raising A to a given power is carried out using the command ^ . Thus, for example,
3A2 is determined using the command C=3*A^2.

The transpose of a real matrix A is determined using the apostrophe ’ key; that
is C=A’ (to accommodate complex matrices the command C=A.’ should be used).
The inverse of A is determined by C=inv(A).

For matrices involving algebraic quantities, or when exact arithmetic is desirable
use of the Symbolic Math Toolbox is required; in which matrices must be expressed
in symbolic form using the sym command. The command A=sym(A) generates the
symbolic form of A. For example, for the matrix

the commands

A=[2.1 3.2 0.6; 1.2 0.5 3.3; 5.2 1.1 0];
A=sym(A)

generate

A=
[21/10, 16/5, 3/5]
[6/5, 1/2, 33/10]
[26/5, 11/10, 0]

Symbolic manipulation can also be undertaken in MATLAB using the MuPAD
version of Symbolic Math Toolbox.

A = 
2.1 3.2 0.6
1.2 0.5 3.3
5.2 1.1 0
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1.2.5 Linear equations

In this section we reiterate some definitive statements about the solution of the system
of simultaneous linear equations

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2

an1x1 + an2x2 + . . . + annxn = bn

or, in matrix notation,

that is,

Ax = b (1.1)

where A is the matrix of coefficients and x is the vector of unknowns. If b = 0 the
equations are called homogeneous, while if b ≠ 0 they are called nonhomogeneous
(or inhomogeneous). Considering individual cases:

Case (i): If b ≠ 0 and |A | ≠ 0 then we have a unique solution x = A−1b.

Case (ii): If b = 0 and |A | ≠ 0 we have the trivial solution x = 0.

Case (iii): If b ≠ 0 and |A | = 0 then we have two possibilities: either the equations are
inconsistent and we have no solution or we have infinitely many solutions.

Case (iv): If b = 0 and |A | = 0 then we have infinitely many solutions.

Case (iv) is one of the most important, since from it we can deduce the important
result that the homogeneous equation Ax = 0 has a non-trivial solution if and only
if |A | = 0.

Such operations may be performed in Python. Details are not given here, but the
interested reader is directed to, for example, Beginning Python by Lie Hethand
(Springer, 2005). The numPy package should be loaded.

a11 a12 . . . a1n  

a21 a22 . . . a2n  

an1 an2 . . . ann  

 x1 

 x2 

 xn 

 b1 

 b2 

 bn 

=
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1.2.6 Rank of a matrix

We adopt the following constructive definition of the rank, rank A of a matrix A. First,
using elementary row operations, the matrix A is reduced to echelon form

in which all the entries below the line are zero, and the leading element, marked *, in
each row above the line is non-zero. Then the number of non-zero rows in the echelon
form is equal to rank A. These are equivalent definitions.

When considering the solution of (1.1) we saw that provided the determinant of the
matrix A was not zero we could obtain explicit solutions in terms of the inverse matrix. How-
ever, when we looked at cases with zero determinant the results were much less clear. The
idea of the rank of a matrix helps to make these results more precise. Defining the
augmented matrix (A : b) for (1.1) as the matrix A with the column b added to it
then we can state the results of cases (iii) and (iv) of Section 1.2.5 more clearly as
follows: 

Provided that a solution to (1.1) exists it may be determined in MATLAB using the
command x=A\b. For example, the system of simultaneous equations

x + y + z = 6, x + 2y + 3z = 14, x + 4y + 9z = 36

may be written in the matrix form

Entering A and b and using the command x = A\b provides the answer x = 1, y = 2, z = 3.

1 1 1

1 2 3

1 4 9

A

x

y

z

x

 
=

 

6

14

36

E

If A and (A : b) have different rank then we have no solution to (1.1). If the two
matrices have the same rank then a solution exists, and furthermore the solution
will contain n − rank A free parameters.



1.3  VECTOR SPACES 9

 

Vector spaces
Vectors and matrices form part of a more extensive formal structure called a vector space.
The theory of vector spaces underpins many approaches to numerical methods and the
approximate solution of many equations that arise in engineering analysis. In this section
we shall, briefly, introduce some basic ideas of vector spaces necessary for later work
in this chapter.

Definition
A real vector space V is a set of objects called vectors together with rules for addition
and multiplication by real numbers. For any three vectors a, b and c in V and any real
numbers α and β the sum a + b and the product α a also belong to V and satisfy the
following axioms:

In MATLAB the rank of the matrix A is generated using the command rank(A).
For example, if

the commands

A=[-1 2 2; 0 0 1; -1 2 0];
rank(A)

generate

ans=2

In MAPLE the command is also rank(A).

A = 
−1 2 2

0 0 1
−1 2 0

1.3

(a) a + b = b + a

(b) a + (b + c) = (a + b) + c

(c) there exists a zero vector 0 such that

a + 0 = a

(d) for each a in V there is an element −a in V such that

a + (−a) = 0

(e) α(a + b) = αa + αb

(f ) (α + β )a = αa + βa

(g) (αβ )a = α (βa)

(h) 1a = a
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It is clear that the real numbers form a vector space. The properties given are also
satisfied by vectors and by m × n matrices so vectors and matrices also form vector
spaces. The space of all quadratics a + bx + cx2 forms a vector space (check the axioms,
(a)–(h)). Many other common sets of objects also form vector spaces. If we can obtain
useful information from the general structure then this will be of considerable use in
specific cases.

1.3.1 Linear independence

The idea of linear dependence is a general one for any vector space. The vector x is said
to be linearly dependent on x1, x2,  . . . , xm if it can be written as

x = α1x1 + α2x2 + . . . + αmxm

for some scalars α1, . . . , αm. The set of vectors y1, y2, . . . , ym is said to be linearly
independent if and only if

β1y1 + β2 y2 + . . . + βm ym = 0

implies that β1 = β2 =  . . . = βm = 0.
Let us now take a linearly independent set of vectors x1, x2, . . . , xm in V and

construct a set consisting of all vectors of the form

x = α1x1 + α2x2 + . . . + αmxm

We shall call this set S(x1, x2,  . . . , xm). It is clearly a vector space, since all the axioms
are satisfied.

Show that

and

form a linearly independent set and describe S(e1, e2) geometrically.

Solution We have that

is only satisfied if α = β = 0, and hence e1 and e2 are linearly independent.

S(e1, e2) is the set of all vectors of the form , which is just the (x1, x2)

plane and is a subset of three-dimensional Euclidean space.

Example 1.1

H1

1

0

0

= H2

0

1

0

=

0 αH1 βH2+
α
β
0

= =

α
β
0
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If we can find a set B of linearly independent vectors x1, x2, . . . , xn in V such that

S(x1, x2, . . . , xn) = V

then B is called a basis of the vector space V. Such a basis forms a crucial part of the
theory, since every vector x in V can be written uniquely as

x = α1x1 + α 2x2 + . . . + αnxn

The definition of B implies that x must take this form. To establish uniqueness, let us
assume that we can also write x as

x = β1x1 + β2x2 + . . . + βnxn

Then, on subtracting,

0 = (α1 − β1)x1 + . . . + (αn − βn)xn

and since x1, . . . , xn are linearly independent, the only solution is α1 = β1, α2 = β 2, . . . ;
hence the two expressions for x are the same.

It can also be shown that any other basis for V must also contain n vectors and that
any n + 1 vectors must be linearly dependent. Such a vector space is said to have
dimension n (or infinite dimension if no finite n can be found). In a three-dimensional
Euclidean space

, ,

form an obvious basis, in fact the standard basis, and

, ,

is also a perfectly good basis. While the basis can change, the number of vectors in the
basis, three in this case, is an intrinsic property of the vector space. If we consider the
vector space of quadratics then the sets of functions {1, x, x2} and {1, x − 1, x(x − 1)}
are both bases for the space, since every quadratic can be written as a + bx + cx2 or as
A + B(x − 1) + Cx(x − 1). This space is three-dimensional.

1.3.2 Transformations between bases

Since any basis of a particular space contains the same number of vectors, we can look
at transformations from one basis to another. We shall consider a three-dimensional
space, but the results are equally valid in any number of dimensions. Let e1, e2, e3 and
e ′1, e ′2, e ′3 be two bases of a space. From the definition of a basis, the vectors e ′1, e ′2 and e ′3
can be written in terms of e1, e2 and e3 as

(1.2)

H1

1

0

0

= H2

0

1

0

= H3

0

0

1

=

G1

1

0

0

= G2

1

1

0

= G3

1

1

1

=

H1′ a11e1 a21e2 a31e3+ +=
H2′ a12e2 a22e2 a32e3+ +=
H3′ a13e3 a23e2 a33e3+ += 





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Taking a typical vector x in V, which can be written both as

x = x1e1 + x2e2 + x3e3 (1.3)

and as

x = x′1 e′1 + x′2e′2 + x′3e′3

we can use the transformation (1.2) to give

x = x′1(a11e1 + a21e2 + a31e3) + x′2(a12e1 + a22e2 + a32e3) + x′3(a13e1 + a23e2 + a33e3)

= (x′1a11 + x′2a12 + x′3a13)e1 + (x′1a21 + x′2a22 + x′3a23)e2 + (x′1a31 + x′2a32 + x′3a33)e3

On comparing with (1.3) we see that

x1 = a11x′1 + a12x′2 + a13x′3

x2 = a21x′1 + a22x′2 + a23x′3

x3 = a31x′1 + a32x′2 + a33x′3

or

x = Ax′

Thus changing from one basis to another is equivalent to transforming the coordinates
by multiplication by a matrix, and we thus have another interpretation of matrices.
Successive transformations to a third basis will just give x′ = Bx″, and hence the
composite transformation is x = (AB )x″  and is obtained through the standard matrix
rules.

For convenience of working it is usual to take mutually orthogonal vectors as a basis,
so that  and = δij, where δij is the Kronecker delta

Using (1.2) and multiplying out these orthogonality relations, we have

Hence

or in matrix form

ATA = I

Note that such a matrix A with A−1 = AT is called an orthogonal matrix.

Hi
THj = δij Hi′

THj′

δij

1 if i = j
0 if i j≠




=

Hi′
THj′ akiek

T apjep

p


k

= akiapjek
Tep

p


k

 akiapjδkp

p


k

 akiakj

k

= = =

akiakj

k

 δij=
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The eigenvalue problem
A problem that leads to a concept of crucial importance in many branches of
mathematics and its applications is that of seeking non-trivial solutions x ≠ 0 to
the matrix equation

Ax = λx

This is referred to as the eigenvalue problem; values of the scalar λ for which non-trivial
solutions exist are called eigenvalues and the corresponding solutions x ≠ 0 are called
the eigenvectors. Such problems arise naturally in many branches of engineering. For
example, in vibrations the eigenvalues and eigenvectors describe the frequency and
mode of vibration respectively, while in mechanics they represent principal stresses
and the principal axes of stress in bodies subjected to external forces. In Section 1.11,
and later in Section 5.4.1, we shall see that eigenvalues also play an important role in
the stability analysis of dynamical systems.

For continuity some of the introductory material on eigenvalues and eigenvectors,
contained in Chapter 5 of MEM, is first revisited.

1.4

Which of the following sets form a basis for the 
three-dimensional Euclidean space TR3?

(a) , , (b) , , 

(c) , , 

Given the unit vectors

, ,

find the transformation that takes these to the vectors

, ,

Under this, how does the vector 
x = x1e1 + x2e2 + x3e3 transform and what 
is the geometrical interpretation? What 
lines transform into scalar multiples of 
themselves?

Show that the set of all cubic polynomials 
forms a vector space. Which of the following 
sets of functions are bases of that space?

(a) {1, x, x2, x3}

(b) {1 − x, 1 + x, 1 − x3, 1 + x3}

(c) {1 − x, 1 + x, x2(1 − x), x2(1 + x)}

(d) {x(1 − x), x(1 + x), 1 − x3, 1 + x3}

(e) {1 + 2x, 2x + 3x2, 3x2 + 4x3, 4x3 + 1}

Describe the vector space

S(x + 2x3, 2x − 3x5, x + x3)

What is its dimension?

1.3.3 Exercises

1

1

0

0

1

2

0

1

2

3

1

0

1

1

2

3

3

2

5

1

0

0

1

1

0

2

1

0

2

H1

1

0

0

= H2

0

1

0

= H3

0

0

1

=

H1′
1

2
-------=

1

1

0

H2′
1

2
-------=

1

−1

0

H3′
0

0

1

=

3

4
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1.4.1 The characteristic equation

The set of simultaneous equations

Ax = λx (1.4)

where A is an n × n matrix and x = [x1 x2 . . . xn]
T is an n × 1 column vector can be

written in the form

(λI − A)x = 0 (1.5)

where I is the identity matrix. The matrix equation (1.5) represents simply a set of
homogeneous equations, and we know that a non-trivial solution exists if

Here c(λ) is the expansion of the determinant and is a polynomial of degree n in λ,
called the characteristic polynomial of A. Thus

c(λ) = λn + cn−1λn−1 + cn−2λn−2 + . . . + c1λ + c0

and the equation c(λ) = 0 is called the characteristic equation of A. We note that this
equation can be obtained just as well by evaluating |A − λI | = 0; however, the form
(1.6) is preferred for the definition of the characteristic equation, since the coefficient
of λn is then always +1.

In many areas of engineering, particularly in those involving vibration or the control
of processes, the determination of those values of λ for which (1.5) has a non-trivial
solution (that is, a solution for which x ≠ 0) is of vital importance. These values of
λ are precisely the values that satisfy the characteristic equation, and are called the
eigenvalues of A.

Find the characteristic equation for the matrix

Solution By (1.6), the characteristic equation for A is the cubic equation

Expanding the determinant along the first column gives

= (λ − 1)[(λ − 2)(λ + 1) − 1] + λ + 1 + 2(−1)

= (λ − 1)(λ2 − λ − 3) + λ − 1

= (λ − 1)(λ2 − λ − 2)

c(λ) = |λI − A | = 0 (1.6)

Example 1.2

A  = 
1 1 −2

−1 2 1

0 1 −1

c λ( ) = 
λ 1– −1 2

1 λ 2– −1

0 −1 λ 1+

 = 0

λ 1–( )
λ − 2 −1

−1 λ + 1
1–( )

1 1–
0 λ + 1

– 2 1 λ − 2
0 1

+=
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Thus, after simplification,

c(λ) = λ3 − 2λ2 − λ + 2 = 0

is the required characteristic equation.

For matrices of large order, determining the characteristic polynomial by direct
expansion of |λI − A | is unsatisfactory in view of the large number of terms involved
in the determinant expansion. Alternative procedures are available to reduce the amount
of calculation, and that due to Dmitry Konstantinovich Faddeev (1907–1989) may be
stated as follows.

The method of Faddeev

If the characteristic polynomial of an n × n matrix A is written as

λn − p1λn−1 − . . . − pn−1λ − pn

then the coefficients p1, p2, . . . , pn can be computed using

(r = 1, 2, . . . , n)

where

and

Br = Ar − prI, where I is the n × n identity matrix

The calculations may be checked using the result that

Bn = An − pnI must be the zero matrix

Using the method of Faddeev, obtain the characteristic equation of the matrix A of
Example 1.2.

Solution

We have n = 3, so let the characteristic equation be

c(λ) = λ3 − p1λ2 − p2λ − p3

pr
1
r
--- tr( Ar )=

Ar

A (r 1)=
ABr−1 r 2 3 . . . n, , ,=( )




=

Example 1.3

A
1 1 −2

−1 2 1

0 1 −1
=
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Then, following the procedure described above,

p1 = tr(A) = (1 + 2 − 1) = 2

Then, the characteristic polynomial of A is

c(λ) = λ3 − 2λ2 − λ + 2

in agreement with the result of Example 1.2. In this case, however, a check may be
carried out on the computation, since

B3 = A3 + 2I = 0

as required.

1.4.2 Eigenvalues and eigenvectors

The roots of the characteristic equation (1.6) are called the eigenvalues of the matrix A
(the terms latent roots, proper roots and characteristic roots are also sometimes used).
By the Fundamental Theorem of Algebra, a polynomial equation of degree n has
exactly n roots, so that the matrix A has exactly n eigenvalues λ i, i = 1, 2, . . . , n. These
eigenvalues may be real or complex, and not necessarily distinct. Corresponding to each
eigenvalue λ i, there is a non-zero solution x = ei of (1.5); ei is called the eigenvector of
A corresponding to the eigenvalue λ i. We note that if x = ei satisfies (1.5) then any
scalar multiple βiei of ei also satisfies (1.5), so that the eigenvector ei may only be deter-
mined to within a scalar multiple.

B1
 = A 2I–  = 

−1 1 −2
−1 0 1

0 1 −3

A2 AB1

−2 −1 5

−1 0 1
−1 −1 4

= =

p2
1
2
--- tr(A2 ) 1

2
--- −2 0 4+ +( ) 1= = =

B2 A2 I–
−3 −1 5

−1 −1 1
−1 −1 3

= =

A3 AB2

−2 0 0

0 −2 0

0 0 −2
= =

p3 = 1
3
--- tr(A3 ) = 1

3
--- −2 2– 2–( ) −2=
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Determine the eigenvalues and eigenvectors for the matrix A of Example 1.2.

Solution

The eigenvalues λ i of A satisfy the characteristic equation c(λ) = 0, and this has been
obtained in Examples 1.2 and 1.3 as the cubic

λ3 − 2λ2 − λ + 2 = 0

which can be solved to obtain the eigenvalues λ1, λ 2 and λ 3. Alternatively, it may be
possible, using the determinant form |λI − A |, or indeed (as we often do when seeking
the eigenvalues) the form |A − λI |, by carrying out suitable row and/or column opera-
tions to factorize the determinant. In this case

and adding column 1 to column 3 gives

Subtracting row 3 from row 1 gives

Setting |A − λI | = 0 gives the eigenvalues as λ1 = 2, λ 2 = 1 and λ 3 = −1. The order in
which they are written is arbitrary, but for consistency we shall adopt the convention of
taking λ1, λ 2, . . . , λn in decreasing order.

Having obtained the eigenvalues λ i (i = 1, 2, 3), the corresponding eigenvectors ei

are obtained by solving the appropriate homogeneous equations

(A − λ iI )ei = 0 (1.7)

When i = 1, λ i = λ1 = 2 and (1.7) is

Example 1.4

A =
1 1 −2

−1 2 1

0 1 −1

A λI–  = 
1 − λ 1 −2

−1 2 − λ 1

0 1 −1 − λ

1 − λ 1 −1 − λ
−1 2 − λ 0

0 1 −1 − λ
− 1 λ+( )

1 − λ 1 1

−1 2 − λ 0

0 1 1

=

− 1 λ+( )
1 − λ 0 0

−1 2 − λ 0

0 1 1

− 1 λ+( ) 1 λ–( ) 2 λ–( )=

−1 1 −2
−1 0 1

0 1 −3

e11

e12

e13

 = 0
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that is,

−e11 + e12 − 2e13 = 0

−e11 + 0e12 + e13 = 0

0e11 + e12 − 3e13 = 0

leading to the solution

where β1 is an arbitrary non-zero scalar. Thus the eigenvector e1 corresponding to the
eigenvalue λ1 = 2 is

e1 = β1[1 3 1]T

As a check, we can compute

and thus conclude that our calculation was correct.
When i = 2, λ i = λ 2 = 1 and we have to solve

that is,

0e21 + e22 − 2e23 = 0

−e21 + e22 + e23 = 0

0e21 + e22 − 2e23 = 0

leading to the solution

where β2 is an arbitrary scalar. Thus the eigenvector e2 corresponding to the eigenvalue
λ 2 = 1 is

e2 = β2 [3 2 1]T

Again a check could be made by computing Ae2.
Finally, when i = 3, λ i = λ3 = −1 and we obtain from (1.7)

e11

−1
------ −e12

3
---------- e13

−1
------ β1= = =

Ae1 β1

1 1 −2

−1 2 1

0 1 −1

1

3

1

β1

2

6

2

2β1

1

3

1

λ1e1= = = =

0 1 −2
−1 1 1

0 1 −2

e21

e22

e23

 = 0

e21

−3
------  = 

−e22

2
----------  = 

e23

−1
------  = β2

2 1 −2

−1 3 1

0 1 0

e31

e32

e33

 = 0
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that is,

2e31 + e32 − 2e33 = 0

−e31 + 3e32 + e33 = 0

0e31 + e32 + 0e33 = 0

and hence

Here again β3 is an arbitrary scalar, and the eigenvector e3 corresponding to the
eigenvalue λ3 is

e3 = β3 [1 0 1]T

The calculation can be checked as before. Thus we have found that the eigenvalues of
the matrix A are 2, 1 and −1, with corresponding eigenvectors

β1 [1 3 1]T, β2 [3 2 1]T and β3 [1 0 1]T

respectively.

Since in Example 1.4 the βi, i = 1, 2, 3, are arbitrary, it follows that there are an
infinite number of eigenvectors, scalar multiples of each other, corresponding to each
eigenvalue. It is convenient to scale the eigenvectors according to some convention. A
convention frequently adopted is to normalize the eigenvectors so that they are
uniquely determined up to a scale factor of ±1. The normalized form of an eigenvector
e = [e1 e2 . . . en]

T is denoted by ê and is given by

where

For example, for the matrix A of Example 1.4, the normalized forms of the eigenvectors
are

ê1 = [1/ 3/ 1/ ]T, ê2 = [3/ 2/ 1/ ]T

and

ê3 = [1/ 0 1/ ]T

However, throughout the text, unless otherwise stated, the eigenvectors will always
be presented in their ‘simplest’ form, so that for the matrix of Example 1.4 we take
β1 = β 2 = β 3 = 1 and write

e1 = [1 3 1]T, e2 = [3 2 1]T and e3 = [1 0 1]T

e31

−1
------  = e32

0
------  = e33

−1
------  = β3

ê
e

| e |
-------=

| e | e1
2 e2

2 . . . en
2+ + +( )=

11 11 11 14 14 14

2 2
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 For a n × n matrix A the MATLAB command p=poly(A) generates an n + 1
element row vector whose elements are the coefficients of the characteristic polyno-
mial of A, the coefficients being ordered in descending powers. The eigenvalues
of A are the roots of the polynomial and are generated using the command
roots(p). The command

[M,S]=eig(A)

generates the normalized eigenvectors of A as the columns of the matrix M and its
corresponding eigenvalues as the diagonal elements of the diagonal matrix S (M
and S are called respectively the modal and spectral matrices of A and we shall
return to discuss them in more detail in Section 1.6.1). In the absence of the left-
hand arguments, the command eig(A) by itself simply generates the eigenvalues
of A.

For the matrix A of Example 1.4 the commands

A=[1 1 -2; -1 2 1; 0 1 –1];
[M,S]=eig(A)

generate the output

0.3015 -0.8018 0.7071
M=0.9045 -0.5345 0.0000

0.3015 -0.2673 0.7071

2.0000 0 0
S=0 1.0000 0

0 0 -1.0000

These concur with our calculated answers, with β1 = 0.3015, β2 = −0.2673 and
β3 = 0.7071.

Using the Symbolic Math Toolbox in MATLAB we saw earlier that the matrix A
may be converted from numeric into symbolic form using the command A=sym(A).
Then its symbolic eigenvalues and eigenvectors are generated using the sequence of
commands

A=[1 1 –2; -1 2 1; 0 1 –1];
A=sym(A);
[M,S]=eig(A)

as

M=[3, 1, 1]
[2, 3, 0]
[1, 1, 1]

S=[1, 0, 0]
[0, 2, 0]
[0, 0, -1]

In MAPLE the command Eigenvalues(A); returns a vector of eigenvalues. The
command Eigenvectors(A); returns both a vector of eigenvalues as before and
a matrix containing the eigenvalues, so that the ith column is an eigenvector
corresponding to the eigenvalue in the ith entry of the preceding vector. Thus the
commands:
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Find the eigenvalues and eigenvectors of

Solution Now

= λ2 − 2λ cosθ + cos2θ + sin2θ = λ2 − 2λ cosθ + 1

So the eigenvalues are the roots of

λ2 − 2λ cosθ + 1 = 0

that is,

λ = cosθ ± jsinθ

Solving for the eigenvectors as in Example 1.4, we obtain

e1 = [1 − j]T and e2 = [1 j]T

 

with(LinearAlgebra),
A:=Matrix([[1,1,-2],[-1,2,1],[0,1,-1]]);
Eigenvalues(A);

return

and the command

Eigenvectors(A);

returns

1

2

1–

2

1–
1

1 1 3

3 0 2

1 1 1

Example 1.5

A =
cos θ −sin θ
sin θ cos θ

This example may be done in MATLAB as

syms t;

A=[cos(t) −  sin(t); sin(t) cos(t)];
[M,S]=eig(A)

symplify(M)

λI A–  = λ − cos θ sin θ
−sin θ λ − cos θ
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1.4.4 Repeated eigenvalues

In the examples considered so far the eigenvalues λi (i = 1, 2, . . . ) of the matrix A have
been distinct, and in such cases the corresponding eigenvectors can be found and are
linearly independent. The matrix A is then said to have a full set of linearly independent
eigenvectors. It is clear that the roots of the characteristic polynomial c(λ) may not all
be distinct; and when c(λ) has p < n distinct roots, c(λ) may be factorized as

indicating that the root λ = λ i, i = 1, 2, . . . , p, is a root of order mi, where the integer mi

is called the algebraic multiplicity of the eigenvalue λ i. Clearly m1 + m2 + . . . + mp = n.
When a matrix A has repeated eigenvalues, the question arises as to whether it is
possible to obtain a full set of linearly independent eigenvectors for A. We first consider
two examples to illustrate the situation.

Determine the eigenvalues and corresponding eigenvectors of the matrix

Solution We find the eigenvalues from

as λ1 = 4, λ 2 = λ 3 = 2.

c λ( ) λ λ1–( )
m1 λ λ 2–( )

m2 . . . λ λp–( )
mp=

Example 1.6

A = 
3 −3 2

−1 5 −2

−1 3 0

3 − λ −3 2

−1 5 − λ −2

−1 3 −λ
 = 0

Check your answers using MATLAB or MAPLE whenever possible.

Using the method of Faddeev, obtain the 
characteristic polynomials of the matrices

(a) (b)

Find the eigenvalues and corresponding 
eigenvectors of the matrices

(a) (b)

(c) (d)

(e) (f)

(g) (h)

1.4.3 Exercises

5

3 2 1

4 5 −1

2 3 4

2 −1 1 2 

0 1 1 0 

−1 1 1 1 

1 1 1 0 

6

1 1

1 1

1 2

3 2

1 0 −4

0 5 4

−4 4 3

1 1 2

0 2 2

−1 1 3

5 0 6

0 11 6

6 6 −2

1 −1 0

1 2 1

−2 1 −1

4 1 1

2 5 4

−1 −1 0

1 −4 −2

0 3 1

1 2 4

We see that eigenvalues can be complex numbers, and that the eigenvectors may
have complex components. This situation arises when the characteristic equation has
complex (conjugate) roots.
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The eigenvectors are obtained from

(A − λI )ei = 0 (1.8)

and when λ = λ1 = 4, we obtain from (1.8)

e1 = [1 −1 −1]T

When λ = λ 2 = λ 3 = 2, (1.8) becomes

so that the corresponding eigenvector is obtained from the single equation

e21 − 3e22 + 2e23 = 0 (1.9)

Clearly we are free to choose any two of the components e21, e22 or e23 at will, with the
remaining one determined by (1.9). Suppose we set e22 = α and e23 = β; then (1.9) means
that e21 = 3α − 2β, and thus

e2 = [3α − 2β α β]T = (1.10)

Now λ = 2 is an eigenvalue of multiplicity 2, and we seek, if possible, two linearly
independent eigenvectors defined by (1.10). Setting α = 1 and β = 0 yields

e2 = [3 1 0]T

and setting α = 0 and β = 1 gives a second vector

e3 = [−2 0 1]T

These two vectors are linearly independent and of the form defined by (1.10), and it is
clear that many other choices are possible. However, any other choices of the form (1.10)
will be linear combinations of e2 and e3 as chosen above. For example, e = [1 1 1]
satisfies (1.10), but e = e2 + e3.

In this example, although there was a repeated eigenvalue of algebraic multiplicity 2,
it was possible to construct two linearly independent eigenvectors corresponding to this
eigenvalue. Thus the matrix A has three and only three linearly independent eigenvectors. 

Repeating the above, the MATLAB commands

A=[3 –3 2; -1 5 –2; -1 3 0];
[M,S]=eig(A)

generate

0.5774 -0.5774 -0.9633
M=-0.5774 -0.5774 -0.2075

-0.5774 -0.5774 0.1704

4.0000 0 0
S= 0 2.0000 0

0 0 2.0000

1 −3 2

−1 3 −2

−1 3 −2

e21

e22

e23

 = 0

α
3

1

0

β
−2

0

1

+
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Determine the eigenvalues and corresponding eigenvectors for the matrix

Solution Solving |A − λI | = 0 gives the eigenvalues as λ1 = λ 2 = 2, λ 3 = 1. The eigenvector
corresponding to the non-repeated or simple eigenvalue λ 3 = 1 is easily found as

e3 = [1 1 −1]T

When λ = λ1 = λ2 = 2, the corresponding eigenvector is given by

(A − 2I )e1 = 0

that is, as the solution of

−e11 + 2e12 + 2e13 = 0 (i)

e13 = 0 (ii)

−e11 + 2e12 = 0 (iii)

Clearly the first column of M (corresponding to the eigenvalue λ1 = 4) is a scalar
multiple of e1. The second and third columns of M (corresponding to the repeated
eigenvalue λ2 = λ3 = 2) are not scalar multiples of e2 and e3. However, both satisfy
(1.10) and are equally acceptable as a pair of linearly independent eigenvectors
corresponding to the repeated eigenvalue. It is left as an exercise to show that both
are linear combinations of e2 and e3.

Check that in symbolic form the commands

A=sym(A);
[M,S]=eig(A)

generate

M=[-1, 3, –2]
[1, 1, 0]
[1, 0, 1]

S=[4, 0, 0]
[0, 2, 0]
[0, 0, 2]

In MAPLE the command Eigenvectors(A); produces corresponding results.
Thus the commands

with(LinearAlgebra):
A:=Matrix([[3,-3,2],[-1,5,-2],[-1,3,0]]);
Eigenvectors(A);

return

2

2

4

-2 3 -1

0 1  1

1 0  1

Example 1.7

A = 
1 2 2

0 2 1

−1 2 2
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From (ii) we have e13 = 0, and from (i) and (ii) it follows that e11 = 2e12. We deduce
that there is only one linearly independent eigenvector corresponding to the repeated
eigenvalue λ = 2, namely

e1 = [2 1 0]T

and in this case the matrix A does not possess a full set of linearly independent
eigenvectors.

We see from Examples 1.6 and 1.7 that if an n × n matrix A has repeated eigenvalues
then a full set of n linearly independent eigenvectors may or may not exist. The num-
ber of linearly independent eigenvectors associated with a repeated eigenvalue λ i of
algebraic multiplicity mi is given by the nullity qi of the matrix A − λ iI, where

qi is sometimes referred to as the degeneracy of the matrix A − λ iI or the geometric
multiplicity of the eigenvalue λ i, since it determines the dimension of the space
spanned by the corresponding eigenvector(s) ei.

Confirm the findings of Examples 1.6 and 1.7 concerning the number of linearly
independent eigenvectors found.

Solution In Example 1.6, we had an eigenvalue λ 2 = 2 of algebraic multiplicity 2. Correspondingly,

and performing the row operation of adding row 1 to rows 2 and 3 yields

Adding 3 times column 1 to column 2 followed by subtracting 2 times column 1 from
column 3 gives finally

indicating a rank of 1. Then from (1.11) the nullity q2 = 3 − 1 = 2, confirming that
corresponding to the eigenvalue λ = 2 there are two linearly independent eigenvectors,
as found in Example 1.6.

qi = n − rank (A − λ iI ), with 1 < qi < mi (1.11)

Example 1.8

A λ2I–  = 
3 − 2 −3 2

−1 5 − 2 −2

−1 3 −2

 = 
1 −3 2

−1 3 −2

−1 3 −2

1 −3 2

0 0 0

0 0 0

1 0 0

0 0 0

0 0 0
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In Example 1.7 we again had a repeated eigenvalue λ1 = 2 of algebraic multiplicity 2.
Then

Performing row and column operations as before produces the matrix

this time indicating a rank of 2. From (1.11) the nullity q1 = 3 − 2 = 1, confirming that
there is one and only one linearly independent eigenvector associated with this
eigenvalue, as found in Example 1.7.

A 2I–  = 
1 − 2 2 2

0 2 − 2 1

−1 2 2 − 2

 = 
−1 2 2

0 0 1

−1 2 0

−1 0 0

0 0 1

0 0 0

Check your answers using MATLAB or MAPLE whenever possible.

Obtain the eigenvalues and corresponding 
eigenvectors of the matrices

(a)  (b)

(c) (d)

Given that λ = 1 is a three-times repeated eigenvalue 
of the matrix

using the concept of rank, determine how 
many linearly independent eigenvectors 
correspond to this value of λ. Determine a 
corresponding set of linearly independent 
eigenvectors.

Given that λ = 1 is a twice-repeated eigenvalue 
of the matrix

how many linearly independent eigenvectors 
correspond to this value of λ? Determine a 
corresponding set of linearly independent 
eigenvectors.

1.4.5 Exercises

7

2 2 1

1 3 1

1 2 2

0 −2 −2

−1 1 2

−1 −1 2

4 6 6

1 3 2

−1 −5 −2

7 −2 −4

3 0 −2

6 −2 −3

8

A
−3 −7 −5

2 4 3

1 2 2

=

9

A = 

2 1 −1

−1 0 1

−1 −1 2

1.4.6 Some useful properties of eigenvalues

The following basic properties of the eigenvalues λ1, λ2, . . . , λn of an n × n matrix A
are sometimes useful. The results are readily proved either from the definition of
eigenvalues as the values of λ satisfying (1.4), or by comparison of corresponding
characteristic polynomials (1.6). Consequently, the proofs are left to Exercise 10.
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Property 1.1

Property 1.2

Property 1.3

Property 1.4

Property 1.5

Property 1.6

The sum of the eigenvalues of A is

λi

i=1

n

  = tr( A ) = aii

i=1

n



The product of the eigenvalues of A is

where det(A ) denotes the determinant of the matrix A.

λi det A( )=
i=1

n

∏

The eigenvalues of the inverse matrix A−1, provided it exists, are

, , . . . ,
1
λ1

----- 1
λ2

----- 1
λn

-----

The eigenvalues of the transposed matrix AT are

λ1, λ 2, . . . , λ n

as for the matrix A.

If k is a scalar then the eigenvalues of kA are

kλ1, kλ 2, . . . , kλ n

If k is a scalar and I the n × n identity (unit) matrix then the eigenvalues of A ± kI
are respectively

λ1 ± k, λ 2 ± k, . . . , λ n ± k
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Property 1.7

1.4.7 Symmetric matrices

A square matrix A is said to be symmetric if AT = A. Such matrices form an important
class and arise in a variety of practical situations. Two important results concerning the
eigenvalues and eigenvectors of such matrices are

If the orthogonal eigenvectors of a symmetric matrix are normalized as

ê1, ê2, . . . , ên

then the inner (scalar) product is

ê T
i êj = δij (i, j = 1, 2, . . . , n)

where δij is the Kronecker delta defined in Section 1.3.2.
The set of normalized eigenvectors of a symmetric matrix therefore forms an

orthonormal set (that is, it forms a mutually orthogonal normalized set of vectors).

Obtain the eigenvalues and corresponding orthogonal eigenvectors of the symmetric
matrix

and show that the normalized eigenvectors form an orthonormal set.

Solution The eigenvalues of A are λ1 = 6, λ 2 = 3 and λ 3 = 1, with corresponding eigenvectors

e1 = [1 2 0]T, e2 = [0 0 1]T, e3 = [−2 1 0]T

which in normalized form are

ê1 = [1 2 0]T/ , ê2 = [0 0 1]T, ê3 = [−2 1 0]T/

Evaluating the inner products, we see that, for example,

,

If k is a positive integer then the eigenvalues of Ak are

, , . . . ,λ1
k λ 2

k λ n
k

(a) the eigenvalues of a real symmetric matrix are real;

(b) for an n × n real symmetric matrix it is always possible to find n linearly
independent eigenvectors e1, e2, . . . , en that are mutually orthogonal so
that eT

iej = 0 for i ≠ j.

Example 1.9

A = 
2 2 0

2 5 0

0 0 3

5 5

ê 1
Tê1 = 1

5
--- 4

5
--- 0+ +  = 1 ê1

Tê3 = −2
5
--- 2

5
--- 0+ +  = 0
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and that, in general,

ê T
iêj = δij (i, j = 1, 2, 3)

confirming that the eigenvectors form an orthonormal set.

Check your answers using MATLAB or MAPLE whenever possible.

Verify Properties 1.1–1.7 of Section 1.4.6.

Given that the eigenvalues of the matrix

are 5, 3 and 1:

(a) confirm Properties 1.1–1.4 of Section 
1.4.6;

(b) taking k = 2, confirm Properties 1.5–1.7 of 
Section 1.4.6.

Determine the eigenvalues and corresponding 
eigenvectors of the symmetric matrix

and verify that the eigenvectors are mutually 
orthogonal.

The 3 × 3 symmetric matrix A has eigenvalues 6, 
3 and 2. The eigenvectors corresponding to 
the eigenvalues 6 and 3 are [1 1 2]T and 
[1 1 −1]T respectively. Find an eigenvector 
corresponding to the eigenvalue 2.

1.4.8 Exercises

10

11

A = 

4 1 1

2 5 4

−1 −1 0

12

A = 
−3 −3 −3

−3 1 −1

−3 −1 1

13

Numerical methods
In practice we may well be dealing with matrices whose elements are decimal numbers
or with matrices of high orders. In order to determine the eigenvalues and eigenvectors
of such matrices, it is necessary that we have numerical algorithms at our disposal.

1.5.1 The power method

Consider a matrix A having n distinct eigenvalues λ1, λ2, . . . , λn and corresponding
n linearly independent eigenvectors e1, e2, . . . , en. Taking this set of vectors as the
basis, we can write any vector x = [x1 x2 . . . xn]

T as a linear combination in the
form

Then, since Aei = λiei for i = 1, 2, . . . , n,

1.5

x α1e1 α2e2
. . . αnen = αiei

i=1

n

+ + +=

Ax A αiei

i=1

n

 αiλiei

i=1

n

= =
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and, for any positive integer k,

or, equivalently,

(1.12)

Assuming that the eigenvalues are ordered such that

|λ1 | > |λ 2 | > . . . > |λ n |

and that α1 ≠ 0, we have from (1.12)

(1.13)

since all the other terms inside the square brackets tend to zero. The eigenvalue λ1 and its
corresponding eigenvector e1 are referred to as the dominant eigenvalue and eigenvector
respectively. The other eigenvalues and eigenvectors are called subdominant.

Thus if we introduce the iterative process

x(k+1) = Ax(k) (k = 0, 1, 2, . . . )

starting with some arbitrary vector x(0) not orthogonal to e1, it follows from (1.13)
that

x(k) = Akx(0)

will converge to the dominant eigenvector of A.
A clear disadvantage with this scheme is that if |λ1 | is large then Akx(0) will become

very large, and computer overflow can occur. This can be avoided by scaling the vector
x(k) after each iteration. The standard approach is to make the largest element of x(k)

unity using the scaling factor max(x(k)), which represents the element of x(k) having the
largest modulus.

Thus in practice we adopt the iterative process

Corresponding to (1.12), we have

where

R = [max(y(1))max(y(2)) . . . max(y(k))]−1

Akx αiλi
kei

i=1

n

=

Akx λ1
k α1e1 αi

λi

λ1

-----
 
 
 

k

ei

i=2

n

+=

lim
k ∞→

Akx λ1
kα1e1=

y(k+1) = Ax(k)

(k = 0, 1, 2, . . . ) (1.14)

and it is common to take x(0) = [1 1 . . . 1]T.

x k+1( ) y k+1( )

max y k+1( )( )
----------------------------=

x k( ) = Rλ1
k α1e1 αi

λi

λ1

-----
 
 
 

k

ei

i=2

n

+
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Again we see that x(k) converges to a multiple of the dominant eigenvector e1. Also,
since Ax(k) → λ1x

(k), we have y(k+1) → λ1x
(k), and since the largest element of x(k) is unity,

it follows that the scaling factors max(y(k+1)) converge to the dominant eigenvalue λ1.
The rate of convergence depends primarily on the ratios

, ,  . . . , 

The smaller these ratios, the faster the rate of convergence. The iterative process
represents the simplest form of the power method, and a pseudocode for the basic
algorithm is given in Figure 1.1.

Use the power method to find the dominant eigenvalue and the corresponding eigenvector
of the matrix

Solution Taking x(0) = [1 1 1]T in (1.14), we have

;

;

λ2

λ1

----- λ3

λ1

----- λn

λ1

-----

{read in xT = [x1 x2 . . . xn]}
m ← 0
repeat

m_old ← m
{evaluate y = Ax}
{find m = max(yi)}
{xT = [y1/m y2/m . . . yn/m]}

until abs(m − m_old) < tolerance
{write (results)}

Figure 1.1 Outline 
pseudocode program 
for power method to 
calculate the maximum 
eigenvalue.

Example 1.10

A = 
1 1 −2

−1 2 1

0 1 −1

y 1( ) = Ax 0( ) = 

1 1 −2

−1 2 1

0 1 −1

1

1

1

0

2

0

= 2

0

1

0

= λ1
1( ) = 2

x 1( ) = 1
2
--- y 1( ) =

0

1

0

y 2( ) = Ax 1( ) =
1 1 −2

−1 2 1

0 1 −1

0

1

0

1

2

1

= 2

0.5

1

0.5

= λ2
2( ) = 2

x 2( ) = 1
2
--- y 2( ) = 

1
2
---

1
1
2
---
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;

Continuing with the process, we have

y(4) = 2[0.375 1 0.375]T,  y(5) = 2[0.312 1 0.312]T

y(6) = 2[0.344 1 0.344]T, y(7) = 2[0.328 1 0.328]T

y(8) = 2[0.336 1 0.336]T

Clearly y(k) is approaching the vector , so that the dominant eigenvalue is
2 and the corresponding eigenvector is , which conforms to the answer
obtained in Example 1.4.

Find the dominant eigenvalue of

Solution Starting with x(0) = [1 1 1 1]T, the iterations give the following: 

This indicates that the dominant eigenvalue is aproximately 3.16, with corresponding
eigenvector [−0.46 0.46 1 0.24]T.

The power method is suitable for obtaining the dominant eigenvalue and correspond-
ing eigenvector of a matrix A having real distinct eigenvalues. The smallest eigenvalue,

y 3( ) = Ax 2( ) =

1 1 −2

−1 2 1

0 1 −1

1
2
---

1
1
2
---

1
2
---

2
1
2
---

= 2

0.25

1

0.25

= λ3
2( ) = 2

x 3( ) =
0.25

1

0.25

2 1
3
--- 1 1

3
---[ ]T

1
3
--- 1 1

3
---[ ]T

Example 1.11

A =

1 0 −1 0

0 1 1 0

−1 1 2 1

0 0 1 −1

Iteration k 1 2 3 4 5 6 7

Eigenvalue – 3 2.6667 3.3750 3.0741 3.2048 3.1636 3.1642

1 0 −0.3750 −0.4074 −0.4578 −0.4549 −0.4621 −0.4621

1 0.6667 0.6250 0.4815 0.4819 0.4624 0.4621 0.4621

1 1 1 1 1 1 1 1

1 0 0.3750 0.1852 0.2651 0.2293 0.2403 0.2401

x1
k( )

x2
k( )

x3
k( )

x4
k( )
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provided it is non-zero, can be obtained by using the same method on the inverse matrix
A−1 when it exists. This follows since if Ax = λx then A−1x = λ−1x. To find the subdom-
inant eigenvalue using this method the dominant eigenvalue must first be removed from
the matrix using deflation methods. We shall illustrate such a method for symmetric
matrices only.

Let A be a symmetric matrix having real eigenvalues λ1, λ2, . . . , λn. Then, by
result (b) of Section 1.4.7, it has n corresponding mutually orthogonal normalized
eigenvectors ê1, ê2, . . . , ên such that

ê T
iêj = δij (i, j = 1, 2, . . . , n)

Let λ1 be the dominant eigenvalue and consider the matrix

A1 = A − λ1ê1ê
T
1

which is such that

A1ê1 = (A − λ1ê1ê
T
1)ê1 = Aê1 − λ1ê1(ê

T
1ê1) = λ1ê1 − λ1ê1 = 0

A1ê2 = Aê2 − λ1ê1(ê
T
1ê2) = λ 2ê2

A1ê3 = Aê3 − λ1ê1(ê
T
1ê3) = λ 3ê3

A1ên = Aên − λ1ê1(ê
T
1ên) = λnên

Thus the matrix A1 has the same eigenvalues and eigenvectors as the matrix A, except
that the eigenvalue corresponding to λ1 is now zero. The power method can then be
applied to the matrix A1 to obtain the subdominant eigenvalue λ 2 and its corresponding
eigenvector e2. By repeated use of this technique, we can determine all the eigenvalues
and corresponding eigenvectors of A.

Given that the symmetric matrix

has a dominant eigenvalue λ1 = 6 with corresponding normalized eigenvector ê1 =
[1 2 0]T/  find the subdominant eigenvalue λ2 and corresponding eigenvector ê2.

Solution Following the above procedure,

A1 = A − λ1ê1ê
T
1

=

Example 1.12

A =
2 2 0

2 5 0

0 0 3

5

2 2 0

2 5 0

0 0 3

− 6
5
---

1

2

0

1 2 0[ ]

4
5
--- −2

5
--- 0

−2
5
--- 1

5
--- 0

0 0 3

=
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Applying the power method procedure (1.14), with x(0) = [1 1 1]T, gives

;

;

;

Clearly the subdominant eigenvalue of A is λ 2 = 3, and a few more iterations confirm
the corresponding normalized eigenvector as ê2 = [0 0 1]T. This is confirmed by the
solution of Example 1.9. Note that the third eigenvalue may then be obtained using
Property 1.1 of Section 1.4.6, since

tr(A) = 10 = λ1 + λ 2 + λ 3 = 6 + 3 + λ 3

giving λ 3 = 1. Alternatively, λ 3 and ê3 can be obtained by applying the power method
to the matrix A2 = A1 − λ 2ê2êT

2.

Although it is good as an illustration of the principles underlying iterative methods
for evaluating eigenvalues and eigenvectors, the power method is of little practical
importance, except possibly when dealing with large sparse matrices. In order to eval-
uate all the eigenvalues and eigenvectors of a matrix, including those with repeated
eigenvalues, more sophisticated methods are required. Many of the numerical meth-
ods available, such as the Jacobi and Householder methods, are only applicable to
symmetric matrices, and involve reducing the matrix to a special form so that its
eigenvalues can be readily calculated. Analogous methods for non-symmetric matrices

y 1( ) = A1x 0( ) =

2
5
---

−1
5
---

3

3

2
15
------

− 1
15
------

1

= λ 2
1( ) = 3

x 1( ) =

2
15
------

− 1
15
------

1

 = 

0.133

−0.133

1

y 2( ) = A1x 1( ) =

2
15
------

− 1
15
------

3

3

2
45
------

− 2
45
------

1

= λ2
2( ) = 3

x 2( ) =

2
45
------

− 2
45
------

1

 = 

0.044

−0.044

1

y 3( ) = A1x 2( )  = 

2
45
------

− 2
45
------

3

 = 3

2
135
---------

− 2
135
---------

1

λ 2
2( ) = 3

x 3( ) =
0.015

−0.015

1
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are the LR and QR methods. It is methods such as these, together with others based on
the inverse iterative method, that form the basis of the algorithms that exist in modern
software packages such as MATLAB. Such methods will not be pursued further here,
and the interested reader is referred to specialist texts on numerical analysis.

Use the power method to estimate the dominant 
eigenvalue and its corresponding eigenvector for the 
matrix

Stop when you consider the eigenvalue estimate is 
correct to 2 decimal places.

Repeat Exercise 14 for the matrices

(a) (b)

(c) 

The symmetric matrix

has dominant eigenvector e1 = [1 1 2]T. 
Obtain the matrix

A1 = A − λ1ê1ê
T
1

where λ1 is the eigenvalue corresponding to the 
eigenvector e1. Using the deflation method, obtain 
the subdominant eigenvalue λ 2 and corresponding 
eigenvector e2 correct to 2 decimal places, taking 
[1 1 1]T as a first approximation to e2. Continue 
the process to obtain the third eigenvalue λ 3 and its 
corresponding eigenvector e3.

Show that the characteristic equation of the matrix

is

f(λ) = λ3 − 15λ2 + 51λ − 17 = 0

Using the Newton–Raphson iterative procedure

with a suitable initial value in the interval 9 < λ 
< 11, determine the eigenvalue in this interval 
correct to 3 decimal places.

Using Properties 1.1 and 1.2 of Section 1.4.6, 
determine the other two eigenvalues of A to the 
same approximation.

(a) If the eigenvalues of the n × n matrix A are

λ1 > λ 2 > λ 3 . . . λ n > 0

show that the eigenvalue λ n can be found by 
applying the power method to the matrix kI − A, 
where I is the identity matrix and k > λ1.

(b) Show that the eigenvalues of the matrix

satisfy the inequality

0 < λ < 4

Hence, using the result proved in (a), determine the 
smallest modulus eigenvalue of A correct to 
2 decimal places.

1.5.2 Exercises

14

A
4 3 2

3 5 2

2 2 1

=

15

A
2 1 0

1 2 1

1 1 2

= A
3 0 1

2 2 2

4 2 5

=

A

2 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2

=

16

A
3 1 1

1 3 1

1 1 5

=

17

A
10 −1 0

−1 2 2

0 2 3

=

λn+1 λn
f λn( )
f ′ λn( )
--------------–=

18

A
2 −1 0

−1 2 −1

0 −1 2

=
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Reduction to canonical form
In this section we examine the process of reduction of a matrix to canonical form.
Specifically, we examine methods by which certain square matrices can be reduced or
transformed into diagonal form. The process of transformation can be thought of as a
change of system coordinates, with the new coordinate axes chosen in such a way that
the system can be expressed in a simple form. The simplification may, for example, be
a transformation to principal axes or a decoupling of system equations.

We will see that not all matrices can be reduced to diagonal form. In some cases we
can only achieve the so-called Jordan canonical form, but many of the advantages of the
diagonal form can be extended to this case as well.

The transformation to diagonal form is just one example of a similarity transform.
Other such transforms exist, but, in common with the transformation to diagonal form,
their purpose is usually that of simplifying the system model in some way.

1.6.1 Reduction to diagonal form

For an n × n matrix A possessing a full set of n linearly independent eigenvectors
e1, e2, . . . , en we can write down a modal matrix M having the n eigenvectors as its
columns:

M = [e1 e2 e3 . . . en]

The diagonal matrix having the eigenvalues of A as its diagonal elements is called the
spectral matrix corresponding to the modal matrix M of A, often denoted by Λ .
That is,

with the (ij)th element being given by λ iδij, where δij is the Kronecker delta and i, j = 1,
2, . . . , n. It is important that the pair of matrices M and Λ are written down correctly.
If the ith column of M is the eigenvector ei then the element in the (i, i) position in
Λ must be λ i, the eigenvalue corresponding to the eigenvector ei.

1.6

We saw in Section 1.4.2 that in MATLAB the command

[M,S]=eig(A)

generates the modal and spectral matrices for the matrix A. (Note: For convenience
S is used to represent Λ when using MATLAB; whilst both are produced by the
command Eigenvalues(A) in MAPLE.)

λ1 0

λ 2

. . .
0 λn

=L



1.6  REDUCTION TO CANONICAL FOR M 37

Obtain a modal matrix and the corresponding spectral matrix for the matrix A of
Example 1.4.

Solution

having eigenvalues λ 1 = 2, λ 2 = 1 and λ 3 = −1, with corresponding eigenvectors

e1 = [1 3 1]T, e2 = [3 2 1]T, e3 = [1 0 1]T

Choosing as modal matrix M = [e1 e2 e3]
T gives

The corresponding spectral matrix is

Returning to the general case, if we premultiply the matrix M by A, we obtain

AM = A[e1 e2 . . . en] = [Ae1 Ae2 . . . Aen]

= [λ1e1 λ 2e2 . . . λnen] (by definition)

so that

AM = ML (1.15)

Since the n eigenvectors e1, e2, . . . , en are linearly independent, the matrix M is non-
singular, and so M −1 exists. Thus premultiplying by M −1 gives

indicating that the similarity transformation M−1AM reduces the matrix A to the
diagonal or canonical form Λ. Thus a matrix A possessing a full set of linearly inde-
pendent eigenvectors is reducible to diagonal form, and the reduction process is often
referred to as the diagonalization of the matrix A. Since

it follows that A is uniquely determined once the eigenvalues and corresponding
eigenvectors are known. Note that knowledge of the eigenvalues and eigenvectors alone
is not sufficient: in order to structure M and L correctly, the association of eigenvalues
and the corresponding eigenvectors must also be known.

Example 1.13

M −1AM = M −1M L = L (1.16)

A = M M −1 (1.17)

A
1 1 −2

−1 2 1

0 1 −1

=

M
1 3 1

3 2 0

1 1 1

=

2 0 0

0 1 0

0 0 −1

=L

L
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Verify results (1.16) and (1.17) for the matrix A of Example 1.13.

Solution Since

we have

Taking

matrix multiplication confirms the results

M −1AM = L, A = MLM −1

For an n × n symmetric matrix A it follows, from result (b) of Section 1.4.7, that
to the n real eigenvalues λ 1, λ 2, . . . , λ n there correspond n linearly independent
normalized eigenvectors ê1, ê2, . . . , ên that are mutually orthogonal so that

ê T
iêj = δij (i, j = 1, 2, . . . , n)

The corresponding modal matrix

M  = [ê1 ê2
. . . ên]

is then such that

= I

That is, M̂TM̂ = I and so M̂T = M −1. Thus M̂ is an orthogonal matrix (the term ortho-
normal matrix would be more appropriate, but the nomenclature is long established).

It follows from (1.16) that a symmetric matrix A can be reduced to diagonal form Λ
using the orthogonal transformation

Example 1.14

M̂ TAM̂  = L (1.18)

M
1 3 1

3 2 0

1 1 1

= M −1 1
6
---

−2 2 2

3 0 −3

−1 −2 7

=

2 0 0

0 1 0

0 0 −1

=L

M̂ TM̂

ê1
T

ê2
T

ên
T

ê1 ê2 . . . ên[ ] = 

ê1
Tê1 ê1

Tê2 . . . ê1
Tên

ê2
Tê1 ê2

Tê2 . . . ê2
Tên

ên
Tê1 ên

Tê2 . . . ên
Tên

= 

=

1 0 . . . 0

0 1 . . . 0

0 0 . . . 1

ˆ
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For the symmetric matrix A considered in Example 1.9 write down the corresponding
orthogonal modal matrix M̂ and show that M̂ TAM  = L, where L is the spectral matrix.

Solution From Example 1.9 the eigenvalues are λ1 = 6, λ 2 = 3 and λ 3 = 1, with corresponding
normalized eigenvectors

ê1 = [1 2 0]T/ , ê2 = [0 0 1]T, ê3 = [−2 1 0]T/

The corresponding modal matrix is

and, by matrix multiplication,

1.6.2 The Jordan canonical form

If an n × n matrix A does not possess a full set of linearly independent eigenvectors then
it cannot be reduced to diagonal form using the similarity transformation M −1AM. In
such a case, however, it is possible to reduce A to a Jordan canonical form (or Jordan
normal form), making use of ‘generalized’ eigenvectors.

As indicated in (1.11), if a matrix A has an eigenvalue λ i of algebraic multiplicity mi

and geometric multiplicity qi, with 1 < qi < mi, then there are qi linearly independent
eigenvectors corresponding to λ i. Consequently, we need to generate mi − qi generalized
eigenvectors in order to produce a full set. To obtain these, we first obtain the qi linearly
independent eigenvectors by solving

(A − λ iI )ei = 0

Then for each of these vectors we try to construct a generalized eigenvector e*i such
that

(A − λ iI )e*i = ei

If the resulting vector e*i is linearly independent of all the eigenvectors (and generalized
eigenvectors) already found then it is a valid additional generalized eigenvector. If
further generalized eigenvectors corresponding to λi are needed, we then repeat the pro-
cess using

(A − λ iI )e**i = e*i

and so on until sufficient vectors are found.

Example 1.15

5 5

M̂

1
5
--- 0 −2 1

5
---

2 1
5
--- 0 1

5
---

0 1 0

=

M̂ TM̂
6 0 0

0 3 0

0 0 1

= = L
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Obtain a generalized eigenvector corresponding to the eigenvalue λ = 2 of Example 1.7.

Solution For

we found in Example 1.7 that corresponding to the eigenvalue λ i = 2 there was only one
linearly independent eigenvector

e1 = [2 1 0]T

and we need to find a generalized eigenvector to produce a full set. To obtain the
generalized eigenvector e*1 , we solve

(A − 2I )e*1 = e1

that is, we solve

At once, we have e*13 = 1 and e*11 = 2e*12, and so

e*1 = [2 1 1]T

Thus, by including generalized eigenvectors, we have a full set of eigenvectors for the
matrix A given by

e1 = [2 1 0]T, e2 = [2 1 1]T, e3 = [1 −1 1]T

If we include such generalized eigenvectors, it is always possible to obtain for
an n × n matrix A a modal matrix M with n linearly independent columns e1, e2,
. . . , en. Corresponding to (1.15), we have

AM = MJ
where J is called the Jordan normal form of A. Premultiplying by M −1 then gives

The process of reducing A to J is known as the reduction of A to its Jordan normal, or
canonical, form. This is named after Marie Ennemond Camille Jordan (1838–1922)
who was particularly known for his work on analysis and group theory.

If A has p distinct eigenvalues then the matrix J is of the block-diagonal form

J = [J1 J2
. . . Jp]

where each submatrix Ji (i = 1, 2, . . . , p) is associated with the corresponding eigenvalue
λ i. The submatrix Ji will have λ i as its leading diagonal elements, with zeros elsewhere
except on the diagonal above the leading diagonal. On this diagonal the entries will have
the value 1 or 0, depending on the number of generalized eigenvectors used and how they

Example 1.16

M −1AM = J (1.19)

A
1 2 2

0 2 1

−1 2 2

=

−1 2 2

0 0 1

−1 2 0

e*11

e*12

e*13

=
2

1

0
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were generated. To illustrate this, suppose that A is a 7 × 7 matrix with eigenvalues
λ1 = 1, λ 2 = 2 (occurring twice), λ 3 = 3 (occurring four times), and suppose that the
number of linearly independent eigenvectors generated in each case is

λ1 = 1, 1 eigenvector

λ 2 = 2, 1 eigenvector

λ 3 = 3, 2 eigenvectors

with one further generalized eigenvector having been determined for λ 2 = 2 and two
more for λ 3 = 3.

Corresponding to λ 1 = 1, the Jordan block J1 will be just [1], while that corresponding
to λ 2 = 2 will be

Corresponding to λ 3 = 3, the Jordan block J3 can take one of the two forms

or

depending on how the generalized eigenvectors are generated. Corresponding to λ3 = 3,
we had two linearly independent eigenvectors e3,1 and e3,2. If both generalized
eigenvectors are generated from one of these vectors then J3 will take the form J3,1,
whereas if one generalized eigenvector has been generated from each eigenvector
then J3 will take the form J3,2.

Obtain the Jordan canonical form of the matrix A of Example 1.16, and show that
M −1AM = J where M is a modal matrix that includes generalized eigenvectors.

Solution For

from Example 1.16 we know that the eigenvalues of A are λ1 = 2 (twice) and λ 3 = 1.
The eigenvector corresponding to λ 3 = 1 has been determined as e3 = [1 1 −1]T in
Example 1.7 and corresponding to λ1 = 2 we found one linearly independent eigen-
vector e1 = [2 1 0]T and a generalized eigenvector e*1 = [2 1 1]T. Thus the
modal matrix including this generalized eigenvector is

J2 = 2 1

0 2

J3,1 =

λ3 1 0 0

0 λ3 1 0

0 0 λ3 0

0 0 0 λ3

J3,2 =

λ3 1 0 0

0 λ3 0 0

0 0 λ3 1

0 0 0 λ3

Example 1.17

A
1 2 2

0 2 1

−1 2 2

=

M
2 2 1

1 1 1

0 1 −1

=
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and the corresponding Jordan canonical form is

To check this result, we compute M −1 as

and, forming M −1AM, we obtain J as expected.

In MATLAB the command J=jordan(A) computes the Jordan form of A; including
the case when J is diagonal and all the eigenvectors of A are linearly independent.
The command

[M,J]=jordan(A)

also computes the similarity transformation or modal matrix M that may include
generalized eigenvectors.

Numerical calculation of the Jordan form is very sensitive to round-off errors and
so on. This makes it very difficult to compute the Jordan form reliably and almost
any change in A causes it to be diagonal.

For the matrix A in Example 1.17 the sequence of commands

A=[1 2 2; 0 2 1; -1 2 2];
[M,J]=jordan(A)

returns

-1 -2 2
M=-1 -1 1

1 0 -1

1 0 0
J= 0 2 1

0 0 2

which is equally acceptable to the solution given in Example 1.17. (This can be
checked by evaluating M −1AM.)

Using the Symbolic Math Toolbox in MATLAB the sequence of commands

A=[1 2 2; 0 2 1; -1 2 2];
AS=sym(A)
[M,J]=jordan(AS)

returns the same output as above. In practice, this sequence of commands is only
really effective when the elements of the matrix A are integers or ratios of small
integers.

J =

2 1 0

0 2 0

0 0 1

M−1

2 −3 −1

−1 2 1

−1 2 0

=
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Check your answers using MATLAB or MAPLE whenever possible.

Show that the eigenvalues of the matrix

are 5, 2 and −1. Obtain the corresponding 
eigenvectors. Write down the modal matrix 
M  and spectral matrix L. Evaluate M −1 and 
show that M −1AM = L.

Using the eigenvalues and corresponding 
eigenvectors of the symmetric matrix

obtained in Example 1.9, verify that 
M̂ TA M̂ = L where M̂ and L are respectively 
a normalized modal matrix and a spectral 
matrix of A.

Given

find its eigenvalues and corresponding 
eigenvectors. Normalize the eigenvectors 
and write down the corresponding normalized 
modal matrix M̂. Write down M̂T

and show  
that M̂ TA M̂ = L,  where L is the spectral 
matrix of A.

Determine the eigenvalues and corresponding 
eigenvectors of the matrix

Write down the modal matrix M and spectral 
matrix L. Confirm that M −1AM = L and that 
A = MLM −1.

Determine the eigenvalues and corresponding 
eigenvectors of the symmetric matrix

Verify that the eigenvectors are orthogonal, 
and write down an orthogonal matrix L such that 
LTAL = L, where L is the spectral matrix of A.

A 3 × 3 symmetric matrix A has eigenvalues 
6, 3 and 1. The eigenvectors corresponding 
to the eigenvalues 6 and 1 are [1 2 0]T and 
[−2 1 0]T respectively. Find the eigenvector 
corresponding to the eigenvalue 3, and hence 
determine the matrix A.

Given that λ = 1 is a three times-repeated eigenvalue 
of the matrix

use the nullity, given by (1.11), of a suitable matrix to 
show that there is only one corresponding linearly 
independent eigenvector. Obtain two further 
generalized eigenvectors, and write down the 
corresponding modal matrix M. Confirm that 
M −1AM = J, where J is the appropriate Jordan matrix.

Show that the eigenvalues of the matrix

are −2, −2, 4 and 4. Using the nullity, given 
by (1.11), of appropriate matrices, show that 
there are two linearly independent eigenvectors 
corresponding to the repeated eigenvalue −2 
and only one corresponding to the repeated 
eigenvalue 4. Obtain a further generalized 
eigenvector corresponding to the eigenvalue 4. 
Write down the Jordan canonical form of A.

1.6.3 Exercises

19

A
−1 6   −12

0 −13   30

0 −9   20

=

20

A
2 2 0

2 5 0

0 0 3

=

21

A
5 10 8

10 2 −2

8 −2 11

=

22

A
1 1 −2

−1 2 1

0 1 −1

=

23

A
3 −2 4

−2 −2 6

4 6 −1

=

24

25

A
−3 −7 −5

2 4  3

1 2  2

=

26

A

1 0 0 −3

0 1 −3 0

−0.5 −3 1 0.5

−3 0 0 1

=
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1.6.4 Quadratic forms

A quadratic form in n independent variables x1, x2, . . . , xn is a homogeneous second-
degree polynomial of the form

= a11x
2
1 + a12x1x2 + . . . + a1nx1xn 

+ a21x2x1 + a22x 2
2 + . . . + a2nx2xn

+ an1xnx1 + an2xnx2 + . . . + annx 2
n (1.20)

Defining the vector x = [x1 x2
. . . xn]

T and the matrix

the quadratic form (1.20) may be written in the form

V(x) = xTAx (1.21)

The matrix A is referred to as the matrix of the quadratic form and the determinant of
A is called the discriminant of the quadratic form.

Now aij and aji in (1.20) are both coefficients of the term xixj (i ≠ j), so that for i ≠ j
the coefficient of the term xixj is aij + aji. By defining new coefficients a ′ij and a ′ji for xixj

and xjxi respectively, such that a ′ij = a ′ji = (aij + aji), the matrix A associated with the
quadratic form V(x) may be taken to be symmetric. Thus for real quadratic forms we
can, without loss of generality, consider the matrix A to be a symmetric matrix.

Find the real symmetric matrix corresponding to the quadratic form

V(x1, x2, x3) = x2
1 + 3x2

2 − 4x2
3 − 3x1x2 + 2x1x3 − 5x2x3

Solution If x = [x1 x2 x3]
T, then by comparing the coefficients of (1.20) and the above expres-

sion, we find that

where the matrix of the quadratic form is

V x1 x2 … , xn, ,( ) = aij xi xj

j=1

n


i=1

n



A =

a11 a12 . . . a1n

a21 a22 . . . a2n

an1 an2 . . . ann

1
2
---

Example 1.18

V x1, x2, x3( ) = x1 x2 x3[ ]

1 −3
2
--- 2

2
---

−3
2
--- 3 −5

2
---

2
2
--- −5

2
--- −4

x1

x2

x3

 = xTAx

A =

1 −3
2
--- 1

−3
2
--- 3 −5

2
---

1 −5
2
--- −4
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In Section 1.6.1 we saw that a real symmetric matrix A can always be reduced to the
diagonal form

M̂ TAM̂  = L

where � is the normalized orthogonal modal matrix of A and L is its spectral matrix.
Thus for a real quadratic form we can specify a change of variables

x = M̂ y

where y = [ y1 y2 . . . yn]T, such that

V = xTAx = yT M̂ TA M̂y = yTLy

giving

(1.22)

Hence the quadratic form xTAx may be reduced to the sum of squares by the trans-
formation x = M̂ y, where M̂ is the normalized modal matrix of A. The resulting form
given in (1.22) is called the canonical form of the quadratic form V given in (1.21). The
reduction of a quadratic form to its canonical form has many applications in engineer-
ing, particularly in stress analysis.

Find the canonical form of the quadratic form

V = 2x 2
1 + 5x 2

2 + 3x 2
3 + 4x1x2

Can V take negative values for any values of x1, x2 and x3?

Solution At once, we have

where

x = [x1 x2 x3]
T,

The real symmetric matrix A is the matrix of Example 1.15, where we found the
normalized orthogonal modal matrix � and spectral matrix Λ to be

,

V λ1y1
2 λ2y2

2 . . . λnyn
2+ + +=

Example 1.19

V xT

2 2 0

2 5 0

0 0 3

x xTAx= =

A
2 2 0

2 5 0

0 0 3

=

0̂

1
5
--- 0 −2 1

5
---

2 1
5
--- 0 1

5
---

0 1 0

= Λ = 

6 0 0

0 3 0

0 0 1
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such that M̂ TA M̂ = L. Thus, setting x = M̂y, we obtain

as the required canonical form.
Clearly V is non-negative for all y1, y2 and y3. Since x = M̂ y and M̂ is an orthogonal

matrix it follows that y = M̂ Tx, so for all x there is a corresponding y. It follows that V
cannot take negative values for any values of x1, x2 and x3.

The quadratic form of Example 1.19 was seen to be non-negative for any vector x,
and is positive provided that x ≠ 0. Such a quadratic form xTAx is called a positive-
definite quadratic form, and, by reducing to canonical form, we have seen that this
property depends only on the eigenvalues of the real symmetric matrix A. This leads us
to classify quadratic forms V = xTAx, where x = [x1 x2 . . . xn]

T in the following
manner.

Since the classification of a real quadratic form xTAx depends entirely on the location
of the eigenvalues of the symmetric matrix A, it may be viewed as a property of A itself.
For this reason, it is common to talk of positive-definite, positive-semidefinite, and so
on, symmetric matrices without reference to the underlying quadratic form.

Classify the following quadratic forms:

(a) 3x 2
1 + 2x 2

2 + 3x 2
3 − 2x1x2 − 2x2x3

(b) 7x 2
1 + x 2

2 + x 2
3 − 4x1x2 − 4x1x3 + 8x2x3

(c) −3x 2
1 − 5x 2

2 − 3x 2
3 + 2x1x2 + 2x2x3 − 2x1x3

(d) 4x 2
1 + x 2

2 + 15x 2
3 − 4x1x2

V yTM̂ TAM̂y yT

6 0 0

0 3 0

0 0 1

y 6y1
2 3y2

2 y3
2+ += = =

(a) V is positive-definite (that is V > 0 for all vectors x except x = 0) if and only
if all the eigenvalues of A are positive.

(b) V is positive-semidefinite (that is V > 0 for all vectors x and V = 0 for at least
one vector x ≠ 0) if and only if all the eigenvalues of A are non-negative and
at least one of the eigenvalues is zero.

(c) V is negative-definite if –V is positive-definite, with a corresponding condition
on the eigenvalues of –A.

(d) V is negative-semidefinite if –V is positive-semidefinite, with a corresponding
condition on the eigenvalues of –A.

(e) V is indefinite (that is V takes at least one positive value and at least one
negative value) if and only if the matrix A has both positive and negative
eigenvalues.

Example 1.20
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Solution (a) The matrix corresponding to the quadratic form is

The eigenvalues of A are 4, 3 and 1, so the quadratic form is positive-definite.

(b) The matrix corresponding to the quadratic form is

The eigenvalues of A are 9, 3 and −3, so the quadratic form is indefinite.

(c) The matrix corresponding to the quadratic form is

The eigenvalues of A are −6, −3 and −2, so the quadratic form is negative-definite.

(d) The matrix corresponding to the quadratic form is

The eigenvalues of A are 15, 5 and 0, so the quadratic form is positive-
semidefinite.

In Example 1.20 classifying the quadratic forms involved determining the eigenvalues
of A. If A contains one or more parameters then the task becomes difficult, if not
impossible, even with the use of a symbolic algebra computer package. Frequently in
engineering, particularly in stability analysis, it is necessary to determine the range of
values of a parameter k, say, for which a quadratic form remains definite or at least semi-
definite in sign. J. J. Sylvester determined criteria for the classification of quadratic forms
(or the associated real symmetric matrix) that do not require the computation of the
eigenvalues. These criteria are known as Sylvester’s conditions, which we shall briefly
discuss without proof.

In order to classify the quadratic form xTAx Sylvester’s conditions involve consideration
of the principal minors of A. A principal minor Pi of order i (i = 1, 2, . . . , n) of an
n × n square matrix A is the determinant of the submatrix, of order i, whose principal
diagonal is part of the principal diagonal of A. Note that when i = n the principal minor
is det A. In particular, the leading principal minors of A are

D1 = | a11 |, , , . . . , Dn = det A

A
3 −1 0

−1 2 −1

0 −1 3

=

A
7 −2 −2

−2 1 4

−2 4 1

=

A
−3 1 −1

1 −5 1

−1 1 −3

=

A
4 −2 0

−2 1 0

0 0 15

=

D2

a11 a12

a21 a22

= D3

a11 a12 a13

a21 a22 a23

a31 a32 a33

=
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Determine all the principal minors of the matrix

and indicate which are the leading principal minors.

Solution (a) The principal minor of order three is

P3 = det A = 5(2 − k 2) (leading principal minor D3)

(b) The principal minors of order two are

(i) deleting row 1 and column 1,

(ii) deleting row 2 and column 2,

(iii) deleting row 3 and column 3,

(leading principal minor D2)

(c) The principal minors of order one are

(i) deleting rows 1 and 2 and columns 1 and 2,

P11 = | 5 | = 5

(ii) deleting rows 1 and 3 and columns 1 and 3,

P12 = | 2 | = 2

(iii) deleting rows 2 and 3 and columns 2 and 3,

P13 = | 1 | = 1 (leading principal minor D1)

Example 1.21

A = 

1 k 0
k 2 0
0 0 5

P21

2 0

0 5
10= =

P22

1 0

0 5
5= =

P23

1 k

k 2
2 k2–= =

Sylvester’s conditions: These state that the quadratic form xTAx, where A is an
n × n real symmetric matrix, is

(a) positive-definite if and only if all the leading principal minors of A are
positive; that is, Di > 0 (i = 1, 2, . . . , n);

(b) negative-definite if and only if the leading principal minors of A alternate in
sign with a11 < 0; that is, (−1)iDi > 0 (i = 1, 2, . . . , n);

(c) positive-semidefinite if and only if det A = 0 and all the principal minors of
A are non-negative; that is, det A = 0 and Pi > 0 for all principal minors;

(d) negative-semidefinite if and only if det A = 0 and (−1)iPi > 0 for all principal
minors.
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For what values of k is the matrix A of Example 1.21 positive-definite?

Solution We need for all leading principal minors of A to be positive. These are

D1 = 1, D2 = 2 − k2, D3 = 5(2 − k2)

These will be positive provided that 2 − k2 > 0, so the matrix will be positive-definite
if k2 < 2, that is −  < k < .

Using Sylvester’s conditions, confirm the conclusions of Example 1.20.

Solution (a) The matrix of the quadratic form is

and its leading principal minors are

3, , det A = 12

Thus, by Sylvester’s condition (a), the quadratic form is positive-definite.

(b) The matrix of the quadratic form is

and its leading principal minors are

7, , det A = −81

Thus none of Sylvester’s conditions can be satisfied, and the quadratic form is
indefinite.

(c) The matrix of the quadratic form is

and its leading principal minors are

−3, det A = −36

Thus, by Sylvester’s condition (b), the quadratic form is negative-definite.

Example 1.22

2 2

Example 1.23

A
3 −1 0

−1 2 −1

0 −1 3

=

3 −1

−1 2
5=

A
7 −2 −2

−2 1 4

−2 4 1

=

7 −2

−2 1
3=

A
−3 1 −1

1 −5 1

−1 1 −3

=

−3 1

1 −5
14,=
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(d) The matrix of the quadratic form is

and its leading principal minors are

4, det A = 0

We therefore need to evaluate all the principal minors to see if the quadratic form
is positive-semidefinite. The principal minors are

4, 1, 15, det A = 0

Thus, by Sylvester’s condition (c), the quadratic form is positive-semidefinite.

A
4 −2 0

−2 1 0

0 0 15

=

4 −2

−2 1
0,=

4 −2

−2 1
0,

1 0

0 15
15= ,

4 0

0 15
60= ,=

Reduce the quadratic form

2x 2
1 + 5x 2

2 + 2x 2
3 + 4x2x3 + 2x3x1 + 4x1x2

to the sum of squares by an orthogonal 
transformation.

Classify the quadratic forms

(a) x 2
1 + 2x 2

2 + 7x 2
3 − 2x1x2 + 4x1x3 − 2x2x3

(b) x 2
1 + 2x 2

2 + 5x 2
3 − 2x1x2 + 4x1x3 − 2x2x3

(c) x 2
1 + 2x 2

2 + 4x 2
3 − 2x1x2 + 4x1x3 − 2x2x3

(a) Show that ax 2
1 − 2bx1x2 + cx 2

2 is positive-definite 
if and only if a > 0 and ac > b2.

(b) Find inequalities that must be satisfied by a and 
b to ensure that 2x 2

1 + ax 2
2 + 3x 2

3 − 2x1x2 + 2bx2x3 
is positive-definite.

Evaluate the definiteness of the matrix

(a) by obtaining the eigenvalues;
(b) by evaluating the principal minors.

Determine the exact range of k for which the 
quadratic form

Q(x, y, z) = k(x 2 + y 2) + 2xy + z 2 + 2xz − 2yz

is positive-definite in x, y and z. What can be said 
about the definiteness of Q when k = 2?

Determine the minimum value of the constant 
a such that the quadratic form

where x = [x1 x2 x3]
T, is positive-definite.

Express the quadratic form

Q = x 2
1 + 4x1x2 − 4x1x3 − 6x2x3 + λ(x 2

2 + x 2
3)

in the form xTAx, where x = [x1 x2 x3]
T and 

A is a symmetric matrix. Hence determine 
the range of values of λ for which Q is 
positive-definite.

1.6.5 Exercises

27

28

29

30

A
2 1 −1

1 2 1

− 1 1 2

=

31

32

xT

3 a 1 1+
1 a 2

1 2 a

x

33
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Functions of a matrix
Let A be an n × n constant square matrix, so that

A2 = AA, A3 = AA2 = A2A, and so on

are all defined. We can then define a function f (A) of the matrix A using a power series
representation. For example,

(1.23)

where we have interpreted A0 as the n × n identity matrix I.

Given the 2 × 2 square matrix

determine  when β0 = 1, β1 = −1 and β2 = 3.

Solution Now

f(A) = β0I + β1A + β 2A2 = 

= 

Note that A is a 2 × 2 matrix and f (A) is another 2 × 2 matrix.

Suppose that in (1.23) we let p → ∞, so that

We can attach meaning to f (A ) in this case if the matrices

tend to a constant n × n matrix in the limit as p → ∞.

1.7

f A( ) = βrA
r

r=0

p

  = β0I β1A . . . βpA
p+ + +

Example 1.24

A = 
1 −1

2 3

f A( ) = βrA
r

r=0

2



1
1 0

0 1
1

1 −1

2 3
– 3

−1 −4

8 7
+

− 3 −11

22 19

f A( ) = βrA
r

r=0

∞



fp A( ) = βrA
r

r=0

p


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For the matrix

using a computer and larger and larger values of p, we infer that

indicating that

What would be the corresponding results if

(a) , (b) ?

Solution (a) The computer will lead to the prediction

indicating that

(b) The computer is of little help in this case. However, hand calculation shows that
we are generating the matrix

indicating that

By analogy with the definition of the scalar exponential function

Example 1.25

A = 
1 0

0 1

f A( ) = lim
p ∞→

Ar

r!
-----

      2.718 28 0

0 2.718 28
r=0

p

 .

f A( ) = 
e 0

0 e

A = 
−1 0

0 1
A = 

−t 0

0 t

f A( )
     2.718 28( )−1 0

0 2.718 28
.

f A( ) = 
e−1 0

0 e

f A( ) = 
1 t– 1

2
---t2 1

6
---t3– . . .+ + 0

0 1 t 1
2
---t2 1

6
---t3 . . . + + + +

f A( ) = 
e−t 0

0 et

eat = 1 at
a2t2

2!
--------- … artr

r!
-------- …+ + + + +  = at( )r

r!
-----------

r=0

∞


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it is natural to define the matrix function eAt, where t is a scalar parameter, by the
power series

(1.24)

In fact the matrix in part (b) of Example 1.25 illustrates that this definition is reasonable.
In Example 1.25 we were able to spot the construction of the matrix f (A), but this will

not be the case when A is a general n × n square matrix. In order to overcome this limitation
and generate a method that will not rely on our ability to ‘spot’ a closed form of the limiting
matrix, we make use of the Cayley–Hamilton theorem, which may be stated as follows.

Cayley–Hamilton theorem

The proof of this theorem is not trivial, and is not included here. We shall illustrate the
theorem using a simple example.

[The interested reader may consult the original proof in G. Frobenius. Über Lineare
Substitutionen und Bilineare Formen. J. für die Reine U. Angew. Math., 84:1–63, 1878.]

Verify the Cayley–Hamilton theorem for the matrix

Solution The characteristic equation of A is

or λ2 − 5λ + 2 = 0

Since

we have

thus verifying the validity of the Cayley–Hamilton theorem for this matrix.

f A( ) = Ar

r!
----- tr

r=0

∞



Theorem 1.1

A square matrix A satisfies its own characteristic equation; that is, if

λn + cn−1λn−1 + cn−2λn−2 + . . . + c1λ + c0 = 0

is the characteristic equation of an n × n matrix A then

An + cn−1An−1 + cn−2An−2 + . . . + c1A + c0I = 0 (1.25)

where I is the n × n identity matrix.

end of theorem

Example 1.26

A = 3 4

1 2

3 λ– 4

1 2 λ–
 = 0

A2 = 
3 4

1 2

3 4

1 2
 = 13 20

5 8

A2 5A– 2I+  = 
13 20

5 8
5

3 4

1 2
– 2

1 0

0 1
+  = 0
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In the particular case when A is a 2 × 2 matrix with characteristic equation

c(λ) = λ2 + a1λ + a2 = 0 (1.26)

it follows from the Cayley–Hamilton theorem that

c(A) = A2 + a1A + a2I = 0

The significance of this result for our present purposes begins to appear when we
rearrange to give

A2 = −a1A − a2I

This means that A2 can be written in terms of A and A0 = I. Moreover, multiplying by
A gives

A3 = −a1A2 − a2A = −a1(−a1A − a2I ) − a2A

Thus A3 can also be expressed in terms of A and A0 = I ; that is, in terms of powers of
A less than n = 2, the order of the matrix A in this case. It is clear that we could continue
the process of multiplying by A and substituting A2 for as long as we could manage the
algebra. However, we can quickly convince ourselves that for any integer r > n

Ar
 = α 0I  + α1A (1.27)

where α 0 and α1 are constants whose values will depend on r.
This is a key result deduced from the Cayley–Hamilton theorem, and the determi-

nation of the α i (i = 0, 1) is not as difficult as it might appear. To see how to perform
the calculations, we use the characteristic equation of A itself. If we assume that the
eigenvalues λ1 and λ 2 of A are distinct then it follows from (1.26) that

c(λ i) = λ 2
i + a1λ i + a2 = 0 for i = 1, 2

Thus we can write

λ 2
i = −a1λ i − a2

in which a1 and a2 are the same constants as in (1.26). Then, for i = 1, 2,

λ 3
i = −a1λ 2

i − a2λ i = −a1(−a1λ i − a2) − a2λ i

Proceeding in this way, we deduce that for each of the eigenvalues λ1 and λ 2 we
can write

λ r
i = α 0 + α1λ i

with the same α 0 and α1 as in (1.27). This therefore provides us with a procedure for
the calculation of Ar when r ≥ n (the order of the matrix) is an integer.

Given that the matrix

has eigenvalues λ1 = −1 and λ 2 = −2 calculate A5 and Ar, where r is an integer greater
than 2.

Example 1.27

A = 0 1

−2 −3
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Solution Since A is a 2 × 2 square matrix, it follows from (1.27) that

A5 = α 0I + α1A

and for each eigenvalue λ i (i = 1, 2) α 0 and α1 satisfy

λ 5
i = α 0 + α1λ i

Substituting λ1 = −1 and λ 2 = −2 leads to the following pair of simultaneous equations:

(−1)5 = α 0 + α1(−1), (−2)5 = α 0 + α1(−2)

which can be solved for α 0 and α1 to give

α 0 = 2(−1)5 − (−2)5, α1 = (−1)5 − (−2)5

Then

Replacing the exponent 5 by the general value r, the algebra is identical, and it is easy
to see that

To evaluate α 0 and α1 in (1.24), we assumed that the matrix A had distinct eigen-
values λ1 and λ 2, leading to a pair of simultaneous equations for α0 and α1. What
happens if the 2 × 2 matrix A has a repeated eigenvalue so that λ1 = λ 2 = λ, say?
We shall apparently have just a single equation to determine the two constants α 0 and
α1. However, we can obtain a second equation by differentiating with respect to
λ, as illustrated in Example 1.28.

Given that the matrix

has eigenvalues λ1 = λ 2 = −1, determine A r, where r is an integer greater than 2.

Solution Since A is a 2 × 2 matrix, it follows from (1.27) that

A r = α 0I + α1A
with α 0 and α1 satisfying

λr = α 0 + α1λ (1.28)

A5 = 2 −1( )5 −2( )5–[ ] 1 0

0 1
−1( )5 −2( )5–[ ] 0 1

−2 −3
+

= 
2 −1( )5 −2( )5– −1( )5 −2( )5–

−2( ) −1( )5 −2( )5–( ) 2 −2( )5 −1( )5–
 =  30 31

−62 −63

Ar = 2 −1( )r −2( )r– −1( )r −2( )r–

−2 −1( )r −2( )r–( ) 2 −2( )r −1( )r–

Example 1.28

A = 0 1

−1 −2
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Since in this case we have only one value of λ, namely λ = −1, we differentiate (1.28)
with respect to λ, to obtain

rλr−1 = α1 (1.29)

Substituting λ = −1 in (1.28) and (1.29) leads to

α1 = (−1)r−1r, α 0 = (−1)r + α1 = (1 − r)(−1)r

giving

Having found a straightforward way of expressing any positive integer power of the
2 × 2 square matrix A we see that the same process could be used for each of the terms
in (1.23) for r ù 2. Thus, for a 2 × 2 matrix A and some α 0 and α1,

If, as p → ∞,

exists, that is, it is a 2 × 2 matrix with finite entries independent of p, then we may write

We are now in a position to check the results of our computer experiment with the matrix

of Example 1.25. We have defined

so we can write

eA t = α 0I  + α1A

Since A has repeated eigenvalue λ = 1, we adopt the method of Example 1.28 to give

et = α 0 + α1, tet = α1

Ar = 1 r–( ) −1( )r 1 0

0 1
r −1( )r 0 1

−1 −2
–

= 
1 r–( ) −1( )r −r −1( )r

r −1( )r 1 r+( ) −1( )r

f A( ) = βrA
r

r=0

p

 α0 I α1A+=

f A( ) = lim
p ∞→

βrA
r

r=0

p



(1.30)f A( ) = βrA
r

r=0

∞

  = α 0I α1A+

A = 
1 0

0 1

f A( ) eAt=  = Ar

r!
----- t r

r=0

∞


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leading to

α1 = t et, α 0 = (1 − t)et

Thus

eAt = (1 − t)etI  + t etA = etI  =

Setting t = 1 confirms our inference in Example 1.25.

Calculate eA t and sin A t when

Solution Again A has repeated eigenvalues, with λ1 = λ 2 = 1. Thus for eA t we have

eA t = α 0I  + α1A

with

et = α 0 + α1, t et = α1

leading to

Similarly, 

sin At = α 0I  + α1A

with

sin t = α 0 + α1, t cos t = α1

leading to

Although we have worked so far with 2 × 2 matrices, nothing in our development
restricts us to this case. The Cayley–Hamilton theorem allows us to express positive
integer powers of any n × n square matrix A in terms of powers of A up to n − 1. That
is, if A is an n × n matrix and p ù n then

 = β0I  + β1A + . . . + βn−1An−1

et 0

0 et

Example 1.29

A = 1 −1

0 1

eAt = et −t et

0 et

sin At = sin t −t cos t

0 sin t

Ap = βrA
r

r=0

n−1


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Sometimes it is advantageous to use an alternative approach to evaluate

If A possesses n linearly independent eigenvectors then there exists a modal matrix M
and spectral matrix L such that

M −1AM = L = diag (λ1, λ 2, . . . , λ n)

Now

 

= diag ( f (λ 1), f (λ 2), . . . , f (λ n))

This gives us a second method of computing functions of a square matrix, since we see that

f (A) = M diag ( f (λ1), f(λ 2), . . . , f (λ n))M −1 (1.32)

From this we can deduce that for an n × n matrix A we may write

as

(1.31a)

which generalizes the result (1.30). Again the coefficients α 0, α1, . . . , α n−1 are
obtained by solving the n equations 

(i = 1, 2, . . . , n) (1.31b)

where λ1, λ 2, . . . , λn are the eigenvalues of A. If A has repeated eigenvalues, we
differentiate as before, noting that if λ i is an eigenvalue of multiplicity m then the
first m − 1 derivatives

(k = 1, 2, . . . , m − 1)

are also satisfied by λ i.

f A( ) = βrA
r

r=0

∞



f A( ) = α rA
r

r=0

n−1



f λi( ) = αrλi
r

r=0

n−1



dk

dλi
k

-------- f λi( ) = dk

dλi
k

-------- αrλi
r

r=0

n−1



f A( ) = βrA
r

r=0

p



M −1 f A( )M = βr M −1ArM( )
r=0

p

 βr M −1AM( )r

r=0

p

=

= βr
r

r=0

p

 L = βr diag λ1
r λ2

r . . . , λn
r, ,( )

r=0

p



= diag βrλ1
r βrλ2

r . . . , βrλn
r

r=0

p

,
r=0

p

,
r=0

p


 
 
 
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Using the result (1.32), calculate Ak for the matrix

of Example 1.27, i.e. show that .

Solution A has eigenvalues λ1 = −1 and λ 2 = −2 with corresponding eigenvectors

e1 = [1 −1] T, e2 = [1 −2] T

Thus a modal matrix M and corresponding spectral matrix Λ are

,

Clearly

Taking f (A) = Ak, we have

diag ( f (−1), f (−2)) = diag ((−1)k, (−2)k)

Thus, from (1.32),

as determined in Example 1.27.

Example 1.30 demonstrates a second approach to the calculation of a function of a
matrix. There is little difference in the labour associated with each method, so perhaps
the only comment we should make is that each approach gives a different perspective
on the construction of the matrix function either from powers of the matrix itself or
from its spectral and modal matrices.

Later in this chapter we need to make use of some properties of the exponential
matrix eA t, where A is a constant n × n square matrix. These are now briefly discussed. 

(i) Considering the power series definition given in (1.24)

eAt = I + At + A2t2 + A3t3 + . . . 

term-by-term differentiation gives

eAt = A + A2t + A3t2 + . . . = A[I + At + A2t2 + . . .]

so that 

Example 1.30

A = 0 1

−2 −3

Ak M diag λ1
k λ2

k,( )M −1=

M = 1 1

−1 −2
Λ = −1 0

0 −2

M −1 = 2 1

−1 −1

f A( ) = M −1( )k 0

0 −2( )k
M −1 = 2 −1( )k −2( )k– −1( )k −2( )k–

2 −2( )k −1( )k–( ) 2 −2( )k −1( )k–

1
2!
----- 1

3!
-----

d
dt
----- 2

2!
----- 3

3!
----- 1

2!
-----

(1.33)d
dt
----- eAt( ) = A eAt = eAtA
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(ii) Likewise, term-by-term integration of the power series gives

eAτdτ = I dτ + A τdτ + A2 τ 2dτ + . . . 

= I t + At2 + A2t3 + . . . 

so that

A eAτdτ + I = eAt

giving

eAτdτ = A−1[eAt − I ] = [eAt − I ]A−1 (1.34)

provided the inverse exists.

Although this property is true in general we shall illustrate its validity for the
particular case when A has n linearly independent eigenvectors. Then, from (1.32),

so that

(iv) It is important to note that in general

eA t eB t ≠ e(A+B )t

To conclude this section we consider the derivative and integral of a matrix A(t) =
[aij(t)], whose elements aij(t) are functions of t. The derivative and integral of A(t) are
defined respectively by

that is, each element of the matrix is differentiated or integrated as appropriate.

#
0

t

#
0

t

#
0

t

1
2!
----- #

0

t

1
2!
----- 1

3!
-----

#
0

t

#
0

t

(iii) (1.35)e
A t1+ t2( ) = eAt1 e

At2

eAt1 M diag eλ1t1 eλ2t1 6 , eλnt1, ,( )M −1=

eAt2 M diag eλ1t2 eλ2t2 6 , eλnt2, ,( )M −1=

eAt1eAt2 = M diag eλ1 t1+t2( ) eλ2 t1+ t2( ) 6 , eλn t1+ t2( ), ,( )M −1 = eA t1+ t2( )

It follows from the power series definition that

eA t eB t = e(A+B ) t

if and only if the matrices A and B commute; that is, if AB = BA.

(1.36)

and

(1.37a)

(1.37b)

d
dt
----- A t( ) = d

dt
----- aij t( )

#A t( ) dt = # aij t( ) dt
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Evaluate dA /dt and eA dt for the matrix

Solution Using (1.37a),

Using (1.37b),

 

where C is a constant matrix.

From the basic definitions, it follows that for constants α and β

(1.38)

(1.39)

(1.40)

Note in (1.40) that order is important, since in general AB ≠ BA.

Example 1.31

t2 1 t 3–+

2 t2 2t 1–+

Using the Symbolic Math Toolbox in MATLAB the derivative and integral of the
matrix A(t) is generated using the commands diff(A) and int(A) respectively.
To illustrate this confirm that the derivative of the matrix A(t) of Example 1.31 is
generated using the sequence of commands

syms t
A=[t^2+1 t-3; 2 t^2+2*t-1];
df=diff(A);
pretty(df)

and its integral by the additional commands

I=int(A);
pretty(I)

dA
dt
-------  = 

d
dt
----- t2 1+( ) d

dt
----- t 3–( )

d
dt
----- 2( ) d

dt
----- t2 2t 1–+( )

 = 2t 1

0 2t 2+

#A dt = 
# t2 1+( ) dt # t 3–( ) dt

#2 dt # t2 2t 1–+( ) dt

= 
1
3
---t3 t c11+ + 1

2
---t2 3t– c12+

2t c21+ 1
3
---t3 t2 t– c22+ +

= 
1
3
---t3 t+ 1

2
---t2 3t–

2t 1
3
---t3 t2 t–+

c11 c12

c21 c22

+ = 
1
3
---t3 t+ 1

2
---t2 3t–

2t 1
3
---t3 t2 t–+

C+

d
dt
----- αA β B+( ) = α dA

dt
------- β dB

dt
-------+

# αA β B+( ) dt = α #A dt β #B dt+

d
dt
----- AB( ) = A dB

dt
------- dA

dt
-------B+
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Check your answers using MATLAB or MAPLE whenever possible.

Show that the matrix

satisfies its own characteristic equation.

Given

use the Cayley–Hamilton theorem to evaluate

(a) A2 (b) A3 (c) A4

The characteristic equation of an n × n matrix A is

λn + cn−1λn−1 + cn−2λn−2 + . . . + c1λ + c0 = 0

so, by the Cayley–Hamilton theorem,

An + cn−1An−1 + cn−2An−2 + . . . + c1A + c0I = 0

If A is non-singular then every eigenvalue is 
non-zero, so c0 ≠ 0 and

I = − (An + cn−1An−1 + . . . + c1A)

which on multiplying throughout by A−1 gives

A−1 = − (An−1 + cn−1An−2 + . . . + c1I ) (1.41)

(a) Using (1.41) find the inverse of the matrix

(b) Show that the characteristic equation of the 
matrix

is

λ3 − 3λ2 − 7λ − 11 = 0

Evaluate A2 and, using (1.41), determine A−1.

Given

compute A2 and, using the Cayley–Hamilton 
theorem, compute

A7 − 3A6 + A4 + 3A3 − 2A2 + 3I

Evaluate eA t for

(a) (b)

Given

show that

Given

evaluate

(a) (b)

Given

evaluate A2 and show that

1.7.1 Exercises

34

A = 
5 6

2 3

35

A = 
1 2

1 1

36

1
c0

----

1
c0

----

A = 
2 1

1 2

A =

1 1 2

3 1 1

2 3 1

37

A = 

2 3 1

3 1 2

1 2 3

38

A = 
1 0

1 1
A = 

1 0

1 2

39

A = 
π
2
---

2 0 0

0 1 1

0 0 1

sin A = 
4
π
--- A 4

π2
----- A2 = 

0 0 0

0 1 0

0 0 1

–

40

A = 
t2 1 2t 3–+

5 t– t2 t– 3+

dA
dt
------- #

1

2

A dt

41

A = 
t2 1 t 1–+

5 0

d
dt
----- A2( ) 2A dA

dt
-------≠

Note that in general

d
dt
----- A t( )[ ]n nAn−1dA

dt
-------≠



1.8  SINGULAR VALUE DECOMPOSITION 63

Singular value decomposition
So far we have been concerned mainly with square matrices, dealing in particular with
the inverse matrix, the eigenvalue problem and reduction to canonical form. In this
section we consider analogous results for non-square (or rectangular) matrices, all of
which have important applications in engineering.

First we review some definitions associated with non-square matrices:

(a) A non-square m × n matrix

A = (aij), i = 1, 2, . . . , m; j = 1, 2 . . . , n

is said to be diagonal if all the i, j entries are zero except possibly for i = j. For
example:

is a diagonal 3 × 2 matrix

whilst

is a diagonal 2 × 3 matrix

(b) The row rank of a m × n matrix A denotes the maximum number of linearly inde-
pendent rows of A, whilst the column rank of A denotes the maximum number of
linearly independent columns of A. It turns out that these are the same and referred
to simply as the rank of the matrix A and denoted by r = rank(A). It follows that

. The matrix A is said to be of full rank if .

For the 3 × 4 matrix

A = 

confirm that row rank (A) = column rank (A).

Solution Following the process outlined in Section 1.2.6 we reduce the matrix to row (column)
echelon form using row (column) elementary operations.

(a) Row rank: using elementary row operations

row 2 − 3 × row 1, row 3 − 2 × row 1

1.8

2 0

0 3

0 0

2 0 0

0 3 0

r min m n,( )≤ r min m n,( )=

Example 1.32

1 2 3   4

3 4 7 10

2 1 3   5

1 2 3   4

3 4 7 10

2 1 3   5
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multiply row 2 by 

row 3 + 3 × row 2

which is in row echelon form and indicating that

row rank (A) = 2

(b) Column rank: using elementary column operations

col2 – 2 × col1, col3 − 3 × col1, col4 – 4 × col1

col3 – col2, col4 – col2

which is in column echelon form and indicating that

column rank (A) = 2

confirming that

rank(A) = row rank (A) = column rank (A) = 2

Note that in this case the matrix A is not of full rank.

1 2 3 4

0 2– 2– 2–
0 3– 3– 3–

1
2
---–

1 2 3   4

0 1 1 1

0 3– 3– 3–

1 2 3 4

0 1 1 1

0 0 0 0

1 2 3   4

3 4 7 10

2 1 3   5

1 0 0 0

3 2– 2– 2–
2 3– 3– 3–

1 0 0 0

3 2– 0 0

2 3– 0 0
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1.8.1 Singular values

For a m × n matrix A the transposed matrix AT has dimension n × m so that the product
AAT is a square matrix of dimension m × m. This product is also a symmetric matrix
since

(AAT)T = (AT)T(AT) = AAT

It follows from Section 1.4.7 that the m × m matrix AAT has a full set of m linearly
independent eigenvectors u1, u2, . . . , um that are mutually orthogonal, and which
can be normalized to give the orthogonal normalized set (or orthonormal set) of
eigenvectors

û1, û2, . . . , ûm

with ûi
Tûj = δij (i, j = 1, 2, . . . , m), where δij is the Kronecker delta defined in

Section 1.3.2.
(Reminder: As indicated in Section 1.4.2 normalized eigenvectors are uniquely

determined up to a scale factor of ±1.) We then define the m × m orthogonal matrix Û
as a matrix having these normalized set of eigenvectors as its columns:

Û = [û1, û2, . . . , ûm] (1.42)

with Û TÛ = ÛÛ T = Im. Such a matrix is also called a unitary matrix.
Let λ1, λ2, . . . , λm be the corresponding eigenvalues of AAT that is

(AAT)ûi = λiûi, i = 1, 2, . . . , m

Considering the square of the length, or norm, of the vector Aûi then from orthogonality

| Aûi | 2 = (Aûi)
T(Aûi) = ûi

T(ATAû i) = û i
Tλiûi = λi

(Note: The notation ||Aûi ||2 is also frequently used.) Since |Aûi | 2 > 0 it follows that the
eigenvalues λi(i = 1, 2, . . . , m) of the matrix AAT are all non-negative and so can be
written in the form

λi = σ i
2, i = 1, 2, . . . , m

It is also assumed that they are arranged in a non-increasing order so that

σ 1
2 > σ 2

2 > . . . > σ m
2 > 0

Some of these eigenvalues may be zero. The number of non-zero values (accounting for
multiplicity) is equal to r the rank of the matrix A. Thus, if rank(A) = r then the matrix
AAT has eigenvalues

σ 1
2 > σ 2

2 > . . . > σ r
2 . 0 with σ 2

r+1 = . . . = σ m
2 = 0

The positive square roots of the non-zero eigenvalues of the matrix AAT are called the
singular values of the matrix A and play a similar role in general matrix theory that
eigenvalues play in the theory of square matrices. If the matrix A has rank r then it has
r singular values

σ1 > σ2 > . . . > σr . 0

In practice determining the singular values of a non-square matrix provides a means of
determining the rank of the matrix.
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For the matrix 

(a) Determine the eigenvalues and corresponding eigenvectors of the matrix AAT.

(b) Normalize the eigenvectors to obtain the corresponding orthogonal matrix Û and
confirm that ÛÛ T = I.

(c) What are the singular values of A?

(d) What is the rank of A?

Solution (a)

(Note that AAT is a symmetric matrix.)
The eigenvalues of AAT are given by the solutions of the equation

|AAT − λ I | = = 0

which reduces to

(12 − λ)(10 − λ)λ = 0

giving the eigenvalues as

λ1 = 12, λ2 = 10, λ3 = 0

Solving the homogeneous equations

(AAT − λ iI )ui = 0

gives the corresponding eigenvectors as:

u1 = [1 2 1]T, u2 = [2 −1 0]T, u3 = [1 2 −5]T

(b) The corresponding normalized eigenvectors are:

û1 = , û2 = , û3 = 

giving the corresponding orthogonal matrix

Û = [û1 û2 û3] = =

Example 1.33

A = 
3 −1

1 3

1 1

AAT = 
3 −1

1 3

1 1

3 1 1

1– 3 1
 = 

10 0 2

0 10 4

2 4 2

10 λ– 0 2

0 10 λ– 4

2 4 2 λ–

1

6
-------- 2

6
-------- 1

6
--------

T
2

5
-------- 1–

5
-------- 0

T
1

30
----------- 2

30
----------- 5–

30
-----------

T

1

6
-------- 2

5
-------- 1

30
-----------

2

6
-------- 1–

5
-------- 2

30
-----------

1

6
-------- 0  

5–

30
-----------

0.04082  0.8944 0.1826

0.8165  0.4472– 0.3651

0.4082  0.0000 0.9129–
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By direct multiplication

ÛÛ T = = 

confirming that ÛÛ T = I.
(c) The singular values of A are the square roots of the non-zero eigenvalues of AAT.

Thus the singular values of A are σ1 =  and σ2 = .

(d) The rank of A is equal to the number of singular values, giving rank (A ) = 2. This
can be confirmed by reducing A to echelon form.

Likewise, for a m × n matrix A the product ATA is a square n × n symmetric matrix,
having a full set of n orthogonal normalized eigenvectors v̂1, v̂2, . . . , v̂ n which form the
columns of the n × n orthogonal matrix V̂:

V̂ = [ v̂1 v̂1
. . . v̂ n] (1.43)

and having corresponding non-negative eigenvalues μ1, μ2, . . . , μn with

μ1 > μ2 > . . . > μn > 0 (1.44)

Again the number of non-zero eigenvalues equals r, the rank of A, so that the product
ATA has eigenvalues

μ1 > μ2 > . . . > μr . 0 with μr+1 = . . . = μn = 0

Thus

ATAv̂ i = μi v̂ i, μi . 0 (i = 1, 2, . . . , r) (1.45)

Premultiplying by A gives

(AAT)(Av̂i) = μi(Av̂i)

so that μi and (Av̂i) are an eigenvalue and eigenvector pair of the matrix AAT; indicating
that the non-zero eigenvalues of the product AAT are the same as the non-zero
eigenvalues of the product ATA. Thus if A is of rank r then the eigenvalues (1.44) of the
product ATA may be written as

σ 2 
i, i = 1, 2, . . . , r

μi = 
0, i = r + 1, . . . , n

In general the vector (Av̂i) is not a unit vector so

Av̂i = kûi (1.46)

and we need to show that k = σi. Taking the norm of (Av̂i) gives

|Av̂i |2 = (Av̂i)
T(Av̂i) = v̂i

TATAv̂i

= v̂i
Tμiv̂i from (1.45)

= μi = σ i
2

1

6
-------- 2

5
-------- 1

30
-----------

2

6
-------- 1–

5
-------- 2

30
-----------

1

6
--------  0 5–

30
-----------

1

6
--------   2

6
--------  1

6
--------

2

5
--------   1–

5
--------   0

1

30
----------- 2

30
----------- 5–

30
-----------

1 0 0

0 1 0

0 0 1

12 10

{
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giving

|Av̂i | = k = σi

It follows from (1.46) that

σiûi, i = 1, 2, . . . , r
(1.47)Av̂i = 

0, i = r + 1, . . . , m

Clearly the singular values of A may be determined by evaluating the eigenvalues of the
product AAT or the product ATA. The eigenvectors û1, û2, . . . , ûm of the product AAT

(that is the columns of Û ) are called the left singular vectors of A and the eigenvectors
v̂1, v̂2, . . . , v̂n of the product ATA (that is columns of V̂ ) are called the right singular
vectors of A.

For the matrix

(a) Determine the eigenvalues and corresponding eigenvectors of the product ATA.

(b) Normalize the eigenvectors to obtain the orthogonal matrix V̂.

(c) What are the singular values of A?

Solution (a)

The eigenvalues of ATA are given by the solutions of the equation

| ATA − μ I | = = 0

which reduces to

(μ − 12)(μ − 10) = 0

giving the eigenvalues as

μ1 = 12, μ2 = 10

Solving the homogeneous equations

(ATA − μiI ) vi = 0

gives the corresponding eigenvectors as

v1 = [1 1]T, v2 = [1 −1]T

{

Example 1.34

A = 
3 −1

1 3

1 1

ATA = 
3 1 1

1– 3 1

3 −1

1 3

1 1

 = 11 1
1 11

11  μ– 1

1 11  μ–
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(b) The corresponding normalized eigenvectors are:

v̂ 1 = , v̂2 = 

giving the orthogonal matrix

V̂ =  = 

(c) The singular values of A are the square roots of the non-zero eigenvalues of ATA.
Thus the singular values of A are:

σ1 =  =  = 3.4641 and σ2 =  = 3.1623

in agreement with the values obtained in Example 1.33.

1.8.2 Singular value decomposition (SVD)

For an m × n matrix A of rank r the m equations (1.47) can be written in the partitioned
form

A[v̂1v̂2 . . . v̂r | v̂r+1 . . . v̂n] = [û1û2 . . . ûr | ûr+1 . . . ûm]Σ (1.48)

where the matrix Σ has the form

Σ = 

where σ1, σ2, . . . , σr are the singular values of A. More precisely (1.48) may be
written as

AV̂ = ÛΣ

Using the orthogonality property V̂V̂T = I leads to the result

A = Û ΣV̂T (1.49)

Such a decomposition (or factorization) of a non-square matrix A is called the
singular value decomposition of A, commonly abbreviated as SVD of A. It is
analogous to the reduction to canonical (or diagonal) form of a square matrix developed
in Section 1.6.

1

2
-------- 1

2
--------

T
1

2
-------- 1–

2
--------

T

1

2
-------- 1

2
--------

1

2
-------- 1–

2
--------

0.7071 0.7071

0.7071 0.7071–

μ1 12 10

 σ1 0 . . . 0 0 . . . 0 

 0 σ2
. . . 0 0 . . . 0 

   %   %  
 0 0 . . . σr 0 . . . 0 

 0 0 . . . 0 0 . . . 0 

   %   %  
 0 0 . . . 0 0 . . . 0 

r

m − r

r n − r
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Find the SVD of the matrix

and verify your answer.

Solution The associated matrices Û and V̂ and the singular values of A were determined in
Examples 1.33 and 1.34 as:

Û = , V̂ = , σ1 =  and σ2 = 

From (1.49) it follows that the SVD of A is

A = 

Direct multiplication of the right-hand side confirms

The decomposition (1.47) can always be done. The non-zero diagonal elements of Σ
are uniquely determined as the singular values of A. The matrices Û and V̂ are not
unique and it is necessary to ensure that linear combinations of their columns
satisfy (1.47). This applies when the matrices have repeated eigenvalues, as illustrated
in Example 1.36.

Find the SVD of the matrix

Example 1.35

A = 
3 −1

1 3

1 1

1

6
-------- 2

5
-------- 1

30
-----------

2

6
-------- 1–

5
-------- 2

30
-----------

1

6
--------  0  

5–

30
-----------

1

2
-------- 1

2
--------

1

2
-------- 1–

2
--------

12 10

1

6
-------- 2

5
-------- 1

30
-----------

2

6
-------- 1–

5
-------- 2

30
-----------

1

6
--------  0  

5–

30
-----------

12  0

   0 10

   0   0

1

2
-------- 1

2
--------

1

2
-------- 1–

2
--------

A = 
3 −1

1 3

1 1

Example 1.36

A = 

1 0 0

0 2 0

0 0 2

0 0 0
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Solution

The product AAT has eigenvalues λ1 = 4, λ2 = 4, λ3 = 1 and λ4 = 0. Normalized eigenvectors
corresponding to λ3 and λ4 are respectively

û3 = [1 0 0 0]T and û4 = [0 0 0 1]T

Various possibilities exist for the repeated eigenvalues λ1 = λ2 = 4. Two possible choices
of normalized eigenvectors are

û1 = [0 1 0 0]T and û2 = [0 0 1 0]T

or

û ′1 = [0 1 1 0]T and û ′2 = [0 1 −1 0]T

(Note that the eigenvectors û ′1 and û ′2 are linear combinations of û1 and û2.) Likewise

and has eigenvalues μ1 = 4, μ2 = 4 and μ3 = 1. The normalized eigenvector corresponding
to the eigenvalue μ3 = 1 is

v̂3 = [1 0 0]T

and two possible choices for the eigenvectors corresponding to the repeated eigenvalue
μ1 = μ2 = 4 are

v̂1 = [0 1 0]T and v̂2 = [0 0 1]T

or

v̂1′ = [0 1 1]T and v̂1′ = [0 1 −1]T

The singular values of A are σ1 = 2, σ2 = 2 and σ3 = 1 giving

Considering the requirements (1.47) it is readily confirmed that

Av̂1 = σ1û1, Av̂2 = σ2û2 and Av̂3 = σ3û3

AAT = 

1 0 0

0 2 0

0 0 2

0 0 0

1 0 0 0

0 2 0 0

0 0 2 0

 = 

1 0 0 0

0 4 0 0

0 0 4 0

0 0 0 0

1

2
-------- 1

2
--------

ATA = 
1 0 0 0

0 2 0 0

0 0 2 0

1 0 0

0 2 0

0 0 2

0 0 0

 = 
1 0 0

0 4 0

0 0 4

1

2
-------- 1

2
--------

Σ = 

2 0 0

0 2 0

0 0 1

0 0 0
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so that

 and 

reduces A to the SVD form A = Û1ΣV̂1
T.

Also, it can be confirmed that

Av̂1′ = σ1û1′, Av̂2′ = σ2û2′, Av̂3 = σ3û3

so that the matrix pair

,

reduces A to the SVD form

A = Û2ΣV̂2
T

However, the corresponding columns of the matrix pair Û2, V̂1 do not satisfy conditions
(1.47) and

A ≠ Û2ΣV̂1
T

To ensure that conditions (1.47) are satisfied it is advisable to select the normalized
eigenvectors v̂i first and then determine the corresponding normalized eigenvectors ûi

directly from (1.47).

1.8.3 Pseudo inverse

In Section 1.2.5 we considered the solution of the system of simultaneous linear
equation

Ax = b (1.50)

where A is the n × n square matrix of coefficients and x is the n vector of unknowns.
Here the number of equations is equal to the number of unknowns and a unique solution

x = A−1b (1.51)

exists if and only if the matrix A is non-singular.
There are situations when the matrix A is singular or a non-square m × n matrix. If

the matrix A is a m × n matrix then:

● if m > n there are more equations than unknowns and this represents the over
determined case;

● if m < n there are fewer equations than unknowns and this represents the under
determined case.

Û1 = 

0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

V̂1 = 
0 0 1

1 0 0

0 1 0

Û2 = 

0 0    1 0
1

2

--------- 1

2

---------   0 0

1

2

--------- 1

2

---------– 0 0

0 0  0 1

V̂2 = 

0 0    1
1

2

--------- 1

2

---------   0

1

2

--------- 1

2

---------– 0
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Clearly approximate solution vectors x are desirable in such cases. This can be achieved
using the SVD form (1.49) of a m × n matrix A. Recognizing the orthogonality of Û
and V̂ the following matrix A † is defined

A † = V̂Σ*Û T (1.52)

where Σ* is the transpose of Σ in which the singular values σi of A are replaced by their
reciprocals. The matrix A † is called the pseudo inverse (or generalized inverse) of the
matrix A. It is also frequently referred to as the Moore–Penrose pseudo inverse of A.
It exists for any matrix A including singular square matrices and non-square matrices.
In the particular case when A is a square non-singular matrix A † = A −1. Since

A †A = 

a solution of (1.50) is A †Ax = A †b, that is

x = A †b (1.53)

This is the least squares solution of (1.50) in that it minimizes (Ax − b)T(Ax − b), the
sum of the squares of the errors.

Determine the pseudo inverse of the matrix

and confirm that A †A  = I.

Solution From Example 1.35 the SVD of A is

A = ÛΣV̂T = 

The matrix Σ* is obtained by taking the transpose of Σ and inverting the non-zero
diagonal elements, giving

Σ* = 

so from (1.52) the pseudo inverse is

A † = V̂Σ*Û T = 

I  0
. . .  . . .

0  0

Example 1.37

A = 
3 −1

1 3

1 1

1

6
-------- 2

5
-------- 1

30
-----------

2

6
-------- 1–

5
-------- 2

30
-----------

1

6
--------  0  

5–

30
-----------

12    0

   0   10

   0  0

1

2
-------- 1

2
--------

1

2
-------- 1–

2
--------

1

12
-----------  0  0

   0  1

10
-----------  0

1

2
-------- 1

2
--------

1

2
-------- 1–

2
--------

1

12
-----------  0  0

   0  1

10
-----------  0

1

6
-------- 2

6
-------- 1

6
--------

2

5
-------- 1–

5
-------- 0

1

30
----------- 2

30
----------- 5–

30
-----------

 = 1
60
------

17    4 5

7– 16 5
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Direct multiplication gives

A †A =  = I

so that A † is a left inverse of A. However, A † cannot be a right inverse of A.

We noted in the solution to Example 1.37 that whilst A † was a left inverse of A it was
not a right inverse. Indeed a matrix with more rows than columns cannot have a right
inverse, but it will have a left inverse if such an inverse exists. Likewise, a matrix with
more columns than rows cannot have a left inverse, but will have a right inverse if such
an inverse exists.

There are other ways of computing the pseudo inverse, without having to use SVD.
However, most are more restrictive in use and not so generally applicable as the SVD
method. It has been shown that A † is a unique pseudo inverse of an m × n matrix A
provided it satisfies the following three conditions:

AA † and A †A are symmetric
AA †A = A (1.54)
A †AA † = A †

For example, if an m × n matrix A is of full rank then the pseudo inverse may be
calculated as follows:

if m > n then A † = (ATA)−1AT (1.55a)

if m < n then A † = AT(AAT)−1 (1.55b)

It is left as an exercise to confirm that these two forms satisfy conditions (1.54).

(a) Without using SVD determine the pseudo inverse of the matrix

(b) Find the least squares solution of the following systems of simultaneous linear
equations

(i) 3x − y = 2 (ii) 3x − y = 2
x + 3y = 4 x + 3y = 2
x + y = 2 x + y = 2

and comment on the answers.

1
60
------

17    4 5

7– 16 5

3 −1

1 3

1 1

 =  1
60
------

60  0

0  60

Example 1.38

A = 
3 −1

1 3

1 1
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Solution (a) From the solution to Example 1.33 rank(A ) = 2, so the matrix A is of full rank.
Since in this case m > n we can use (1.55a) to determine the pseudo inverse as

A † = (ATA )−1AT= 

= 

=  = 

in agreement with the result obtained in Example 1.37.

(b) Both (i) and (ii) are examples of over determined (or over specified) sets of
equations Ax = b with A being an m × n matrix, m > n, b being an m-vector and
x an n-vector of unknowns. Considering the augmented matrix (A:b) then:

● if rank(A:b) > rank(A ) the equations are inconsistent and there is no solution
(this is the most common situation for over specified sets of equations);

● if rank(A:b) = rank(A ) some of the equations are redundant and there is a
solution containing n − rank(A ) free parameters.

(See Section 5.6 of MEM.)
Considering case (i) 

A = , b = and x = 

rank(A:b) = rank  = 2 = rank(A) from (a).

Thus the equations are consistent and a unique solution exists. The least squares
solution is

 = A †b =  = 

which gives the unique solution x = y = 1.
Considering case (ii) A and x are the same as in (i) and b = [2 2 2]T

rank(A:b) = rank  = 3 > rank(A ) = 2

11 1 

1 11

1–
3 1 1

1– 3 1

1
120
---------

11 1–
1– 11

3 1 1

1– 3 1

1
60
------

17 4 5

7– 16 5

0.2833 0.0667 0.0833

0.1167– 0.2667 0.0833

3 −1

1 3

1 1

2

4

2

x

y

3 1– 2

1 3 4

1 1 2

x

y
1
60
------

17 4 5

7– 16 5

2

4

2

1

1

3 1– 2

1 3 2

1 1 2
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Thus the equations are inconsistent and there is no unique solution. The least
squares solution is

 = A †b =  = 

giving x =  and y = .

As indicated earlier, the least squares solution x = A †b of the system of equations Ax = b
is the solution that minimizes the square of the error vector r = (Ax − b); that is, minimizes
(Ax − b)T(Ax − b).

In practice, data associated with individual equations within the set may not be
equally reliable; so more importance may be attached to some of the errors ri. To
accommodate for this, a weighting factor (positive number) wi is given to the ith equation
(i = 1, 2, . . . , m) and the least squares solution is the solution that minimizes the square
of the vector W(Ax − b), where W is the is the n × n diagonal matrix having the square
roots wi of the weighting factors as its diagonal entries; that is

W = 

The larger wi the closer the fit of the least squares solution to the ith equation; the
smaller wi the poorer the fit. Care over weighting must be taken when using least
squares solution packages. Most times one would notice the heavy weighting, but in
automated systems one probably would not notice. Exercise 48 serves to illustrate.

In MATLAB the command

svd(A)

returns the singluar values of A in non-decreasing order; whilst the command

[U,S,V]=svd(A)

returns the diagonal matrix S = Σ and the two unitary matrices U = Û and V = V̂ such
that A = ÛSV̂T. The commands

A=sym(A);
svd(A)

return the singular values of the matrix A in symbolic form. Symbolic singular vec-
tors are not available. The command

pinv(A)

returns the pseudo inverse of the matrix A using the SVD form of A.
Using the matrix A of Examples 1.35, 1.36, 1.38 and 1.39 the commands

A=[3 -1;1 3;1 1];
[U,S,V]=svd(A)

x

y
1
60
------

17 4 5

7– 16 5

2

2

2

1
15
------

13

7

13
15
------ 7

15
------

       

     

  

    

w1

0


0

0

0


wm

0

w2


1

"
"
%
"
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return

-0.4082 0.8944 -0.1826
U=-0.8165 -0.4472 -0.3651

-0.4082 -0.0000 0.9129

3.4641 0
S= 0 3.1623

0 0

–0.7071 0.7071
V=

–0.7071 –0.7071

The additional command

pinv(A)

returns the pseudo inverse of A  as

0.2833 0.0667 0.0833
-0.1167 0.2667 0.0833

The commands

A=[3 -1;1 3;1 1];
a=sym(A);
S=svd(a)

return

2*3^(1/2)
S=

10^(1/2)

In MAPLE the commands

with(LinearAlgebra):
A:=Matrix([[3,–1],[1,3],[1,1]]);
svd:=SingularValues(A,output=[’U’,’S’,’Vt’]);

return

where the singular values are expressed as a vector. To output the values of U and Vt
separately and to output the singular values as a matrix the following additional com-
mands may be used:

U:=svd[l];
Vt:=svd[3];
SS:=matrix(3,2,(i,j) → if i=j then svd[2][i]else 0 
fi);#output the singular values into a 3 2 matrix

The further command

U.SS.Vt;

gives the output

svd=

0.4082– 0.8944 0.1826–
0.8165– 0.4472– 0.3651–

0.4082– 1.9429– 10 16–× 0.9129

3.4641

3.1623

0.0000

0.7071– 0.7071–
0.7071 0.07071–

, ,

3.0000 1.0000–
1.0000 3.0000

1.000 1.000
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confirming that we reproduce A.
To obtain the pseudo inverse using MAPLE the normal matrix inverse command

is used. Thus the commands

with(LinearAlgebra):
A:=Matrix([[3,–1],[1,3],[1,1]]);
MatrixInverse(A);

return

in agreement with the answer obtained in Example 1.37.

17
60
------ 1

15
------ 1

12
------

7
60
------– 4

15
------ 1

12
------

Use MATLAB or MAPLE to check your answers.

Considering the matrix

(a) Determine row rank (A) and column rank (A).

(b) Is the matrix A of full rank?

(a) Find the SVD form of the matrix

(b) Use SVD to determine the pseudo inverse A† of 
the matrix A. Confirm that A†A = I.

(c) Determine the pseudo inverse without using 
SVD.

Show that the matrix

is of full rank. Without using SVD determine its 
pseudo inverse A† and confirm that A†A = I.

Considering the matrix

(a) What is the rank of A?

(b) Find the SVD of A.

(c) Find the pseudo inverse A† of A and confirm 
that AA†A = A and A†AA† = A†.

(d) Find the least squares solution of the 
simultaneous equations

x − y = 1, −2x + 2y = 2, 2x − 2y = 3

(e) Confirm the answer to (d) by minimizing the 
square of the error vector

(Ax − b) where b = [1 2 3]T.

Considering the matrix

(a) Use the pseudo inverse A† determined in 
Example 1.37 to find the least squares solution 
for the simultaneous equations

3x − y = 1, x + 3y = 2, x + y = 3

1.8.4 Exercises

42

A = 
1 2 3 4

3 4 7 10

2 1 5 7

43

A = 4 11 14

8 7 2–

44

A = 

1 1

3 0

2– 1

0 2

1– 2

45

A = 
1 1–
2– 2

2 2–

46

A = 
3 1–
1 3

1 1
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State-space representation
In Section 10.11.2 of MEM it was illustrated how the solution of differential equation
initial value problems of order n can be reduced to the solution of a set n of first-order
differential equations, each with an initial condition. In this section we apply matrix
techniques to obtain the solution of such systems.

1.9.1 Single-input–single-output (SISO) systems
First let us consider the single-input–single-output (SISO) system characterized by
the nth-order linear differential equation

(1.56)

where the coefficients ai (i = 0, 1, . . . , n) are constants with an ≠ 0 and it is assumed
that the initial conditions y (0), y (1)(0), . . . , y (n−1)(0) are known.

We introduce the n variables x1(t ), x2(t), . . . , xn(t ) defined by

x1(t ) = y(t)

 = ·x1(t)

 = ·x2(t)



1.9

an
dny

dtn
-------- an−1

dn−1y

dtn−1
------------ . . . a1

dy
dt
------ a0y+ + + +  = u t( )

x2 t( ) = dy
dt
------

x3 t( ) = d
2y

dt2
--------

(b) Confirm the answer to (a) by minimizing the 
square of the error vector

(Ax − b) where b = [1 2 3]T.

(c) By drawing the straight lines represented by the 
equations illustrate your answer graphically.

Considering the matrix

(a) Show that A is of full rank.

(b) Determine the pseudo inverse A†.

(c) Show that the A† obtained satisfies the four 
conditions (1.54).

Find the least squares solution of the following pairs 
of simultaneous linear equations.

(a) (i) 2x + y = 3 (ii) 2x + y = 3
x + 2y = 3 x + 2y = 3
x + y = 2 x + y = 3

(b) (i) 2x + y = 3 (ii) 2x + y = 3
x + 2y = 3 x + 2y = 3
10x + 10y = 20 10x + 10y = 30

(c) (i) 2x + y = 3 (ii) 2x + y = 3
x + 2y = 3 x + 2y = 3
100x + 100y = 200 100x + 100y = 300

Comment on your answers.

By representing the data in the matrix form Az = y, 
where z = [m c]T, use the pseudo inverse to find the 
values of m and c which provide the least squares fit 
to the linear model y = mx + c for the following data.

(Compare with Example 2.17 in MEM.)

47

A = 

1 0 2–
0 1 1–
1– 1 1

2 1– 2

48

k 1 2 3 4 5
xk 0 1 2 3 4
yk 1 1 2 2 3

49
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where, as usual, a dot denotes differentiation with respect to time t. Then, by substituting
in (1.56), we have

an
·xn + an−1xn + an−2xn−1 + . . . + a1x2 + a0x1 = u(t)

giving

Thus, we can represent (1.56) as a system of n simultaneous first-order differential
equations

·x1 = x2, 
·x2 = x3 " ·xn−1 = xn

which may be written as the vector–matrix differential equation

(1.57)

(Note: Clearly x1, x2, . . . , xn and u are functions of t and strictly should be written as
x1(t), x2(t), . . . , xn(t) and u(t). For the sake of convenience and notational simplicity the
argument (t) is frequently omitted when the context is clear.)

Equation (1.57) may be written in the more concise form

·x = Ax + bu (1.58a)

The vector x(t) is called the system state vector, and it contains all the information that
one needs to know about the behaviour of the system. Its components are the n state
variables x1, x2, . . . , xn, which may be considered as representing a set of coordinate
axes in the n-dimensional coordinate space over which x(t) ranges. This is referred to
as the state space, and as time increases the state vector x(t) will describe a locus in this
space called a trajectory. In two dimensions the state space reduces to the phase plane.
The matrix A is called the system matrix and the particular form adopted in (1.57) is
known as the companion form, which is widely adopted in practice. Equation (1.58a)
is referred to as the system state equation.

xn−1 t( ) = d
n−2y

dtn−2
------------  = x·n−2 t( )

xn t( ) = d
n−1y

dtn−1
------------  = x·n−1 t( )

x·n = −an−1

an

--------- xn

an−2

an

--------- xn−1– . . . a1

an

----- x2– a0

an

----- x1– 1
an

----- u+–

x·n = −a0

an

----- x1
a1

an

----- x2– . . . an−1

an

--------- xn– 1
an

----- u+–

x·1

x·2


x·n−1

x·n

 = 

0 1 0 . . . 0 0

0 0 1 . . . 0 0

      
0 0 0 . . . 0 1

−a0

an

-------- −a1

an

-------- −a2

an

-------- . . . −an−2

an

------------- −an−1

an

-------------

x1

x2


xn−1

xn

0

0


0

1
an

-----

u t( )+
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The output, or response, of the system determined by (1.56) is given by y, which in
terms of the state variables is determined by x1. Thus

or, more concisely,

y = cTx (1.58b)

where c = [1 0 . . . 0]T.
A distinct advantage of the vector–matrix approach is that it is applicable to

multivariable (that is, multi-input–multi-output MIMO) systems, dealt with in Section
1.9.2. In such cases it is particularly important to distinguish between the system state
variables and the system outputs, which, in general, are linear combinations of the
state variables.

Together the pair of equations (1.58a,b) in the form
·x = Ax + bu (1.59a)

y = cTx (1.59b)

constitute the dynamic equations of the system and are commonly referred to as the
state-space model representation of the system. Such a representation forms the basis
of the so-called ‘modern approach’ to the analysis and design of control systems in
engineering. An obvious advantage of adopting the vector–matrix representation (1.59)
is the compactness of the notation.

More generally the output y could be a linear combination of both the state and input,
so that the more general form of the system dynamic equations (1.59) is

·x = Ax + bu (1.60a)

y = cTx + du (1.60b)

Comment

It is important to realize that the choice of state variables x1, x2, . . . , xn is not unique.
For example, for the system represented by (1.56) we could also take

, , . . . , xn = y

leading to the state-space model (1.59) with

, , (1.61)

y = 1 0 . . . 0[ ]

x1

x2


xn

x1 = d
n−1y

dt n−1
------------ x2 = d

n−2y

dt n−2
------------

A = 

−an−1

an

--------- −an−2

an

--------- . . . −a1

an

----- −a0

an

-----

1 0 . . . 0 0

0 1 . . . 0 0

     
0 0 . . . 1 0

b = 

1
an

-----

0



0

c = 

0

0


1
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Obtain a state-space representation of the system characterized by the third-order
differential equation

(1.62)

Solution Writing

x1 = y, ,

we have, from (1.62),

 = 4x1 − 2x2 − 3x3 + e−t

Thus the corresponding state equation is

with the output y being given by

These two equations then constitute the state-space representation of the system.

We now proceed to consider the more general SISO system characterized by the
differential equation

(1.63)

in which the input involves derivative terms. Again there are various ways of representing
(1.63) in the state-space form, depending on the choice of the state variables. As an illus-
tration, we shall consider one possible approach, introducing others in the exercises.

We define A and b as in (1.57); that is, we take A to be the companion matrix of the
left-hand side of (1.63), giving

Example 1.39

d3y

dt3
-------- 3

d2y

dt2
-------- 2

dy

dt
------ 4y–+ +  = e−t

x2 = dy

dt
------  = x·1 x3 = d

2y

dt2
--------  = x·2

x·3 = d
3y

dt3
--------  = 4y 2

dy

dt
------– 3

d2y

dt2
--------– e−t+

x·1

x·2

x·3

 = 
0 1 0

0 0 1

4 −2 −3

x1

x2

x3

0

0

1

e−t+

y = x1 = 1 0 0[ ]
x1

x2

x3

dny

dtn
-------- an−1

dn−1y

dtn−1
------------ . . . a0y+ + +  = bm

dmu

dtm
--------- . . . b0u m  n≤( )+ +

A = 

0 1 0 . . . 0 0

0 0 1

    
0 0 0 . . . 0 1

−a0 −a1 −a2 . . . −an−2 −an−1
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and we take b = [0 0 . . . 0 1]T. In order to achieve the desired response, the
vector c is then chosen to be

c = [b0 b1
. . . bm 0 . . . 0]T (1.64)

It is left as an exercise to confirm that this choice is appropriate (see also Section 5.4.1).

Obtain the state-space model for the system characterized by the differential equation
model

(1.65)

Solution Taking A to be the companion matrix of the left-hand side in (1.65)

and b = [0 0 1] T

we have, from (1.64),

c = [1 1 5] T

Then from (1.59) the state-space model becomes

·x = Ax + bu, y = cTx

This model structure may be depicted by the block diagram of Figure 1.2. It provides
an ideal model for simulation studies, with the state variables being the outputs of the
various integrators involved.

A distinct advantage of this approach to obtaining the state-space model is that A, b
and c are readily written down. A possible disadvantage in some applications is that the
output y itself is not a state variable. An approach in which y is a state variable is
developed in Exercise 44, Section 5.4.2. In practice, it is also fairly common to choose
the state variables from a physical consideration.

Example 1.40

d3y

dt3
-------- 6

d2y

dt2
-------- 11

dy

dt
------ 3y+ + +  = 5

d2u

dt2
-------- du

dt
------ u+ +

A = 
0 1 0

0 0 1

−3 −11 −6

u(t)

x3 x2

y
x1

+
_
_
_

+

+

+∫ ∫ ∫

6

11

3

1

5

1

Figure 1.2
Block diagram for the 
state-space model of 
Example 1.40.
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1.9.2 Multi-input–multi-output (MIMO) systems

Many practical systems are multivariable in nature, being characterized by having more
than one input and/or more than one output. In general terms, the state-space model is
similar to that in (1.60) for SISO systems, except that the input is now a vector u(t) as is
the output y(t). Thus the more general form, corresponding to (1.60), of the state-space
model representation of an nth-order multi-input–multi-output (MIMO) system
subject to r inputs and l outputs is

(1.66a)

(1.66b)

where x is the n-state vector, u is the r-input vector, y is the l-output vector, A is the n × n
system matrix, B is the n × r control (or input) matrix, and C and D are respectively l × n
and l × r output matrices.

Obtain the state-space model representation characterizing the two-input–one-output
parallel network shown in Figure 1.3 in the form

·x = Ax + Bu, y = cTx + d Tu

where the elements x1, x2, x3 of x and u1, u2 of u are as indicated in the figure, and the
output y is the voltage drop across the inductor L1 (vC denotes the voltage drop across
the capacitor C ).

Solution Applying Kirchhoff ’s second law (see Chapter 5 and Section 11.4.1 of MEM) to each
of the two loops in turn gives

(1.67)

(1.68)

The voltage drop vC across the capacitor C is given by

·vC = (i1 + i2) (1.69)

The output y, being the voltage drop across the inductor L1, is given by

x· = Ax Bu+
y = Cx Du+ 




Example 1.41

Figure 1.3
Parallel circuit of 
Example 1.41.

R1i1 L1
di1

dt
------- vC+ +  = e1

L2
di2

dt
------- vC+  = e2

1
C
----

y = L1
di1

dt
-------
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which, using (1.67), gives

y = −R1i1 − vC + e1 (1.70)

Writing x1 = i1, x2 = i2, x3 = vC, u1 = e1 and u2 = e2, (1.67)− (1.70) give the state-space
representation as

which is of the required form

x·  = Ax + Bu

y = cTx + d Tu

x·1

 

x·2

x·3

 = 

−
R1

L1

----- 0 − 1
L1

-----

0 0 − 1
L2

-----

1
C
---- 1

C
---- 0

x1

 

x2

x3

 + 

1
L1

----- 0

0
1
L2

-----

0 0

u1

u2

y = R– 1 0 −1[ ]

x1

x2

x3

1 0[ ]
u1

u2

+

Obtain the state-space forms of the differential 
equations

(a)

(b)

using the companion form of the system matrix in 
each case.

Obtain the state-space form of the differential 
equation models

(a)

(b)

using the companion form of the system matrix in 
each case.

Obtain the state-space model of the single-input–
single-output network system of Figure 1.4 in the 
form ·x = Ax + bu, y = cTx, where u, y and the 
elements x1, x2, x3 of x are as indicated.

The mass–spring–damper system of Figure 1.5 
models the suspension system of a quarter-car. 
Obtain a state-space model in which the output 
represents the body mass vertical movement y 
and the input represents the tyre vertical movement 

1.9.3 Exercises

50

d3y

dt3
-------- 4

d2y

dt2
-------- 5

dy

dt
------ 4y+ + +  = u t( )

d4y

dt4
-------- 2

d2y

dt2
-------- 4

dy

dt
------+ +  = 5u t( )

51

d3y

dt3
-------- 6

d2y

dt2
-------- 5

dy

dt
------ 7y+ + +  = 

d2u

dt2
-------- 3

du
dt
------ 5u+ +

d3y

dt3
-------- 4

d2y

dt2
-------- 3

dy

dt
------+ +  = 

d2u

dt2
-------- 3

du
dt
------ 2u+ +

52

Figure 1.4 Network of Exercise 52.

53
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Solution of the state equation
In this section we are concerned with seeking the solution of the state equation

·x = Ax + Bu (1.71)

given the value of x at some initial time t0 to be x0. Having obtained the solution of this
state equation, a system response y may then be readily written down from the linear
transformation (1.66b). As mentioned in Section 1.9.1, an obvious advantage of adopt-
ing the vector–matrix notation of (1.71) is its compactness. In this section we shall see
that another distinct advantage is that (1.71) behaves very much like the corresponding
first-order scalar differential equation

= ax + bu, x(t0) = x0 (1.72)

1.10.1 Direct form of the solution

Before considering the nth-order system represented by (1.71), let us first briefly review the
solution of (1.72). When the input u is zero, (1.72) reduces to the homogeneous equation

(1.73)

which, by separation of variables,

gives

ln x − ln x0 = a(t − t0)

1.10

dx
dt
------

dx
dt
------  = ax

#
x0

x
dx
x

------  = #
t0

t

a dt

u(t) due to the road surface. All displacements are 
measured from equilibrium positions.

Obtain the state-space model, in the form 
x· = Ax + bu, y = Cx + d Tu of the one-input–
two-output network illustrated in Figure 1.6. The 
elements x1, x2 of the state vector x and y1, y2 of 
the output vector y are as indicated. If R1 = 1 kΩ, 
R2 = 5 kΩ, R3 = R4 = 3 kΩ, C1 = C2 = 1 μF 
calculate the eigenvalues of the system 
matrix A.

Figure 1.5 Quarter-car suspension model of 
Exercise 53.

54

Figure 1.6 Network of Exercise 54.
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leading to the solution

(1.74)

for the unforced system.
If we consider the nonhomogeneous equation (1.72) directly, a solution can be

obtained by first multiplying throughout by the integrating factor e−at to obtain

or

which on integration gives

leading to the solution

(1.75)

The first term of the solution, which corresponds to the solution of the unforced system,
is a complementary function, while the convolution integral constituting the second
term, which is dependent on the forcing function u(t), is a particular integral.

Returning to (1.71), we first consider the unforced homogeneous system

x·  = Ax, x(t0) = x0 (1.76)

which represents the situation when the system is ‘relaxing’ from an initial state.
The solution is completely analogous to the solution (1.74) of the scalar equation (1.73),

and is of the form

(1.77)

It is readily shown that this is a solution of (1.76). Using (1.33), differentiation of (1.77)
gives

so that (1.76) is satisfied. Also, from (1.77),

using e0 = I. Thus, since (1.77) satisfies the differential equation and the initial condi-
tions, it represents the unique solution of (1.76).

Likewise, the nonhomogeneous equation (1.71) may be solved in an analogous man-
ner to that used for solving (1.72). Premultiplying (1.71) throughout by e−At, we obtain

e−At (x · − Ax) = eAtBu(t )

or using (1.33),

x = x0 e
a t−t0( )

e−at dx
dt
------ ax–
 
   = e−at bu t( )

d
dt
----- e−at x( ) = e−at bu t( )

e−at x e
−at0 x0–  = #

t0

t

e−aτ bu τ( ) dτ

x t( ) = ea t−t0( )
x0 #

t0

t

ea t−τ( ) bu τ( ) dτ+

x = eA t−t0( ) x0

x·  = A e
A t−t0( ) x0 = A x

x t0( ) = eA t0−t0( ) x0 = Ix0 = x0

d
dt
----- e−At x( ) = e−AtBu t( )
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Integration then gives

leading to the solution

This is analogous to the solution given in (1.75) for the scalar equation (1.72). Again it
contains two terms: one dependent on the initial state and corresponding to the solution
of the unforced system, and one a convolution integral arising from the input. Having
obtained the solution of the state equation, the system output y(t) is then readily obtained
from (1.66b).

1.10.2 The transition matrix

The matrix exponential is referred to as the fundamental or transition matrix
and is frequently denoted by Φ (t, t0), so that (1.77) is written as

x (t ) = Φ (t, t0)x0 (1.79)

This is an important matrix, which can be used to characterize a linear system, and in
the absence of any input it maps a given state x0 at any time t0 to the state x (t ) at any
time t, as illustrated in Figure 1.7(a).

Using the properties of the exponential matrix given in Section 1.7, certain properties
of the transition matrix may be deduced. From

it follows that Φ (t, t0) satisfies the transition property

Φ (t2, t0) = Φ (t2, t1)Φ (t1, t0) (1.80)

for any t0, t1 and t2, as illustrated in Figure 1.7(b). From

eA t  e−A t = I

it follows that the inverse Φ −1(t, t0) of the transition matrix is obtained by negating time,
so that

Φ −1(t, t0) = Φ (−t, −t0) = Φ (t0, t) (1.81)

for any t0 and t, as illustrated in Figure 1.7(c).

e−Atx t( ) e
−At0x0–  = #

t0

t

e−AτBu τ( ) dτ

(1.78)x t( ) = e
A t−t0( )

x0 #
t0

t

eA t−τ( )Bu τ( ) dτ+

e
A t−t0( )

(t, t0)

x(t2) x(t)

–1(t, t0)

x(t1)

x(t0)x(t0)x(t0)

x(t)

F (t, t0)F

F

(t0, t2)F
(t2, t1)F

(t1, t0)F

(b)(a) (c)

Figure 1.7
(a) Transition 
matrix Φ (t, t0). 
(b) The transition 
property. 
(c) The inverse 
Φ −1(t, t0).

e
A t1+t2( ) = eAt1 e

At2



1.10  SOLUTION OF THE STATE EQUATION 89

1.10.3 Evaluating the transition matrix

Since, when dealing with time-invariant systems, there is no loss of generality in taking
t0 = 0, we shall, for convenience, consider the evaluation of the transition matrix

Φ (t ) = Φ (t, 0) = eA t

Clearly, methods of evaluating this are readily applicable to the evaluation of

Φ (t, τ ) = eA(t−τ )

Indeed, since A is a constant matrix,

Φ (t, τ ) = Φ (t − τ, 0)

so, having obtained Φ (t), we can write down Φ (t, τ) by simply replacing t by t − τ.
Since A is a constant matrix the methods discussed in Section 1.7 are applicable for

evaluating the transition matrix. From (1.31a),

A system is characterized by the state equation

Given that the input is the unit step function

and initially

x1(0) = x2(0) = 1

deduce the state x (t ) = [x1(t ) x2(t )]T of the system at subsequent time t.

Solution From (1.78), the solution is given by

(1.83)

where

, b = [1 1]T

eA t = α 0(t )I + α1(t )A + α 2(t )A2 + . . . + αn−1(t )An−1 (1.82a)

where, using (1.31b), the αi(t ) (i = 0, 1, . . . , n − 1) are obtained by solving simulta-
neously the n equations

 = α 0(t ) + α1(t )λ j + α 2(t )λ2
j + . . . + αn−1(t ) (1.82b)

where λ j ( j = 1, 2, . . . , n) are the eigenvalues of A. As in Section 1.7, if A has
repeated eigenvalues then derivatives of eλ t, with respect to λ, will have to be used.

e
λj t λ j

n−1

Example 1.42

x·1 t( )
x·2 t( )

 = −1 0

1 −3

x1 t( )
x2 t( )

1

1
u t( )+

u t( ) = H t( ) = 
0 t 0<( )
1 t 0≥( )




x t( ) = eAt x 0( ) #
0

t

eA t−τ( ) bu τ( ) dτ+

A = 
−1 0

1 −3
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Since A is a 2 × 2 matrix, it follows from (1.82a) that

eA t = α 0(t)I + α1(t )A

The eigenvalues of A are λ1 = −1 and λ 2 = −3, so, using (1.82b), we have

α 0(t ) = (3e−t − e−3t), α1(t) = (e−t − e−3t)

giving

Thus the first term in (1.83) becomes

and the second term is

 

 

Substituting back in (1.83) gives the required solution

That is,

x1(t ) = 1, x2(t ) =

1
2
--- 1

2
---

eAt = 
e−t 0

1
2
--- e−t e−3t–( ) e−3t

eAt x 0( ) = 
e−t 0

1
2
--- e−t e−3t–( ) e−3t

1

1
 = 

e−t

1
2
--- e−t e−3t+( )

#
0

t

eA t−τ( ) bu(τ ) dτ  = #
0

t
e− t−τ( ) 0

1
2
--- e− t−τ( ) e−3 t−τ( )–( ) e−3 t−τ( )

1

1
1 dτ

= #
0

t
e− t−τ( )

1
2
--- e− t−τ( ) e−3 t−τ( )+( )

dτ = 
e− t−τ( )

1
2
--- e− t−τ( ) 1

3
---e

−3 t−τ( )+( )
0

t

= 
e−0

1
2
--- e−0 1

3
--- e

−0+( )

e−t

1
2
--- e−t 1

3
---e

−3t+( )
–

= 
1 e−t–

2
3
--- 1

2
--- e−t– 1

6
--- e−3t–

x t( ) = 
e−t

1
2
--- e−t e−3t+( )

1 e−t–
2
3
--- 1

2
--- e−t– 1

6
--- e−3t–

 = 
1

2
3
--- 1

3
--- e

−3t+
+

2
3
--- 1

3
--- e

−3t+
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Using the Symbolic Math Toolbox in MATLAB the transition matrix eA t is generated
by the sequence of commands

syms t
A=[specify];
A=sym(A);
E=expm(t*A);
pretty(E)

Confirm this using the matrix A = [−1 0; 1 –3] of Example 1.42.
In MAPLE eA t is returned by the commands

with(LinearAlgebra):
A:=Matrix([[-1,0], [1,-3]]);
MatrixExponential(A,t);

Check your answers using MATLAB or MAPLE whenever possible.

Obtain the transition matrix Φ (t) of the system

x·  = Ax

where

Verify that Φ(t) has the following properties:

(a) Φ (0) = I ;
(b) Φ (t2) = Φ (t2 − t1)Φ(t1);

(c) Φ −1(t) = Φ(−t).

Writing x1 = y and x2 = dy/dt express the differential 
equation

in the vector–matrix form x·  = Ax, x = [x1 x2]
T. 

Obtain the transition matrix and hence solve the 
differential equation given that y = dy/dt = 1 when 
t = 0. Confirm your answer by direct solution of the 
second-order differential equation.

Solve

subject to x(0) = [1 1]T.

Find the solution of

where u(t) = 2 and x(0) = [1 −1]T.

Using (1.78), find the response for t > 0 of the 
system

x· 1 = x2 + 2u

x· 2 = −2x1 − 3x2

to an input u(t) = e−t and subject to the initial 
conditions x1(0) = 0, x2(0) = 1.

A system is governed by the vector–matrix 
differential equation

where x(t) and u(t) are respectively the state 
and input vectors of the system. Determine 
the transition matrix of this system, and hence 
obtain an explicit expression for x(t) for the input 
u(t) = [4 3]T and subject to the initial condition 
x(0) = [1 2]T.

1.10.4 Exercises

55

A = 
1 0

1 1

56

d2y

dt2
-------- 2

dy
dt
------ y+ +  = 0

57

x· = 
x·1

x·2

 = 
1 0

1 1

x1

x2

58

x· = 
x·1

x·2

= 0 1

−6 −5

x1

x2

0

6
u t( ) t 0≥( )+

59

60

x· t( ) = 
3 4

2 1
x t( )

0 1

1 1
u t( ) t 0≥( )+
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1.10.5 Spectral representation of response

We first consider the unforced system

x·(t ) = Ax(t ) (1.84)

with the initial state x(t0) at time t0 given, and assume that the matrix A has as distinct
eigenvalues λ i (i = 1, 2, . . . , n) corresponding to n linearly independent eigenvectors
ei (i = 1, 2, . . . , n). Since the n eigenvectors are linearly independent, they may be used
as a basis for the n-dimensional state space, so that the system state x(t ) may be written
as a linear combination in the form

x(t ) = c1(t )e1 + . . . + cn(t )en (1.85)

where, since the eigenvectors are constant, the time-varying nature of x(t) is reflected
in the coefficients ci(t). Substituting (1.85) into (1.84) gives

c·1(t )ei + . . . + c· n(t )en = A [c1(t )e1 + . . . + cn(t )en] (1.86)

Since (λ i, ei) are spectral pairs (that is, eigenvalue–eigenvector pairs) for the matrix A,

Aei = λ iei (i = 1, 2, . . . , n)

(1.86) may be written as

[c·1(t ) − λ1c1(t )]e1 + . . . + [c·n(t ) − λncn(t )]en = 0 (1.87)

Because the eigenvectors ei are linearly independent, it follows from (1.87) that the
system (1.84) is completely represented by the set of uncoupled differential equations

c· i(t ) − λ ici(t ) = 0 (i = 1, 2, . . . , n) (1.88)

with solutions of the form

Then, using (1.85), the system response is

(1.89)

Using the given information about the initial state,

(1.90)

so that the constants ci(t0) may be found from the given initial state using the reciprocal
basis vectors ri (i = 1, 2, . . . , n) defined by

r i
Tej = δij

where δij is the Kronecker delta. Taking the scalar product of both sides of (1.90) with
rk, we have

(k = 1, 2, . . . , n)

ci(t) = eλi t−t0( )
ci t0( )

x(t) = ci t0( ) e
λi t−t0( )

ei

i=1

n



x t0( ) = ci t0( ) ei

i=1

n



rk
Tx t0( ) = ci t0( )rk

Tei = ck t0( )
i=1

n


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which on substituting in (1.89) gives the system response

which is referred to as the spectral or modal form of the response. The terms
are called the modes of the system. Thus, provided that the system

matrix A has n linearly independent eigenvectors, this approach has the advantage of
enabling us to break down the general system response into the sum of its simple modal
responses. The amount of excitation of each mode, represented by r i

Tx(t0), is dependent
only on the initial conditions, so if, for example, the initial state x(t0) is parallel to the
ith eigenvector ei then only the ith mode will be excited.

It should be noted that if a pair of eigenvalues λ1, λ 2 are complex conjugates then
the modes associated with  and  cannot be separated from each other. The
combined motion takes place in a plane determined by the corresponding eigenvectors
e1 and e2 and is oscillatory. By retaining only the dominant modes, the spectral rep-
resentation may be used to approximate high-order systems by lower-order ones.

Obtain in spectral form the response of the second-order system

,

and sketch the trajectory.

Solution The eigenvalues of the matrix

are determined by

| A − λ I | = λ2 + 4λ + 3 = 0

that is,

λ1 = −1, λ 2 = −3

with corresponding eigenvectors

e1 = [1 1]T, e2 = [1 −1]T

Denoting the reciprocal basis vectors by

r1 = [r11 r12]
T, r2 = [r21 r22]

T

and using the relationships

r T
i ej = δij (i, j = 1, 2)

(1.91)x t( ) = ri
Tx t0( ) e

λi t−t0( )ei

i=1

n



ri
Tx t0( ) e

λi t−t0( )ei

e
λ1 t−t0( )

e
λ2 t−t0( )

Example 1.43

x·1

x·2

 = 
−2 1

1 −1

x1

x2

x 0( ) = 1

2

A = −2 1

1 −2



94 MATRIX ANALYSIS

we have

rT
1 e1 = r11 + r12 = 1, rT

1 e2 = r11 − r12 = 0

giving

, ,

and

rT
2e2 = r21 + r22 = 0, rT

2e2 = r21 − r22 = 1

giving

, ,

Thus

,

so that, from (1.91), the system response is

That is,

which is in the required spectral form.
To plot the response, we first draw axes corresponding to the eigenvectors e1 and e2,

as shown in Figure 1.8. Taking these as coordinate axes, we are at the point ( , ) at
time t = 0. As t increases, the movement along the direction of e2

 is much faster than
that in the direction of e1, since e−3t decreases more rapidly than e−t. We can therefore
guess the trajectory, without plotting, as sketched in Figure 1.8.

r11 = 1
2
--- r12 = 1

2
--- r1 = 1

2
--- 1

2
---[ ]T

r21 = 1
2
--- r22 = −1

2
--- r2 = 1

2
--- −1

2
---[ ]T

r1
T x 0( ) = 1

2
--- 1 = 3

2
---+ r2

T x 0( ) = 1
2
--- 1 = −1

2
---–

x t( ) = ri
Tx 0( ) e

λi tei

i=1

2

  = r1
Tx 0( ) e

λ1te1 r2
Tx 0( ) e

λ 2te2+

x t( ) = 3
2
--- e−te1

1
2
--- e−3te2–

3
2
--- −1

2
---

Figure 1.8
Trajectory for 
Example 1.43.
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We can proceed in an analogous manner to obtain the spectral representation of the
response to the forced system

x· (t) = Ax(t ) + Bu(t)

with x(t0) given. Making the same assumption regarding the linear independence of the
eigenvectors ei (i = 1, 2, . . . , n) of the matrix A, the vector Bu(t) may also be written
as a linear combination of the form

(1.92)

so that, corresponding to (1.87), we have

[c·1(t ) − λ 1c1(t ) − β1(t )]e1 + . . . + [c· n(t ) − λncn(t ) − βn(t )]en = 0

As a consequence of the linear independence of the eigenvectors ei this leads to the set
of uncoupled differential equations

c· i(t ) − λi ci(t ) − βi(t ) = 0 (i = 1, 2, . . . , n)

which, using (1.75), have corresponding solutions

(1.93)

As for ci(t0), the reciprocal basis vectors ri may be used to obtain the coefficients βi(τ).
Taking the scalar product of both sides of (1.92) with rk and using the relationships
rT

iej = δij, we have

rT
kBu(t ) = βk(t ) (k = 1, 2, . . . , n)

Thus, from (1.93),

giving the spectral form of the system response as

1.10.6 Canonical representation

Consider the state-space representation given in (1.66), namely

x·  = Ax + Bu (1.66a)

y = Cx + Du (1.66b)

Applying the transformation

Bu(t) = βi t( )ei

i=1

n



ci t( ) = e
λi t−t0( )

ci t0( ) #
t0

t

e
λi t−τ( )

βi(τ ) dτ+

ci t( ) = e
λ i t−t0( )

ri
Tx t0( ) #

t0

t

e
λ i t−τ( )

ri
TBu (τ ) dτ+

x t( ) = ci t( )ei

i=1

n


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x = Tz

where T is a non-singular matrix, leads to

Tz·  = ATz + Bu

y = CTz + Du

which may be written in the form

z·  = Ãz + Bŉ u (1.94a)

y = Cŉ z + Dŉ u (1.94b)

where z is now a state vector and

Ã = T −1AT, Bŉ  = T −1B, Cŉ  = CT, Dŉ  = D

The system input–output relationship is unchanged by the transformation (see
Section 5.6.3), and the linear systems (1.66) and (1.94) are said to be equivalent. By
the transformation the intrinsic properties of the system, such as stability, controllability
and observability, which are of interest to the engineer, are preserved, and there is merit
in seeking a transformation leading to a system that is more easily analysed.

Since the transformation matrix T can be arbitrarily chosen, an infinite number of
equivalent systems exist. Of particular interest is the case when T is taken to be the
modal matrix M of the system matrix A; that is,

T = M = [e1 e2 . . . en]

where ei (i = 1, 2, . . . , n) are the eigenvectors of the matrix A. Under the assumption
that the n eigenvalues are distinct,

Ã = M −1AM = L, the spectral matrix of A

Bŉ  = M −1B

Cŉ  = CM, Dŉ  = D

so that (1.94) becomes

z·  = Lz + M −1Bu (1.95a)

y = CMz + Du (1.95b)

Equation (1.95a) constitutes a system of uncoupled linear differential equations

z· i = λ i zi + bT
i u (i = 1, 2, . . . , n) (1.96)

where z = (z1, z2, . . . , zn)
T and bT

i is the ith row of the matrix M −1B. Thus, by reducing
(1.66) to the equivalent form (1.95) using the transformation x = Mz, the modes
of the system have been uncoupled, with the new state variables zi (i = 1, 2, . . . , n)
being associated with the ith mode only. The representation (1.95) is called the normal
or canonical representation of the system equations.

From (1.75), the solution of (1.96) is

(i = 1, . . . , n)zi = e
λ i t−t0( )

x t0( ) #
t0

t

e
λ i t−τ( )

bi
Tu(τ ) dτ+
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so that the solution of (1.95a) may be written as

(1.97)

where

In terms of the original state vector x(t), (1.97) becomes

and the system response is then obtained from (1.66b) as

y(t ) = Cx(t ) + Du(t )

By comparing the response (1.98) with that in (1.78), we note that the transition matrix
may be written as

The representation (1.95) may be used to readily infer some system properties. If the
system is stable then each mode must be stable, so, from (1.98), each λi (i = 1, 2, . . . , n)
must have a negative real part. If, for example, the jth row of the matrix M −1B is zero
then, from (1.96), z· j = λ j zj + 0, so the input u(t) has no influence on the jth mode of the
system, and the mode is said to be uncontrollable. A system is said to be controllable
if all of its modes are controllable.

If the jth column of the matrix CM is zero then, from (1.95b), the response y is
independent of zj, so it is not possible to use information about the output to identify zj.
The state zj is then said to be unobservable, and the overall system is not observable.

A third-order system is characterized by the state-space model

, y = [1 0 0]x

where x = [x1 x2 x3]
T. Obtain the equivalent canonical representation of the model

and then obtain the response of the system to a unit step u(t ) = H(t ) given that initially
x(0) = [1 1 0]T.

z t( ) = e
t−t0( )

z t0( ) #
t0

t

e t−τ( )M −1Bu(τ ) dτ+
L L

e
t−t0( )

 = 
e

λ1 t−t0( ) 0
. . .

0 e
λn t−t0( )

L

(1.98)x t( ) = Mz = M e
t−t0( )

M −1x t0( ) #
t0

t

M e t−τ( )M −1Bu (τ) dτ+
L L

Φ t t0,( ) = eA t−t0( ) = M e
t−t0( )M −1L

Example 1.44

x·  = 
0 1 0

0 0 1

0 −5 −6

x

1

−3

18

u+
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Solution The eigenvalues of the matrix

are determined by

that is,

λ(λ2 + 6λ + 5) = 0

giving λ1 = 0, λ 2 = −1 and λ 3 = −5, with corresponding eigenvectors

e1 = [1 0 0]T, e2 = [1 −1 1]T, e3 = [1 −5 25]T

The corresponding modal and spectral matrices are

,

and the inverse modal matrix is determined to be

In this case B = [1 −3 18]T, so

Likewise, C = [1 0 0], giving

Thus, from (1.95), the equivalent canonical state-space representation is

(1.99a)

A = 
0 1 0

0 0 1

0 −5 −6

|A λI |–  = 
−λ 1 0

0 −λ 1

0 −5 −6 λ–
 = 0

M = 
1 1 1

0 −1 −5
0 1 25

Λ = 
0 0 0

0 −1 0

0 0 −5

M −1 = 1
20
------

20 25 4

0 −25 −5
0 1 1

M −1B = 1
20
------

20 25 4

0 −25 −5

0 1 1

1

−3

18

 = 1
20
------

20

−15

15

 = 

1

−3
4
---

3
4
---

CM = 1 0 0[ ]
1 1 1

0 −1 −5
0 1 25

 = 1 1 1[ ]

z· = 

z·1

z·2

z·3

 = 
0 0 0

0 −1 0

0 0 −5

z1

z2

z3

1

−3
4
---

3
4
---

u+
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(1.99b)

When u(t ) = H(t ), from (1.97) the solution of (1.99a) is

where

leading to

Then, from (1.99b),

If we drop the assumption that the eigenvalues of A are distinct then Ã = M −1AM is
no longer diagonal, but may be represented by the corresponding Jordan canonical form
J with M being made up of both eigenvectors and generalized eigenvectors of A. The
equivalent canonical form in this case will be

z·  = Jz + M −1Bu

y = CMz + Du

with the solution corresponding to (1.97) being

y = 1 1 1[ ]
z1

z2

z3

z = 

e0t 0 0

0 e−t 0

0 0 e−5t

z 0( ) #
0

t 1 0 0

0    e− t−τ( ) 0

0 0        e−5 t−τ( )

1

−3
4
---

3
4
---

1 dτ+

z 0( ) = M−1x 0( ) = 1
20
------

20 24 4

0 −25 −5

0 1 1

1

1

0

 = 

44
20
------

−25
20
------

1
20
------

z = 

1 0  0

0  e−t 0

0 0    e−5t

11
5
------

−5
4
---

1
20
------

#
0

t 1

−3
4
--- e− t−τ( )

3
4
--- e−5 t−τ( )

dτ+

= 

11
5
------

−5
4
--- e−t

1
20
------ e−5t

t

−3
4
--- 3

4
--- e−t+

3
20
------ 3

20
------ e−5t–

 = 

t 11
5
------+

−3
4
--- 1

2
--- e−t–

3
20
------ 1

10
------ e−5t–

+

y = z1 z2 z3+ +  = t 11
5
------+

 
  −3

4
--- 1

2
--- e−t–

 
  3

20
------ 1

10
------ e−5t–

 
 + +

= t 8
5
--- 1

2
--- e−t– 1

10
------ e−5t–+

x t( ) = M e
J t−t0( )

M−1x t0( ) #
t0

t

M eJ t−τ( ) M−1Bu (τ ) dτ+
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Obtain in spectral form the response of the unforced 
second-order system

,

Using the eigenvectors as the frame of reference, 
sketch the trajectory.

Using the spectral form of the solution given in 
(1.91), solve the second-order system

,

and sketch the trajectory.

Repeat Exercise 61 for the system

,

Determine the equivalent canonical representation 
of the third-order system

u

y = [ −2 1 0]x

The solution of a third-order linear system is 
given by

x = α 0e−te0 + α1e−2te1 + α 2e−3te2

where e0, e1 and e2 are linearly independent vectors 
having values

e0 = [1 1 0]T, e1 = [0 1 1]T,

e2 = [1 2 3]T

Initially, at time t = 0 the system state is 
x(0) = [1 1 1]T. Find α 0, α 1 and α 2 using 
the reciprocal basis method.

Obtain the eigenvalues and eigenvectors of the matrix

Using a suitable transformation x(t) = Mz(t), reduce 
x·(t) = Ax(t) to the canonical form z·(t) = Λz(t), 
where L is the spectral matrix of A. Solve the 
decoupled canonical form for z, and hence solve 
for x(t) given that x(0) = [1 4]T.

A second-order system is governed by the state 
equation

(t > 0)

Using a suitable transformation x(t) = Mz(t), reduce 
this to the canonical form

z·(t) = Lz(t) + Bu(t)

where Λ is the spectral matrix of

and B is a suitable 2 × 2 matrix.
For the input u(t) = [4 3]T solve the decoupled 

canonical form for z, and hence solve for x(t) given 
that x(0) = [1 2]T. Compare the answer with that 
for Exercise 59.

1.10.7 Exercises

61

x· t( ) = 
x·1 t( )

x·2 t( )
 = 

−3
2
--- 3

4
---

1 −5
2
---

x t( )

x 0( ) = 
2

4

62

x· t( ) = 
−2 2

2 −5
x t( ) x 0( ) = 2

3

63

x· t( ) = 
0 −4

2 −4
x t( ) x 0( ) = 1

2

64

x· = 
1 1 −2

− 1 2 1

0 1 −1

x

−1

1

−1

+

65

66

A = 
5 4

1 2

67

x· t( ) = 3 4

2 1
x t( ) 0 1

1 1
u t( )+

3 4

2 1

In Chapter 5 (in particular Section 5.4) we shall consider the solution of state-space
models using the Laplace transform method. If you are unfamiliar with Laplace
transforms, see Chapter 11 of MEM. Chapter 6 extends the analysis to discrete-time
systems using z transforms.
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Engineering application: Lyapunov stability analysis
The Russian mathematician Aleksandr Mikhailovich Lyapunov (1857–1918) developed
an approach to stability analysis which is now referred to as the direct (or second)
method of Lyapunov. His approach remained almost unknown in the English-speaking
world for around half a century, before it was translated into English in the late 1950s.
Publication of Lyapunov’s work in English aroused great interest, and it is now widely
used for stability analysis of linear and nonlinear systems, both time-invariant and time-
varying. Also, the approach has proved to be a useful tool in system design such as, for
example, in the design of stable adaptive control systems. The Lyapunov method is in
fact a ‘method of approach’ rather than a systematic means of investigating stability and
much depends on the ingenuity of the user in obtaining suitable Lyapunov functions.
There is no unique Lyapunov function for a given system.

In this section we briefly introduce the Lyapunov approach and will restrict con-
sideration to the unforced (absence of any input) linear time-invariant system

x·  = Ax (1.100)

where x = [x1, x2, . . . , xn]
T is the n-state vector and A is a constant n × n matrix. For the

linear system (1.100) the origin x = 0 is the only point of equilibrium. If, for any initial
state x(0), the trajectory (solution path) x(t) of the system approaches zero (the equilib-
rium point) as t → ∞ then the system is said to be asymptotically stable. In practice the
elements of the matrix A may include system parameters and we are interested in deter-
mining what constraints, if any, must be placed on these parameters to ensure system
stability. Stability of (1.100) is further discussed in Section 5.6.1, where algebraic criteria
for stability are presented. In particular, it is shown that stability of system (1.100) is
ensured if and only if all the eigenvalues of the state matrix A have negative real parts.

To develop the Lyapunov approach we set up a nest of closed surfaces, around the
origin (equilibrium point), defined by the scalar function

V(x) = V(x1, x2, . . . , xn) = C (1.101)

where C is a positive constant (the various surfaces are obtained by increasing the
values of C as we move away from the origin). If the function V(x) satisfies
the following conditions:

(a) V(x) = 0 at the origin, that is V(0) = 0;
(b) V(x) > 0 away from the origin;
(c) V(x) is continuous with continuous partial derivatives;

then it is called a scalar Lyapunov function. (Note that conditions (a) and (b) together
ensure that V(x) is a positive-definite function.) We now consider the rate of change
of V(x), called the Eulerian derivative of V(x) and denoted by V· (x), along the trajectory
of the system under investigation; that is,

(1.102)

where the values of x· 1, x
·

2, . . . , x· n are substituted from the given equations representing
the system ((1.100) in the case of the linear equations under consideration).

If V·  satisfies the condition

(d) V· (x) is negative definite

then it follows that all the trajectories cross the surfaces V(x) = C in an inward direction
and must tend to the origin, the position of equilibrium. Thus asymptotic stability has

1.11 Engineering application:

V
· (x ) ∂V

∂x1

--------dx1

dt
-------- ∂V

∂x2

--------dx2

dt
-------- · · · ∂V

∂xn

--------dxn

dt
--------+ + +=
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been assured without having to solve the differential equations representing the system.
The function V(x) which satisfies conditions (a)–(d) is called a Lyapunov function for
the system being considered.

If we start with a positive-definite V(x) and impose conditions on V· (x) to be negative-
definite, then these conditions will provide sufficient but not necessary stability criteria,
and in many cases they may be unduly restrictive. However, if we are able to start with
a negative-definite V· (x) and work back to impose conditions on V(x) to be positive-
definite, then these conditions provide necessary and sufficient stability criteria. This
second procedure is far more difficult to apply than the first, although it may be applied
in certain cases, and in particular to linear systems.

Of particular importance as Lyapunov functions for linear systems are quadratic
forms in the variables x1, x2, . . . , xn which were introduced in Section 1.6.4. These
may be written in the matrix form V(x) = xTPx, where P is a real symmetric matrix.
Necessary and sufficient conditions for V(x) to be positive-definite are provided by
Sylvester’s criterion, which states that all the principal minors of P of order 1, 2, . . . , n
must be positive; that is

Returning to the linear system (1.100) let us consider as a tentative Lyapunov function
the quadratic form

V(x) = xTPx

where P is an n × n real symmetric matrix. To obtain the Eulerian derivative of V(x)
with respect to system (1.103) we first differentiate V(x) with respect to t

 = x· TPx + xTPx·

and then substitute for x· T and x·  from (1.100) giving

V· (x) = (Ax)TPx + xTP(Ax)
that is

V· (x) = xT(ATP + PA)x

or alternatively

V· (x) = −xTQx (1.103)
where

−Q = ATP + PA (1.104)

To obtain necessary and sufficient conditions for the stability of the linear system
(1.100) we start with any negative definite quadratic form –xTQx, with an n × n
symmetric matrix Q, and solve matrix equation (1.104) for the elements of P. The con-
ditions imposed on P to ensure that it is positive-definite then provide the required
necessary and sufficient stability criteria.

The vector-matrix differential equation model representing an unforced linear R–C
circuit is

x·  = x (i)

Examine its stability using the Lyapunov approach.

p11 0
p11 p12

p12 p22

 0>
p11 p12 p13

p12 p22 p23

p13 p23 p33

  >  0 . . . P, 0>,,,>

dV
dt
-------

Example 1.45

4α– 4α 

2α 6α –
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Solution Take Q of equation (1.104) to be the identity matrix I which is positive-definite
(thus −Q is negative-definite). Then (1.104) may be written

(ii)

Equating elements in (ii) gives

−8αp11 + 4αp12 = −1, 4αp11 − 10αp12 + 2αp22 = 0, 8αp12 − 12αp22 = −1

Solving for the elements gives

p11 = , p12 = , p22 = 

so that

P = 

The principal minors of  are |7 | > 0 and  = 26 > 0.

Thus, by Sylvester’s criterion, P is positive-definite and the system is asymptotically
stable provided α > 0. Note that the Lyapunov function in this case was

V(x) = xTPx = (7x1
2 + 8x1x2 + 6x2

2)

1– 0

0 1–
4α– 2α
4α 6α–

p11 p12

p12 p22

p11 p12

p12 p22

4α– 4α
2α 6α–

+=

7
40α
---------- 1

10α
---------- 3

20α
----------

1
40α
---------- 7 4

4 6

7 4

4 6

7 4

4 6

1
40α
----------

Using the Lyapunov approach investigate the 
stability of the system described by the state 
equation

x·  = x

Take Q to be the unit matrix. Confirm your answer 
by determining the eigenvalues of the state matrix.

Repeat Exercise 67 for the system described by the 
state equation

x·  = x

For the system modelled by the state equation

x·  =  = 

use the Lyapunov approach to determine the 
constraints on the parameters a and b that yield 
necessary and sufficient conditions for asymptotic 
stability.

Condition (d) in the formulation of a Lyapunov 
function, requiring V· (x) to be positive-definite, may 
be relaxed to V· (x) being positive-semidefinite 
provided V· (x) is not identically zero along any 
trajectory. A third-order system, in the absence of 
an input, is modelled by the state equation

x·  = Ax

where x = [x1 x2 x3]
T and 

A = with k being a constant scalar. 

It is required to use the Lyapunov approach to 
determine the constraints on k to ensure asymptotic 
stability.

1.11.1 Exercises

68

4– 2

3 2–

69

3– 2

1– 1–

70

x·1

x·2

0 1

a– b–
x1

x2

71

0 1 0

0 2– 1

k– 0 1–
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Engineering application: capacitor microphone
Many smaller portable tape recorders have a capacitor microphone built in, since such
a system is simple and robust. It works on the principle that if the distance between the
plates of a capacitor changes then the capacitance changes in a known manner, and
these changes induce a current in an electric circuit. This current can then be amplified
or stored. The basic system is illustrated in Figure 1.9. There is a small air gap (about
0.02 mm) between the moving diaphragm and the fixed plate. Sound waves falling on
the diaphragm cause vibrations and small variations in the capacitance C; these are
certainly sufficiently small that the equations can be linearized.

We assume that the diaphragm has mass m and moves as a single unit so that its
motion is one-dimensional. The housing of the diaphragm is modelled as a spring-
and-dashpot system. The plates are connected through a simple circuit containing a
resistance and an imposed steady voltage from a battery. Figure 1.10 illustrates the
model. The distance x(t) is measured from the position of zero spring tension, F is the
imposed force and f is the force required to hold the moving plate in position against
the electrical attraction. The mechanical motion is governed by Newton’s equation

1.12 Engineering application:

Figure 1.9 Capacitor 
microphone.

(a) In (1.103) choose Q to be the positive-
semidefinite matrix

Q = 

so that

V· (x) = −xTQx = −x3
2

Verify that M(x) is identically zero only at the 
origin (equilibrium point) and is therefore not 
identically zero along any trajectory.

(b) Using this matrix Q solve the matrix equation

ATP + PA = −Q

to determine the matrix P.

(c) Using Sylvester’s criterion show that the 
system is asymptotically stable for 
0 < k < 6.

A feedback control system modelled by the 
differential equation

x··  + ax·  + kx = 0

is known to be asymptotically stable, for k > 0, 
a > 0. Set up the state-space form of the equation 
and show that

V(x1, x2) = kx1
2 + (x2 + ax1)

2, x1 = x, x2 = x·

is a suitable Lyapunov function for verifying 
this.

0 0 0

0 0 0

0 0 1

72
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mx··  = −kx − λx·  − f + F (1.105)

and the electrical circuit equation gives

(1.106)

The variation of capacitance C with x is given by the standard formula

where a is the equilibrium distance between the plates. The force f is not so obvious,
but the following assumption is standard

It is convenient to write the equations in the first-order form

x·  = v

mv·  = −kx − λv − 

Rq·  = 

Furthermore, it is convenient to non-dimensionalize the equations. While it is obvious
how to do this for the distance and velocity, for the time and the charge it is less so.
There are three natural time scales in the problem: the electrical time τ1 = RC0, the
spring time τ 2

2 = m /k and the damping time τ 3 = m /λ. Choosing to non-dimensionalize
the time with respect to τ 1, the non-dimensionalization of the charge follows:

Then, denoting differentiation with respect to τ by a prime, the equations are

Figure 1.10 Capacitor 
microphone model.

E = RI + 
q
C
---- , with

dq
dt
------  = I

C = 
C0a

a + x
-------------

f = 1
2
--- q2 d

dx
------ 1

C
---- 

   = 1
2
---

q2

C0a
---------

1
2
---

q2

C0a
---------  + F t( )

−
q a x+( )

aC0

--------------------  + E

τ = t
τ 1

---- , X = x
a
--- , V = v

ka/λ
-----------, Q = 

q

2C0ka2( )
--------------------------

X ′ = RC0k
λ

------------- V

m
λRC0

-------------V ′ = −X − V − Q2 F
ka
------+

Q ′ = −Q 1 + X( ) EC0

2C0ka2( )
--------------------------+
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There are four non-dimensional parameters: the external force divided by the spring
force gives the first, G = F/ka; the electrical force divided by the spring force gives the
second, D 2 = (E 2C0/2a) /ka; and the remaining two are

The final equations are therefore

(1.107)

In equilibrium, with no driving force, G = 0 and V = X ′ = V ′ = Q ′ = 0, so that

(1.108)

or, on eliminating Q,

X(1 + X )2 = −D2

From Figure 1.11, we see that there is always one solution for X < −1, or equivalently
x < −a. The implication of this solution is that the plates have crossed. This is clearly
impossible, so the solution is discarded on physical grounds. There are two other solu-
tions if

D2 < 

or

(1.109)

We can interpret this statement as saying that the electrical force must not be too strong,
and (1.109) gives a precise meaning to what ‘too strong’ means. There are two
physically satisfactory equilibrium solutions −  < X1 < 0 and −1 < X2 < − , and the only
question left is whether they are stable or unstable.

Stability is determined by small oscillations about the two values X1 and X2, where
these values satisfy (1.108). Writing

X = Xi + ε, Q = Qi + η, V = θ
and substituting into (1.107), neglecting terms in ε 2, y 2, θ 2, εθ and so on, gives

(1.110)

Equations (1.110) are the linearized versions of (1.107) about the equilibrium values.
To test for stability, we put G = 0 and ε = L eατ, θ = M eατ, η = N eατ into (1.110):

Lα = AM

BMα  = −L − M − 2QiN

Nα  = −QiL − (1 + Xi)N

A = RC0k
λ

-------------  = τ1τ 3

τ 2
2

--------- , B = m
λRC0

------------- = τ 3

τ 1

----

  X ′ = AV

BV ′ = −X − V − Q2 G+
  Q ′ = −Q 1 X+( ) D+ 






            Q2 X+  = 0
Q 1 X+( ) − D = 0 




Figure 1.11 Solutions to 
equations (1.108).

1
3
--- 4

3
---( )2 = 4

27
------

E2C0

2ka2
------------ 4

27
------<

1
3
--- 1

3
---

  ε′ = Aθ
Bθ ′ = −ε − θ − 2Qiη
  η ′ = −Qiε 1 Xi+( )η–( ) 





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which can be written in the matrix form

Thus the fundamental stability problem is an eigenvalue problem, a result common
to all vibrational stability problems. The equations have non-trivial solutions if

0 =

= −[Bα 3 + (B(1 + Xi) + 1)α 2 + (1 + Xi + A)α  + A(1 + Xi − 2Q i
2 )]/B

For stability, α  must have a negative real part, so that the vibrations damp out, and the
Routh–Hurwitz criterion (Section 5.3.2) gives the conditions for this to be the case.
Each of the coefficients must be positive, and for the first three

B > 0, B(1 + Xi) + 1 > 0, 1 + Xi + A > 0

are obviously satisfied since −1 < Xi < 0. The next condition is

A(1 + Xi − 2Q i
2 ) > 0

which, from (6.118), gives

1 + 3Xi > 0, or Xi > −

Thus the only solution that can possibly be stable is the one for which Xi > − ; the other
solution is unstable. There is one final condition to check,

[B(1 + Xi) + 1](1 + Xi + A) − BA(1 + Xi − 2Q i
2 ) > 0

or

B(1 + Xi)
2 + 1 + Xi + A + 2BAQ i

2  > 0

Since all the terms are positive, the solution Xi >  is indeed a stable solution.
Having established the stability of one of the positions of the capacitor diaphragm,

the next step is to look at the response of the microphone to various inputs.
The characteristics can most easily be checked by looking at the frequency response,
which is the system response to an individual input G = b ejω t, as the frequency ω varies.
This will give information of how the electrical output behaves and for which range
of frequencies the response is reasonably flat.

The essential point of this example is to show that a practical vibrational problem
gives a stability problem that involves eigenvalues and a response that involves a matrix
inversion. The same behaviour is observed for more complicated vibrational problems.

α
L

M

N

 = 

0    A 0

−1/B −1/B −2Qi/B

 −Qi     0 − 1 Xi+( )

L

M

N

 −α        A              0

−1/B − 1/B( ) − α −2Qi/B

 −Qi    0      − 1 Xi+( ) − α

1
3
---

1
3
---

1
3
---
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Check your answers using MATLAB or MAPLE whenever possible.

Obtain the eigenvalues and corresponding 
eigenvectors of the matrices

(a)

(b)

(c)

Find the principal stress values (eigenvalues) 
and the corresponding principal stress directions 
(eigenvectors) for the stress matrix

Verify that the principal stress directions are 
mutually orthogonal.

Find the values of b and c for which the matrix

has [1 0 1]T as an eigenvector. For these 
values of b and c calculate all the eigenvalues 
and corresponding eigenvectors of the matrix A .

(a) Using the power method find the dominant 
eigenvalue and the corresponding eigenvector 
of the matrix

starting with an initial vector [1 1 1]T 
and working to 3 decimal places.

(b) Given that another eigenvalue of A is 1.19 
correct to 2 decimal places, find the value of the 

third eigenvalue using a property of matrices.
(c) Having determined all the eigenvalues of A , 

indicate which of these can be obtained by 
using the power method on the following 
matrices: (i) A −1; (ii) A  − 3I.

Consider the differential equations

= 4x + y + z

= 2x + 5y + 4z

= −x − y

Show that if it is assumed that there are solutions 
of the form x = α eλ t, y = β eλ t and z = γ eλ t then 
the system of equations can be transformed into 
the eigenvalue problem

Show that the eigenvalues for this problem 
are 5, 3 and 1, and find the eigenvectors 
corresponding to the smallest eigenvalue.

Find the eigenvalues and corresponding 
eigenvectors for the matrix

Write down the modal matrix M and spectral 
matrix L of A , and confirm that

M −1AM = L

Show that the eigenvalues of the symmetric matrix

are 9, 3 and −3. Obtain the corresponding 
eigenvectors in normalized form, and write down 
the normalized modal matrix M̂. Confirm that

M̂TAM̂ = L

where Λ is the spectral matrix of A .

1

−1     6 12

  0 −13 30

 0  −9 20

 2 0  1

−1 4 −1

−1 2  0

 1 −1   0

−1  2 −1

  0 −1  1

2

T = 

3 2 1

2 3 1

1 1 4

3

A = 

 2 −1 0

−1  3 b

 0  b c

4

A = 

2 1  1

1 2.5 1

1 1  3

5

dx
dt
------

dy
dt
------

dz
dt
-----

 4  1 1

 2  5 4

−1 −1 0

α
β
γ

 = λ
α
β
γ

6

A = 

8 −8 −2

4 −3 −2

3 −4  1

7

A = 

 1 0 −4

 0 5  4

−4 4  3

1.13  Review exercises (1–19)
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In a radioactive series consisting of four different 
nuclides starting with the parent substance N1 and 
ending with the stable product N4 the amounts of 
each nuclide present at time t are given by the 
differential equations model

= −6N1

= 6N1 − 4N2

= 4N2 − 2N3

= 2N3

Express these in the vector–matrix form

N·  = AN

where N = [N1 N2 N3 N4]
T. Find the eigenvalues 

and corresponding eigenvectors of A . Using the 
spectral form of the solution, determine N4(t) given 
that at time t = 0, Nt = C and N2 = N3 = N4 = 0.

(a) Given

use the Cayley–Hamilton theorem to find

(i) A 7 − 3A 6 + A 4 + 3A 3 − 2A 2 + 3I
(ii) A k, where k > 0 is an integer.

(b) Using the Cayley–Hamilton theorem, find 
eA t when

Show that the matrix

has an eigenvalue λ = 1 with algebraic 
multiplicity 3. By considering the rank of a 
suitable matrix, show that there is only one 
corresponding linearly independent eigenvector 
e1. Obtain the eigenvector e1 and two further 
generalized eigenvectors. Write down the 
corresponding modal matrix M and confirm that 

M −1AM = J, where J is the appropriate Jordan 
matrix. (Hint: In this example care must be taken 
in applying the procedure to evaluate the 
generalized eigenvectors to ensure that the 
triad of vectors takes the form {T 2ω, Tω, ω}, 
where T = A  − λ I, with T 2ω = e1.)

The equations of motion of three equal masses 
connected by springs of equal stiffness are

x··  = −2x + y

y··  = x − 2y + z

z··  = y − 2z

Show that for normal modes of oscillation

x = X cosω t, y = Y cosω t,

z = Z cosω t

to exist then the condition on λ = ω 2 is

Find the three values of λ that satisfy this 
condition, and find the ratios X : Y: Z in 
each case.

Classify the following quadratic forms:

(a) 2x2 + y2 + 2z2 − 2xy − 2yz

(b) 3x2 + 7y2 + 2z2 − 4xy − 4xz

(c) 16x2 + 36y2 + 17z2 + 32xy + 32xz +16yz

(d) −21x2 + 30xy − 12xz − 11y2 + 8yz − 2z2

(e) −x2 − 3y2 − 5z2 + 2xy + 2xz + 2yz

Show that e1 = [1 2 3]T is an eigenvector of 
the matrix

and find its corresponding eigenvalue. Find the 
other two eigenvalues and their corresponding 
eigenvectors.

8

dN1

dt
---------

dN2

dt
---------

dN3

dt
---------

dN4

dt
---------

9

A = 
2 0

1 1

A = 
0  1

0 −2

10

A = 

1 2 3

0 1 4

0 0 1

11

λ 2– 1 0

1 λ 2– 1

0 1 λ 2–
 = 0

12

13

A = 

 7
2
--- −1

2
--- −1

2
---

 4 −1   0

−3
2
---   3

2
--- 1

2
---
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Write down in spectral form the general 
solution of the system of differential 
equations

= 7x − y − z

= 4x − y

= −3x + 3y + z

Hence show that if x = 2, y = 4 and z = 6 
when t = 0 then the solution is

x = 2et, y = 4et, z = 6et

(a) Find the SVD form of the matrix

(b) Use the SVD to determine the pseudo inverse 
A† and confirm it is a right inverse of A.

(c) Determine the pseudo inverse A† without using 
the SVD.

From (1.48) the unitary matrices Û and V̂ and sigma 
matrix Σ may be written in the partitioned form:

Û = [Ûr Ûm−r], V̂ = [V̂r V̂n−r], Σ = 

where S is r × r diagonal matrix having the singular 
values of A as its diagonal elements and 0 denotes 
zero matrices having appropriate order.

(a) Show that the SVD form of A may be 
expressed in the form

A = Ûr SÛ r
T

This is called the reduced singular value 
decomposition of A.

(b) Deduce that the pseudo inverse is given by

A† = V̂r S−1Û r
T

(c) Use the results of (a) and (b) to determine 
the SVD form and pseudo inverse of the 
matrix

and check your answers with those obtained 
in Exercise 45.

A linear time-invariant system (A , b, c) is 
modelled by the state-space equations

x· (t) = Ax(t) + bu(t)

y(t) = cTx(t)

where x(t) is the n-dimensional state vector, and u(t) 
and y(t) are the system input and output 
respectively. Given that the system matrix A 
has n distinct non-zero eigenvalues, show that 
the system equations may be reduced to the 
canonical form

ξ
.
(t) = Λξ (t) + b1u(t)

y(t) = cT
1ξ(t)

where Λ is a diagonal matrix. What properties of 
this canonical form determine the controllability 
and observability of (A , b, c)?

Reduce to canonical form the system (A , b, c) 
having

and comment on its stability, controllability and 
observability by considering the ranks of the 
appropriate Kalman matrices [b Ab A 2b] 
and [c ATc (AT)2c].

A third-order system is modelled by the state-space 
representation

2
dx
dt
------

 
dy
dt
------

2
dz
dt
-----

14

A = 
1.2 0.9 −4

1.6 1.2  3

15

S 0

0 0

A = 

 1 1–
−2  2

 2 −2

16

A = 

 1 1 −2

−1 2  1

 0 1 −1

b = 

−1

 1

−1

c = 

−2

 1

 0

17

x· = 

2– 2–  0

 0  0  1

 0 3– 4–
[ + 

1 0

0 1

1 1

u
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where x = [x1 x2 x3]
T and u = [u1 u2]

T. 
Find the transformation x = Mz which reduces 
the model to canonical form and solve for x(t) 
given x(0) = [10 5 2]T and u(t) = [t 1]T.

The behaviour of an unforced mechanical system 
is governed by the differential equation

(a) Show that the eigenvalues of the system 
matrix are 6, 3, 3 and that there is only 
one linearly independent eigenvector 
corresponding to the eigenvalue 3. Obtain the 
eigenvectors corresponding to the eigenvalues 
6 and 3 and a further generalized eigenvector 
for the eigenvalue 3.

(b) Write down a generalized modal matrix M 
and confirm that

AM = MJ

for an appropriate Jordan matrix J.

(c) Using the result

x(t) = M eJtM −1x(0)

obtain the solution to the given differential 
equation.

(Extended problem) Many vibrational systems are 
modelled by the vector–matrix differential equation

x·· (t) = Ax(t) (1)

where A  is a constant n × n matrix and x(t) = 
[x1(t) x2(t) . . . xn(t)]

T. By substituting x = eλ tu, 
show that

λ2u = Au (2)

and that non-trivial solutions for u exist 
provided that

| A  − λ2I | = 0 (3)

Let λ 2
1, λ 2

2, . . . , λ 2
n be the solutions of (3) and 

u1, u2, . . . , un the corresponding solutions of (2). 
Define M to be the matrix having u1, u2, . . . , 
un as its columns and S to be the diagonal matrix 
having λ 2

1, λ 2
2, . . . , λ 2

n as its diagonal elements. 
By applying the transformation x(t) = Mq(t ), 
where q(t) = [q1(t) q2(t) . . . qn(t)]

T, to (1), 
show that

q··  = Sq (4)

and deduce that (4) has solutions of the form

qi = Ci sin(ωit + α i) (5)

where ci and α i are arbitrary constants and 
λ i = jωi, with j = .

The solutions λ 2
i of (3) define the natural 

frequencies ωi of the system. The corresponding 
solutions qi given in (5) are called the normal 
modes of the system. The general solution of (1) 
is then obtained using x(t) = Mq(t).

A mass–spring vibrating system is governed 
by the differential equations

x·· 1(t ) = −3x1(t ) + 2x2(t )

x·· 2(t ) = x1(t ) − 2x2(t )

with x1(0) = 1 and x2(0) = x·1(0) = x· 2(0) = 2. 
Determine the natural frequencies and the 
corresponding normal modes of the system. 
Hence obtain the general displacement x1(t) 
and x2(t) at time t > 0. Plot graphs of both 
the normal modes and the general solutions.

18

x· t( ) = 

5 2 −1

3 6 −9

1 1  1

[ t( ), [ 0( ) = 

0

1

0

19
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Introduction
Frequently the equations which express mathematical models in both engineering analysis
and engineering design involve derivatives and integrals of the models’ variables. Equations
involving derivatives are called differential equations and those which include integrals
or both integrals and derivatives are called integral equations or integro-differential
equations. Generally integral and integro-differential equations are more difficult to deal
with than purely differential ones.

There are many methods and techniques for the analytical solution of elementary ordi-
nary differential equations. The most common of these are covered in most first-level
books on engineering mathematics (e.g. Modern Engineering Mathematics). However,
many differential equations of interest to engineers are not amenable to analytical solution
and in these cases we must resort to numerical solutions. Numerical solutions have many
disadvantages (it is, for instance, much less obvious how changes of parameters or
coefficients in the equations affect the solutions) so an analytical solution is generally
more useful where one is available.

There are many tools available to the engineer which will provide numerical solutions
to differential equations. The most versatile of these perhaps are the major computer
algebra systems such as MAPLE. These contain functions for both analytical and
numerical solution of differential equations. Systems such as MATLAB/Simulink and
Mathcad can also provide numerical solutions to differential equations problems. It
may sometimes be necessary for the engineer to write a computer program to solve
a differential equation numerically, either because suitable software packages are
not available or because the packages available provide no method suitable for the
particular differential equation under consideration.

Whether the engineer uses a software package or writes a computer program for
the specific problem, it is necessary to understand something of how numerical
solutions of differential equations are achieved mathematically. The engineer who
does not have this understanding cannot critically evaluate the results provided by a
software package and may fall into the trap of inadvertently using invalid results. In
this chapter we develop the basics of the numerical solution of ordinary differential
equations.

Engineering application: motion in a viscous fluid
The problem of determining the motion of a body falling through a viscous fluid arises in
a wide variety of engineering contexts. One obvious example is that of a parachutist, both
in free fall and after opening his or her parachute. The dropping of supplies from aircraft
provides another example. Many industrial processes involve adding particulate raw
materials into process vessels containing fluids, whether gases or liquids, which exert
viscous forces on the particles. Often the motion of the raw materials in the process vessel
must be understood in order to ensure that the process is effective and efficient. Fluidized
bed combustion furnaces involve effectively suspending particles in a moving gas stream
through the viscous forces exerted by the gas on the particles. Thus, understanding the
mechanics of the motion of a particle through a viscous fluid has important engineering
applications.

2.1

2.2 Engineering application:
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When a particle is falling through a viscous fluid it may be modelled simply in the
following way. The force of gravity acts downwards and is opposed by a viscous drag
force produced by the resistance of the fluid. Figure 2.1 shows a free body diagram of
the particle which is assumed to be falling vertically downwards. If the particle’s mass
is m, the gravitational force is mg, and it is opposed by a drag force, D, acting to oppose
motion. The displacement of the particle from its initial position is x.

The equation of motion is

(2.1)

Before we can solve this equation, the form of the drag term must be determined.
For particles moving at a high speed it is often assumed that the drag is proportional to
the square of the speed. For slow motion the drag is sometimes assumed to be directly
proportional to the speed. In other applications it is more appropriate to assume that
drag is proportional to some power of the velocity, so that

D = kvα = k where, normally, 1 < α < 2

The differential equation (2.1) then becomes

i.e. (2.2)

This is a second-order, nonlinear, ordinary differential equation for x, the displacement of
the particle, as a function of time. In fact, for both α = 1 and α = 2, (2.2) can be solved
analytically, but for other values of α no such solution exists. If we want to solve the dif-
ferential equation for such values of α we must resort to numerical techniques.

Numerical solution of first-order ordinary 
differential equations
In a book such as this we cannot hope to cover all of the many numerical techniques which
have been developed for dealing with ordinary differential equations (ODEs) so we will
concentrate on presenting a selection of methods which illustrate the main strands of the
theory. In so doing we will meet the main theoretical tools and unifying concepts of the area.

In the last twenty years great advances have been made in the application of computers
to the solution of differential equations, particularly using computer algebra packages to
assist in the derivation of analytical solutions and the computation of numerical solutions.
The MATLAB package is principally oriented towards the solution of numerical problems
(although its Symbolic Math Toolbox and the MuPAD version are highly capable) and
contains a comprehensive selection of the best modern numerical techniques giving the
ability to solve most numerical problems in ODEs. Indeed numerical solutions can be
achieved both in native MATLAB and in the Simulink simulation subsystem; which of
these paths the user chooses to follow may well be dictated as much by their experience
and professional orientation as by theoretical considerations. MAPLE, despite being
mainly orientated towards the solution of symbolic problems, also contains a comprehen-
sive suite of numerical solution routines and is, in practice, just as capable as MATLAB in

Figure 2.1 A particle 
falling through a 
viscous fluid.

m
d2x

dt2
--------  = mg – D

dx
dt
------
 
 

α

m
d2x

dt2
--------  = mg – k dx

dt
------
 
 

α

m
d2x

dt2
-------- + k dx

dt
------ 
 

α

 = mg

2.3
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this area. Moreover, MAPLE gives to the user more control of the solution method used
and includes a number of ‘classical’ solution methods. These classical methods include all
the methods which are used, in this chapter, to introduce, develop and analyse the main
strands of the theory mentioned above. For this reason, MAPLE will be featured rather
more frequently than MATLAB, but the practising engineer is as likely to be using MAT-
LAB for the numerical solution of real-world problems as using MAPLE.

Despite the fact that professional engineers are very likely to be using these packages
to compute numerical solutions of ODEs, it is still important that they understand the
methods which the computer packages use to do their work, for otherwise they are at the
mercy of the decisions made by the designers of the packages who have no foreknowl-
edge of the applications to which users may put the package. If the engineering user
does not have a sound understanding of the principles being used within the package
there is the ever present danger of using results outside their domain of validity. From
there it is a short step to engineering failures and human disasters.

2.3.1 A simple solution method: Euler’s method

For a first-order differential equation dx/dt = f (t, x) we can define a direction field. The
direction field is that two-dimensional vector field in which the vector at any point (t, x)
has the gradient dx /dt. 

More precisely, we know that the gradient at (t, x) is f(t, x). This means that we can
represent the solution of the differential equation in the (t, x) plane by the vector [1, f(t, x)]
at each point (t, x). It is practical to normalize the vectors to give them unit magnitude, thus
the direction field is the field

For instance, Figure 2.2 shows the direction field of the differential equation dx /dt
=x(1 − x)t.

Since a solution of a differential equation is a function x(t) which has the property
dx/dt = f (t, x) at all points (t, x) the solutions of the differential equation are curves in
the (t, x) plane to which the direction field lines are tangential at every point. For
instance, the curves shown in Figure 2.3 are solutions of the differential equation

1  f t x,( ),[ ]

1 + f t x,( )2
--------------------------------

Figure 2.2
The direction field 
for the equation 
dx/dt = x(1 − x)t.
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 = x(1 − x)t

This immediately suggests that a curve representing a solution can be obtained by
sketching on the direction field a curve that is always tangential to the lines of the
direction field. In Figure 2.4 a way of systematically constructing an approximation to
such a curve is shown.

Starting at some point (t0, x0), a straight line parallel to the direction field at that point,
f(t0, x0), is drawn. This line is followed to a point with abscissa t0 + h. The ordinate at this
point is x0 + hf(t0, x0), which we shall call X1. The value of the direction field at this new
point is calculated, and another straight line from this point with the new gradient is
drawn. This line is followed as far as the point with abscissa t0 + 2h. The process can be
repeated any number of times, and a curve in the (t, x) plane consisting of a number of
short straight-line segments is constructed. The curve is completely defined by the points
at which the line segments join, and these can obviously be described by the equations.

dx
dt
------

Figure 2.3 Solutions 
of dx/dt = x(1 − x)t 
superimposed on its 
direction field.

Figure 2.4
The construction of 
a numerical solution 
of the equation 
dx /dt = f(t, x).
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t1 = t0 + h, X1 = x0 + hf (t0, x0)

t2 = t1 + h, X2 = X1 + hf (t1, X1)

t3 = t2 + h, X3 = X2 + hf (t2, X2)

tn+1 = tn + h, Xn+1 = Xn + hf (tn, Xn)

These define, mathematically, the simplest method for integrating first-order differential
equations. It is called Euler’s method (or the forward Euler method). Solutions are
constructed step by step, starting from some given starting point (t0, x0). For a given t0

each different x0 will give rise to a different solution curve. These curves are all solu-
tions of the differential equation, but each corresponds to a different initial condition.

The solution curves constructed using this method are obviously not exact solutions
but only approximations to solutions, because they are only tangential to the direction
field at certain points. Between these points, the curves are only approximately tangential
to the direction field. Intuitively, we expect that, as the distance for which we follow each
straight-line segment is reduced, the curve we are constructing will become a  better and
better approximation to the exact solution. The increment h in the independent variable t
along each straight-line segment is called the step size used in the solution. In Figure 2.5
three approximate solutions of the initial-value problem

 = x2t e−t, x(0) = 0.91 (2.3)

for step sizes h = 0.05, 0.025 and 0.0125 are shown. These steps are sufficiently small
that the curves, despite being composed of a series of short straight lines, give the illusion
of being smooth curves. Equation (2.3) actually has an analytical solution, which can
be obtained by separation:

The analytical solution to the initial-value problem is also shown in Figure 2.5 for
comparison. It can be seen that, as we expect intuitively, the smaller the step size the
more closely the numerical solution approximates the analytical solution. 

Figure 2.5 The 
Euler-method solutions 
of dx/dt = x 2t e−t for 
h = 0.05, 0.025 and 
0.0125.

dx
dt
------

x = 
1

1 + t( ) e t–  + C
------------------------------------
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The function x(t ) satisfies the differential equation

and the initial condition x(1) = 2. Use Euler’s method to obtain an approximation to the
value of x(2) using a step size of h = 0.1.

Solution In this example the initial value of t is 1 and x(1) = 2. Using the notation above we have
t0 = 1, and x0 = 2. The function f (t, x) = . So we have

t1 = t0 + h = 1 + 0.1 = 1.1000

MAPLE provides options in the dsolve function, the general-purpose ordinary
differential equation solver, to return a numerical solution computed using the Euler
method. Using this option we can easily generate the solutions plotted on Figure 2.5.
In fact we can readily extend the figure to some smaller time steps. The following
MAPLE worksheet will produce a figure similar to Figure 2.5 comparing the solutions
obtained from the Euler method using time steps of 0.05, 0.025, 0.0125, 0.00625,
0.003125 and the exact solution. The pattern established in Figure 2.5 can be seen to
continue with each halving of the time step producing a solution with a yet smaller
error when compared with the exact solution.

> deq1:=diff(x(t),t)=x(t)^2*t*exp(-t);init1:=x(0)=0.91;
> #solve the differential equation with 5 different

timesteps
> x1:=dsolve({deq1, init1}, 
numeric,method=classical[foreuler],output=listprocedure,

stepsize=0.05);
> x2:=dsolve({deq1, init1}, 
numeric,method=classical[foreuler],output=listprocedure,

stepsize=0.025);
> x3:=dsolve({deq1, init1}, 
numeric,method=classical[foreuler],output=listprocedure,

stepsize=0.0125);
> x4:=dsolve({deq1, init1}, 
numeric,method=classical[foreuler],output=listprocedure,

stepsize=0.00625);
> x5:=dsolve({deq1, init1}, 
numeric,method=classical[foreuler],output=listprocedure,

stepsize=0.003125);
> #extract the five solutions from the listprocedure 

structures
> for i from 1 to 5 do;solution||i:=op(2,x||i[2]);end do;
> #find the exact solution
> xa:=dsolve({deq1, init1});
> #plot the five numerical solutions and the exact solution
> plot([seq(solution||i(t),i=1..5),op(2,xa)(t)],t=0..12);

Example 2.1

dx
dt
------ = 

x + t
xt

------------

x + t
xt-----------
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X1 = x0 + hf (t0, x0) = x0 +  = 2 + 0.1  = 2.1500

t2 = t1 + h = 1.1000 + 0.1 = 1.2000

X2 = x1 + hf (t1, x1) = x1 +  = 2.1500 + 0.1  = 2.2874

The rest of the solution is obtained step by step as set out in Figure 2.6. The
approximation X(2) = 3.1162 results.

 

2.3.2 Analysing Euler’s method

We have introduced Euler’s method via an intuitive argument from a geometrical
understanding of the problem. Euler’s method can be seen in another light – as an
application of the Taylor series. The Taylor series expansion for a function x(t) gives

x(t + h) = x(t) +  + + + . . . (2.4)

Using this formula, we could, in theory, given the value of x(t) and all the derivatives of
x at t, compute the value of x(t + h) for any given h. If we choose a small value for h
then the Taylor series truncated after a finite number of terms will provide a good
approximation to the value of x(t + h). Euler’s method can be interpreted as using
the Taylor series truncated after the second term as an approximation to the value of
x(t + h).

The solution to this example could easily be obtained using MAPLE as follows:

> deq1:=diff(x(t),t)=(x(t)+t)/(x(t)*t);init1:=x(1)=2;
> x1:=dsolve({deq1, init1}, 
numeric,method=classical[foreuler],output=listprocedure,

stepsize=0.1);
> sol:=op(2,x1[2]);sol(2);

h
x0 + t0

x0t0

--------------
2 + 1
2 · 1
-------------

h
x1 + t1

x1t1
---------------

2.1500 + 1.100
2.1500 · 1.100

-------------------------------------

t X X + t Xt

1.0000 2.0000 3.0000 2.0000 0.1500
1.1000 2.1500 3.2500 2.3650 0.1374
1.2000 2.2874 3.4874 2.7449 0.1271
1.3000 2.4145 3.7145 3.1388 0.1183
1.4000 2.5328 3.9328 3.5459 0.1109
1.5000 2.6437 4.1437 3.9656 0.1045
1.6000 2.7482 4.3482 4.3971 0.0989
1.7000 2.8471 4.5471 4.8400 0.0939
1.8000 2.9410 4.7410 5.2939 0.0896
1.9000 3.0306 4.9306 5.7581 0.0856
2.0000 3.1162

h
X t+
Xt

-----------

Figure 2.6
Computational results 
for Example 2.1.

h
dx

dt
------ t( ) h2

2!
-----

d2x

dt2
-------- t( ) h3

3!
-----

d3x

dt3
-------- t( )
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In order to distinguish between the exact solution of a differential equation and a
numerical approximation to the exact solution (and it should be appreciated that all
numerical solutions, however accurate, are only approximations to the exact solution),
we shall now make explicit the convention that we used in the last section. The exact
solution of a differential equation will be denoted by a lower-case letter and a numerical
approximation to the exact solution by the corresponding capital letter. Thus, truncating
the Taylor series, we write

X(t + h) = x(t) +  = x(t) + hf (t, x) (2.5)

Applying this truncated Taylor series, starting at the point (t0, x0) and denoting t0 + nh
by tn, we obtain

X(t1) = X(t0 + h) = x(t0) + hf (t0, x0)

X(t2) = X(t1 + h) = X(t1) + hf (t1, X1)

X(t3) = X(t2 + h) = X(t2) + hf (t2, X2)

and so on

which is just the Euler-method formula obtained in Section 2.3.1. As an additional
abbreviated notation, we shall adopt the convention that x(t0 + nh) is denoted by xn,
X(t0 + nh) by Xn, f (tn, xn) by fn, and f (tn, Xn) by Fn. Hence we may express the Euler
method, in general terms, as the recursive rule

The advantage of viewing Euler’s method as an application of Taylor series in this way
is that it gives us a clue to obtaining more accurate methods for the numerical solution
of differential equations. It also enables us to analyse in more detail how accurate
the Euler method may be expected to be. Using the order notation we can abbreviate
(2.4) to

x(t + h) = x(t) + hf (t, x) + O(h2)

and, combining this with (2.5), we see that

X(t + h) = x(t + h) + O(h2) (2.6)

(Note that in obtaining this result we have used the fact that signs are irrelevant in
determining the order of terms; that is, −O(h p) = O(h p).) Equation (2.6) expresses the
fact that at each step of the Euler process the value of X(t + h) obtained has an error of
order h2, or, to put it another way, the formula used is accurate as far as terms of order
h. For this reason Euler’s method is known as a first-order method. The exact size of
the error is, as we intuitively expected, dependent on the size of h, and decreases as h
decreases. Since the error is of order h2, we expect that halving h, for instance, will
reduce the error at each step by a factor of four.

This does not, unfortunately, mean that the error in the solution of the initial value
problem is reduced by a factor of four. To understand why this is so, we argue as

X0 = x0

Xn+1 = Xn + hFn (n > 0)

h
dx
dt
------ t( )
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follows. Starting from the point (t0, x0) and using Euler’s method with a step size h to
obtain a value of X(t0 + 4), say, requires 4/h steps. At each step an error of order h2 is
incurred. The total error in the value of X(t0 + 4) will be the sum of the errors incurred
at each step, and so will be 4/h times the value of a typical step error. Hence the total
error is of the order of (4/h)O(h2); that is, the total error is O(h). From this argument we
should expect that if we compare solutions of a differential equation obtained using
Euler’s method with different step sizes, halving the step size will halve the error in the
solution. Examination of Figure 2.5 confirms that this expectation is roughly correct in
the case of the solutions presented there.

Let Xa denote the approximation to the solution of the initial-value problem

, x(0) = 1

obtained using Euler’s method with a step size h = 0.1, and Xb that obtained using a step size
of h = 0.05. Compute the values of Xa(t) and Xb(t) for t = 0.1, 0.2, . . . , 1.0. Compare
these values with the values of x(t), the exact solution of the problem. Compute the ratio
of the errors in Xa and Xb.

Solution The exact solution, which may be obtained by separation, is 

The numerical solutions Xa and Xb and their errors are shown in Figure 2.7. Of course,
in this figure the values of Xa are recorded at every step whereas those of Xb are only
recorded at alternate steps.

Again, the final column of Figure 2.7 shows that our expectations about the effects
of halving the step size when using Euler’s method to solve a differential equation are
confirmed. The ratio of the errors is not, of course, exactly one-half, because there are
some higher-order terms in the errors, which we have ignored.

Example 2.2

dx
dt
------ = 

x2

t + 1
------------

x = 
1

1 − t + 1( )ln
---------------------------------

Figure 2.7
Computational results 
for Example 2.2.

t Xa Xb x(t) |x − Xa | |x − Xb |

0.000 00 1.000 00 1.000 00 1.000 00
0.100 00 1.100 00 1.102 50 1.105 35 0.005 35 0.002 85 0.53
0.200 00 1.210 00 1.216 03 1.222 97 0.012 97 0.006 95 0.54
0.300 00 1.332 01 1.342 94 1.355 68 0.023 67 0.012 75 0.54
0.400 00 1.468 49 1.486 17 1.507 10 0.038 61 0.020 92 0.54
0.500 00 1.622 52 1.649 52 1.681 99 0.059 47 0.032 47 0.55
0.600 00 1.798 03 1.837 91 1.886 81 0.088 78 0.048 90 0.55
0.700 00 2.000 08 2.057 92 2.130 51 0.130 42 0.072 59 0.56
0.800 00 2.235 40 2.318 57 2.425 93 0.190 53 0.107 36 0.56
0.900 00 2.513 01 2.632 51 2.792 16 0.279 15 0.159 65 0.57
1.000 00 2.845 39 3.018 05 3.258 89 0.413 50 0.240 84 0.58

x Xb–
x Xa–

-------------------
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2.3.3 Using numerical methods to solve engineering problems

In Example 2.2 the errors in the values of Xa and Xb are quite large (up to about 14% in
the worst case). While carrying out computations with large errors such as these is quite
useful for illustrating the mathematical properties of computational methods, in engineering
computations we usually need to keep errors very much smaller. Exactly how small they
must be is largely a matter of engineering judgement. The engineer must decide how
accurately a result is needed for a given engineering purpose. It is then up to that engineer
to use the mathematical techniques and knowledge available to carry out the computations
to the desired accuracy. The engineering decision about the required accuracy will usually
be based on the use that is to be made of the result. If, for instance, a preliminary design
study is being carried out then a relatively approximate answer will often suffice, whereas
for final design work much more accurate answers will normally be required. It must be
appreciated that demanding greater accuracy than is actually needed for the engineering
purpose in hand will usually carry a penalty in time, effort or cost.

Let us imagine that, for the problem posed in Example 2.2, we had decided we needed
the value of x(1) accurate to 1%. In the cases in which we should normally resort to
numerical solution we should not have the analytical solution available, so we must ignore
that solution. We shall suppose then that we had obtained the values of Xa(1) and Xb(1) and
wanted to predict the step size we should need to use to obtain a better approximation to x(1)
accurate to 1%. Knowing that the error in Xb(1) should be approximately one-half the error
in Xa(1) suggests that the error in Xb(1) will be roughly the same as the difference between
the errors in Xa(1) and Xb(1), which is the same as the difference between Xa(1) and Xb(1);
that is, 0.17266. One per cent of Xb(1) is roughly 0.03, that is roughly one-sixth of the error
in Xb(1). Hence we expect that a step size roughly one-sixth of that used to obtain Xb

will suffice; that is, a step size h = 0.008 33. In practice, of course, we shall round to a
more convenient non-recurring decimal quantity such as h = 0.008. This procedure is
closely related to the Aitken extrapolation procedure sometimes used for estimating
limits of convergent sequences and series.

Compute an approximation X(1) to the value of x(1) satisfying the initial-value problem

, x(0) = 1

by using Euler’s method with a step size h = 0.008.

Solution It is worth commenting here that the calculations performed in Example 2.2 could reasonably
be carried out on any hand-held calculator, but this new calculation requires 125 steps. To do
this is on the boundaries of what might reasonably be done on a hand-held calculator, and is
more suited to computational software such as MAPLE. Repeating the calculation with a step
size h = 0.008 produces the result X(1) = 3.21391.

We had estimated from the evidence available (that is, values of X(1) obtained using
step sizes h = 0.1 and 0.05) that the step size h = 0.008 should provide a value of X(1)
accurate to approximately 1%. Comparison of the value we have just computed with the
exact solution shows that it is actually in error by approximately 1.4%. This does not
quite meet the target of 1% that we set ourselves. This example therefore serves, first,
to illustrate how, given two approximations to x(1) derived using Euler’s method with
different step sizes, we can estimate the step size needed to compute an approximation

Example 2.3

dx
dt
------ = 

x2

t + 1
------------
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within a desired accuracy, and, secondly, to emphasize that the estimate of the appropriate
step size is only an estimate, and will not guarantee an approximate solution to the problem
meeting the desired accuracy criterion. If we had been more conservative and rounded the
estimated step size down to, say, 0.005, we should have obtained X(1) = 3.23043, which is
in error by only 0.9% and would have met the required accuracy criterion.

 

Since we have mentioned in Example 2.3 the use of computers to undertake the
repetitive calculations involved in the numerical solution of differential equations, it is
also worth commenting briefly on the writing of computer programs to implement those
numerical solution methods. Whilst it is perfectly possible to write informal, unstructured
programs to implement algorithms such as Euler’s method, a little attention to planning
and structuring a program well will usually be amply rewarded – particularly in terms of
the reduced probability of introducing ‘bugs’. Another reason for careful structuring is
that, in this way, parts of programs can often be written in fairly general terms and can
be re-used later for other problems. The two pseudocode algorithms in Figures 2.8 and
2.9 will both produce the table of results in Example 2.2. The pseudocode program of
Figure 2.8 is very specific to the problem posed, whereas that of Figure 2.9 is more
general, better structured, and more expressive of the structure of mathematical problems.
It is generally better to aim at the style of Figure 2.9.

Again the solution to this example could be obtained using MAPLE. The following
worksheet computes the numerical solution using a step size of 0.008, then the
analytical solution and finally computes the percentage error in the numerical solution.

> #set up differential equation
> deq1:=diff(x(t),t)=x(t)^2/(t+1);init1:=x(0)=1;
> #obtain x1, the numerical solution
> x1:=dsolve({deq1, init1}, 
numeric,method=classical[foreuler],output=listprocedure,

stepsize=0.008);
> #xa is the analytic solution
> xa:=dsolve({deq1, init1});
> #obtain the value of x(t) at t=1
> op(2,x1[2])(1);
> #find the percentage error in the numerical solution
> evalf((op(2,x1[2])(1)-subs(t=1,op(2,xa)))/

subs(t=1,op(2,xa)))*100;

Figure 2.8 A poorly 
structured algorithm 
for Example 2.2.

x1 ← 1
x2 ← 1
write(vdu, 0, 1, 1, 1)
for i is 1 to 10 do

x1 ← x1 + 0.1*x1*x1/((i−1)*0.1 + 1)
x2 ← x2 + 0.05*x2*x2/((i−1)*0.1 + 1)
x2 ← x2 + 0.05*x2*x2/((i−1)*0.1 + 1.05)
x ← 1/(1 − ln(i*0.1 + 1))
write(vdu,0.1*i,x1,x2,x,x − x1,x − x2,(x − x2)/(x − x1))

endfor
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initial_time ← 0
final_time ← 1
initial_x ← 1
step ← 0.1
t ← initial_time
x1 ← initial_x
x2 ← initial_x
h1 ← step
h2 ← step/2
write(vdu,initial_time,x1,x2,initial_x)
repeat

euler(t,x1,h1,1 → x1)
euler(t,x2,h2,2 → x2)
t ← t + step
x ← exact_solution(t,initial_time,initial_x)
write(vdu,t,x1,x2,x,abs(x − x1),abs(x − x2),abs((x − x2)/(x − x1)))

until t > final_time

procedure euler(t_old,x_old,step,number → x_new)
temp_x ← x_old
for i is 0 to number −1 do

temp_x ← temp_x + step*derivative(t_old + step*i,temp_x)
endfor
x_new ← temp_x

endprocedure

procedure derivative(t,x → derivative)
derivative ← x*x/(t + 1)

endprocedure

procedure exact_solution(t,t0,x0 → exact_solution)
c ← ln(t0 + 1) + 1/x0
exact_solution ← 1/(c − ln(t + 1))

endprocedure

Figure 2.9 A better 
structured algorithm 
for Example 2.2.

All the exercises in this section can be completed using MAPLE in a similar manner to Examples 2.1 and 2.3 above. 
In particular MAPLE or some other form of computer assistance should be used for Exercises 5, 6 and 7. If you do 
not have access to MAPLE, you will need to write a program in MATLAB or some other high-level scientific 
computer programming language (e.g. Fortran, Python or C).

Find the value of X(0.3) for the initial-value problem

= − xt, x(0) = 1

using Euler’s method with step size h = 0.1.

Find the value of X(1.1) for the initial-value problem

= − xt, x(1) = 0.1

using Euler’s method with step size h = 0.025.

Find the value of X(1) for the initial-value problem

x(0.5) = 1

using Euler’s method with step size h = 0.1.

Find the value of X(0.5) for the initial-value problem

x(0) = 1

using Euler’s method with step size h = 0.05.

2.3.4 Exercises

1

dx
dt
------ 1

2
---

2

dx
dt
------ 1

2
---

3

dx
dt
------ = 

x
2 t + 1( )
--------------------,

4

dx
dt
------ = 

4 − t
t + x
------------,
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2.3.5 More accurate solution methods: multistep methods

In Section 2.3.2 we discovered that using Euler’s method to solve a differential equation
is essentially equivalent to using a Taylor series expansion of a function truncated after
two terms. Since, by so doing, we are ignoring terms O(h2), an error of this order is
introduced at each step in the solution. Could we not derive a method for calculating
approximate solutions of differential equations which, by using more terms of the Taylor
series, provides greater accuracy than Euler’s method? We can – but there are some
disadvantages in so doing, and various methods have to be used to overcome these.

Let us first consider a Taylor series expansion with the first three terms written
explicitly. This gives

x(t + h) = x(t) +  + + O(h3) (2.7)

Substituting f (t, x) for dx/dt, we obtain

x(t + h) = x(t) + hf (t, x) + + O(h3)

Dropping the O(h3) terms provides an approximation

X(t + h) = x(t) + hf (t, x) + 

such that

X(t + h) = x(t + h) + O(h3)

h
dx

dt
------ t( ) h2

2!
-----

d2x

dt2
-------- t( )

h2

2!
-----

df
dt
----- t x,( )

h2

2!-----
df
dt
----- t x,( )

Denote the Euler-method solution of the initial-value 
problem

x(1) = 2

using step size h = 0.1 by Xa(t), and that using 
h = 0.05 by Xb(t). Find the values of Xa(2) and 
Xb(2). Estimate the error in the value of Xb(2), and 
suggest a value of step size that would provide a 
value of X(2) accurate to 0.1%. Find the value of 
X(2) using this step size. Find the exact solution of 
the initial-value problem, and determine the actual 
magnitude of the errors in Xa(2), Xb(2) and your 
final value of X(2).

Denote the Euler-method solution of the initial-value 
problem

x(1) = 1

using step size h = 0.1 by Xa(t), and that using 
h = 0.05 by Xb(t). Find the values of Xa(2) and 

Xb(2). Estimate the error in the value of Xb(2), and 
suggest a value of step size that would provide a 
value of X(2) accurate to 0.2%. Find the value of 
X(2) using this step size. Find the exact solution of 
the initial-value problem, and determine the actual 
magnitude of the errors in Xa(2), Xb(2) and your 
final value of X(2).

Denote the Euler-method solution of the initial-value 
problem

x(1) = 1.2

using step size h = 0.05 by Xa(t), and that using 
h = 0.025 by Xb(t). Find the values of Xa(1.5) and 
Xb(1.5). Estimate the error in the value of Xb(1.5), 
and suggest a value of step size that would provide 
a value of X(1.5) accurate to 0.25%. Find the value 
of X(1.5) using this step size. Find the exact solution 
of the initial-value problem, and determine the 
actual magnitude of the errors in Xa(1.5), Xb(1.5) 
and your final value of X(1.5).

5

dx

dt
------ = 

xt

t2 + 2
--------------,

6

dx
dt
------ = 

1
xt
---- ,

7

dx
dt
------ = 

1
xln

--------- ,
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in other words, a numerical approximation method which has an error at each step that
is not of order h2 like the Euler method but rather of order h3. The corresponding general
numerical scheme is

Xn+1 = Xn + hFn + (2.8)

The application of the formula (2.5) in Euler’s method was straightforward because
an expression for f (t, x) was provided by the differential equation itself. To apply (2.8)
as it stands requires an analytical expression for d f /dt so that dFn/dt may be computed.
This may be relatively straightforward to provide – or it may be quite complicated.
Although, using modern computer algebra systems, it is now often possible to compute
analytical expressions for the derivatives of many functions, the need to do so remains
a considerable disadvantage when compared with methods which do not require the
function’s derivatives to be provided.

Fortunately, there are ways to work around this difficulty. One such method hinges
on the observation that it is just as valid to write down Taylor series expansions for
negative increments as for positive ones. The Taylor series expansion of x(t − h) is

x(t − h) = x(t) − + − + . . .

If we write only the first three terms explicitly, we have

x(t − h) = x(t) − + + O(h3)

or, rearranging the equation,

 = x(t − h) − x(t) +  + O(h3)

Substituting this into (2.7), we obtain

x(t + h) = x(t) +  +  + O(h3)

That is,

x(t + h) = x(t − h) + + O(h3)

or, substituting f (t, x) for dx/dt, 

x(t + h) = x(t − h) + 2hf (t, x) + O(h3) (2.9)

Alternatively, we could write down the Taylor series expansion of the function dx/dt
with an increment of −h:

Writing only the first two terms explicitly and rearranging gives

and substituting this into (2.4) gives

h2

2
-----

dFn

dt
---------

h
dx

dt
------ t( ) h2

2!
-----

d2x

dt2
-------- t( ) h3

3!
-----

d3x

dt3
-------- t( )

h
dx

dt
------ t( ) h2

2!
-----

d2x

dt2
-------- t( )

h2

2!
-----

d2x

dt2
-------- t( ) h

dx

dt
------ t( )

h
dx
dt
------ t( ) x t − h( ) − x t( ) + h

dx
dt
------ t( ) + O h3( )

2h
dx
dt
------ t( )

dx

dt
------ t − h( ) = 

dx

dt
------ t( ) − h

d2x t( )
dt2

-------------- t( ) + 
h2

2!
-----

d3x

dt3
-------- t( ) − O h3( )

h
d2x

dt2
-------- t( ) = 

dx

dt
------ t( ) − 

dx

dt
------ t − h( ) + O h2( )
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x(t + h) = x(t) + + O(h3)

That is,

x(t + h) = x(t) +  + O(h3)

or, substituting f (t, x) for dx /dt, 

x(t + h) = x(t) + h[3f (t, x(t)) − f (t − h, x(t − h))] + O(h3) (2.10)

Equations (2.7), (2.9) and (2.10) each give an expression for x(t + h) in which all
terms up to those in h2 have been made explicit. In the same way as, by ignoring terms
of O(h3) in (2.7), the numerical scheme (2.8) can be obtained, (2.9) and (2.10) give rise
to the numerical schemes

respectively. Each of these alternative schemes, like (2.8), incurs an error O(h3) at
each step.

The advantage of (2.11) or (2.12) over (2.8) arises because the derivative of
f(t, x) in (2.7) has been replaced in (2.9) by the value of the function x at the
previous time, x(t − h), and in (2.10) by the value of the function f at time t − h. This is
reflected in (2.11) and (2.12) by the presence of the terms in Xn−1 and Fn−1 respectively
and the absence of the term in dFn/dt. The elimination of the derivative of the function
f(t, x) from the numerical scheme is an advantage, but it is not without its penalties.
In both (2.11) and (2.12) the value of Xn+1 depends not only on the values of Xn and
Fn but also on the value of one or the other at tn−1. This is chiefly a problem when
starting the computation. In the case of the Euler scheme the first step took the form

X1 = X0 + hF0 

In the case of (2.11) and (2.12) the first step would seem to take the forms

X1 = X−1 + 2hF0

and

X1 = X0 + h(3F0 − F−1)

respectively. The value of X−1 in the first case and F−1 in the second is not normally
available. The resolution of this difficulty is usually to use some other method to
start the computation, and, when the value of X1, and therefore also the value of F1,
is available, change to (2.11) or (2.12). The first step using (2.11) or (2.12) therefore
involves

X2 = X0 + 2hF1

or

Xn+1 = Xn−1 + 2hFn

and

Xn+1 = Xn + h(3Fn − Fn−1)

(2.11)

(2.12)

h
dx
dt
------ t( ) + 

h
2
---

dx
dt
------ t( ) − 

dx
dt
------ t − h( ) + O h2( )

h
2
--- 3

dx
dt
------ t( ) − 

dx
dt
------ t − h( )

1
2
---

1
2
---

1
2
---
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X2 = X1 + h(3F1 − F0)

Methods like (2.11) and (2.12) that involve the values of the dependent variable or its
derivative at more than one value of the independent variable are called multistep
methods. These all share the problem that we have just noted of difficulties in deciding
how to start the computation. We shall return to this problem of starting multistep methods
in Section 2.3.7.

Solve the initial-value problem

x(0) = 1

posed in Example 2.2 using the scheme (2.12) with a step size h = 0.1. Compute the
values of X(t) for t = 0.1, 0.2, . . . , 1.0 and compare them with the values of the exact
solution x(t).

Solution We shall assume that the value of X(0.1) has been computed using some other method
and has been found to be 1.105 35. The computation therefore starts with the calculation
of the values of F1, F0 and hence X2. Using the standard notation we have t0 = 0, and
x0 = 1. The function f (t, x) = x 2/(t + 1). Using the given value X(0.1) = 1.105 35, we have
t1 = 0.1, and X1 = 1.105 35. So the first step is

t2 = t1 + h = 0.100 00 + 0.1 = 0.200 00

X2 = X1 + h(3F1 − F0) = X1 + h[3f (t1, X1) − f (t0, x0)]

= X1 + h = 1.10535 + 0.1  =1.22196

The results of the computation are shown in Figure 2.10.

1
2
---

Example 2.4

dx
dt
------ = 

x2

t + 1
------------,

1
2
---

1
2
---

1
2
--- 3

X 1
2

t1 + 1
-------------   

X 0
2

t0 + 1
-------------

 
 
 _ 1

2
--- _

Figure 2.10
Computational results 
for Example 2.4.

t Xn Fn h(3Fn − Fn−1) x(t) |x − Xn |

0.000 00 1.000 00 1.000 00
0.100 00 1.105 35 1.110 73 0.116 61 1.105 35 0.000 00
0.200 00 1.221 96 1.244 32 0.131 11 1.222 97 0.001 01
0.300 00 1.353 07 1.408 31 0.149 03 1.355 68 0.002 61
0.400 00 1.502 10 1.611 65 0.171 33 1.507 10 0.004 99
0.500 00 1.673 44 1.866 92 0.199 46 1.681 99 0.008 55
0.600 00 1.872 89 2.192 33 0.235 50 1.886 81 0.013 91
0.700 00 2.108 39 2.614 90 0.282 62 2.130 51 0.022 11
0.800 00 2.391 01 3.176 08 0.345 67 2.425 93 0.034 92
0.900 00 2.736 68 3.941 80 0.432 47 2.792 16 0.055 48
1.000 00 3.169 14 3.258 89 0.089 75

1
2
---

3
1.105 352

0.1 + 1
----------------------   

12

0 + 1
------------

 
 
 
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It is instructive to compare the values of X n̂ computed in Example 2.4 with those computed
in Example 2.2. Since the method we are using here is a second-order method, the error at
each step should be O(h3) rather than the O(h2) error of the Euler method. We are using the
same step size as for the solution Xa of Example 2.2, so the errors should be correspondingly
smaller. In this example we know the exact solution of the initial value problem and thus
can compute the error. Examination of the results shows that they are indeed much smaller
than those of the Euler method, and also considerably smaller than the errors in the Euler
method solution Xb which used step size h = 0.05, half the step size used here.

In fact, some numerical experimentation (which we shall not describe in detail) reveals
that to achieve a similarly low level of errors, the Euler method requires a step size h = 0.016,
and therefore 63 steps are required to find the value of X(1). The second-order method of
(2.12) requires only 10 steps to find X(1) to a similar accuracy. Thus the solution of a
problem to a given accuracy using a second-order method can be achieved in a much
shorter computer processing time than using a first-order method. When very large
calculations are involved or simple calculations are repeated very many times, such
savings are very important.

How do we choose between methods of equal accuracy such as (2.11) and (2.12)?
Numerical methods for the solution of differential equations have other properties apart
from accuracy. One important property is stability. Some methods have the ability to
introduce gross errors into the numerical approximation to the exact solution of a prob-
lem. The sources of these gross errors are the so-called parasitic solutions of the
numerical process, which do not correspond to solutions of the differential equation.
The analysis of this behaviour is beyond the scope of this book, but methods that are
susceptible to it are intrinsically less useful than those that are not. The method of (2.11)
can show unstable behaviour, as demonstrated in Example 2.5.

Further details on the stability of numerical methods can be found in E. Süli and
D. Mayers, An Introduction to Numerical Mathematics (Cambridge, Cambridge
University Press, 2014); R. W. Hamming, Numerical Methods for Scientists and
Engineers (New York, Dover Publications, 1987); E. Isaacson and H. B. Keller, Analysis
of Numerical Methods (New York, Dover Publications, 1994).

Let Xa denote the approximation to the solution of the initial-value problem

= −3x + 2e−t, x(0) = 2

obtained using the method defined by (2.11), and Xb that obtained using the method
defined by (2.12), both with step size h = 0.1. Compute the values of Xa(t) and Xb(t) for
t = 0.1, 0.2, . . . , 2.0. Compare these with the values of x(t), the exact solution of the
problem. In order to overcome the difficulty of starting the processes, assume that the
value X(0.1) = 1.645 66 has been obtained by another method.

Solution The exact solution of the problem, which is a linear equation and so may be solved by
the integrating-factor method, is

x = e−t + e−3t

Example 2.5

dx
dt
------
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The numerical solutions Xa and Xb and their errors are shown in Figure 2.11. It can be
seen that Xa exhibits an unexpected oscillatory behaviour, leading to large errors in the
solution. This is typical of the type of instability from which the scheme (2.11) and
those like it are known to suffer. The scheme defined by (2.11) is not unstable for all
differential equations, but only for a certain class. The possibility of instability in
numerical schemes is one that should always be borne in mind, and the intelligent user is
always critical of the results of numerical work and alert for signs of this type of problem.

In this section we have seen how, starting from the Taylor series for a function,
schemes of a higher order of accuracy than Euler’s method can be constructed. We have
constructed two second-order schemes. The principle of this technique can be extended
to produce schemes of yet higher orders. They will obviously introduce more values of
Xm or Fm (where m = n − 2, n − 3, . . . ). The scheme (2.12) is, in fact, a member of a
family of schemes known as the Adams–Bashforth formulae. The first few members
of this family are

The formulae represent first-, second-, third- and fourth-order methods respectively. The
first-order Adams–Bashforth formula is just the Euler method, the second-order

Xn+1 = Xn + hFn

Xn+1 = Xn + h(3Fn − Fn−1)

Xn+1 = Xn + h(23Fn − 16Fn−1 + 5Fn−2)

Xn+1 = Xn + h(55Fn − 59Fn−1 + 37Fn−2 − 9Fn−3)

t Xa Xb x(t) x − Xa x − Xb

0.000 00 2.000 00 2.000 00 2.000 00
0.100 00 1.645 66 1.645 66 1.645 66 0.000 00 0.000 00
0.200 00 1.374 54 1.376 56 1.367 54 −0.007 00 −0.009 02
0.300 00 1.148 42 1.159 09 1.147 39 −0.001 04 −0.011 70
0.400 00 0.981 82 0.984 36 0.971 51 −0.010 30 −0.012 84
0.500 00 0.827 46 0.842 27 0.829 66 0.002 20 −0.012 61
0.600 00 0.727 95 0.725 83 0.714 11 −0.013 84 −0.011 72
0.700 00 0.610 22 0.629 54 0.619 04 0.008 83 −0.010 50
0.800 00 0.560 45 0.549 22 0.540 05 −0.020 41 −0.009 17
0.900 00 0.453 68 0.481 64 0.473 78 0.020 10 −0.007 86
1.000 00 0.450 88 0.424 32 0.417 67 −0.033 21 −0.006 66
1.100 00 0.330 30 0.375 33 0.369 75 0.039 45 −0.005 58
1.200 00 0.385 84 0.333 15 0.328 52 −0.057 33 −0.004 64
1.300 00 0.219 27 0.296 60 0.292 77 0.073 50 −0.003 83
1.400 00 0.363 29 0.264 75 0.261 59 −0.101 70 −0.003 15
1.500 00 0.099 93 0.236 83 0.234 24 0.134 31 −0.002 59
1.600 00 0.392 59 0.212 25 0.210 13 −0.182 46 −0.002 12
1.700 00 −0.054 86 0.190 52 0.188 78 0.243 64 −0.001 73
1.800 00 0.498 57 0.171 24 0.169 82 −0.328 76 −0.001 42
1.900 00 −0.287 88 0.154 08 0.152 91 0.440 80 −0.001 16
2.000 00 0.731 13 0.138 77 0.137 81 −0.593 32 −0.000 96

Figure 2.11
Computational results 
for Example 2.5.

1
2
---

1
12
------

1
24
------
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one is the scheme we introduced as (2.12), while the third- and fourth-order formulae
are extensions of the principle we have just introduced. Obviously all of these require
special methods to start the process in the absence of values of X−1, F−1, X−2, F−2 and
so on.

Some of the methods used by the standard MATLAB procedures for numerical
solution of ODEs are based on more sophisticated versions of the multistep methods
which we have just introduced. Multistep methods are particularly suitable for solving
equations in which the derivative function, f(t, x), is relatively computationally costly to
evaluate. At each step a multistep methods can re-use the values of the function already
computed at previous steps so the number of evaluations of the derivative function is
reduced compared to some other methods.

2.3.6 Local and global truncation errors

In Section 2.3.2 we argued intuitively that, although the Euler method introduces an
error O(h2) at each step, it yields an O(h) error in the value of the dependent variable
corresponding to a given value of the independent variable. What is the equivalent result
for the second-order methods we have introduced in Section 2.3.5? We shall answer this
question with a slightly more general analysis that will also be useful to us in succeed-
ing sections.

First let us define two types of error. The local error in a method for integrating
a differential equation is the error introduced at each step. Thus if the method is
defined by

Xn+1 = g(h, tn, Xn, tn−1, Xn−1, . . . )

and analysis shows us that

xn+1 = g(h, tn, xn, tn−1, xn−1, . . . ) + O(h p+1)

then we say that the local error in the method is of order p + 1 or that the method is a
pth-order method.

The global error of an integration method is the error in the value of X(t0 + a)
obtained by using that method to advance the required number of steps from a known
value of x(t0). Using a pth-order method, the first step introduces an error O(h p+1). The
next step takes the approximation X1 and derives an estimate X2 of x2 that introduces a
further error O(h p+1). The number of steps needed to calculate the value X(t0 + a) is a/h.
Hence we have

X(t0 + a) = x(t0 + a) + O(h p+1)

Dividing a quantity that is O(hr) by h produces a quantity that is O(hr−1), so we must
have

X(t0 + a) = x(t0 + a) + O(h p)

In other words, the global error produced by a method that has a local error O(hp+1) is
O(hp). As we saw in Example 2.2, halving the step size for a calculation using Euler’s
method produces errors that are roughly half as big. This is consistent with the global
error being O(h). Since the local error of the Euler method is O(h2), this is as we should
expect. Let us now repeat Example 2.2 using the second-order Adams–Bashforth
method, (2.12).

a
h
---
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Let Xa denote the approximation to the solution of the initial-value problem

x(0) = 1

obtained using the second-order Adams–Bashforth method with a step size h = 0.1, and
Xb that obtained using a step size of h = 0.05. Compute the values of Xa(t) and Xb(t) for
t = 0.1, 0.2, . . . , 1.0. Compare these values with the values of x(t), the exact solution
of the problem. Compute the ratio of the errors in Xa and Xb. In order to start the process,
assume that the values X(−0.1) = 0.904 68 and X(−0.05) = 0.951 21 have already been
obtained by another method.

Solution The exact solution was given in Example 2.2. The numerical solutions Xa and Xb and
their errors are shown in Figure 2.12.

Because the method is second-order, we expect the global error to vary like h2.
Theoretically, then, the error in the solution Xb should be one-quarter that in Xa. We see
that this expectation is approximately borne out in practice.

Just as previously we outlined how, for the Euler method, we could estimate from
two solutions of the differential equation the step size that would suffice to compute a
solution to any required accuracy, so we can do the same in a more general way. If we
use a pth-order method to compute two estimates Xa(t0 + a) and Xb(t0 + a) of x(t0 + a)
using step sizes h and h then, because the global error of the process is O(h p), we
expect the error in Xa(t0 + a) to be roughly 2p times that in Xb(t0 + a). Hence the error in
Xb(t0 + a) may be estimated to be

If the desired error, which may be expressed in absolute terms or may be derived from
a desired maximum percentage error, is ε then the factor k, say, by which the error in
Xb(t0 + a) must be reduced is

Example 2.6

dx
dt
------ = 

x2

t + 1
------------,

t Xa Xb x(t) |x − Xa | |x − Xb |

0.000 00 1.000 00 1.000 00 1.000 00
0.100 00 1.104 53 1.105 12 1.105 35 0.000 82 0.000 23 0.28
0.200 00 1.220 89 1.222 39 1.222 97 0.002 08 0.000 58 0.28
0.300 00 1.351 76 1.354 59 1.355 68 0.003 92 0.001 09 0.28
0.400 00 1.500 49 1.505 25 1.507 10 0.006 61 0.001 85 0.28
0.500 00 1.671 44 1.679 03 1.681 99 0.010 55 0.002 96 0.28
0.600 00 1.870 40 1.882 17 1.886 81 0.016 40 0.004 64 0.28
0.700 00 2.105 25 2.123 31 2.130 51 0.025 25 0.007 20 0.29
0.800 00 2.387 00 2.414 70 2.425 93 0.038 93 0.011 23 0.29
0.900 00 2.731 45 2.774 40 2.792 16 0.060 70 0.017 76 0.29
1.000 00 3.162 20 3.230 07 3.258 89 0.096 70 0.028 82 0.30

x Xb–
x Xa–-------------------

Figure 2.12
Computational results 
for Example 2.6.

1
2
---

Xa t0 a+( ) Xb t0 a+( )–
2p 1–

----------------------------------------------------------

k
Xa t0 a+( ) Xb t0 a+( )–

ε 2p 1–( )
----------------------------------------------------------=
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Since reducing the step size by a factor of q will, for a pth-order error, reduce the error
by a factor of q p, the factor by which step size must be reduced in order to meet the
error criterion is the pth root of k. The step size used to compute Xb is h, so finally we
estimate the required step size as

This technique of estimating the error in a numerical approximation of an unknown
quantity by comparing two approximations of that unknown quantity whose order of
accuracy is known is an example of the application of Richardson extrapolation.

Estimate the step size required to compute an estimate of x(1) accurate to 2 decimal
places for the initial-value problem in Example 2.6 given the values Xa(1) = 3.162 20
and Xb(1) = 3.230 07 obtained using step sizes h = 0.1 and 0.05 respectively.

Solution For the result to be accurate to 2 decimal places the error must be less than 0.005. The
estimates Xa(1) and Xb(1) were obtained using a second-order process, so, applying
(2.13), with ε = 0.005, h = 0.05 and p = 2, we have

 

In a real engineering problem what we would usually do is round this down to say
0.02 and recompute X(1) using step sizes h = 0.04 and 0.02. These two new estimates
of X(1) could then be used to estimate again the error in the value of X(1) and confirm
that the desired error criterion had been met.

2.3.7 More accurate solution methods: 
predictor–corrector methods

In Section 2.3.5 we showed how the third term in the Taylor series expansion

x(t + h) = x(t) +  + O(h3) (2.14)

could be replaced by either x(t − h) or (dx /dt)(t − h). These are not the only possibilities.
By using appropriate Taylor series expansions, we could replace the term with other values
of x(t) or dx/dt. For instance, expanding the function x(t − 2h) about x(t) gives rise to

x(t − 2h) = x(t) − + O(h3) (2.15)

and eliminating the second-derivative term between (2.14) and (2.15) gives

x(t + h) = x(t) + x(t − 2h) +  + O(h3)

(2.13)

1
2
---

h
2
---

ε 2p 1–( )
Xa t0 a+( ) Xb t0 a+( )–

----------------------------------------------------------
 
 
 

1/p

Example 2.7

1
2
---

h = 0.05 0.015
3.162 20 3.230 07–--------------------------------------------------

 
 
  1/2

 = 0.0235

h
dx

dt
------ t( ) + 

h2

2!
-----

d2x

dt2
-------- t( )

2h
dx

dt
------ t( ) + 2h2 d2x

dt2
-------- t( )

3
4
---

1
4
--- 3

2
--- h

dx
dt
------ t( )
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which, in turn, would give rise to the integration scheme

Such a scheme, however, would not seem to offer any advantages to compensate for the
added difficulties caused by a two-step scheme using non-consecutive values of X.

The one alternative possibility that does offer some gains is using the value of
(dx/dt)(t + h). Writing the Taylor series expansion of (dx/dt)(t + h) yields

and eliminating the second derivative between this and (2.14) gives

x(t + h) = x(t) +  + O(h3) (2.16)

leading to the integration scheme

Xn+1 = Xn + h(Fn + Fn+1) (2.17)

This, like (2.11) and (2.12), is a second-order scheme. It has the problem that, in order
to calculate Xn+1, the value of Fn+1 is needed, which, in its turn, requires that the value
of Xn+1 be known. This seems to be a circular argument!

One way to work around this problem and turn (2.17) into a usable scheme is to start
by working out a rough value of Xn+1, use that to compute a value of Fn+1, and then use
(2.17) to compute a more accurate value of Xn+1. Such a process can be derived as
follows. We know that

x(t + h) = x(t) +  + O(h2)

Let

(t + h) = x(t) + (2.18)

so that

x(t + h) = (t + h) + O(h2)

or, using the subscript notation defined above,

xn+1 = n+1 + O(h2)

Now

= f (tn+1, xn+1)

= f (tn+1, n+1 + O(h2))

= f (tn+1, n+1) + O(h2) (tn+1, n+1) + O(h4)

= f (tn+1, n+1) + O(h2) (2.19)

Xn+1
3
4
--- Xn

1
4
--- Xn−2

3
2
--- hFn+ +=

dx

dt
------ t h+( ) dx

dt
------ t( ) + h

d2x

dt2
-------- t( ) O h2( )+=

h
2
---

dx
dt
------ t( ) + 

dx
dt
------ t + h( )

1
2
---

h
dx
dt
------ t( )

x̂ h
dx
dt
------ t( )

x̂

x̂

dxn+1

dt
------------

x̂

x̂
f∂
x∂----- x̂

x̂
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In the subscript notation (2.16) is

xn+1 = xn + h( f (tn, xn) + f (tn+1, xn+1)) + O(h3)

Substituting (2.19) into this gives

xn+1 = xn + h( f (tn, xn) + f (tn+1, n+1) + O(h2)) + O(h3)

That is,

xn+1 = xn + h( f (tn, xn) + f (tn+1, n+1)) + O(h3) (2.20)

Equation (2.20) together with (2.18) forms the basis of what is known as a
predictor–corrector method, which is defined by the following scheme:

This predictor–corrector scheme, as demonstrated by (2.20), is a second-order method.
It has the advantage over (2.11) and (2.12) of requiring only the value of Xn, not Xn−1 or
Fn−1. On the other hand, each step requires two evaluations of the function f (t, x), and
so the method is less efficient computationally.

Solve the initial-value problem

x(0) = 1

posed in Example 2.2 using the second-order predictor–corrector scheme with a step
size h = 0.1. Compute the values of X(t) for t = 0.1, 0.2, . . . , 1.0 and compare them with
the values of the exact solution x(t).

Solution The exact solution was given in Example 2.2. In this example the initial value of t is
0 and x(0) = 1. Using the standard notation we have t0 = 0, and x0 = x(t0) = x(0) = 1.
The function f (t, x) = x 2/(t + 1). So the first two steps of the computation are thus

 = x0 + hf (t0, x0) = x0 + h = 1 + 0.1  = 1.100 00

X1 = x0 + h[ f (t0, x0) + f (t1, )] = x0 + h  

= 1.000 00 + 0.1  = 1.105 00

1
2
---

1
2
--- x̂

1
2
--- x̂

(1) compute the ‘predicted’ value of Xn+1, call it n+1, from

n+1 = Xn + hf (tn, Xn) (2.21a)

(2) compute the ‘corrected’ value of Xn+1 from

Xn+1 = Xn + h( f (tn, Xn) + f (tn+1, n+1)) (2.21b)

X̂

X̂

1
2
--- X̂

Example 2.8

dx
dt
------ = 

x2

t + 1
------------,

X1
ˆ x2

t + 1
-----------

12

0 + 1
-------------

1
2
--- X1

ˆ 1
2
---

x0
2

t0 + 1
------------- + X̂1

2

t1 + 1
-------------

 
 
 

1
2
---

12

0 + 1
------------- + 

1.100 002

0.100 00 + 1
------------------------------

 
 
 
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= X1 + hf (t1, X1) = X1 + h

= 1.105 00 + 0.1 = 1.216 00

X2 = X1 + h[ f (t1, X1) + f (t2, )] 

= X1 + h

= 1.105 00 + 0.1 = 1.222 11

The complete computation is set out in Figure 2.13.

 

Comparison of the result of Example 2.8 with those of Examples 2.2 and 2.6 shows that,
as we should expect, the predictor–corrector scheme produces results of considerably higher
accuracy than the Euler method and of comparable (though slightly better) accuracy to the

X2
ˆ X1

2

t1 + 1
-------------

1.105 002

0.100 00 + 1
------------------------------

1
2
--- X2

ˆ

1
2
---

X 1
2

t1 + 1
------------- + 

X̂2
2

t2 + 1
-------------

 
 
 

1
2
---

1.105 002

0.100 00 + 1
------------------------------- + 

1.216 002

0.200 00 + 1
------------------------------

 
 
 

t Xn f (tn, Xn) n+1 f (tn+1, n+1) x(t) |x − Xn |

0.000 00 1.000 00 1.000 00 1.100 00 1.100 00 1.000 00 0.000 00
0.100 00 1.105 00 1.110 02 1.216 00 1.232 22 1.105 35 0.000 35
0.200 00 1.222 11 1.244 63 1.346 58 1.394 82 1.222 97 0.000 86
0.300 00 1.354 08 1.410 42 1.495 13 1.596 72 1.355 68 0.001 60
0.400 00 1.504 44 1.616 67 1.666 11 1.850 61 1.507 10 0.002 65
0.500 00 1.677 81 1.876 69 1.865 47 2.175 00 1.681 99 0.004 18
0.600 00 1.880 39 2.209 92 2.101 38 2.597 53 1.886 81 0.006 42
0.700 00 2.120 76 2.645 67 2.385 33 3.161 00 2.130 51 0.009 75
0.800 00 2.411 10 3.229 66 2.734 06 3.934 26 2.425 93 0.014 83
0.900 00 2.769 29 4.036 30 3.172 92 5.033 72 2.792 16 0.022 87
1.000 00 3.222 79 3.258 89 0.036 10

X̂ X̂
Figure 2.13
Computational results 
for Example 2.8.

Again the solution to this example can be obtained using MAPLE. The following
worksheet computes the numerical and analytical solutions and compares them at
the required points.

> #set up differential equation
> deq1:=diff(x(t),t)=x(t)^2/(t+1);init1:=x(0)=1;
> #obtain x1, the numerical solution
> x1:=dsolve({deq1, init1}, 
numeric,method=classical[heunform],output=listprocedure,

stepsize=0.1);
> #xa is the analytic solution
> xa:=dsolve({deq1, init1});
> #compute values at required solution points
> for i from 1 to 10 do 

t:=0.1*i:op(2,x1[2])(t),evalf(op(2,xa)) end do;



138 NUMERICAL SOLUTION OF OR DINAR Y DIF FERENTIAL EQUATIONS

second-order Adams–Bashforth scheme. We also expect the scheme to have a global error
O(h2), and, in the spirit of Examples 2.2 and 2.6, we confirm this in Example 2.9.

Let Xa denote the approximation to the solution of the initial-value problem

x(0) = 1

obtained using the second-order predictor–corrector method with a step size h = 0.1, and
Xb that obtained using h = 0.05. Compute the values of Xa(t) and Xb(t) for t = 0.1, 0.2, . . . ,
1.0. Compare these with the values of x(t), the exact solution of the problem. Compute
the ratio of the errors in Xa and Xb.

Solution The numerical solutions Xa and Xb and their errors are shown in Figure 2.14. The ratio
of the errors confirms that the error behaves roughly as O(h2).

In Section 2.3.5 we mentioned the difficulties that multistep methods introduce
with respect to starting the computation. We now have a second-order method that
does not need values of Xn−1 or earlier. Obviously we can use this method just as
it stands, but we then pay the penalty, in computer processing time, of the extra
evaluation of f (t, x) at each step of the process. An alternative scheme is to use the
second-order predictor–corrector for the first step and then, because the appropriate
function values are now available, change to the second-order Adams–Bashforth
scheme – or even, if the problem is one for which the scheme given by (2.11) (which is
called the central difference scheme) is stable, to that process. In this way we create a
hybrid process that retains the O(h2) convergence and simultaneously minimizes the
computational load.

The principles by which we derive (2.16) and so the integration scheme (2.17) can be
extended to produce higher-order schemes. Such schemes are called the Adams–Moulton
formulae and are as follows:

Example 2.9

dx
dt
------ = 

x2

t + 1
------------,

t Xa Xb x(t) |x − Xa | |x − Xb |

0.000 00 1.000 00 1.000 00 1.000 00
0.100 00 1.105 00 1.105 26 1.105 35 0.000 35 0.000 09 0.27
0.200 00 1.222 11 1.222 74 1.222 97 0.000 86 0.000 23 0.27
0.300 00 1.354 08 1.355 25 1.355 68 0.001 60 0.000 43 0.27
0.400 00 1.504 44 1.506 38 1.507 10 0.002 65 0.000 72 0.27
0.500 00 1.677 81 1.680 86 1.681 99 0.004 18 0.001 13 0.27
0.600 00 1.880 39 1.885 07 1.886 81 0.006 42 0.001 73 0.27
0.700 00 2.120 76 2.127 87 2.130 51 0.009 75 0.002 64 0.27
0.800 00 2.411 10 2.421 90 2.425 93 0.014 83 0.004 03 0.27
0.900 00 2.769 29 2.785 92 2.792 16 0.022 87 0.006 24 0.27
1.000 00 3.222 79 3.248 98 3.258 89 0.036 10 0.009 91 0.27

x Xb–
x Xa–

-------------------
Figure 2.14
Computational results 
for Example 2.9.
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These are first-, second-, third- and fourth-order formulae respectively. They are all like
the one we derived in this section in that the value of Fn+1 is required in order to compute
the value of Xn+1. They are therefore usually used as corrector formulae in predictor–
corrector schemes. The most common way to do this is to use the (p − 1)th-order
Adams–Bashforth formula as predictor, with the pth-order Adams–Moulton formula as
corrector. This combination can be shown to always produce a scheme of pth order. The
predictor–corrector scheme we have derived in this section is of this form, with p = 2.
Of course, for p . 2 the predictor–corrector formula produced is no longer self-starting,
and other means have to be found to produce the first few values of X. We shall return
to this topic in the next section.

It may be noted that one of the alternative methods offered by MATLAB for the
numerical solution of ODEs is based on the families of Adams–Bashforth and Adams–
Moulton formulae.

2.3.8 More accurate solution methods: Runge–Kutta methods

Another class of higher-order methods comprises the Runge–Kutta methods. The
mathematical derivation of these methods is quite complicated and beyond the scope of this
book. However, their general principle can be explained informally by a graphical argument.
Mathematical details can be found in the references on page 130 above Example 2.5
and in C. F. Gerald and P. O. Wheatley, Applied Numerical Analysis (Upper Saddle River,
NJ, Pearson, 2003). Figure 2.15 shows a geometrical interpretation of the second-order
predictor–corrector method introduced in the last section. Starting at the point (tn, Xn), point
A in the diagram, the predicted value n+1 is calculated. The line AB has gradient f(tn, Xn),
so the ordinate of the point B is the predicted value n+1. The line AC in the diagram has
gradient f(tn+1, n+1), the gradient of the direction field of the equation at point B, so point C
has ordinate Xn + hf(tn+1, n+1). The midpoint of the line BC, point D, has ordinate

Xn+1 = Xn + hFn+1

Xn+1 = Xn + h(Fn+1 + Fn)

Xn+1 = Xn + h(5Fn+1 + 8Fn − Fn−1)

Xn+1 = Xn + h(9Fn+1 + 19Fn − 5Fn−1 + Fn−2)

1
2
---

1
12
------

1
24
------

Figure 2.15
A geometrical 
interpretation of 
the second-order 
predictor–corrector 
method.

X̂
X̂

X̂
X̂
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Xn + h(f(tn, Xn) + f(tn+1, n+1)), which is the value of Xn+1 given by the corrector formula.
Geometrically speaking, the predictor–corrector scheme can be viewed as the process of
calculating the gradient of the direction field of the equation at points A and B and then
assuming that the average gradient of the solution over the interval (tn, tn+1) is reasonably
well estimated by the average of the gradients at these two points. The Euler method, of
course, is equivalent to assuming that the gradient at point A is a good estimate of the
average gradient of the solution over the interval (tn, tn+1). Given this insight, it is
unsurprising that the error performance of the predictor–corrector method is superior to that
of the Euler method.

Runge–Kutta methods extend this principle by using the gradient at several points in
the interval (tn, tn+1) to estimate the average gradient of the solution over the interval.
The most commonly used Runge–Kutta method is a fourth-order one which can be
expressed as follows:

Geometrically, this can be understood as the process shown in Figure 2.16. The line AB
has the same gradient as the equation’s direction field at point A. The ordinate of this line
at tn + h defines point B. The line AC has gradient equal to the direction of the direction
field at point B. This line defines point C. Finally, a line AD, with gradient equal to the
direction of the direction field at point C, defines point D. The average gradient of the
solution over the interval (tn, tn+1) is then estimated from a weighted average of the gradi-
ents at points A, B, C and D. It is intuitively acceptable that such a process is likely to give
a highly accurate estimate of the average gradient over the interval. 

c1 = hf (tn, Xn)

c2 = hf (tn + h, Xn + c1)

c3 = hf (tn + h, Xn + c2)

c4 = hf (tn + h, Xn + c3)

Xn+1 = Xn + (c1 + 2c2 + 2c3 + c4)

(2.22a)

(2.22b)

(2.22c)

(2.22d)

(2.22e)

1
2
--- X̂

1
2
--- 1

2
---

1
2
---

1
2
---

1
6
---

Figure 2.16
A geometrical 
interpretation of 
the fourth-order 
Runge–Kutta 
method.

1
2
---
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As was said before, the mathematical proof that the process defined by (2.22a–e) is
a fourth-order process is beyond the scope of this text. It is interesting to note that the
predictor–corrector method defined by (2.21a, b) could also be expressed as

This is also of the form of a Runge–Kutta method (the second-order Runge–Kutta
method), so we find that the second-order Runge–Kutta method and the second-order
Adams–Bashforth/Adams–Moulton predictor–corrector are, in fact, equivalent processes.

Let Xa denote the approximation to the solution of the initial-value problem

x(0) = 1

obtained using the fourth-order Runge–Kutta method with a step size h = 0.1, and Xb

that obtained using h = 0.05. Compute the values of Xa(t) and Xb(t) for t = 0.1, 0.2, . . . ,
1.0. Compare these with the values of x(t), the exact solution of the problem. Compute
the ratio of the errors in Xa and Xb.

Solution The exact solution was given in Example 2.2. The numerical solutions Xa and Xb and their
errors are presented in Figure 2.17.

This example shows, first, that the Runge–Kutta scheme, being a fourth-order scheme,
has considerably smaller errors, in absolute terms, than any of the other methods we
have met so far (note that Figure 2.17 does not give raw errors but errors times 1000!) and,
second, that the expectation we have that the global error should be O(h4) is roughly
borne out in practice (the ratio of |x − Xa | to |x − Xb | is roughly 16 : 1).

c1 = hf (tn, Xn)

c2 = hf (tn + h, Xn + c1)

Xn+1 = Xn + (c1 + c2)
1
2
---

Example 2.10

dx
dt
------ = 

x2

t + 1
------------,

t Xa Xb x(t) |x − Xa | × 103 |x − Xb | × 103

0.000 00 1.000 000 0 1.000 000 0 1.000 000 0
0.100 00 1.105 350 7 1.105 351 2 1.105 351 2 0.000 55 0.000 04 0.0682
0.200 00 1.222 973 3 1.222 974 5 1.222 974 6 0.001 33 0.000 09 0.0680
0.300 00 1.355 680 2 1.355 682 5 1.355 682 7 0.002 46 0.000 17 0.0679
0.400 00 1.507 091 8 1.507 095 7 1.507 095 9 0.004 10 0.000 28 0.0678
0.500 00 1.681 980 5 1.681 986 6 1.681 987 1 0.006 53 0.000 44 0.0678
0.600 00 1.886 795 2 1.886 804 7 1.886 805 4 0.010 20 0.000 69 0.0677
0.700 00 2.130 491 5 2.130 506 4 2.130 507 4 0.015 92 0.001 08 0.0677
0.800 00 2.425 903 1 2.425 926 6 2.425 928 3 0.025 19 0.001 71 0.0677
0.900 00 2.792 115 5 2.792 153 7 2.792 156 5 0.041 03 0.002 78 0.0677
1.000 00 3.258 821 4 3.258 886 6 3.258 891 4 0.069 94 0.004 74 0.0678

x Xb–
x Xa–

-------------------

Figure 2.17
Computational results 
for Example 2.10.



142 NUMERICAL SOLUTION OF OR DINAR Y DIF FERENTIAL EQUATIONS

 

Runge–Kutta schemes are single-step methods in the sense that they only require the
value of Xn, not the value of X at any steps prior to that. Therefore, they are entirely self-
starting, unlike the predictor–corrector and other multistep methods. On the other hand,
Runge–Kutta methods proceed by effectively creating substeps within each step. Thus
they require more evaluations of the function f(t, x) at each step than multistep methods
of equivalent order of accuracy. For this reason, they are computationally less efficient.
Because they are self-starting, however, Runge–Kutta methods can be used to start the
process for multistep methods. An example of an efficient scheme that consistently has
a fourth-order local error is as follows. Start by taking two steps using the fourth-order
Runge–Kutta method. At this point values of X0, X1 and X2 are available, so, to achieve
computational efficiency, change to the three-step fourth-order predictor–corrector con-
sisting of the third-order Adams–Bashforth/fourth-order Adams–Moulton pair.

The table of values in Figure 2.17 can be obtained using MAPLE with the
appropriate setting of the numerical method. The following worksheet computes
the solutions specified and composes the required table.

> #set up differential equation
> deq1:=diff(x(t),t)=x(t)^2/(t+1);init1:=x(0)=1;
> #obtain x1 and x2, the numerical solutions
> x1:=dsolve({deq1, init1}, numeric,method=classical[rk4],

output=listprocedure,stepsize=0.1);
> x2:=dsolve({deq1, init1},numeric,method=classical[rk4],

output=listprocedure,stepsize=0.05);
> #xa is the analytic solution
> xa:=dsolve({deq1, init1});
> printlevel:=0:

fmtstr:="%5.1f,%12.7f,%12.7f,%12.7f,%10.5f,%10.5f,
%10.4f,\n":

for i from 1 to 10 do
t:=0.1*i:
xx1:=op(2,x1[2])(t):
xx2:=op(2,x2[2])(t):
xxa:=evalf(subs(t=1,op(2,xa))):
printf(fmtstr,t,xx1,xx2,xxa,abs(xx1-xxa)*1e3,

abs(xx2-xxa)*1e3,(xx2-xxa)/(xx1-xxa));
end do;

It is interesting to note that the MAPLE results in the right-hand column, the ratio
of the errors in the two numerical solutions, vary slightly from those in Figure 2.17.
The results in Figure 2.17 were computed using the high-level programming language
Pascal which uses a different representation of floating point numbers from that
used by MAPLE. The variation in the results is an effect of the differing levels of
precision in the two languages. The differences are, of course, small and do not
change the overall message obtained from the figure.
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(Note that Questions 8–15 may be attempted 
using a hand-held calculator, particularly if it 
is of the programmable variety. The arithmetic 
will, however, be found to be tedious, and the 
use of computer assistance is recommended if 
the maximum benefit is to be obtained from 
completing these questions.)

Using the second-order Adams–Bashforth 
method (start the process with a single step 
using the second-order predictor–corrector 
method), 

(a) compute an estimate of x(0.5) for the initial-value 
problem

= x 2 sin t − x, x(0) = 0.2

using step size h = 0.1;
(b) compute an estimate of x(1.2) for the initial-value 

problem

= x2 e tx, x(0.5) = 0.5

using step size h = 0.1.

Using the third-order Adams–Bashforth method 
(start the process with two second-order 
predictor–corrector method steps) compute an 
estimate of x(0.5) for the initial-value problem

, x(0) = 1

using step size h = 0.1.

Using the second-order predictor–corrector method,

(a) compute an estimate of x(0.5) for the initial-value 
problem

= (2t + x) sin 2t, x(0) = 0.5

using step size h = 0.05;
(b) compute an estimate of x(1) for the initial-value 

problem

, x(0) = −2

using step size h = 0.1.

Write down the first three terms of the Taylor series 
expansions of the functions

(t − h) and (t − 2h)

about x(t). Use these two equations to eliminate

from the Taylor series expansion of the function 
x(t + h) about x(t). Show that the resulting formula 
for x(t + h) is the third member of the Adams–
Bashforth family, and hence confirm that this 
Adams–Bashforth method is a third-order method.

Write down the first three terms of the Taylor series 
expansions of the functions

(t + h) and (t − h)

about x(t). Use these two equations to eliminate

from the Taylor series expansion of the function 
x(t + h) about x(t). Show that the resulting formula 
for x(t + h) is the third member of the Adams–
Moulton family, and hence confirm that this 
Adams–Moulton method is a third-order method.

Write down the first four terms of the Taylor series 
expansion of the function x(t − h) about x(t), and the 
first three terms of the expansion of the function

(t − h)

about x(t). Use these two equations to eliminate

from the Taylor series expansion of the function 
x(t + h) about x(t). Show that the resulting formula is

Xn+1 = −4Xn + 5Xn−1 + h(4Fn + 2Fn−1) + O(h4)

Show that this method is a linear combination of the 
second-order Adams–Bashforth method and the 
central difference method (that is, the scheme based 
on (2.9)). What do you think, in view of this, might 
be its disadvantages?

2.3.9 Exercises
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Using the third-order Adams–Bashforth–Moulton 
predictor–corrector method (that is, the second-order 
Adams–Bashforth formula as predictor and the 
third-order Adams–Moulton formula as corrector), 
compute an estimate of x(0.5) for 
the initial-value problem

= x2 + t 2, x(0.3) = 0.1

using step size h = 0.05. (You will need to employ 
another method for the first step to start this scheme 
– use the fourth-order Runge–Kutta method.)

Using the fourth-order Runge–Kutta method, 

(a) compute an estimate of x(0.75) for the 
initial-value problem

= x + t + xt, x(0) = 1

using step size h = 0.15;
(b) compute an estimate of x(2) for the initial-value 

problem

x(1) = 2

using step size h = 0.1.

Consider the initial-value problem

= x2 + t 3/2, x(0) = −1

(a) Compute estimates of x(2) using the second-order 
Adams–Bashforth scheme (using the 
second-order predictor–corrector to start the 
computation) with step sizes h = 0.2 and 0.1. From 
these two estimates of x(2) estimate what step size 
would be needed to compute an estimate of x(2) 
accurate to 3 decimal places. Compute X(2), first 
using your estimated step size and second using 
half your estimated step size. Does the
required accuracy appear to have been achieved?

(b) Compute estimates of x(2) using the second-order 
predictor–corrector scheme with step sizes h = 
0.2 and 0.1. From these two estimates of x(2) 

estimate what step size would be 
needed with this scheme to compute an 
estimate of x(2) accurate to 3 decimal places. 
Compute X(2), first using your estimated step 
size and second using half your estimated step 
size. Does the required accuracy appear to have 
been achieved?

(c) Compute estimates of x(2) using the fourth-order 
Runge–Kutta scheme with step sizes 
h = 0.4 and 0.2. From these two estimates of x(2) 
estimate what step size would be needed to 
compute an estimate of x(2) accurate to 5 dp. 
Compute X(3), first using your estimated step 
size and second using half your estimated step 
size. Does the required accuracy appear to have 
been achieved?

For the initial-value problem

= x2 e−t, x(1) = 1

find, by any method, an estimate, accurate to 5dp, of 
the value of x(3).

Note: All of the exercises in this section can be 
completed by programming the algorithms in a 
high-level computer language such as Pascal, 
C and Java. Programming in a similar high-level 
style can be achieved using the language constructs 
embedded within the MATLAB and MAPLE 
packages. MAPLE, as we have already seen, 
and MATLAB also allow a higher-level style 
of programming using their built-in procedures 
for numerical solution of ODEs. Both MATLAB 
and MAPLE have very sophisticated built-in 
procedures, but MAPLE also allows the user 
to specify that it should use simpler algorithms 
(which it calls ‘classic’ algorithms). Amongst 
these simpler algorithms are many of the 
algorithms we discuss in this chapter. In the 
preceding exercise set, those which specify the 
Runge–Kutta method and the second-order 
predictor–corrector could be completed using 
MAPLE’s dsolve procedure specifying the 
relevant ‘classic’ solution methods.

14
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2.3.10 Stiff equations

There is a class of differential equations, known as stiff differential equations, that are
apt to be somewhat troublesome to solve numerically. It is beyond the scope of this text
to explore the topic of stiff equations in any great detail. It is, however, important to be
aware of the possibility of difficulties from this source and to be able to recognize the
sort of equations that are likely to be stiff. In that spirit we shall present a very informal
treatment of stiff equations and the sort of troubles that they cause. Example 2.11 shows
the sort of behaviour that is typical of stiff differential equations.

The equation

= 1 − x, x(0) = 2 (2.23)

has analytical solution x = 1 + e−t. The equation

= 50(1 − x) + 50 e−t, x(0) = 2 (2.24)

has analytical solution x = 1 + (50 e−t − e−50t). The two solutions are shown in
Figure 2.18.

Suppose that it were not possible to solve the two equations analytically and
that numerical solutions must be sought. The form of the two solutions shown in
Figure 2.18 is not very different, and it might be supposed (at least naively) that the
numerical solution of the two equations would present similar problems. This, however,
is far from the case.

Figure 2.19 shows the results of solving the two equations using the second-order
predictor–corrector method with step size h = 0.01. The numerical and exact solutions
of (2.23) are denoted by Xa and xa respectively, and those of (2.24) by Xb and xb. The
third and fifth columns give the errors in the numerical solutions (compared with the
exact solutions), and the last column gives the ratio of the errors. The solution Xa is seen
to be considerably more accurate than Xb using the same step size.

Example 2.11

dx
dt
------

dx
dt
------

1
49
------

(2.24)

(2.23)

Figure 2.18
The analytical 
solutions of 
(2.23) and (2.24).
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Figure 2.20 is similar to Figure 2.19, but with a step size h = 0.025. As we might
expect, the error in the solution Xa is larger by a factor of roughly six (the global error
of the second-order predictor–corrector method is O(h2)). The errors in Xb, however, are
larger by more than the expected factor, as is evidenced by the increase in the ratio of
the error in Xb to that in Xa.

Figure 2.21 shows the results obtained using a step size h = 0.05. The errors in Xa

are again larger by about the factor expected (25 when compared with Figure 2.19). The

t Xa |Xa − xa | Xb |Xb − xb | Ratio of
errors

0.000 00 2.000 00 0.000 000 2.000 00 0.000 000
0.100 00 1.904 84 0.000 002 1.923 15 0.000 017 11.264 68
0.200 00 1.818 73 0.000 003 1.835 47 0.000 028 10.022 19
0.300 00 1.740 82 0.000 004 1.755 96 0.000 026 6.864 34
0.400 00 1.670 32 0.000 005 1.684 02 0.000 023 5.150 07
0.500 00 1.606 54 0.000 005 1.618 93 0.000 021 4.120 06
0.600 00 1.548 82 0.000 006 1.560 03 0.000 019 3.433 38
0.700 00 1.496 59 0.000 006 1.506 74 0.000 017 2.942 90
0.800 00 1.449 34 0.000 006 1.458 51 0.000 016 2.575 03
0.900 00 1.406 58 0.000 006 1.414 88 0.000 014 2.288 92
1.000 00 1.367 89 0.000 006 1.375 40 0.000 013 2.060 02

Figure 2.19
Computational results 
for Example 2.11; 
h = 0.01.

t Xa |Xa − xa | Xb |Xb − xb | Ratio of
errors

0.000 00 2.000 00 0.000 000 2.000 00 0.000 000
0.10000 1.904 85 0.000 010 1.922 04 0.001 123 116.951 24
0.200 00 1.818 75 0.000 017 1.835 67 0.000 231 13.270 10
0.300 00 1.740 84 0.000 024 1.756 25 0.000 317 13.438 84
0.400 00 1.670 35 0.000 028 1.684 30 0.000 296 10.384 39
0.500 00 1.606 56 0.000 032 1.619 18 0.000 268 8.328 98
0.600 00 1.548 85 0.000 035 1.560 25 0.000 243 6.942 36
0.700 00 1.496 62 0.000 037 1.506 94 0.000 220 5.950 68
0.800 00 1.449 37 0.000 038 1.458 70 0.000 199 5.206 82
0.900 00 1.406 61 0.000 039 1.415 05 0.000 180 4.628 26
1.000 00 1.367 92 0.000 039 1.375 55 0.000 163 4.165 42

Figure 2.20
Computational results 
for Example 2.11; 
h = 0.025.

t Xa |Xa − xa | Xb |Xb − xb |

0.000 00 2.000 00 0.000 000 2.000 00 0.000 000
0.100 00 1.904 88 0.000 039 1.873 43 0.049 740
0.200 00 1.818 80 0.000 071 1.707 36 0.128 075
0.300 00 1.740 91 0.000 096 1.421 02 0.334 914
0.400 00 1.670 44 0.000 116 0.802 59 0.881 408
0.500 00 1.606 66 0.000 131 −0.705 87 2.324 778
0.600 00 1.548 95 0.000 142 −4.576 42 6.136 434
0.700 00 1.496 74 0.000 150 −14.695 10 16.201 818
0.800 00 1.449 48 0.000 156 −41.322 43 42.780 932
0.900 00 1.406 73 0.000 158 −111.551 73 112.966 595
1.000 00 1.368 04 0.000 159 −296.925 40 298.300 783

Figure 2.21
Computational results 
for Example 2.11; 
h = 0.05.
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solution Xb, however, shows little relationship to the exact solution xb – so little that the
error at t = 1 is over 20 000% of the exact solution. Obviously a numerical method that
causes such large errors to accumulate is not at all satisfactory.

In Section 2.3.5 we met the idea that some numerical methods can, when applied to
some classes of differential equation, show instability. What has happened here is, of
course, that the predictor–corrector method is showing instability when used to solve
(2.24) with a step size larger than some critical limit. Unfortunately the same behaviour
is also manifest by the other methods that we have already come across – the problem
lies with the equation (2.24), which is an example of a stiff differential equation.

The typical pattern with stiff differential equations is that, in order to avoid instability,
the step size used to solve the equation using normal numerical methods must be very
small when compared with the interval over which the equation is to be solved. In other
words, the number of steps to be taken is very large and the solution is costly in time
and computing resources. Essentially, stiff equations are equations whose solution con-
tains terms involving widely varying time scales. That (2.24) is of this type is evid-
enced by the presence of terms in both e−t and e−50t in the analytical solution. In order to
solve such equations accurately, a step must be chosen that is small enough to cope with
the shortest time scale. If the solution is required for times comparable to the long time
scales, this can mean that very large numbers of steps are needed and the computer
processing time needed to solve the problem becomes prohibitive. In Example 2.11 the
time scale of the rapidly varying and the more slowly varying components of the solution
differed by only a factor of 50. It is not unusual, in the physical problems arising from
engineering investigations, to find time scales differing by three or more orders of
magnitude; that is, factors of 1000 or more. In these cases the problems caused are
proportionately amplified. Fortunately a number of numerical methods that are par-
ticularly efficient at solving stiff differential equations have been developed. It is beyond
the scope of this text to treat these in any detail.

From the engineering point of view, the implication of the existence of stiff equations is
that engineers must be aware of the possibility of meeting such equations and also of the
nature of the difficulty for the numerical methods – the widely varying time scales inherent
in the problem. It is probably easier to recognize that an engineering problem is likely to
give rise to a stiff equation or equations because of the physical nature of the problem than
it is to recognize a stiff equation in its abstract form isolated from the engineering context
from which it arose. As is often the case, a judicious combination of mathematical reasoning
and engineering intuition is more powerful than either approach in isolation.

Both MAPLE and MATLAB feature procedures for the numerical solution of ODEs
which are designed to deal efficiently with stiff equations. The user may be tempted to
think that a simple way to negotiate the problem of stiff equations is to use the stiff equation
solvers for all ODEs. However, the stiff equation methods are less computationally
efficient for non-stiff equations so it is worth trying to identify which type of equation
one is facing and using the most appropriate methods.

2.3.11 Computer software libraries

In the last few sections we have built up some basic methods for the integration of first-
order ODEs. These methods, particularly the more sophisticated ones – the fourth-order
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Runge–Kutta and the predictor–corrector methods – suffice for many of the problems aris-
ing in engineering practice. However, for more demanding problems – demanding in terms
of the scale of the problem or because the problem is characterized by ill behaviour of some
form – there exist more sophisticated methods than those we are able to present in this book.

All the methods that we have presented in the last few sections use a fixed step size.
Among the more sophisticated methods to which we have just alluded are some that use
a variable step size. In Section 2.3.6 we showed how Richardson extrapolation can be
used to estimate the size of the error in a numerical solution and, furthermore, to estim-
ate the step size that should be used in order to compute a solution of a differential
equation to some desired accuracy. The principle of the variable-step methods is that a
running check is kept of the estimated error in the solution being computed. The error
may be estimated by a formula derived along principles similar to that of Richardson
extrapolation. This running estimate of the error is used to predict, at any point in the
computation, how large a step can be taken while still computing a solution within any
given error bound specified by the user. The step size used in the solution can be altered
accordingly. If the error is approaching the limits of what is acceptable then the step size
can be reduced; if it is very much smaller than that which can be tolerated then the step size
may be increased in the interests of speedy and efficient computing. For multistep meth-
ods the change of step size can lead to quite complicated formulae or procedures. As an
alternative, or in addition, to a change of step size, changes can be made in the order of
the integration formula used. When increased accuracy is required, instead of reduc-
ing the step size, the order of the integration method can be increased, and vice versa.
Implementations of the best of these more sophisticated schemes are readily available in
software packages, such as MAPLE and MATLAB, and software libraries such as the
NAG library.

The availability of complex and sophisticated ‘state of the art’ methods is not the
only argument for the use of software packages and libraries. It is a good engineering
principle that, if an engineer wishes to design and construct a reliable engineering artefact,
tried and proven components of known reliability and performance characteristics
should be used. This principle can also be extended to engineering software. It is almost
always both more efficient, in terms of expenditure of time and intellectual energy, and
more reliable, in terms of elimination of bugs and unwanted side-effects, to use software
from a known and proven source than to write programs from scratch.

For both of the foregoing reasons, when reliable mathematical packages, such as
MAPLE and MATLAB, and software libraries are available, their use is strongly rec-
ommended. MAPLE offers both symbolic manipulation (computer algebra) and numer-
ical problem solving across the whole span of mathematics. Amongst these, as we have
already noted, MAPLE includes routines for the numerical solution of systems of
ODEs. These routines are highly sophisticated, offering alternative methods suitable for
stiff and non-stiff problems, using fixed time steps or variable time steps and optimized
either for speed or for accuracy. The MATLAB package, with its Simulink continuous
system modelling add-on, also offers sophisticated facilities for solving differential
equations numerically. Again the package offers the choice of both fixed and variable
time step methods, methods suitable for stiff problems as well as non-stiff ones, and a
choice of optimizations aimed at either best speed or highest accuracy. Amongst the
best known, and probably the most widely used, library of software procedures today
is the NAG library. This library has a long history and has been compiled by leading
experts in the field of numerical mathematics. Routines are available in a variety
of programming languages. The routines provided for the solution of ODEs again
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encompass a variety of methods chosen to deal with stiff and non-stiff problems and to
offer the user considerable flexibility in choice of method to suit every possible engi-
neering requirement. By choosing an appropriate, high-quality software package or
library the engineer can be assured that the implementation will be, as far as possible,
bug free, that the methods used will be efficient and reliable, and that the algorithms
will have been chosen from the best ‘state of the art’ methods.

It is tempting to believe that the use of software libraries solves all the problems of
numerical analysis that an engineering user is likely to meet. Faced with a problem for
which analytical methods fail, the engineer simply needs to thumb through the index to
some numerical analysis software library until a method for solving the type of problem
currently faced is found. Unfortunately such undiscerning use of packaged software
will almost certainly, sooner or later, lead to a gross failure of some sort. If the user is
fortunate, the software will be sophisticated enough to detect that the problem posed is
outside its capabilities and to return an error message to that effect. If the user is less
fortunate, the writer of the software will not have been able to foresee all the possible
uses and misuses to which the software might be subjected and the software will not be
proof against such use outside its range of applicability. In that case the software may
produce seemingly valid answers while giving no indication of any potential problem.
Under such circumstances the undiscerning user of engineering software is on the verge
of committing a major engineering blunder. From such circumstances result failed
bridges and crashed aircraft! It has been the objective of these sections on the numerical
solution of differential equations both to equip readers with numerical methods suitable
for the less demanding problems that will arise in their engineering careers and to give
them sufficient understanding of the basics of this branch of numerical analysis that
they may become discriminating, intelligent and wary users of packaged software and
other aids to numerical computing.

Numerical methods for systems of ordinary differential 
equations and higher-order differential equations
Obviously, the classes of second- and higher-order differential equations that can be
solved analytically, while representing an important subset of the totality of such
equations, are relatively restricted. Just as for first-order equations, those for which no
analytical solution exists can still be solved by numerical means. The numerical
solution of second- and higher-order equations does not, in fact, need any significant
new mathematical theory or technique.

2.4.1 Numerical solution of coupled first-order equations

In Section 2.3 we met various methods for the numerical solution of equations of the
form

= f (t, x)

that is, first-order differential equations involving a single dependent variable and a
single independent variable. However it is possible to have sets of coupled first-order

2.4

dx
dt
------
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equations, each involving the same independent variable but with more than one
dependent variable. An example of these types of equation is

= x − y2 + xt (2.25a)

= 2x2 + xy − t (2.25b)

This is a pair of differential equations in the dependent variables x and y with the
independent variable t. The derivative of each of the dependent variables depends
not only on itself and on the independent variable t, but also on the other dependent
variable. Neither of the equations can be solved in isolation or independently of the
other – both must be solved simultaneously, or side by side. A pair of coupled
differential equations such as (2.25) may be characterized as

= f1(t, x, y) (2.26a)

= f2(t, x, y) (2.26b)

For a set of p such equations it is convenient to denote the dependent variables not by
x, y, z, . . . but by x1, x2, x3, . . . , xp and the set of equations by

= fi(t, x1, x2, . . . , xp ) (i = 1, 2, . . . , p)

or equivalently, using vector notation,

[x] = f (t, x)

where x(t) is a vector function of t given by

x(t ) = [x1(t ) x2(t ) . . . xp(t )]T

f (t, x) is a vector-valued function of the scalar variable t and the vector variable x.
The Euler method for the solution of a single differential equation takes the

form

If we were to try to apply this method to (2.26a), we should obtain

In other words, the value of Xn+1 depends not only on tn and Xn but also on Yn. In the same
way, we would obtain

Xn+1 = Xn + hf (tn, Xn)

Xn+1 = Xn + hf1(tn, Xn, Yn)

Yn+1 = Yn + hf2(tn, Xn, Yn)

dx
dt
------

dy
dt
------

dx
dt
------

dy
dt
------

dxi

dt
-------

d
dt
-----
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for Yn+1. In practice, this means that to solve two simultaneous differential equations, we
must advance the solution of both equations simultaneously in the manner shown in
Example 2.12.

Find the value of X(1.4) satisfying the following initial-value problem:

= x − y 2 + xt, x(1) = 0.5

= 2x 2 + xy − t, y(1) = 1.2

using the Euler method with time step h = 0.1.

Solution The right-hand sides of the two equations will be denoted by f1(t, x, y) and f2(t, x, y)
respectively, so

f1(t, x, y) = x − y 2 + xt and f2(t, x, y) = 2x 2 + xy − t

The initial condition is imposed at t = 1, so tn will denote 1 + nh, Xn will denote X(1 + nh),
and Yn will denote Y(1 + nh). Then we have

X1 = x0 + hf1(t0, x0, y0) Y1 = y0 + hf2(t0, x0, y0)

= 0.5 + 0.1f1(1, 0.5, 1.2) = 1.2 + 0.1f2(1, 0.5, 1.2)

= 0.4560 = 1.2100

for the first step. The next step is therefore

X2 = X1 + hf1(t1, X1, Y1) Y2 = Y1 + hf2(t1, X1, Y1)

= 0.4560 = 1.2100 

+ 0.1f1(1.1, 0.4560, 1.2100) + 0.1f2(1.1, 0.4560, 1.2100)

= 0.4054 = 1.1968

and the third step is

X3 = 0.4054 Y3 = 1.1968

+ 0.1f1(1.2, 0.4054, 1.1968) + 0.1f2(1.2, 0.4054, 1.1968)

= 0.3513 = 1.1581

Finally, we obtain

X4 = 0.3513 + 0.1f1(1.3, 0.3513, 1.1581)

= 0.2980

Hence we have X(1.4) = 0.2980.

Example 2.12

dx
dt
------

dy
dt
------
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The principle of solving the two equations side by side extends in exactly the same
way to the solution of more than two simultaneous equations and to the solution of
simultaneous differential equations by methods other than the Euler method.

Find the value of X(1.4) satisfying the following initial-value problem:

 = x − y 2 + xt, x(1) = 0.5

 = 2x 2 + xy − t, y(1) = 1.2

using the second-order predictor–corrector method with time step h = 0.1.

Solution

predictor

 = x0 + hf1(t0, x0, y0)  = y0 + hf2(t0, x0, y0)

= 0.4560 = 1.2100

corrector

X1 = x0 + h[ f1(t0, x0, y0) Y1 = y0 + h[ f2(t0, x0, y0)

+ f1(t1, , )] + f2(t1, , )]

= 0.5 + 0.05[ f1(1, 0.5, 1.2) = 1.2 + 0.05[ f2(1, 0.5, 1.2)

+ f1(1.1, 0.456, 1.21)] + f2(1.1, 0.456, 1.21)]

= 0.4527 = 1.1984

MAPLE’s dsolve procedure can find the numerical solution of sets of coupled
ordinary differential equations as readily as for a single differential equation. The
following worksheet finds the solution required in the example above.

> #set up the two differential equations
> deq1:=diff(x(t),t)=x(t)*(1+t)-y(t)^2:

deq2:=diff(y(t),t)=2*x(t)^2 +x(t)*y(t)-t:
deqsystem:=deq1,deq2;

> #set up the initial conditions
> inits:=x(1)=0.5,y(1)=1.2;
> #procedure "dsolve" used to solve s system of two coupled 

differential equations
> sol:=dsolve({deqsystem, inits}, numeric,

method=classical[foreuler],output=listprocedure,
stepsize=0.1);

> #obtain numerical solution required
> xx:=op(2,sol[2]);xx(1.4);

Example 2.13

dx
dt
------

dy
dt
------

First step:

X̂1 Ŷ1

1
2
---

1
2
---

X̂1 Ŷ1 X1
ˆ Ŷ1



2.4  NUMERICAL METHODS FOR SYSTEMS OF  OR DINAR Y DIF FERENTIAL EQUATIONS 153

predictor

 = X1 + hf1(t1, X1, Y1)  = Y1 + hf2(t1, X1, Y1)

= 0.4042 = 1.1836

corrector

X2 = X1 + h[ f1(t1, X1, Y1) Y2 = Y1 + h[ f2(t1, X1, Y1)

+ f1(t2, , )] + f2(t2, , )]

= 0.4527 = 1.1984

+ 0.05[ f1(1.1, 0.4527, 1.1984) + 0.05[ f2(1.1, 0.4527, 1.1984)

+ f1(1.2, 0.4042, 1.1836)] + f2(1.2, 0.4042, 1.1836)]

= 0.4028 = 1.1713

predictor

 = X2 + hf1(t2, X2, Y2)  = Y2 + hf2(t2, X2, Y2)

= 0.3542 = 1.1309

corrector

X3 = X2 + h[ f1(t2, X2, Y2) Y3 = Y2 + h[ f2(t2, X2, Y2)

+ f1(t3, , )] + f2(t3, , )]

= 0.4028 = 1.1713

+ 0.05[ f1(1.2, 0.4028, 1.1713) + 0.05[ f2(1.2, 0.4028, 1.1713)

+ f1(1.3, 0.3542, 1.1309)] + f2(1.3, 0.3542, 1.1309)]

= 0.3553 = 1.1186

predictor

 = X3 + hf1(t3, X3, Y3)   = Y3 + hf2(t3, X3, Y3)

= 0.3119 = 1.0536

corrector

X4 = X3 + h[ f1(t3, X3, Y3) + f1(t4, , )]

= 0.3553 + 0.05[ f1(1.3, 0.3553, 1.1186) + f1(1.4, 0.3119, 1.0536)]

Hence finally we have X(1.4) = 0.3155.

Second step:

Third step:

Fourth step:

X̂2 Ŷ2

1
2
---

1
2
---

X̂2 Ŷ2 X̂2 Ŷ2

X̂3 Ŷ3

1
2
---

1
2
---

X̂3 Ŷ3 X̂ 3 Ŷ3

X̂4 Ŷ4

1
2
--- X̂4 Ŷ4
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The MAPLE worksheet at the end of Example 2.12 can be easily modified to
reproduce the solution of Example 2.13 by changing the name of the required
numerical method from foreuler to heunform.

It should be obvious from Example 2.13 that the main drawback of extending the
methods we already have at our disposal to sets of differential equations is the
additional labour and tedium of the computations. Intrinsically, the computations
are no more difficult, merely much more laborious – a prime example of a problem
ripe for computerization.

2.4.2 State-space representation of higher-order systems

The solution of differential equation initial-value problems of order greater than one can
be reduced to the solution of a set of first-order differential equations using the state-space
representation introduced in Section 1.9. This is achieved by a simple transformation,
illustrated by Example 2.14.

The initial-value problem

can be transformed into two coupled first-order differential equations by introducing
an additional variable

y =

With this definition, we have

and so the differential equation becomes

+ x2ty − xt 2 = 

Thus the original differential equation can be replaced by a pair of coupled first-order
differential equations, together with initial conditions:

 = y, x(0) = 1.2

 = −x2ty + xt 2 + y(0) = 0.8

This process can be extended to transform a pth-order initial-value problem into a
set of p first-order equations, each with an initial condition. Once the original equation
has been transformed in this way, its solution by numerical methods is just the same
as if it had been a set of coupled equations in the first place.

Example 2.14

d2x

dt2
-------- x2t

dx

dt
------ xt2–+ 1

2
---= t2, x 0( ) 1.2= ,

dx

dt
------ 0( ) 0.8=

dx
dt
------

d2x

dt2
--------

dy

dt
------=

dy
dt
------ 1

2
---t2

dx
dt
------

dy
dt
------ 1

2
---t2,
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Find the value of X(0.2) satisfying the initial-value problem

using the fourth-order Runge–Kutta scheme with step size h = 0.05.

Solution Since this is a third-order equation, we need to introduce two new variables:

Then the equation is transformed into a set of three first-order differential equations

= y x(0) = 1

= z y(0) = 0.5

= −xtz − ty + t 2x z(0) = −0.2

Applied to the set of differential equations

= f1(t, x, y, z)

= f2(t, x, y, z)

= f3(t, x, y, z)

the Runge–Kutta scheme is of the form

c11 = hf1(tn, Xn, Yn, Zn)

c21 = hf2(tn, Xn, Yn, Zn)

c31 = hf3(tn, Xn, Yn, Zn)

c12 = hf1(tn + h, Xn + c11, Yn + c21, Zn + c31)

c22 = hf2(tn + h, Xn + c11, Yn + c21, Zn + c31)

c32 = hf3(tn + h, Xn + c11, Yn + c21, Zn + c31)

c13 = hf1(tn + h, Xn + c12, Yn + c22, Zn + c32)

c23 = hf2(tn + h, Xn + c12, Yn + c22, Zn + c32)

c33 = hf3(tn + h, Xn + c12, Yn + c22, Zn + c32)

c14 = hf1(tn + h, Xn + c13, Yn + c23, Zn + c33)

c24 = hf2(tn + h, Xn + c13, Yn + c23, Zn + c33)

c34 = hf3(tn + h, Xn + c13, Yn + c23, Zn + c33)

Example 2.15

d3x

dt3
-------- xt

d2x

dt2
-------- t

dx

dt
------+ t2x–+ 0= , x 0( ) 1= ,

dx

dt
------ 0( ) 0.5,

d2x

dt2
-------- 0( ) 0.2–==

y
dx

dt
------ and z

dy

dt
------

d2x

dt2
--------===

dx
dt
------

dy
dt
------

dz
dt
-----

dx
dt
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dy
dt
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dz
dt
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Xn+1 = Xn + (c11 + 2c12 + 2c13 + c14)

Yn+1 = Yn + (c21 + 2c22 + 2c23 + c24)

Zn+1 = Zn + (c31 + 2c32 + 2c33 + c34)

Note that each of the four substeps of the Runge–Kutta scheme must be carried out in
parallel on each of the equations, since the intermediate values for all the independent
variables are needed in the next substep for each variable; for instance, the computation
of c13 requires not only the value of c12 but also the values of c22 and c32. The first step of
the computation in this case proceeds thus:

X0 = x0 = 1 Y0 = y0 = 0.5 Z0 = z0 = −0.2

c11 = hf1(t0, X0, Y0, Z0)

= hY0

= 0.025 000 c21 = hf2(t0, X0, Y0, Z0)

= hZ0

= −0.010 000 c31 = hf3(t0, X0, Y0, Z0)

= h(−X0t0Z0 − t0Y0 + t 2
0 X0)

= 0.000 000

c12 = hf1(t0 + h, X0 + c11, Y0 + c21, Z0 + c31)

= h(Y0 + c21)

= 0.024 750

c22 = hf2(t0 + h, X0 + c11, Y0 + c21, Z0 + c31)

= h(Z0 + c31)

= −0.010 000

c32 = hf3(t0 + h, X0 + c11, Y0 + c21, Z0 + c31)

= h(−(X0 + c11)(t0 + h)(Z0 + c31) 

− (t0 + h)(Y0 + c21) + (t0 + h)2(X0 + c11))

= −0.000 334

c13 = hf1(t0 + h, X0 + c12, Y0 + c22, Z0 + c32)

= h(Y0 + c22)

= 0.024 750

c23 = hf2(t0 + h, X0 + c12, Y0 + c22, Z0 + c32)

= h(Z0 + c32)

= −0.010 008

c33 = hf3(t0 + h, X0 + c12, Y0 + c22, Z0 + c32)

= h(−(X0 + c12)(t0 + h)(Z0 + c32)

− (t0 + h)(Y0 + c22) + (t0 + h)2(X0 + c12))

= −0.000 334
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c14 = hf1(t0 + h, X0 + c13, Y0 + c23, Z0 + c33)

= h(Y0 + c23)

= 0.024 499

c24 = hf2(t0 + h, X0 + c13, Y0 + c23, Z0 + c33)

= h(Z0 + c33)

= −0.010 016

c34 = hf3(t0 + h, X0 + c13, Y0 + c23, Z0 + c33)

= h(−(X0 + c13)(t0 + h)(Z0 + c33)

− (t0 + h)(Y0 + c23) + (t0 + h)2(X0 + c13))

= −0.000 584

X1 = 1.024 750, Y1 = 0.489 994, Z1 = −0.200 320

The second and subsequent steps are similar – we shall not present the details of the
computations. It should be obvious by now that computations like these are sufficiently
tedious to justify the effort of writing a computer program to carry out the actual arithmetic.
The essential point for the reader to grasp is not the mechanics, but rather the principle
whereby methods for the solution of first-order differential equations can be extended to the
solution of sets of equations and hence to higher-order equations.

Again MAPLE could be used to find the numerical solution of this set of coupled
ordinary differential equations. However, the MAPLE dsolve procedure is also able
to do the conversion of the higher-order equation into a set of first-order equations
internally so the numerical solution of the example above using the fourth-order
Runge–Kutta algorithm could be achieved with the following worksheet.

> #set up the differential equation
> deq:=diff(x(t),t,t,t)+x(t)*t*diff(x(t),t,t)

+t*diff(x(t),t)-t^2*x(t)=0;
> #set up the initial conditions
> inits:=x(0)=1,D(x)(0)=0.5,D(D(x))(0)=-0.2;
> #procedure "dsolve" used to solve third order

differential equations
> sol:=dsolve({deq, inits}, numeric,method=classical[rk4],

output=listprocedure,stepsize=0.05);
> #obtain the numerical solution required
> xx:=op(2,sol[2]);xx(0.05);xx(0.2);
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Transform the following initial-value problems 
into sets of first-order differential equations with 
appropriate initial conditions:

(a)

x(0) = 1, (0) = 2

(b) + 4(x2 − t 2)1/2 = 0

x(1) = 2, (1) = 0.5

(c) + 4x = 0

x(0) = 0, (0) = 0

(d)

x(0) = 1, (0) = 2, (0) = 0

(e)

x(1) = 1, (1) = 0, (1) = −2

(f )

x(2) = 0, (2) = 0, (2) = 2

(g) x(0) = 0, (0) = 0,

(0) = 4, (0) = −3

(h)

= t 2 + 4t − 5

x(0) = a, (0) = 0, (0) = b, (0) = 0

Find the value of X(0.3) for the initial-value 
problem

 x(0) = 0, (0) = 1

using the Euler method with step size h = 0.1.

The second-order Adams–Bashforth method for 
the integration of a single first-order differential 
equation

= f (t, x)

is

Xn+1 = Xn + h[3f (tn, Xn) − f(tn−1, Xn−1)]

Write down the appropriate equations for applying 
the same method to the solution of the pair of 
differential equations

= f1(t, x, y), = f2(t, x, y)

Hence find the value of X(0.3) for the initial-value 
problem

x(0) = 0, (0) = 1

using this Adams–Bashforth method with step size 
h = 0.1. Use the second-order predictor–corrector 
method for the first step to start the computation.

Use the second-order predictor–corrector 
method (that is, the first-order Adams–Bashforth 
formula as predictor and the second-order 
Adams–Moulton formula as corrector) to compute 
an approximation X(0.65) to the solution x(0.65) 
of the initial-value problem

x(0.5) = −1, (0.5) = 1, (0.5) = 2

using a step size h = 0.05.

Write a computer program to solve the initial-value 
problem

, x(0) = 0, (0) = 1

2.4.3 Exercises
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2.4.4 Boundary-value problems

Because first-order ODEs only have one boundary condition, that condition can always
be treated as an initial condition. Once we turn to second- and higher-order differential
equations, there are, at least for fully determined problems, two or more boundary condi-
tions. If the boundary conditions are all imposed at the same point then the problem is an
initial-value problem and can be solved by the methods we have already described. The
problems that have been used as illustrations in Sections 2.4.1 and 2.4.2 were all initial-
value problems. Boundary-value problems are somewhat more difficult to solve than ini-
tial-value problems.

To illustrate the difficulties of boundary-value problems, let us consider second-order
differential equations. These have two boundary conditions. If they are both imposed at the
same point (and so are initial conditions), the conditions will usually be a value of the
dependent variable and of its derivative, for instance a problem like

L[x(t)] = f (t), x(a) = p, (a) = q

where L is some differential operator. Occasionally, a mixed boundary condition such as

Cx(a) + D (a) = p

will arise. Provided that a second boundary condition on x or dx /dt is imposed at the same
point, this causes no difficulty, since the boundary conditions can be decoupled, that is
solved to give values of x(a) and (dx/dt)(a), before the problem is solved.

If the two boundary conditions are imposed at different points then they could consist of
two values of the dependent variable, the value of the dependent variable at one boundary
and its derivative at the other, or even linear combinations of the values of the dependent
variable and its derivative. For instance, we may have

L[x(t)] = f (t), x(a) = p, x(b) = q

or

dx
dt
------

dx
dt
------

using the fourth-order Runge–Kutta method. Use 
your program to find the value of X(1.6) using 
step sizes h = 0.4 and 0.2. Estimate the accuracy 
of your value of X(1.6) and estimate the step size 
that would be necessary to obtain a value of X(1.6) 
accurate to 6dp.

Write a computer program to solve the initial-value 
problem

x(0.5) = −1, (0.5) = 1, (0.5) = 2

using the third-order predictor–corrector method 
(that is, the second-order Adams–Bashforth formula 
as predictor with the third-order Adams–Moulton as 
corrector). Use the fourth-order Runge–Kutta 
method to overcome the starting problem with this 
process. Use your program to find the value of 
X(2.2) using step sizes h = 0.1 and 0.05. Estimate the 
accuracy of your value of X(2.2) and estimate the 
step size that would be necessary to obtain a value of 
X(2.2) accurate to 6dp.

Note: The comment on the use of high-level computer 
language and the MATLAB and MAPLE packages 
at the end of Section 2.3.9 is equally applicable to 
the immediately preceding exercises in this section.
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L[x(t)] = f (t), (a) = p, x(b) = q

or

L[x(t)] = f (t), x(a) = p, (b) = q

or even such systems as

L[x(t)] = f (t), x(a) = p, Ax(b) + B (b) = q

The increased range of possibilities introduced by boundary-value problems almost
inevitably increases the problems which may arise in their solution. For instance, it may at
first sight seem that it should also be possible to solve problems with boundary conditions
consisting of the derivative at both boundaries, such as

L[x(t)] = f (t), (a) = p, (b) = q

Things are unfortunately not that simple – as Example 2.16 shows.

Solve the boundary-value problem

Solution Integrating twice easily yields the general solution

x = 2t 2 + At + B

The boundary conditions then impose

A = p and 4 + A = q

It is obviously not possible to find a value of A satisfying both these equations unless
q = p + 4. In any event, whether or not p and q satisfy this relation, it is not possible to
determine the constant B.

Example 2.16 illustrates the fact that if derivative boundary conditions are to be applied,
a supplementary compatibility condition is needed. In addition, there may be a residual
uncertainty in the solution. The complete analysis of what types of boundary conditions are
allowable for two-point boundary-value problems is beyond the scope of this book.
Differential equations of orders higher than two increase the range of possibilities even
further and introduce further complexities into the determination of what boundary
conditions are allowable and valid.

2.4.5 The method of shooting

One obvious way of solving two-point boundary-value problems is a form of systematic
trial and error in which the boundary-value problem is replaced by an initial-value

dx
dt
------

dx
dt
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dx
dt
------

dx
dt
------

dx
dt
------

Example 2.16
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dt2
-------- 4,= dx

dt
------ 0( ) p,= dx

dt
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problem with initial values given at one of the two boundary points. The initial-value
problem can be solved by an appropriate numerical technique and the value of whatever
function is involved in the boundary condition at the second boundary point determined.
The initial values are then adjusted and another initial-value problem solved. This process
is repeated until a solution is found with the appropriate value at the second boundary
point.

As an illustration, we shall consider a second-order boundary-value problem of
the form

L[x] = f (t), x(a) = p, x(b) = q (2.27)

The related initial-value problem

L[x] = f (t), x(a) = p, (a) = 0 (2.28)

could be solved as described in Section 2.4.2. Suppose that doing this results in an
approximate solution of (2.28) denoted by X1. In the same way, denote the solution of
the problem

L[x] = f (t), x(a) = p, (a) = 1 (2.29)

by X2. We now have a situation as shown in Figure 2.22. The values of the two solutions
at the point t = b are X1(b) and X2(b). The original boundary-value problem (2.27)
requires a value q at b. Since q is roughly three-quarters of the way between X1(b) and
X2(b), we should intuitively expect that solving the initial-value problem

L[x] = f (t), x(a) = p, (a) = 0.75 (2.30)

will produce a solution with X(b) much closer to q. What we have done, of course,
is to assume that X(b) varies continuously and roughly in proportion to (dx /dt)(a)
and then to use linear interpolation to estimate a better value of (dx /dt)(a). It is unlikely,
of course, that X(b) will vary exactly linearly with (dx /dt)(a) so the solution of (2.30),
call it X3, will be something like that shown in Figure 2.23. The process of linear

dx
dt
------

dx
dt
------

Figure 2.22
The solution of a 
differential equation 
by the method of 
shooting: initial trials.

dx
dt
------
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interpolation to estimate a value of (dx /dt)(a) and the subsequent solution of the
resulting initial-value problem can be repeated until a solution is found with a value
of X(b) as close to q as may be required. This method of solution is known, by an
obvious analogy with the bracketing method employed by artillerymen to find their
targets, as the method of shooting. Shooting is not restricted to solving two-point
boundary-value problems in which the two boundary values are values of the
dependent variable. Problems involving boundary values on the derivatives can be
solved in an analogous manner.

The solution of a two-point boundary-value problem by the method of shooting
involves repeatedly solving a similar initial-value problem. It is therefore obvious that the
amount of computation required to obtain a solution to a two-point boundary-value prob-
lem by this method is certain to be an order of magnitude or more greater than that
required to solve an initial-value problem of the same order to the same accuracy. The
method for finding the solution that satisfies the boundary condition at the second
boundary point which we have just described used linear interpolation. It is possible to
reduce the computation required by using more sophisticated interpolation methods.
For instance, a version of the method of shooting that utilizes Newton–Raphson itera-
tion is described in R. D. Milne, Applied Functional Analysis, An Introductory Treat-
ment (London, Pitman, 1979).

Engineering application: oscillations of a pendulum

The simple pendulum has been used for hundreds of years as a timing device. A
pendulum clock, using either a falling weight or a clockwork spring device to
provide motive power, relies on the natural periodic oscillations of a pendulum to
ensure good timekeeping. Generally we assume that the period of a pendulum is
constant regardless of its amplitude. But this is only true for infinitesimally small
amplitude oscillations. In reality the period of a pendulum’s oscillations depends
on its amplitude. In this section we will use our knowledge of numerical analysis
to assist in an investigation of this relationship.

Figure 2.23
The solution of a 
differential equation 
by the method of 
shooting: first 
refinement.

2.5 Engineering application:
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Figure 2.24 shows a simple rigid pendulum mounted on a frictionless pivot swinging
in a single plane. By resolving forces in the tangential direction we have, following the
classical analysis of such pendulums,

that is,

(2.31)

For small oscillations of the pendulum we can use the approximation sin θ ≈ θ so the
equation becomes

(2.32)

which is, of course, the simple harmonic motion equation with solutions

Hence the period of the oscillations is 2π  and is independent of the amplitude
of the oscillations.

In reality, of course, the amplitude of the oscillations may not be small enough for
the linear approximation sin θ ≈ θ to be valid, so it would be useful to be able to solve
(2.31). Equation (2.31) is nonlinear so its solution is rather more problematical than
(2.32). We will solve the equation numerically. In order to make the solution a little
more transparent we will scale it so that the period of the oscillations of the linear
approximation (2.32) is unity. This is achieved by setting t = 2π τ . Equation
(2.31) then becomes

+ 4π2 sin θ = 0 (2.33)

For an initial amplitude of 30°, the pseudocode algorithm shown in Figure 2.25, which
implements the fourth-order Runge–Kutta method described in Section 2.3.8, produces
the results Θ(6.0) = 23.965 834 using a time step of 0.05 and Θ(6.0) = 24.018 659 with a
step of 0.025. Using Richardson extrapolation (see Section 2.3.6) we can predict that the
time step needed to achieve 5 decimal places of accuracy (i.e. an error less than 5 × 10−6)
with this fourth-order method is 

ma
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mg

Figure 2.24 A simple 
pendulum.
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repeating the calculation with time steps 0.01 and 0.005 gives Θ(6.0) = 24.021 872 7 and
Θ(6.0) = 24.021 948 1 for which Richardson extrapolation implies an error of 5 × 10−6

as predicted.

 

As a check we can draw the graph of |Θ0.01(τ ) − Θ0.005(τ ) | , shown in Figure 2.26.
This confirms that the error grows as the solution advances and that the maximum error
is around 7.5 × 10−6.

What we actually wanted is an estimate of the period of the oscillations. The
most satisfactory way to determine this is to find the interval between the times of
successive zero crossings. The time of a zero crossing can be estimated by linear
interpolation between the data points produced in numerical solution of the differ-
ential equation. At a zero crossing the successive values of Θ have the opposite
sign. Figure 2.27 shows a modified version of the main part of the algorithm of
Figure 2.25. This version determines the times of successive positive to negative
zero crossings and the differences between them.

Figure 2.28 shows some results from a program based on the algorithm of Figure 2.27;
it is evident that the period has been determined to 6 sf accuracy. Figure 2.29 has
been compiled from similar results for other amplitudes of oscillation.

Some spring-powered pendulum clocks are observed to behave in a counter-
intuitive way – as the spring winds down the clock gains time where most people
intuitively expect it to run more slowly and hence lose time. Figure 2.29 explains
this phenomenon. The reason is that, in a spring-powered clock, the spring, acting
through the escapement mechanism, exerts forces on the pendulum which, over each
cycle of oscillation of the pendulum, result in the application of a tiny net impulse.
The result is that just sufficient work is done on the pendulum to overcome the
effects of bearing friction, air resistance and any other dissipative effects, and to
keep the pendulum swinging with constant amplitude. But, as the spring unwinds the
force available is reduced and the impulse gets smaller. The result is that, as the

These results could also have been obtained using MAPLE as shown by the following
worksheet:

> deqsys:=diff(x(t),t$2)+4*Pi^2*sin(x(t))=0;
> inits:=x(0)=60/180*Pi,D(x)(0)=0;
> sol:=dsolve({deqsys, inits}, numeric,method=classical

[rk4],output=listprocedure,stepsize=0.005);
> xx:=op(2,sol[2]);xx(6);evalf(xx(6)*180/Pi);
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clock winds down, the amplitude of oscillation of the pendulum decreases slightly.
Figure 2.29 shows that as the amplitude decreases the period also decreases. Since
the period of the pendulum controls the speed of the clock, the clock runs faster as
the period decreases! Of course, as the clock winds down even further, the spring

tol ← 0.000 01
t_start ← 0
t_end ← 6
write(vdu,‘Enter amplitude => ’)
read(keyb, x0)
x_start ← pi*x0/180
v_start ← 0
write(vdu,‘Enter stepsize => ’)
read(keyb,h)
write(vdu,t_start,‘ ’,deg(x_start))
t ← t_start
x ← x_start
v ← v_start
repeat

rk4(x,v,h → xn,vn)
x ← xn
v ← vn
t ← t+h

until abs(t − t_end) , tol
write(vdu,t, ‘ ’,deg(x))

procedure rk4(x,v,h → xn,vn)
c11 ← h*f1(x,v)
c21 ← h*f2(x,v)
c12 ← h*f1(x + c11/2,v + c21/2)
c22 ← h*f2(x + c11/2,v + c21/2)
c13 ← h*f1(x + c12/2,v + c22/2)
c23 ← h*f2(x + c12/2,v + c22/2)
c14 ← h*f1(x + c13,v + c23)
c24 ← h*f2(x + c13,v + c23)
xn ← x + (c11 + 2*(c12 + c13) + c14)/6
vn ← v + (c21 + 2*(c22 + c23) + c24)/6

endprocedure

procedure f1(x,v → f1)
f1 ← v

endprocedure

procedure f2(x,v → f2)
f2 ← −4*pi*pi*sin (x)

endprocedure

procedure deg(x → deg)
deg ← 180*x/pi

endprocedure

Figure 2.25
A pseudocode 
algorithm for solving 
the nonlinear pendulum 
(2.33).
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reaches a point where it is no longer capable of applying a sufficient impulse to
overcome the dissipative forces, the pendulum ceases swinging and the clock
finally stops. 

Figure 2.26
Error in solution 
of (2.33) using 
algorithm (2.30) 
with h = 0.005.

tol ← 0.000 01
t_start ← 0
t_end ← 6
write(vdu,‘Enter amplitude => ’)
read(keyb,x0)
x_start ← pi*x0/180
v_start ← 0
write(vdu,‘Enter stepsize => ’)
read(keyb,h)
write(vdu,t_start,‘ ’,deg(x_start))
t ← t_start
x ← x_start
v ← v_start
t_previous_cross ← t_start
repeat

rk4(x,v,h → xn,vn)
if(xn*x , 0) and (x . 0) then

t_cross ← (t*xn − (t + h)*x)/(xn-x)
write(vdu,t_cross,‘ ’,t_cross – t_previous_cross)
t_previous_cross ← t_cross

endif
x ← xn
v ← vn
t ← t+h

until abs(t – t_end) , tol

Figure 2.27
Modification of 
pseudocode algorithm 
to find the period 
of oscillations of 
(2.33).
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Engineering application: heating of an electrical fuse
The electrical fuse is a simple device for protecting an electrical apparatus or circuit
from overload and possible damage after the failure of one or more components in the
apparatus. A fuse is usually a short length of thin wire through which the electrical current

The periods of the oscillations can also be measured using MAPLE. The procedure
fsolve finds numerically the roots of a function. The output of the procedure
dsolve is a function so we can use fsolve to find the zeros of that function, as in
the following MAPLE worksheet. Note that the period of successive cycles is found
more accurately and consistently using MAPLE. This is because the procedure
fsolve uses a higher-order method to locate the zeros of the function rather than
the linear interpolation method outlined in the algorithm in Figure 2.27.

> printlevel:=0:
> for i from 1 to 6 do;

t1:=fsolve(xx(t)=0,t,(i-1)..(i-1+0.99)):
t2:=fsolve(xx(t)=0,t,i..(i+0.99)):
printf("%12.7f,%12.7f,%12.7f,\n",t1,t2,t2-t1);
end do;

2.6 Engineering application:

Figure 2.29 
Variation of period of 
oscillations of (2.33) 
with amplitude.

Time of crossing Period of last cycle

0.254 352 13
1.271 761 06 1.017 408 93
2.289 169 73 1.017 408 67
3.306 578 68 1.017 408 95
4.323 987 34 1.017 408 66
5.341 396 30 1.017 408 96

Figure 2.28 Periods of 
successive oscillations 
of (2.33), Θ0 = 30°, 
h = 0.005.
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powering the apparatus flows. If the apparatus fails in such a way as to draw a dangerously
increased current, the fuse wire heats up and eventually melts thus disconnecting the
apparatus from the power source. In order to design fuses which will not fail during
normal use but which will operate reliably and rapidly in abnormal circumstances we
must understand the heating of a thin wire carrying an electrical current.

The equation governing the heat generation and dissipation in a wire carrying an
electrical current can be formulated as

(2.34)

where T is the temperature of the fuse wire, x is the distance along the wire, k is the
thermal conductivity of the material of which the wire is composed, r is the radius of the
wire, h is the convective heat transfer coefficient from the surface of the wire, Te is the
ambient temperature of the fuse’s surroundings, α is an empirical constant with a value
around 1.25, I is the current in the wire and ρ is the resistivity of the wire. Equation (2.34)
expresses the balance, in the steady state, between heat generation and heat loss. The
first term of the equation represents the transfer of heat along the wire by conduction,
the second term is the loss of heat from the surface of the wire by convection and the
third term is the generation of heat in the wire by the electrical current.

Taking θ = (T − Te) and dividing by kπr 2, (2.34) can be expressed as

(2.35)

Letting the length of the fuse be 2a and scaling the space variable, x, by setting x = 2aX,
(2.35) becomes

The boundary conditions are that the two ends of the wire, which are in contact with the
electrical terminals in the fuse unit, are kept at some fixed temperature (we will assume
that this temperature is the same as Te). In addition, the fuse has symmetry about its
midpoint x = a. Hence we may express the complete differential equation problem as

(2.36)

Equation (2.36) is a nonlinear second-order ODE. There is no straightforward ana-
lytical technique for tackling it so we must use numerical means. The problem is a
boundary-value problem so we could use the method of shooting or some function
approximation method. Figure 2.30 shows a pseudocode algorithm for this problem and
Figure 2.31 gives the supporting procedures. The procedure desolve assumes initial
conditions of the form θ(0) = 0, dθ /dX(0) = θ′0 and solves the differential equation using
the third-order predictor–corrector method (with a single fourth-order Runge–Kutta
step to start the multistep process). The main program uses the method of regula falsa
to iterate from two starting values of θ′0 which bracket that value of θ′0 corresponding to
dθ/dX(1) = 0 which we seek.

Figure 2.32 shows the result of computations using a program based on the algorithm
in Figure 2.30. Taking the values of the physical constants as h = 100Wm−2 K−1, a = 0.01m,
k = 63 W m−1 K−1, ρ = 16 × 10−8 Ω m and r = 5 × 10−4 m, and taking I as 20 amps and
40 amps, gives the lower and upper curves in Figure 2.32 respectively.
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Evidently at 20 amps the operating temperature of the middle part of the wire is
about 77° above the ambient temperature. If the current increases to 40 amps the
temperature increases to about 245° above ambient – just above the melting point
of tin! The procedure could obviously be used to design and validate appropriate
dimensions (length and diameter) for fuses made from a variety of metals for a
variety of applications and rated currents.

rho ← 16e-8
kappa ← 63
r ← 5e-4
a ← le -2
hh ← le2
i ← 20
pconst ← 8*hh*a*a/(kappa*r)
qconst ← 4*a*a*rho*i*i/(kappa*pi*pi*r*r*r*r)
tol ← le-5
x_start ← 0.0
x_end ← 1.0
theta_start ← 0.0
write(vdu,‘Enter stepsize -->’)
read(keyb,h)
write(vdu,‘Enter lower limit -->’)
read(keyb,theta_dash_low)
write(vdu,‘Enter upper limit -->’)
read(keyb,theta_dash_high)
desolve(x_start,x_end,h,theta_start,theta_dash_low → th,ql)
desolve(x_start,x_end,h,theta_start,theta_dash_high → th,qh)
repeat

theta_dash_new ← (qh*theta_dash_low – ql*theta_dash_high)/(qh – ql)
desolve (x_start,x_end,h,theta_start,theta_dash_new → th,qn)
if ql*qn.0 then

ql ← qn
theta_dash_low ← theta_dash_new

else
qh ← qn
theta_dash_high ← theta_dash_new

endif
until abs(qn) , tol
write(vdu,th,qn)

procedure desolve(x_0,x_end,h,v1_0,v2_0 → v1_f,v2_f )
x ← x_0
v1_o ← v1_0
v2_o ← v2_0
rk4(x,v1_o,v2_o,h → v1,v2)
x ← x+h
repeat

pc3(x,v1_o,v2_o,v1,v2,h, → v1_n,v2_n)
v1_o ← v1
v2_o ← v2
v1 ← v1_n
v2 ← v2_n
x ← x+h

until abs(x – x_end) , tol
v1_f ← v1
v2_f ← v2

endprocedure

Figure 2.30 
Pseudocode algorithm 
for solving (2.36).
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procedure rk4 (x,v1,v2,h → v1n,v2n)
c11 ← h*f1(x,v1,v2)
c21 ← h*f2(x,v1,v2)
c12 ← h*f1(x + h/2,v1 + c11/2,v2 + c21/2)
c22 ← h*f2(x + h/2,v1 + c11/2,v2 + c21/2)
c13 ← h*f1(x + h/2,v1 + c12/2,v2 + c22/2)
c23 ← h*f2(x + h/2,v1 + c12/2,v2 + c22/2)
c14 ← h*f1(x + h,v1 + c13,v2 + c23)
c24 ← h*f2(x + h,v1 + c13,v2 + c23)
v1n ← v1 + (c11 + 2*(c12 + c13) + c14)/6
v2n ← v2 + (c21 + 2*(c22 + c23) + c24)/6

endprocedure

procedure pc3(x, v1_o,v2_o,v1,v2,h → v1_n,v2_n)
v1_p ← v1 + h*(3*f1(x,v1,v2) − f1(x − h,v1_o,v2_o))/2
v2_p ← v2 + h*(3*f2(x,v1,v2) − f2(x − h,v1_o,v2_o))/2
v1_n ← v1 + h*(5*f1(x + h,v1_p,v2_p)

+ 8*f1(x,v1,v2) − f1(x − h,v1_o,v2_o))/12
v2_n ← v2 + h*(5*f2(x + h,v1_p, v2_p)

+ 8*f2(x,v1,v2) − f2(x − h,v1_o,v2_o))/12
endprocedure

procedure f1(x, theta,theta_dash → f1)
f1 ← theta_dash;

endprocedure

procedure f2(x,theta,theta_dash → f2)
if theta , tol then

f2 ← –qconst
else

f2 ← pconst*exp(ln (theta)*1.25) – qconst
endif

endprocedure

Figure 2.31
Subsidiary procedures 
for pseudocode 
algorithm for solving 
(2.36).

Figure 2.32
Comparison of 
temperatures in a fuse 
wire carrying 20 amps 
and 40 amps.
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The differential equation problem to be solved in this application is a boundary-value
problem rather than an initial-value problem. MAPLE’s dsolve procedure can readily
handle this type of problem. The following MAPLE worksheet reproduces the
temperature profiles shown in Figure 2.32.

> deqsys:=diff(theta(x),x,x)-8*a^2*h/
(k*r)*theta(x)^alpha=-4*a^2*ro*i^2/(k*Pi^2*r^4);

> inits:=theta(0)=0,D(theta)(1)=0;
> alpha:=1.25;h:=100;a:=0.01;k:=63;ro:=16e-8;r:=5e-4;

i:=20;
> sol1:=dsolve({deqsys, inits}, 

numeric,output=listprocedure,maxmesh=512);
> i:=40;
> sol2:=dsolve({deqsys, inits}, 

numeric,output=listprocedure,maxmesh=512);
> op(2,sol1[2])(1);op(2,sol2[2])(1);
> plot([op(2,sol1[2]),op(2,sol2[2])],0..1);

To find a numerical solution of a second-order differential equation using MATLAB, the
user must first carry out the transformation to a set of two first-order equations; MATLAB,
unlike MAPLE, cannot complete this stage internally. Then the following MATLAB M-file
solves the differential equation and reproduce the temperature profiles shown in
Figure 2.32.

function engineering_app2
a=0.01;h=100;k=63;r=5e-4;alpha=1.25;ro=16e-8;i=20;
solinit = bvpinit(linspace(0,1,10),[40 0.5]);
sol1 = bvp4c(@odefun,@bcfun,solinit);
i=40;
sol2 = bvp4c(@odefun,@bcfun,solinit);
x = linspace(0,1);
y1 = deval(sol1,x);
y2 = deval(sol2,x);
plot(x,y1(1,:),x,y2(1,:));
y1(1,100)
y2(1,100)

function dydx = odefun(x,y)
dydx = [ y(2)

8*a^2*h/(k*r)*y(1)^alpha-4*a^2*ro*i^2/(k*pi^2*r^4)];
end
function res = bcfun(ya,yb)
res = [ ya(1)

yb(2)];
end
end
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Find the value of X(0.5) for the initial-value 
problem

x(0) = 1

using Euler’s method with step size h = 0.1.

Find the value of X(1.2) for the initial-value 
problem

x(1) = 1

using Euler’s method with step size h = 0.05.

Solve the differential equation

x(0) = 1

to find the value of X(0.4) using the Euler method 
with steps of size 0.1 and 0.05. By comparing the 
two estimates of x(0.4) estimate the accuracy of the 
better of the two values which you have obtained 
and also the step size you would need to use in order 
to calculate an estimate of x(0.4) accurate to 2 
decimal places.

Solve the differential equation

= sin (t 2), x(0) = 2

to find the value of X(0.25) using the Euler method 
with steps of size 0.05 and 0.025. By comparing 
the two estimates of x(0.25) estimate the accuracy 
of the better of the two values which you have 
obtained and also the step size you would need to 
use in order to calculate an estimate of x(0.25) 
accurate to 3 decimal places.

Let X1, X2 and X3 denote the estimates of the 
function x(t) satisfying the differential equation

= , x(1) = 2

which are calculated using the second-order 
predictor–corrector method with steps of 0.1, 0.05 
and 0.025 respectively. Compute X1(1.2), X2(1.2) 
and X3(1.2). Show that the ratio of |X2 − X1| and 

|X3 − X2 | should tend to 4 : 1 as the step size 
tends to zero. Do your computations bear out 
this expectation?

Compute the solution of the differential equation

x(0) = 5

for x = 0 to 2 using the fourth-order Runge–Kutta 
method with step sizes of 0.2, 0.1 and 0.05. 
Estimate the accuracy of the most accurate of 
your three solutions.

In a thick cylinder subjected to internal pressure 
the radial pressure p(r) at distance r from the axis 
of the cylinder is given by

p + r = 2a − p

where a is a constant (which depends on the 
geometry of the cylinder).

If the stress has magnitude p0 at the inner wall, 
r = r0, and may be neglected at the outer wall, 
r = r1, show that

If r0 = 1, r1 = 2 and p0 = 1, compare the value 
of p(1.5) obtained from this analytic solution 
with the numerical value obtained using the 
fourth-order Runge–Kutta method with step size 
h = 0.5. (Note: With these values of r0, r1 and p0, 
a = −1/3.)

Find the values of X(t) for t up to 2 where X(t) 
is the solution of the differential equation 
problem

,

using the Euler method with steps of 0.025. 
Repeat the computation with a step size of 
0.0125. Hence estimate the accuracy of 
the value of X(2) given by your solution.

1

dx
dt
------ = x,
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dx
dt
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--------------,
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------
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Find the solution of the differential equation problem

using the second-order predictor–corrector 
method. Hence find an estimate of the value 
of x(4) accurate to 4 decimal places.

Find the solution of the differential equation problem

using the fourth-order Runge–Kutta method. 
Hence find an estimate of the value of x(2.5) 
accurate to 4 decimal places.

(Extended, open-ended problem.) The second-
order, nonlinear, ODEs

governs the oscillations of the Van der Pol 
oscillator. By scaling the time variable the 
equation can be reduced to

Investigate the properties of the Van der 
Pol oscillator. In particular show that the 
oscillator shows limit cycle behaviour (that 
is, the oscillations tend to a form which is 
independent of the initial conditions and depends 
only on the parameter μ). Determine the 
dependence of the limit cycle period on μ.

(Extended, open-ended problem.) The equation 
of simple harmonic motion

is generally used to model the undamped 
oscillations of a mass supported on the end of 
a linear spring (that is, a spring whose tension is 
strictly proportional to its extension). Most real 
springs are actually nonlinear because as their 
extension or compression increases their 
stiffness changes. This can be modelled by 
the equation

+ 4π2(1 + βx2)x = 0

For a ‘hard’ spring stiffness increases with 
displacement (β . 0) and a soft spring’s stiffness 
decreases (β , 0). Investigate the oscillations 
of a mass supported by a hard or soft spring. In 
particular determine the connection between 
the frequency of the oscillations and their 
amplitude.

9

d2x

dt2
-------- x2 1–( )dx

dt
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x 0( ) 0.02,= dx
dt
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dt3
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dt2
--------
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Introduction
In many applications we use functions of the space variable r = xi + yj + zk as models for
quantities that vary from point to point in three-dimensional space. There are two types of
such functions. There are scalar point functions, which model scalar quantities like the
temperature at a point in a body, and vector point functions, which model vector quantities
like the velocity of the flow at a point in a liquid. We can express this more formally in the
following way. For each scalar point function f we have a rule, u = f(r), which assigns to
each point with coordinate r in the domain of the function a unique real number u. For
vector point functions the rule v = F(r) assigns to each r a unique vector v in the range of
the function. Vector calculus was designed to measure the variation of such functions with
respect to the space variable r. That development made use of the ideas about vectors
(components, addition, subtraction, scalar and vector products) described in Chapter 4
of Modern Engineering Mathematics (MEM) and summarized here in Figure 3.1.

In component form if a = (a1, a2, a3) and b = (b1, b2, b3) then

a ± b = (a1 ± b1, a2 ± b2, a3 ± b3)

a · b = (a1b1 + a2b2 + a3b3) = b · a

a × b = = −b × a

= (a2b3 − b2a3, b1a3 − a1b3, a1b2 − b1a2).

3.1

Figure 3.1 
Elementary 
vector algebra.

L M N
a1 a2 a3

b1 b2 b3
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The recent development of computer packages for the modelling of engineering
problems involving vector quantities has relieved designers of much tedious analysis
and computation. To be able to use those packages effectively, however, designers need
a good understanding of the mathematical tools they bring to their tasks. It is on that
basic understanding that this chapter focuses.

3.1.1 Basic concepts

We can picture a scalar point function f(r) by means of its level surfaces f (r) = constant.
For example, the level surfaces of f(r) = 2x + 2y − z are planes parallel to the plane
z = 2x + 2y, as shown in Figure 3.2. On the level surface the function value does not
change, so the rate of change of the function will be zero along any line drawn on the
level surface. An alternative name for a scalar point function is scalar field. This is in
contrast to the vector point function (or vector field). We picture a vector field by its
field (or flow) lines. A field line is a curve in space represented by the position vector
r(t ) such that at each point of the curve its tangent is parallel to the vector field. Thus
the field lines of F(r) are given by the differential equation 

= F(r), where r(t0) = r0

and r0 is the point on the line corresponding to t = t0. This vector equation represents
the three simultaneous ordinary differential equations

= P(x, y, z),

= Q(x, y, z),

= R(x, y, z)

where F = (P, Q, R).
Modern computer algebra packages make it easier to draw both the level surfaces of

scalar functions and the field lines of vector functions, but to underline the basic ideas
we shall consider two simple examples.

Figure 3.2
Level surfaces 
of f(r) = (2, 2, −1) · r = 
2x + 2y − z.

dr
dt
-----

dx
dt
------

dy
dt
------

dz
dt
-----
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Sketch

(a) the level surfaces of the scalar point function f (r) = z e−xy;

(b) the field lines of the vector point function F(r) = ( −y, x, 1).

Solution (a) Consider the level surface given by f(r) = c, where c is a number. Then z e−xy = c
and so z = c exy. For c, x and y all positive we can easily sketch part of the surface
as shown in Figure 3.3(a), from which we can deduce the appearance of the whole
family of level surfaces.

(b) For the function F(r) = ( −y, x, 1) the field lines are given by

= ( −y, x, 1)

that is, by the simultaneous differential equations 

= −y, = x, = 1

The general solution of these simultaneous equations is

x(t ) = A cos t + B sin t, y(t ) = −B cos t + A sin t, z(t ) = t + C

where A, B and C are arbitrary constants. Considering, in particular, the field line
that passes through (1, 0, 0), we determine the parametric equation

(x(t ), y(t ), z(t )) = (cos t, sin t, t )

This represents a circular helix as shown in Figure 3.3(b), from which we can
deduce the appearance of the whole family of flow lines.

Example 3.1

Figure 3.3 (a) Level 
surfaces of f (r) = z e−xy; 
and (b) field lines of 
F(r) = ( −y, x, 1) of 
Example 3.1.

dr
dt
-----

dx
dt
------ dy

dt
------ dz

dt
-----
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To investigate the properties of scalar and vector fields further we need to use the
calculus of several variables. Here we shall describe the basic ideas and definitions
needed for vector calculus. A fuller treatment is given in Chapter 9 of MEM.

Given a function f (x) of a single variable x, we measure its rate of change (or
gradient) by its derivative with respect to x. This is

However, a function f (x, y, z) of three independent variables x, y and z does not have a
unique rate of change. The value of the latter depends on the direction in which it is
measured. The rate of change of the function f (x, y, z) in the x direction is given by its
partial derivative with respect to x, namely 

This measures the rate of change of f (x, y, z) with respect to x when y and z are held
constant. We can calculate such partial derivatives by differentiating f (x, y, z) with
respect to x, treating y and z as constants. Similarly,

and

define the partial derivatives of f (x, y, z) with respect to y and z respectively.

In MATLAB a level surface may be drawn using the ezsurf function. Using the
Symbolic Math Toolbox the commands

syms x y z c
for c = [1, 2, 3]
fsurf(a(x,y)c*exp(-x*y),[0,2,0,2]);
hold on
xlabel(’x’)
ylabel(’y’)
title(’c exp(-xy)’)

end

will produce three of the level surfaces of z = e−xy on the same set of axes. The
surfaces may also be produced in MAPLE using the ezsurf function. The field
lines may be plotted in MATLAB using the streamline function.

df
dx
------ = f ′ x( ) lim

Δx 0→

f x Δx+( ) − f x( )
Δx

---------------------------------------=

∂ f
∂ x
-----  = lim

Δx 0→

f x Δx, y, z+( ) − f x, y, z( )
Δx

------------------------------------------------------------------

∂ f
∂ y
----- = lim

Δy ∞→

f x, y Δy, z+( ) f x, y, z( )–
Δy

----------------------------------------------------------------

∂ f
∂ z
----- = lim

Δz ∞→

f x, y, z Δz+( ) f x, y, z( )–
Δz

----------------------------------------------------------------
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For conciseness we sometimes use a suffix notation to denote partial derivatives, for
example writing fx for ∂ f /∂x. The rules for partial differentiation are essentially the
same as for ordinary differentiation, but it must always be remembered which variables
are being held constant.

Higher-order partial derivatives may be defined in a similar manner, with, for
example, 

Find the first partial derivatives of the functions f (x, y, z) with formula (a) x + 2y + z 3,
(b) x 2( y + 2z) and (c) (x + y)/(z 3 + x).

Solution (a) f (x, y, z) = x + 2y + z 3. To obtain fx, we differentiate f (x, y, z) with respect to x,
keeping y and z constant. Thus fx = 1, since the derivative of a constant (2y + z 3)
with respect to x is zero. Similarly, fy = 2 and fz = 3z 2.

(b) f (x, y, z) = x2( y + 2z). Here we use the same idea: when we differentiate with
respect to one variable, we treat the other two as constants. Thus

[x 2( y + 2z)] = ( y + 2z) (x 2) = 2x( y + 2z)

[x 2( y + 2z)] = x 2 ( y + 2z) = x 2(1) = x 2

[x 2( y + 2z)] = x 2 ( y + 2z) = x 2(2) = 2x 2

(c) f (x, y, z) = (x + y)/(z 3 + x). Here we use the same idea, together with basic rules
from ordinary differentiation:

(quotient rule)

(chain rule)

∂ 2f

∂ x2
-------- ∂

∂ x
------ ∂ f

∂ x
------

 
 
 

fxx= =

∂ 2f
∂ y∂x
------------ ∂

∂ y
----- ∂ f

∂ x
------

 
 
 

fxy= =

∂ 3f
∂ z∂ y∂ x
------------------ ∂

∂ z
----- ∂ 2f

∂ y∂ x
------------

 
 
 

fxyz= =

Example 3.2

∂
∂ x
----- ∂

∂ x
-----

∂
∂ y
----- ∂

∂ y
-----

∂
∂ z
----- ∂

∂ z
-----

∂ f
∂ x
----- 1( ) z3 x+( ) x y+( ) 1( )–

z3 x+( )2
---------------------------------------------------------=

= 
z3 y–
z3 x+( )2

--------------------

∂ f
∂ y
----- 1

z3 x+
-------------=

∂ f
∂ z
----- −3z2 x y+( )

z3 x+( )2
----------------------------=



3.1  INTRODUCTION 181

In Example 3.2 we used the chain (or composite-function) rule of ordinary
differentiation

to obtain the partial derivative ∂ f /∂z. The multivariable calculus form of the chain rule
is a little more complicated. If the variables u, v and w are defined in terms of x, y and
z then the partial derivative of f (u, v, w) with respect to x is

with similar expressions for ∂ f /∂y and ∂ f /∂z.

Find ∂T/∂r and ∂T/∂θ when

T(x, y) = x3 − xy + y 3

and

x = r cosθ and y = r sinθ

Solution By the chain rule,

In this example

= 3x 2 − y and = −x + 3y 2

and

= cosθ and = sin θ

so that

= (3x 2 − y)cosθ + (−x + 3y 2)sin θ

Substituting for x and y in terms of r and θ gives

= 3r 2(cos3θ + sin3θ) − 2r cos θ sin θ

Similarly, 

= (3x 2 − y)(−r sinθ ) + (−x + 3y 2)r cosθ

= 3r 3(sin θ − cos θ )cos θ sinθ + r 2(sin2θ − cos2θ )

df
dx
------ df

du
------ du

dx
------=

∂ f
∂ x
----- ∂ f

∂ u
------∂ u

∂ x
------ ∂ f

∂ v
----- ∂v

∂x
----- ∂ f

∂ w
-------∂ w

∂ x
-------+ +=

Example 3.3

∂ T
∂ r
------ ∂ T

∂ x
------∂ x

∂ r
----- ∂ T

∂ y
------∂ y

∂ r
-----+=

∂ T
∂ x
------ ∂ T

∂ y
------

∂ x
∂ r
----- ∂ y

∂ r
-----

∂ T
∂ r
------

∂ T
∂ r
------

∂ T
∂ θ
------
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Find dH/dt when

H(t ) = sin(3x − y)

and

x = 2t 2 − 3 and y = t 2 − 5t + 1

Solution We note that x and y are functions of t only, so that the chain rule becomes

Note the mixture of partial and ordinary derivatives. H is a function of the one variable
t, but its dependence is expressed through the two variables x and y.

Substituting for the derivatives involved, we have

= 3[cos(3x − y)]4t − [cos(3x − y)](t − 5)

= (11t + 5)cos(3x − y)

= (11t + 5)cos( t 2 + 5t − 10)

A scalar point function f(r) can be expressed in terms of rectangular cartesian
coordinates (x, y, z) or in terms of spherical polar coordinates (r, θ, φ), where

x = r sinθ cosφ, y = r sin θ sin φ, z = r cosθ

as shown in Figure 3.4. Find ∂ f /∂x in terms of the partial derivatives of the function
with respect to r, θ and φ.

Solution Using the chain rule, we have

From Figure 3.4, r 2 = x 2 + y 2 + z 2, tan φ = y/x and tanθ = (x 2 + y 2)1/2/z, so that

Thus

Example 3.4

1
2
---

dH
dt
------- ∂ H

∂ x
------- dx

dt
------ ∂ H

∂ y
------- dy

dt
------+=

dH
dt
-------

11
2
------

Example 3.5

∂ f
∂ x
----- ∂ f

∂ r
-----∂ r

∂ x
----- ∂ f

∂ θ
------ ∂θ

∂ x
------ ∂ f

∂ φ
------∂ φ

∂ x
------+ +=

Figure 3.4 Spherical 
polar coordinates of 
Example 3.5.

∂ r
∂ x
----- x

r
-- θ φcossin= =

∂ φ
∂ x
------ ∂

∂x
------ −1 y

x--tan 
  − y

x2 y2+
--------------- − φsin

r θsin
----------------= = =

∂ θ
∂ x
------ ∂

∂ x
------ −1 x2 y2+( )1/2

z
-------------------------tan

 
 
  xz

x2 y2 z2+ +( ) x2 y2+( )1/2
---------------------------------------------------------= =

φ θcoscos
r

---------------------------=

∂ f
∂ x
----- θsin φcos

∂ f
∂ r
----- φsin

r θsin
--------------- ∂ f

∂ φ
------– φ θcoscos

r
--------------------------- ∂ f

∂ θ
------+=
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The Laplace equation in two dimensions is

where x and y are rectangular cartesian coordinates. Show that expressed in polar
coordinates (r, θ), where x = r cos θ and y = r sin θ, the Laplace equation may be
written

Solution Using the chain rule, we have

= 

and

Similarly

and

so that

Hence

and

Example 3.6

∂ 2u

∂ x2
-------- ∂ 2u

∂ y2
--------+ 0=

1
r
--- ∂

∂r
----- r

∂u
∂r
------ 

  1

r2
----∂ 2u

∂θ2
--------+ 0=

∂ u
∂ r
------ ∂ u

∂ x
------= ∂ x

∂ r
----- ∂ u

∂ y
------ ∂ y

∂ r
-----+

∂ u
∂ x
------ θcos

∂ u
∂ y
------ θsin+

∂ 2u

∂ r2
-------- ∂ 2u

∂ x2
-------- cos2θ= ∂ 2u

∂ y2
-------- sin2θ 2

∂ 2u
∂ x∂ y
------------ θsin θcos+ +

∂ u
∂ θ
------ ∂ u

∂ x
------ r θsin–( )= ∂ u

∂ y
------ r cos θ( )+

∂ 2u

∂θ 2
-------- ∂ 2u

∂ x2
-------- r θsin–( )2= ∂ 2u

∂ y2
-------- r θcos( )2 2

∂ 2u
∂ x ∂ y
--------------r2 θsin θcos–+

 
∂ u
∂ x
------ r cos θ( ) ∂ u

∂ y
------ r θsin( )––

1

r2
----∂

2u

∂ θ 2
--------- ∂ 2u

∂ x2
-------- sin2θ= ∂ 2u

∂ y2
-------- cos2θ 2

∂ 2u
∂ x∂ y
------------ θ θcossin–+

 
1
r
---– ∂ u

∂ x
------ θcos

∂ u
∂ y
------ θsin+ 

 

1

r2
----∂

2u

∂ θ 2
--------- 1

r
---+ ∂ u

∂ r
------ ∂ 2u

∂ x2
-------- sin2θ= ∂ 2u

∂ y2
-------- cos2θ 2

∂ 2u
∂ x∂ y
------------- θ θcossin–+

1

r2
----∂

2u

∂θ 2
--------- 1

r
---∂ u

∂ r
------ ∂ 2u

∂ r2
-------- ∂ 2u

∂ x2
-------- ∂ 2u

∂ y2
--------+=+ +
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Since

 

we obtain the polar form of the Laplace equation in two dimensions

∂
∂r
----- r

∂ u
∂ r
------ 

  r
∂ 2u

∂ r2
-------- ∂ u

∂ r
------+=

1
r
--- ∂

∂r
----- r

∂u
∂ r
------ 

  1

r2
----∂ 2u

∂θ 2
-------- 0=+

3.1.2 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

Sketch the contours (in two dimensions) of the 
scalar functions

(a) f (x, y) = ln(x 2 + y 2 − 1)

(b) f (x, y) = tan−1[ y/(1 + x)]

Sketch the flow lines (in two dimensions) of the 
vector functions

(a) F(x, y) = yi + (6x 2 − 4x) j

(b) F(x, y) = yi + ( x 3 − x) j

where i and j are unit vectors in the direction of 
the x and y axes respectively.

Sketch the level surfaces of the functions

(a) f (r) = z − xy (b) f(r) = z − e−xy

Sketch the field lines of the functions

(a) F(r) = (xy, y2 + 1, z)

(b) F(r) = (yz, zx, xy)

Find all the first and second partial derivatives of the 
functions

(a) f (r) = xyz − x 2 + y − z (b) f (r) = x 2yz 3

(c) f (r) = z tan−1(y/x)

Find d f /d t, where

(a) f(r) = x2 + y2 − z, and x = t3 − 1, y = 2t, 
z = 1/(t − 1)

(b) f (r) = xyz, and x = e−tsin t, y = e−tcos t, z = t

Find ∂ f /∂y and ∂ f /∂z in terms of the partial 
derivatives of f with respect to spherical polar 
coordinates (r, θ, φ) (see Example 3.5).

Show that if u(r) = f(r), where r 2 = x 2 + y 2 + z 2, as 
usual, and

then

Hence find the general form for f (r).

Show that

satisfies the differential equation

Verify that V(x, y, z) = sin3x cos4y cosh5z satisfies 
the differential equation

1

2

1
6
---

3

4

5

6

7

8

∂ 2u

∂ x2
-------- ∂ 2u

∂ y2
-------- ∂ 2u

∂ z2
--------+ + 0=

d2f

dr2
------- 2

r
--- df

dr
------+ 0=

9

V x, y, z( ) 1
z
--- −x2 y2+

4z
---------------

 
 
 

exp=

∂ 2V

∂ x2
--------- ∂ 2V

∂ y2
---------+ ∂ V

∂ z
------=

10

∂ 2V

∂ x2
--------- ∂ 2V

∂ y2
--------- ∂ 2V

∂ z2
---------+ + 0=
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3.1.3 Transformations
Example 3.3 may be viewed as an example of transformation of coordinates. For exam-
ple, consider the transformation or mapping from the (x, y) plane to the (s, t) plane
defined by

s = s(x, y), t = t(x, y) (3.1)

Then a function u = f (x, y) of x and y becomes a function u = F(s, t) of s and t under the
transformation, and the partial derivatives are related by

(3.2)

In matrix notation this becomes

(3.3)

The determinant of the matrix of the transformation is called the Jacobian of the
transformation defined by (3.1) and is abbreviated to

or simply to J

so that  

The matrix itself is referred to as the Jacobian matrix and is generally expressed in

the form . The Jacobian plays an important role in various applications of

mathematics in engineering, particularly in implementing changes in variables in multiple
integrals, as considered later in this chapter.

As indicated earlier, (3.1) define a transformation of the (x, y) plane to the (s, t) plane
and give the coordinates of a point in the (s, t) plane corresponding to a point in the
(x, y) plane. If we solve (3.1) for x and y, we obtain

x = X(s, t), y = Y(s, t) (3.5)

(3.4)

∂ u
∂ x
------ ∂ u

∂ s
------∂ s

∂x
----- ∂u

∂t
------ ∂t

∂x
-----+=

∂ u
∂ y
------ ∂ u

∂ s
------∂ s

∂y
----- ∂ u

∂ t
------∂ t

∂ y
-----+= 






∂ u
∂ x
------

∂ u
∂ y
------

 =  

∂ s
∂ x
----- ∂ t

∂ x
-----

∂ s
∂ y
----- ∂ t

∂ y
-----

∂ u
∂ s
------

∂ u
∂ t
------

∂ s, t( )
∂ x, y( )
-----------------

J
∂ s, t( )
∂ x, y( )
-----------------

∂ s
∂ x
----- ∂ t

∂ x
-----

∂ s
∂ y
----- ∂ t

∂ y
-----

∂ s
∂ x
----- ∂ s

∂ y
-----

∂ t
∂ x
----- ∂ t

∂ y
-----

= = =

∂ s
∂ x
----- ∂ s

∂ y
-----

∂ t
∂ x
----- ∂ t

∂ y
-----
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which represent a transformation of the (s, t) plane into the (x, y) plane. This is called
the inverse transformation of the transformation defined by (3.1), and, analogously to
(3.2), we can relate the partial derivatives by

(3.6)

The Jacobian of the inverse transformation (3.5) is

where the suffix notation has been used to denote the partial derivatives. Provided
J ≠ 0, it is always true that J1 = J −1 or

If J = 0 then the variables s and t defined by (3.1) are functionally dependent; that is, a
relationship of the form f (s, t) = 0 exists. This implies a non-unique correspondence
between points in the (x, y) and (s, t) planes.

(a) Obtain the Jacobian J of the transformation

s = 2x + y, t = x − 2y

(b) Determine the inverse transformation of the above transformation and obtain its
Jacobian J1. Confirm that J1 = J −1.

Solution (a) Using (3.4), the Jacobian of the transformation is

(b) Solving the pair of equations in the transformation for x and y gives the inverse
transformation as

x = (2s + t), y = (s − 2t)

The Jacobian of this inverse transformation is

confirming that J1 = J −1.

∂ u
∂ s
------ ∂ u

∂ x
------∂ x

∂ s
----- ∂ u

∂ y
------∂ y

∂ s
-----+=

∂ u
∂ t
------ ∂ u

∂ x
------∂ x

∂ t
----- ∂ u

∂ y
------∂ y

∂ t
-----+= 






J1
∂ x, y( )
∂ s, t( )
-----------------

xs ys

xt yt

= =

∂ x, y( )
∂ s, t( )
----------------- ∂ s, t( )

∂ x, y( )
----------------- 1=

Example 3.7

J
∂ s, t( )
∂ x, y( )
----------------- 2 1

1 −2
−5= = =

1
5
--- 1

5
---

J1
∂ x, y( )
∂ s, t( )
-----------------

2
5
--- 1

5
---

1
5
--- −2

5
---

−1
5
---= = =
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Show that the variables x and y given by

(3.7)

are functionally dependent, and obtain the relationship f (x, y) = 0.

Solution The Jacobian of the transformation (3.7) is

Since J = 0, the variables x and y are functionally related.
Rearranging (3.7), we have

so that

giving the functional relationship as

xy − (x + y) = 0

The definition of a Jacobian is not restricted to functions of two variables, and it is
readily extendable to functions of many variables. For example, for functions of three
variables, if

u = U(x, y, z), v = V(x, y, z), w = W(x, y, z) (3.8)

represents a transformation in three dimensions from the variables x, y, z to the variables
u, v, w then the corresponding Jacobian is

Again, if J = 0, it follows that there exists a functional relationship f (u, v, w) = 0 between
the variables u, v and w defined by (3.8).

Example 3.8

x = s t+
s

---------- , y
s t+

t
----------=

J
∂ x, y( )
∂ s, t( )
-----------------

xs ys

xt yt

− t

s2
---- 1

t
---

1
s
--- − s

t2
---

1
st
---- 1

st
----– 0= = = = =

x 1
t
s
--+= , y

s
t
-- 1+=

x 1–( ) y 1–( ) t
s
-- s

t
-- 1= =

J = ∂ u, v, w( )
∂ x, y, z( )
-------------------------

ux vx wx

uy vy wy

uz vz wz

 =  
ux uy uz

vx vy vz

wx wy wz

=
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3.1.4 Exercises

Show that if x + y = u and y = uv, then

Show that, if x + y + z = u, y + z = uv and z = uvw, 
then

If x = eu cos v and y = eu sinv, obtain the two 
Jacobians

and verify that they are mutual inverses.

Find the values of the constant parameter λ for 
which the functions

u = cos x cos y − λ sin x sin y

v = sin x cos y + λ cos x sin y

are functionally dependent.

Find the value of the constant K for which

u = Kx 2 + 4y 2 + z 2

v = 3x + 2y + z

w = 2yz + 3zx + 6xy

are functionally related, and obtain the 
corresponding relation.

Show that, if u = g(x, y) and v = h(x, y), then

where in each case

Use the results of Exercise 16 to obtain the partial 
derivatives

where

u = ex cos y and v = e−x sin y

11

∂ x, y( )
∂ u, v( )
----------------- u=

12

∂ x, y, z( )
∂ u, v, w( )
------------------------- u2v=

13

∂ x, y( )
∂ u, v( )
----------------- and

∂ u, v( )
∂ x, y( )
-----------------

14

15

16

∂ x
∂ u
------ ∂ v

∂ y
----- J   

∂ x
∂ v
----- −∂ u

∂ y
------ J==

∂ y
∂ u
------ −∂ v

∂ x
----- J

∂ y
∂ v
----- ∂ u

∂ x
------ J==

J
∂ u, v( )
∂ x, y( )
-----------------=

17

∂ x
∂ u
------ ,

∂ x
∂ v
-----,

∂ y
∂ u
------ ,

∂ y
∂ v
-----

3.1.5 The total differential
Consider a function u = f (x, y) of two variables x and y. Let Δx and Δy be increments
in the values of x and y. Then the corresponding increment in u is given by

Δu = f (x + Δx, y + Δy) − f (x, y)

We rewrite this as two terms: one showing the change in u due to the change in x, and
the other showing the change in u due to the change in y. Thus

Δu = [ f (x + Δx, y + Δy) − f (x, y + Δy)] + [ f (x, y + Δy) − f (x, y)]

Dividing the first bracketed term by Δx and the second by Δy gives

From the definition of the partial derivative, we may approximate this expression by

Δu
f x Δx, y Δy+ +( ) f x, y Δx+( )–

Δx
----------------------------------------------------------------------------- Δx +  

f x, y Δy+( ) f x, y( )–
Δy

--------------------------------------------------- Δy=

Δu
∂ f
∂ x
-----Δx≈ ∂ f

∂ y
-----Δy+
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We define the differential du by the equation

(3.9)

By setting f (x, y) = f1(x, y) = x and f (x, y) = f2(x, y) = y in turn in (3.9), we see that

and dy = Δy

so that for the independent variables increments and differentials are equal. For the
dependent variable we have

We see that the differential du is an approximation to the change Δu in u = f (x, y)
resulting from small changes Δx and Δy in the independent variables x and y; that is, 

(3.11)

a result illustrated in Figure 3.5.

This extends to functions of as many variables as we please, provided that the partial
derivatives exist. For example, for a function of three variables (x, y, z) defined by
u = f (x, y, z) we have

The differential of a function of several variables is often called a total differential,
emphasizing that it shows the variation of the function with respect to small changes in
all the independent variables.

(3.10)

du = ∂ f
∂ x
-----Δx

∂ f
∂ y
-----Δy+

dx = ∂ f1

∂ x
-------Δx

∂ f1

∂ y
-------Δy Δx=+

du = ∂ f
∂ x
-----dx

∂ f
∂ y
-----dy+

Δu du = ∂ f
∂ x
----- dx

∂ f
∂ y
----- dy+≈ ∂ f

∂ x
-----Δx

∂ f
∂ y
-----Δy+=

Figure 3.5
Illustration of result 
(3.11).

Δu du
∂ f
∂ x
----- dx

∂ f
∂ y
----- dy

∂ f
∂ z
----- dz+ +=≈

∂ f
∂ x
-----Δx

∂ f
∂ y
-----Δy

∂ f
∂ z
-----Δz+ +=
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Find the total differential of u(x, y) = x y.

Solution Taking partial derivatives we have

= yxy−1 and = xy ln x

Hence, using (3.10),

du = yxy−1 dx + x y ln x dy

Differentials sometimes arise naturally when modelling practical problems. When this
occurs, it is often possible to analyse the problem further by testing to see if the expression
in which the differentials occur is a total differential. Consider the equation

P(x, y) dx + Q(x, y) dy = 0

connecting x, y and their differentials. The left-hand side of this equation is said to be
an exact differential if there is a function f (x, y) such that

d f = P(x, y) dx + Q(x, y)dy

Now we know that

so if f (x, y) exists then

P(x, y) = and Q(x, y) = 

For functions with continuous second derivatives we have

Show that

(6x + 9y + 11)dx + (9x − 4y + 3)dy

is an exact differential and find the relationship between y and x given

and the condition y = 1 when x = 0.

Example 3.9

∂ u
∂ x
------ ∂ u

∂ y
------

df
∂ f
∂ x
----- dx

∂ f
∂ y
----- dy+=

∂ f
∂ x
----- ∂ f

∂ y
-----

∂ 2f
∂ x∂ y
------------ ∂ 2f

∂ y∂ x
------------=

Thus if f (x, y) exists then

(3.12)

This gives us a test for the existence of f (x, y), but does not tell us how to find
it! The technique for finding f (x, y) is shown in Example 3.10.

∂ P
∂ y
------ ∂ Q

∂ x
-------=

Example 3.10

dy
dx
------ −6x 9y 11+ +

9x 4y 3+–
------------------------------=
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Solution In this example

P(x, y) = 6x + 9y + 11 and Q(x, y) = 9x − 4y + 3

First we test whether the expression is an exact differential. In this example

so from (3.12), we have an exact differential. Thus we know that there is a function
f (x, y) such that

= 6x + 9y + 11 and = 9x − 4y + 3 (3.13a, b)

Integrating (3.13a) with respect to x, keeping y constant (that is, reversing the partial
differentiation process), we have

f (x, y) = 3x 2 + 9xy + 11x + g( y) (3.14)

Note that the ‘constant’ of integration is a function of y. You can check that this expression
for f (x, y) is correct by differentiating it partially with respect to x. But we also know
from (3.13b) the partial derivative of f(x, y) with respect to y, and this enables us to find
g′(y). Differentiating (3.14) partially with respect to y and equating it to (3.13b), we have

(Note that since g is a function of y only we use dg /dy rather than ∂g /∂y.) Thus

= −4y + 3

so, on integrating, 

g( y) = −2y 2 + 3y + C

Substituting back into (3.13b) gives

f (x, y) = 3x 2 + 9xy + 11x − 2y 2 + 3y + C

Now we are given that

which implies that

(6x + 9y + 11)dx + (9x − 4y + 3)dy = 0

which in turn implies that

3x 2 + 9xy + 11x − 2y 2 + 3y + C = 0

The arbitrary constant C is fixed by applying the given condition y = 1 when x = 0,
giving C = −1. Thus x and y satisfy the equation

3x 2 + 9xy + 11x − 2y 2 + 3y = 1 

∂P
∂ y
------ 9 and

∂ Q
∂ x
------- 9= =

∂ f
∂ x
----- ∂ f

∂ y
-----

∂ f
∂ y
----- 9x

dg
dy
------+ 9x 4y– 3+= =

dg
dy
------

dy
dx
------ − 6x 9y 11+ +

9x 4y– 3+
------------------------------=
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Derivatives of a scalar point function
In many practical problems it is necessary to measure the rate of change of a scalar
point function. For example, in heat transfer problems we need to know the rate of
change of temperature from point to point, because that determines the rate at which
heat flows. Similarly, if we are investigating the electric field due to static charges, we
need to know the variation of the electric potential from point to point. To determine
such information, the ideas of calculus were extended to vector quantities. The first
development of this was the concept of the gradient of a scalar point function.

3.2.1 The gradient of a scalar point function

3.2

3.1.6 Exercises

Determine which of the following are exact 
differentials of a function, and find, where 
appropriate, the corresponding function.

(a) (y 2 + 2xy + 1)dx + (2xy + x 2) dy

(b) (2xy 2 + 3y cos 3x) dx + (2x 2y + sin 3x) dy

(c) (6xy − y 2) dx + (2x e y − x 2) dy

(d) (z 3 − 3y) dx + (12y 2 − 3x) dy + 3xz 2dz

Find the value of the constant λ such that

( y cos x + λ cos y) dx + (x sin y + sin x + y) dy

is the exact differential of a function f (x, y). Find the 
corresponding function f (x, y) that also satisfies the 
condition f(0, 1) = 0.

Show that the differential

g(x, y) = (10x2 + 6xy + 6y2) dx
+ (9x2 + 4xy + 15y 2) dy

is not exact, but that a constant m can be chosen so 
that

(2x + 3y)mg(x, y)

is equal to dz, the exact differential of a function 
z = f (x, y). Find f (x, y).

18

19

20

We described in Section 3.1.1 how the gradient of a scalar field depended on the
direction along which its rate of change was measured. We now explore this idea
further. Consider the rate of change of the function f(r) at the point (x, y, z) in the
direction of the unit vector (l, m, n). To find this, we need to evaluate the limit

where Δr is in the direction of (l, m, n). In terms of coordinates, this means

r + Δr = r + Δr(l, m, n)
= (x + Δx, y + Δy, z + Δz)

so that

Δx = lΔr, Δy = mΔr, Δz = nΔr

Thus we have to consider the limit

lim
Δr 0→

f r Δr+( ) f r( )–
Δr

-------------------------------------

lim
Δr 0→

f x lΔr, y mΔr, z nΔr+++( ) f x, y, z( )–
Δr

--------------------------------------------------------------------------------------------------
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We can rewrite this as

Evaluating the limits, remembering that Δx = lΔr and so on, we find that the rate of
change of f (r) in the direction of the unit vector (l, m, n) is

The vector

is called the gradient of the scalar point function f (x, y, z), and is denoted by grad f or
by ∇f, where ∇ is the vector operator

where i, j and k are the usual triad of unit vectors.
The symbol ∇ is called ‘del’ or sometimes ‘nabla’. Then

Thus we can calculate the rate of change of f (x, y, z) along any direction we please. If
û is the unit vector in that direction then

(grad f ) · û

gives the required directional derivative, that is the rate of change of f(x, y, z) in
the direction of û. Remembering that a · b = |a | |b | cos θ, where θ is the angle
between the two vectors, it follows that the rate of change of f(x, y, z) is zero along
directions perpendicular to grad f and is maximum along the direction parallel to
grad f. Furthermore, grad f acts along the normal direction to the level surface of f(x, y, z).
We can see this by considering the level surfaces of the function corresponding to c and
c + Δc, as shown in Figure 3.6(a). In going from P on the surface f(r) = c to any point
Q on f(r) = c + Δc, the increase in f is the same whatever point Q is chosen, but the
distance PQ will be smallest, and hence the rate of change of f(x, y, z) greatest, when Q
lies on the normal n̂ to the surface at P. Thus grad f at P is in the direction of the out-
ward normal n̂ to the surface f(r) = u, and represents in magnitude and direction the
greatest rate of increase of f(x, y, z) with distance (Figure 3.6(b)). It is frequently
written as  

(3.15)

lim
Δr 0→

f x lΔr, y mΔr, z nΔr+++( ) f x,  y mΔr, z nΔr++( )–
lΔr

------------------------------------------------------------------------------------------------------------------------------------- l

+ lim
Δr 0→

f x,  y mΔr, z nΔr++( ) f x, y, z nΔr+( )–
mΔr

----------------------------------------------------------------------------------------------------- m

+ lim
Δr 0→

f x, y, z nΔr+( ) f x, y, z( )–
nΔr

------------------------------------------------------------------- n

∂ f
∂ x
-----l + 

∂ f
∂ y
-----m + 

∂ f
∂ z
-----n ∂ f

∂ x
----- , 

∂ f
∂ y
----- , 

∂ f
∂ z
-----

 
  · l, m, n( )=

∂ f
∂ x
----- ,

∂ f
∂ y
----- ,

∂ f
∂ z
-----

 
 

∇ i
∂

∂ x
----- j

∂
∂ y
----- k

∂
∂ z
-----+ +=

grad f ∇f
∂ f
∂ x
-----i

∂ f
∂ y
----- j

∂ f
∂ z
-----k + + ∂ f

∂ x
----- , 

∂ f
∂ y
----- , 

∂ f
∂ z
-----

 
 ≡= =

grad f
∂ f
∂ n
------n̂=
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where ∂ f /∂n is referred to as the normal derivative to the surface f (r) = c.

Find grad f for f (r) = 3x 2 + 2y 2 + z 2 at the point (1, 2, 3). Hence calculate 

(a) the directional derivative of f (r) at (1, 2, 3) in the direction of the unit vector
(2, 2, 1);

(b) the maximum rate of change of the function at (1, 2, 3) and its direction.

Solution (a) Since ∂ f /∂x = 6x, ∂ f /∂y = 4y and ∂ f /∂z = 2z, we have from (3.15) that

grad f = ∇f = 6xi + 4yj + 2zk

At the point (1, 2, 3)

grad f = 6i + 8j + 6k

Thus the directional derivative of f(r) at (1, 2, 3) in the direction of the unit vector
( ) is

(b) The maximum rate of change of f (r) at (1, 2, 3) occurs along the direction parallel
to grad f at (1, 2, 3); that is, parallel to (6, 8, 6). The unit vector in that direction
is (3, 4, 3) /  and the maximum rate of change of f(r) is | grad f | = 2 .

If a surface in three dimensions is specified by the equation f(x, y, z) = c, or equivalently
f(r) = c, then grad f is a vector perpendicular to that surface. This enables us to calculate
the normal vector at any point on the surface, and consequently to find the equation of
the tangent plane at that point.

A paraboloid of revolution has equation 2z = x 2 + y 2. Find the unit normal vector to the
surface at the point (1, 3, 5). Hence obtain the equation of the normal and the tangent
plane to the surface at that point.

Solution A vector normal to the surface 2z = x 2 + y 2 is given by

grad (x 2 + y 2 − 2z) = 2xi + 2yj − 2k

At the point (1, 3, 5) the vector has the value 2i + 6j − 2k. Thus the normal unit vector
at the point (1, 3, 5) is (i + 3j − k) / . The equation of the line through (1, 3, 5) in the
direction of this normal is

Figure 3.6
(a) Adjacent level 
surfaces of f(r); 
(b) grad f acts 
normally to the 
surface f (r) = c.

Example 3.11

1
3
---

2
3
---, 2

3
---, 1

3
---

6i 8j 6k+ +( ) 2
3
---i 2

3
--- j 1

3
---k+ +( )⋅  = 34

3
------

34 34

Example 3.12

11



3.2  DERIVATIVES OF A SCALAR POINT FUNCTION 195

and the equation of the tangent plane is

(1)(x − 1) + (3)( y − 3) + (−1)(z − 5) = 0

which simplifies to x + 3y − z = 5 (see Figure 3.7).

The concept of the gradient of a scalar field occurs in many applications. The simplest,
perhaps, is when f(r) represents the potential in an electric field due to static charges. Then
the electric force is in the direction of the greatest decrease of the potential. Its magnitude
is equal to that rate of decrease, so that the force is given by −grad f. 

x 1–
1

----------- y 3–
3

----------- z 5–
−1

-----------= =

Figure 3.7 Tangent 
plane at (1, 3, 5) to the 
paraboloid 2z = x 2 + y 2 

of Example 3.12.

3.2.2 Exercises

Find grad f for f (r) = x 2yz 2 at the point (1, 2, 3). 
Hence calculate

(a) the directional derivative of f (r) at (1, 2, 3) 
in the direction of the vector (−2, 3, −6);

(b) the maximum rate of change of the function at 
(1, 2, 3) and its direction.

Find ∇f where f (r) is

(a) x 2 + y 2 − z (b) z tan−1 ( y/x)

(c) e−x−y+z/  

(d) xyz sin {π(x + y + z)}

Find the directional derivative of f (r) = x 2 + y 2 − z 
at the point (1, 1, 2) in the direction of the vector 
(4, 4, −2).

Find a unit normal to the surface xy 2 − 3xz = −5 at 
the point (1, −2, 3).

If r is the usual position vector r = xi + yj + zk, with 
| r | = r, evaluate

(a) ∇r (b) ∇

If ∇φ = (2xy + z 2)i + (x2 + z) j + (y + 2xz)k, find a 
possible value for φ.

Given the scalar function of position

φ(x, y, z) = x 2y − 3xyz + z 3

find the value of grad φ at the point (3, 1, 2). Also 
find the directional derivative of φ at this point in the 
direction of the vector (3, −2, 6); that is, in the 
direction 3i − 2j + 6k.

Find the angle between the surfaces x2 + y2 + z2 = 9 
and z = x2 + y2 − 3 at the point (2, −1, 2).

Find the equations of the tangent plane and normal 
line to the surfaces

(a) x 2 + 2y 2 + 3z 2 = 6 at (1, 1, 1)

(b) 2x 2 + y 2 − z 2 = −3 at (1, 2, 3)

(c) x 2 + y 2 − z = 1 at (1, 2, 4).

(Spherical polar coordinates) When a function f (r) 
is specified in polar coordinates, it is usual to 
express grad f in terms of the partial derivatives of f 
with respect to r, θ and φ and the unit vectors ur, uθ 
and uφ in the directions of increasing r, θ and φ as 
shown in Figure 3.8. Working from first principles, 
show that

21

22

x3 y2+( )

23

24

25

1
r
--- 
 

26

27

28

29

30

∇f grad f
∂ f
∂ r
----- ur

1
r
--- ∂ f

∂θ
------ uθ

1
r θsin
--------------- ∂ f

∂φ
------ uφ+ += =

Figure 3.8 Unit vectors associated with spherical polar 
coordinates of Exercise 30.
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Derivatives of a vector point function
When we come to consider the rate of change of a vector point function F(r), we see
that there are two ways of combining the vector operator ∇ with the vector F. Thus we
have two cases to consider, namely

∇ · F and ∇ × F

that is, the scalar product and vector product respectively. Both of these ‘derivatives’
have physical meanings, as we shall discover in the following sections. Roughly, if we
picture a vector field as a fluid flow then at every point in the flow we need to measure
the rate at which the field is flowing away from that point and also the amount of spin
possessed by the particles of the fluid at that point. The two ‘derivatives’ given formally
above provide these measures.

3.3.1 Divergence of a vector field

Consider the steady motion of a fluid in a region R such that a particle of fluid
instantaneously at the point r with coordinates (x, y, z) has a velocity v(r) that is
independent of time. To measure the flow away from this point in the fluid, we
surround the point by an ‘elementary’ cuboid of side (2Δx) × (2Δy) × (2Δz), as shown in
Figure 3.9, and calculate the average flow out of the cuboid per unit volume.

The flow out of the cuboid is the sum of the flows across each of its six faces.
Representing the velocity of the fluid at (x, y, z) by v, the flow out of the face ABCD is
given approximately by

i · v(x + Δx, y, z)(4ΔyΔz)

The flow out of the face A′B′C′D′ is given approximately by

−i · v(x − Δx, y, z)(4ΔyΔz)

There are similar expressions for the remaining four faces of the cuboid, so that the total
flow out of the latter is

3.3

Figure 3.9 Flow out 
of a cuboid.
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i · [v(x + Δx, y, z) − v(x − Δx, y, z)](4ΔyΔz)

+ j · [v(x, y + Δy, z) − v(x, y − Δy, z)](4ΔxΔz)

+ k · [v(x, y, z + Δz) − v(x, y, z − Δz)](4ΔxΔy)

Dividing by the volume 8ΔxΔyΔz, and proceeding to the limit as Δx, Δy, Δz → 0, we
see that the flow away from the point (x, y, z) per unit time is given by

This may be rewritten as

or simply as ∇ · v. Thus we see that the flow away from this point is given by the scalar
product of the vector operator ∇ with the velocity vector v. This is called the divergence
of the vector v, and is written as div v. In terms of components, 

When v is specified in this way, it is easy to compute its divergence. Note that the
divergence of a vector field is a scalar quantity.

Find the divergence of the vector v = (2x − y 2, 3z + x 2, 4y − z 2) at the point (1, 2, 3).

Solution Here v1 = 2x − y 2, v2 = 3z + x 2 and v3 = 4y − z 2, so that

Thus from (3.16), at a general point (x, y, z), 

div v = ∇ · v = 2 − 2z

so that at the point (1, 2, 3)

∇ · v = −4

A more general way of defining the divergence of a vector field F(r) at the point r is
to enclose the point in an elementary volume ΔV and find the flow or flux out of ΔV per
unit volume. Thus

div v = ∇ ·v = ·(iv1 + jv2 + kv3)

(3.16)

i ·
∂ v
∂ x
----- j ·

∂ v
∂ y
----- k ·

∂ v
∂ z
-----+ +

i
∂

∂ x
----- j

∂
∂ y
----- k

∂
∂ z
-----+ + 

  · v

i
∂

∂ x
----- j

∂
∂y
----- k

∂
∂z
-----+ + 

 

∂ v1

∂ x
-------- ∂ v2

∂ y
-------- ∂ v3

∂ z
--------+ +=

Example 3.13

div F = ∇ · F = 

∂ v1

∂ x
-------- 2,

∂ v2

∂ y
-------- 0,

∂ v3

∂ z
-------- = −2z= =

lim
Δv 0→

flow out of ΔV
ΔV

-----------------------------------
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A non-zero divergence at a point in a fluid measures the rate, per unit volume, at
which the fluid is flowing away from or towards that point. That implies that either
the density of the fluid is changing at the point or there is a source or sink of fluid
there. In the case of a non-material vector field, for example temperature gradient in
heat transfer, a non-zero divergence indicates a point of generation or absorption.
When the divergence is everywhere zero, the flow entering any element of the space
is exactly balanced by the outflow. This implies that the lines of flow of the field F(r)
where div F = 0 must either form closed curves or finish at boundaries or extend to
infinity. Vectors satisfying this condition are sometimes termed solenoidal.

Using MuPAD in MATLAB the divergence of a vector field is given by the
divergence function. For example, the divergence of the vector

v = (2x − y2, 3z + x2, 4y − z2)

considered in Example 3.13, is given by the commands

delete x, y, z:
linalg :: divergence([2*x –y^2, 3*z + x^2, 4*y – x^2], 

[x, y, z])

which return the answer

2 – 2z

In MAPLE the answer is returned using the commands

with(VectorCalculus):
SetCoordinates(’cartesian’ [ x, y, z]);
F:= VectorField(<2*x –y^2, 3*z + x^2, 4*y – x^2>);
Divergence(F); or Del.F ;

3.3.2 Exercises

Find div v where

(a) v(r) = 3x 2yi + zj + x 2k

(b) v(r) = (3x + y)i + (2z + x) j + (z − 2y)k

If F = (2xy 2 + z 2)i + (3x 2z 2 − y 2z 3) j + (yz 2 − xz 3)k, 
calculate div f at the point (−1, 2, 3).

Find ∇(a · r), (a · ∇)r and a(∇ · r), where a is a 
constant vector and, as usual, r is the position vector 
r = (x, y, z).

The vector v is defined by v = rr −1, where 
r = (x, y, z) and r = | r |. Show that

∇(∇ · v) ≡ grad div v = −

Find the value of the constant λ such that the vector 
field defined by

F = (2x 2y 2 + z 2)i + (3xy3 − x 2z) j + (λxy 2z + xy)k

is solenoidal.

(Spherical polar coordinates) Using the notation 
introduced in Exercise 30, show, working from first 
principles, that

∇ · v = div v = 

where v = vrur + vθuθ + vφuφ.

A force field F, defined by the inverse square law, is 
given by

F = r/r3

Show that ∇ · F = 0.

31

32

33

34

2

r3
---- r

35

36

1

r2
---- ∂

∂r
------ r2vr( ) 1

r θsin
---------------- ∂

∂θ
------ vθ θsin( )+

+ 
1

r θsin
--------------- ∂

∂φ
------ vφ( )

37



3.3  DERIVATIVES OF A  VECTOR POINT FUNCTION 199

3.3.3 Curl of a vector field

It is clear from observations (for example, by watching the movements of marked corks
on water) that many fluid flows involve rotational motion of the fluid particles. Complete
determination of this motion requires knowledge of the axis of rotation, the rate of rotation
and its sense (clockwise or anticlockwise). The measure of rotation is thus a vector
quantity, which we shall find by calculating its x, y and z components separately. Consider
the vector field v(r). To find the flow around an axis in the x direction at the point r, we
take an elementary rectangle surrounding r perpendicular to the x direction, as shown in
Figure 3.10.

To measure the circulation around the point r about an axis parallel to the x direction,
we calculate the flow around the elementary rectangle ABCD and divide by its area,
giving

[v2(x, y*, z − Δz)(2Δy) + v3(x, y + Δy, z*)(2Δz)

− v2(x, , z + Δz)(2Δy) − v3(x, y − Δy, Τ )(2Δz)]/(4ΔyΔz)

where y*,  ∈( y − Δy, y + Δy), z*, ∈(z − Δz, z + Δz) and v = v1i + v2 j + v3k.
Rearranging, we obtain

−[v2(x, , z + Δz) − v2(x, y*, z − Δz)]/(2Δz)

+ [v3(x, y + Δy, z*) − v3(x, y − Δy, )]/(2Δy)

Proceeding to the limit as ΔyΔz → 0, we obtain the x component of this vector as

By similar arguments, we obtain the y and z components as

respectively.
The vector measuring the rotation about a point in the fluid is called the curl

of v:

(3.17)

It may be written formally as

or more compactly as

(3.18)

curl v = ∇ × v

2Δz

–

2Δy

Figure 3.10 Flow 
around a rectangle.

ỹ

ỹ z̃
 

ỹ

z̃

∂ v3

∂ y
-------- ∂ v2

∂ z
--------–

∂ v1

∂ z
-------- ∂ v3

∂ x
-------- ,

∂ v2

∂ x
-------- ∂ v1

∂ y
--------––

curl v ∂ v3

∂ y
-------- ∂ v2

∂ z
--------–

 
 
  i ∂ v1

∂ z
-------- ∂ v3

∂ x
--------–

 
 
  j ∂ v2

∂ x
-------- ∂ v1

∂ y
--------–

 
 
  k+ +=

∂ v3

∂ y
-------- ∂ v2

∂ z
-------- ,–  

∂ v1

∂ z
-------- ∂ v3

∂ x
--------– , 

∂ v2

∂ x
-------- ∂ v1

∂ y
--------–

 
 
 =

curl v

i j k

∂
∂ x
----- ∂

∂ y
----- ∂

∂ z
-----

v1 v2 v3

=
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Find the curl of the vector v = (2x − y 2, 3z + x 2, 4y − z 2) at the point (1, 2, 3).

Solution Here v1 = 2x − y 2, v2 = 3z + x 2, v3 = 4y − z 2, so that

= i(4 − 3) − j(0 − 0) + k(2x + 2y) = i + 2(x + y)k

Thus, at the point (1, 2, 3), ∇ × v = (1, 0, 6).

More generally, the component of the curl of a vector field F(r) in the direction of
the unit vector n̂  at a point L is found by enclosing L by an elementary area ΔS that is
perpendicular to n̂, as in Figure 3.11, and calculating the flow around ΔS per unit area.
Thus 

Another way of visualizing the meaning of the curl of a vector is to consider the
motion of a rigid body. We can describe such motion by specifying the angular velocity
ω of the body about an axis OA, where O is a fixed point in the body, together with the
translational (linear) velocity v of O itself. Then at any point P in the body the velocity
u is given by

u = v + ω × r

as shown in Figure 3.12. Here v and ω are independent of (x, y, z). Thus

curl u = curl v + curl (ω × r) = 0 + curl (ω × r)

Example 3.14

(curl F ) ⋅ n̂  = 

curl v

i j k

∂
∂ x
----- ∂

∂ y
----- ∂

∂ z
-----

2x y2– 3z x2+ 4y z2–

=

i ∂
∂ y
----- 4y z2–( ) ∂

∂ z
----- 3z x2+( )–=

− j ∂
∂ x
----- 4y z2–( ) ∂

∂ z
----- 2x y2–( )–

+ k ∂
∂ x
----- 3z x2+( ) ∂

∂ y
----- 2x y2–( )–

Figure 3.11
Circulation around 
the element ΔS.

lim
Δs 0→

flow round ΔS
ΔS

-----------------------------------

Figure 3.12
Rotation of a 
rigid body.
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The vector ω × r is given by

ω × r = (ω1, ω 2, ω 3) × (x, y, z)

= (ω 2z − ω 3y)i + (ω 3x − ω1z) j + (ω 1y − ω 2x)k

and

= 2ω1i + 2ω 2 j + 2ω 3k = 2ω

Thus

curl u = 2ω

that is, 

Hence when any rigid body is in motion, the curl of its linear velocity at any point is
twice its angular velocity in magnitude and has the same direction.

Applying this result to the motion of a fluid, we can see by regarding particles of the
fluid as miniature bodies that when the curl of the velocity is zero there is no rotation
of the particle, and the motion is said to be curl-free or irrotational. When the curl is
non-zero, the motion is rotational.

ω = curl u

Using MuPAD in MATLAB the command linalg :: curl(v, x) computes the
curl of the three-dimensional vector field v with respect to the three-dimensional
vector x in cartesian coordinates. For example, the curl of the vector

v = (2x − y2, 3z + x2, 4y − z2)

considered in Example 3.14, is given by the commands

delete x, y, z:
linalg :: curl([2*x –y^2, 3*z + x^2, 4*y – z^2], 

[x, y, z])

which return the answer .

In MAPLE the answer is returned using the commands

with(VectorCalculus):
SetCoordinates(’cartesian’ [ x, y, z]);
F:= VectorField(<2*x –y^2, 3*z + x^2, 4*y – z^2>);
Curl(F); or Del &x F;

curl ω r×( )

i j k

∂
∂ x
----- ∂

∂ y
----- ∂

∂ z
-----

ω 2z ω 3y ω 3x ω 1z ω 1y ω 2x–––

=

1
2
---

1

0

2x 2y+ 
 
 
 
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3.3.5 Further properties of the vector operator ∇

So far we have used the vector operator in three ways:

∇f grad f
∂ f
∂ x
----- i

∂ f
∂ y
----- j

∂ f
∂ z
----- k,  f r( ) a scalar field+ += =

∇ · F div F
∂ f1

∂ x
------- ∂ f2

∂ y
------- ∂ f3

∂ z
------- ,   F r( ) a vector field+ += =

∇ F× curl F=

∂ f3

∂ y
------- ∂ f2

∂ z
-------–

 
 
  i ∂ f1

∂ z
------- ∂ f3

∂ x
-------–

 
 
  j ∂ f2

∂ x
------- ∂ f1

∂ y
-------–

 
 
  k,  F r( ) a vector field+ +=

A further application is in determining the directional derivative of a vector field:

a · ∇F a1
∂

∂ x
----- a2

∂
∂ y
-------- a+ 3

∂
∂ z
--------+

 
 
 F=

a1
∂ f1

∂ x
------- a2

∂ f1

∂ y
------- a3

∂ f1

∂ z
-------+ +

 
 
  i a1

∂ f2

∂ x
------- a2

∂ f2

∂ y
------- a3

∂ f2

∂ z
-------+ +

 
 
  j+=

+ a1
∂f3

∂x
------- a2

∂f3

∂y
------- a3

∂f3

∂z
-------+ +

 
 
  k

3.3.4 Exercises

Find u = curl v when v = (3xz 2, −yz, x + 2z).

A vector field is defined by v = ( yz, xz, xy). Show 
that curl v = 0.

Show that if v = (2x + yz, 2y + zx, 2z + xy) then 
curl v = 0, and find f(r) such that v = grad f.

By evaluating each term separately, verify the 
identity

∇ × ( fv) = f (∇ × v) + (∇f ) × v

for f (r) = x 3 − y and v(r) = (z, 0, −x).

Find constants a, b and c such that the vector field 
defined by

F = (4xy + az3)i + (bx2 + 3z) j + (6xz 2 + cy)k

is irrotational. With these values of a, b and c, 
determine a scalar function φ (x, y, z) such that 
F = ∇φ.

If v = −yi + xj + xyzk is the velocity vector of a fluid, 
find the local value of the angular velocity at the 
point (1, 3, 2).

If the velocity of a fluid at the point (x, y, z) is given by

v = (ax + by)i + (cx + dy) j

find the conditions on the constants a, b, c and d in 
order that

div v = 0, curl v = 0

Verify that in this case

v = grad (ax 2 + 2bxy − ay 2)

(Spherical polar coordinates) Using the notation 
introduced in Exercise 30, show that

∇ × v = curl v

38

39

40

41

42

43

44

1
2
---

45

= 1

r2 θsin
---------------

ur ruθ r uφsin

∂
∂ r
----- ∂

∂ θ
------ ∂

∂ φ
------

vr rvθ r vφsin
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The ordinary rules of differentiation carry over to this vector differential operator, but
they have to be applied with care, using the rules of vector algebra. For non-orthogonal
coordinate systems a specialist textbook should be consulted. Thus for scalar fields f (r),
g(r) and vector fields u(r), v(r) we have

Higher-order derivatives can also be formed, giving the following:

where ∇ 2 is called the Laplacian operator (sometimes denoted by Δ);

since

when all second-order derivatives of f (r) are continuous;

since

∇ [ f (g(r))] = 

∇ [ f (r)g(r)] = g(r)∇f(r) + f (r)∇g(r)

(3.19a)

(3.19b)

∇ [u(r) · v(r)] = v × (∇ × u) + u × (∇ × v) + (v · ∇)u + (u · ∇)v

∇ · [ f (r)u(r)] = u · ∇f + f ∇ · u

∇ × [ f (r)u(r)] = (∇f ) × u + f ∇ × u

∇ · [u(r) × v(r)] = v · (∇ × u) − u · (∇ × v)

∇ × [u(r) × v(r)] = (v · ∇ )u − v(∇ · u) − (u · ∇ )v + u(∇ · v)

(3.19c)

(3.19d)

(3.19e)

(3.19f )

(3.19g)

div [grad f (r)] = ∇ · ∇f  = (3.20)

curl [grad f (r)] = ∇ × ∇f (r) ≡ 0 (3.21)

div[curl v(r)] = ∇ · (∇ × v) ≡ 0 (3.22)

curl [curl v(r)] = ∇ × (∇ × v) = ∇(∇ ·v) − ∇2v

(3.23)

(3.24)

(3.25)

df
dg
------∇g

∂ 2f

∂x2
-------- ∂ 2f

∂y2
-------- ∂ 2f

∂z2
-------+ +  = ∇2f

∇ ∇f× ∂ 2f
∂ y∂ z
------------ ∂ 2f

∂ z∂ y
------------–

 
 
  i ∂ 2f

∂ z∂ x
------------ ∂ 2f

∂ x∂ z
------------–

 
 
  j ∂ 2f

∂ x∂ y
------------ ∂ 2f

∂ y∂ x
------------–

 
 
  k+ +=

0=

∂
∂ x
----- ∂ v3

∂ y
-------- ∂ v2

∂ z
--------–

 
 
  ∂

∂ y
----- ∂ v1

∂ z
-------- ∂ v3

∂ x
--------–

 
 
  ∂

∂ z
----- ∂ v2

∂ x
-------- ∂ v1

∂ y
--------–

 
 
 + + 0=

grad (div v ) ∇ ∇ · v( ) i
∂

∂x
----- j

∂
∂y
----- k

∂
∂ z
--------+ +

 
 
  ∂ v1

∂ x
-------- ∂ v2

∂ y
-------- ∂ v3

∂ z
--------+ +

 
 
 = =

∇2v ∂ 2

∂x2
-------- ∂ 2

∂y2
-------- ∂ 2

∂z2
-------+ +

 
 
 

v1i v2 j v3k+ +( )=
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Verify that ∇ × (∇ × v) = ∇(∇ · v) − ∇2v for the vector field v = (3xz 2, −yz, x + 2z).

Solution

 = 3z 2 − z + 2

∇(∇ · v) = (0, 0, 6z − 1)

∇2v = (∇2(3xz 2), ∇2(−yz), ∇2(x + 2z)) = (6x, 0, 0)

Thus

∇(∇ · v) − ∇2v = (−6x, 0, 6z − 1) = ∇ × (∇ × v)

Similar verifications for other identities are suggested in Exercises 3.3.6.

Maxwell’s equations in free space may be written, in Gaussian units, as

(a) div H = 0, (b) div E = 0

(c) curl H = (d) curl E = 

where c is the velocity of light (assumed constant). Show that these equations are
satisfied by

where φ satisfies

and k is a unit vector along the z axis.

Solution (a) H = grad φ × k

gives

div H = div (grad φ × k)

= [k · curl (grad φ) − (grad φ) · curl k], from (3.19f )

By (3.21), curl (grad φ) = 0, and since k is a constant vector, curl k = 0, so that

div H = 0

Example 3.15

∇ v×

i j k

∂
∂ x
----- ∂

∂ y
----- ∂

∂ z
-----

3xz2 −yz x 2z+

y, 6xz 1, 0–( )= =

∇ ∇ v×( )×  = 

i j k

∂
∂ x
----- ∂

∂ y
----- ∂

∂ z
-----

y 6xz 1– 0

 = −6x, 0, 6z 1–( )

∇ · v = 
∂

∂ x
----- 3xz2( ) ∂

∂ y
----- −yz( ) ∂

∂ z
----- x 2z+( )+ +

Example 3.16

∇ H×  = 1
c
---∂ E

∂ t
------- , ∇ E×  = −1

c
--- ∂ H

∂ t
-------

H = 1
c
--- ∂

∂ t
----- grad φ k, E×  = −k

1

c2
----∂ 2φ

∂ t2
-------- ∂

∂ z
------ grad φ+

∇2φ = 1

c2
----∂ 2φ

∂ t2
--------

1
c
--- ∂

∂ t
----

1
c
--- ∂

∂ t
----

1
c
--- ∂

∂ t
----
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(b)

gives

and since ∇2φ = (1/c2)∂ 2 φ/∂ t 2, we have

div E = 0

(c) curl H = curl (grad φ × k) 

= [(k · ∇ ) grad φ

− k (div grad φ) − (grad φ · ∇ )k + grad φ(∇ · k)], from (3.19g)

= , since k is a constant vector 

= 

(d) curl

, since curl grad φ = 0 by (3.21)

Also,

 

, since k is a constant vector

so that we have

∇ × E = 

E − k

c2
---- ∂ 2φ

∂ t2
-------- ∂

∂ z
------ grad φ+=

div E − 1

c2
---- div k

∂ 2φ
∂ t2
--------

 
 
  ∂

∂ z
------ div grad φ+=

− 1

c2
---- ∂

∂ z
------ ∂ 2φ

∂ t2
--------
 
 
 = ∂

∂ z
------ ∇2φ( ), by 3.20( )+

= ∂
∂ z
------ ∇2φ 1

c2
----∂

2φ
∂ t2
--------–

 
 
 

1
c
--- ∂

∂ t
----

1
c
--- ∂

∂ t
----

1
c
--- ∂

∂ t
---- ∂

∂ z
-----grad φ k∇2φ– 

 

1
c
--- ∂(

∂ t
-------

E − 1

c2
----curl k

∂ 2φ
∂ t2
--------

 
 
  ∂

∂ z
------ curl grad φ+=

− 1

c2
----

i j k

∂
∂ x
----- ∂

∂ y
----- ∂

∂ z
-----

0 0
∂ 2φ
∂ t2
--------

=

− 1

c2
---- i

∂ 3φ
∂ y∂ t2
------------- j

∂ 3φ
∂ x∂ t2
-------------–

 
 
 =

∂H
∂t

------- 1

c
--- ∂ 2

∂ t2
-------grad φ k×=

1

c
--- ∂ 2

∂ t2
------- grad φ k×( )=

1

c
--- ∂ 2

∂ t2
------- ∂φ

∂ x
------i

∂φ
∂ y
------ j

∂φ
∂ z
------k+ +

 
 
  k×  = 

1

c
--- ∂ 2

∂ t2
------- i

∂φ
∂ y
------  − j

∂ φ
∂ x
------

 
 
  1

c
--- i

∂ 3φ
∂ y∂ t2
-------------  − j

∂ 3φ
∂ x∂ t2
-------------

 
 
 ==

−1
c
---∂ H

∂ t
-------
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Topics in integration
In the previous sections we saw how the idea of the differentiation of a function of a
single variable is generalized to include scalar and vector point functions. We now turn
to the inverse process of integration. The fundamental idea of an integral is that of

3.4

3.3.6 Exercises

Show that if g is a function of r = (x, y, z) then

grad g = r

Deduce that if u is a vector field then

div [(u × r)g] = (r · curl u)g

For φ(x, y, z) = x 2y 2z 3 and
F(x, y, z) = x 2yi + xy 2zj − yz 2k determine

(a) ∇2φ (b) grad div F (c) curl curl F

Show that if a is a constant vector and r is the 
position vector r = (x, y, z) then

div {grad [(r · r)(r · a)]} = 10(r · a)

Verify the identity

∇2v = grad div v − curl curl v

for the vector field v = x 2y(xi + yj + zk).

Verify, by calculating each term separately, 
the identities

div (u × v) = v · curl u − u · curl v

curl (u × v) = u div v − v div u + (v ·∇)u 

− (u · ∇)v

when u = xyj + xzk and v = xyi + yzk.

If r is the usual position vector r = (x, y, z), 
show that

(a) div grad  = 0

(b) curl

If A is a constant vector and r is the position vector 
r = (x, y, z), show that

(a) grad

(b) curl

If r is the position vector r = (x, y, z), and a and b 
are constant vectors, show that

(a) ∇ × r = 0

(b) (a · ∇)r = a

(c) ∇ × [(a · r)b − (b · r)a] = 2(a × b)

(d) ∇ · [(a · r)b − (b · r)a] = 0

By evaluating ∇ · (∇f ), show that the Laplacian 
in spherical polar coordinates (see Exercise 30) is 
given by

Show that Maxwell’s equations in free space, namely

div H = 0, div E = 0

∇ × H = , ∇ × E = −

are satisfied by

E = curl curl Z

where the Hertzian vector Z satisfies

46

1
r
--- dg

dr
------

47

48

49

50

51

1
r
---

 
 

k grad
1
r
--- 

 × grad k · grad
1
r
--- 

  0=+

52

A · r

r3
-----------
 
 
  A

r3
---- 3

A · r( )
r5

----------------r–=

A r×
r3

------------
 
 
  2A

r3
------- 3

r5
---- A r×( ) r×+=

53

54

∇2
f

1

r2
---- ∂

∂ r
------ r2∂ f

∂ r
------

 
 
  1

r2 θsin
----------------- ∂

∂θ
------ θ ∂ f

∂θ
------sin

 
 
 +=

+ 1

r2 θ2sin
------------------- ∂ 2f

∂φ2
--------

55

1
c
---∂ E

∂ t
------- 1

c
---∂ H

∂ t
-------

H
1
c
--- curl

∂ Z
∂ t
------=

∇2Z
1

c
---∂ 2Z

∂ t2
---------=
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summing all the constituent parts that make a whole. More formally, we define the
integral of a function f (x) by

where a = x0 < x1 < x 2 < . . . < xn−1 < xn = b, Δxi = xi − xi−1 and xi−1 < ~xi < xi.
Geometrically, we can interpret this integral as the area between the graph y = f(x), the
x axis and the lines x = a and x = b, as illustrated in Figure 3.13.

3.4.1 Line integrals
Consider the integral

where y = g(x)

This can be evaluated in the usual way by first substituting for y in terms of x in the
integrand and then performing the integration

Clearly the value of the integral will, in general, depend on the function y = g(x). It may
be interpreted as evaluating the integral f(x, y)dx along the curve y = g(x), as shown
in Figure 3.14. Note, however, that the integral is not represented in this case by the
area under the curve. This type of integral is called a line integral.

There are many different types of such integrals, for example

,

Here the letter under the integral sign indicates that the integral is evaluated along the
curve (or path) C. This path is not restricted to two dimensions, and may be in as many
dimensions as we please. It is normal to omit the points A and B, since they are usually
implicit in the specification of C.

#
a

b

f x( ) dx = lim
n ∞→

all Δxi 0→ i=1

n

 f x̃i( )Δxi

Figure 3.13 Definite 
integral as an area.

#
b

a

f x, y( )d x,

#
b

a

f x, g x( )( ) d x

Figure 3.14 Integral 
along a curve.

ea
b

#
A

B

C

f x, y( ) dx, #
A

B

C

f x, y( ) ds #
t1

t2

C

f x, y( ) dt, #
A

B

C

f1 x, y( ) d x f2 x, y( ) d y+[ ]
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Evaluate eC xydx from A(1, 0) to B(0, 1) along the curve C that is the portion of x 2 + y 2 = 1
in the first quadrant.

Solution The curve C is the first quadrant of the unit circle as shown in Figure 3.15. On the curve,
y = , so that

Evaluate the integral

from A(0, 1) to B(2, 3) along the curve C defined by y = x + 1.

Solution The curve C is the straight line y = x + 1 from the point A(0, 1) to the point B(2, 3).
In this case we can eliminate either x or y. Using

y = x + 1 and dy = dx

we have, on eliminating y, 

=

In many practical problems line integrals involving vectors occur. Let P(r) be a point
on a curve C in three dimensions, and let t be the unit tangent vector at P in the
sense of the integration (that is, in the sense of increasing arclength s), as indicated in
Figure 3.16. Then t ds is the vector element of arc at P, and

t ds = = dx i + dy j + dz k = dr

Example 3.17

Figure 3.15
Portion of circle of 
Example 3.17.

1 x2–( )

#
C

xy d x #
1

0

x 1 x2–( )dx −1
2
--- 2

3
--- 1 x2–( )3/2[ ]1

0 −1
3
---= ==

Example 3.18

I #
C

x2 2y+( ) d x x y2+( ) d y+[ ]=

I #=
x=0

x=2

x2 2 x 1+( )+[ ] d x x x 1+( )2+[ ] d x+{ }

#
0

2

2x2 5x 3+ +( ) d x 2
3
---x3 5

2
---x2 3x+ +[ ]0

2 64
3
------= =

dx
ds
------i

dy
ds
------ j

dz
ds
-----k+ + ds
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If f1(x, y, z), f2(x, y, z) and f3(x, y, z) are the scalar components of a vector field F(r) then

=

=  =

Thus, given a vector field F(r), we can evaluate line integrals of the form eC F · dr. In
order to make it clear that we are integrating along a curve, the line integral
is sometimes written as eC F · ds, where ds = dr (some authors use d l instead of ds in
order to avoid confusion with dS, the element of surface area). In a similar manner we
can evaluate line integrals of the form eC F × dr.

Calculate (a) eC F · dr and (b) eC F × dr, where C is the part of the spiral r = (a cos θ,
a sin θ, aθ ) corresponding to 0 < θ < π, and F = r 2 i.

Solution The curve C is illustrated in Figure 3.17.

(a) Since r = a cos θ i + a sin θ j + aθk,

dr = −a sin θ dθ i + a cos θ dθ j + a dθk

so that

F · dr = r 2i · (−a sin θ dθ i + a cos θ dθ j + a dθk)

= −ar 2 sin θ dθ
= −a3(cos2θ + sin2θ + θ 2) sin θ dθ = −a3(1 + θ 2) sin θ dθ

since r = | r | = √(a2 cos2θ + a2 sin2θ + a2θ 2). Thus, 

= , using integration by parts

= −a3(π − 1)

#
C

f1 x, y, z( ) d x f2 x, y, z( ) d y f3 x, y, z( ) d z+ +[ ]

#
C

f1 x, y, z( ) d x
d s
------ ds f2 x, y, z( ) d y

d s
------ ds f3 x, y, z( ) d z

d s
------ ds+ +

#
C

F t d s⋅ #
C

F d r⋅

Figure 3.16
Element of arclength.

Example 3.19
1
2
---

Figure 3.17
The spiral 
r = (a cos θ, 
a sin θ, aθ ) of 
Example 3.19.

#
C

F d r −a3 #
0

π/2

1 θ 2+( ) θ dθsin=⋅

−a3 cos θ 2θ sin θ θ 2 cos θ–+[ ]0
π/2
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(b) F × dr = 

= −ar 2 dθ j + ar 2 cos θ dθk

= −a3(1 + θ 2) dθ j + a3(1 + θ 2) cos θ dθk

so that

The work done as the point of application of a force F moves along a given path
C as illustrated in Figure 3.18 can be expressed as a line integral. The work done
as the point of application moves from P(r) to P′(r + dr), where = dr, is
dW = | dr | | F | cos θ = F · dr. Hence the total work done as P goes from A to B is

W =

In general, W depends on the path chosen. If, however, F(r) is such that F(r) · dr is an
exact differential, say −dU, then W = eC  − dU = UA  − UB, which depends only on A and
B and is the same for all paths C joining A and B. Such a force is a conservative force,
and U(r) is its potential energy, with F(r) = −grad U. Forces that do not have this property
are said to be dissipative or non-conservative.

Similarly, if v(r) represents the velocity field of a fluid then rC v · dr is the flow
around the closed curve C in unit time. This is sometimes termed the net circulation
integral of v. If rC v · dr = 0 then the fluid is curl-free or irrotational, and in this case v
has a potential function φ (r) such that v = −grad φ. 

i j k

r2 0 0

−a sin θ dθ a cos θ dθ a dθ

#
C

F d× r −ja3#
0

π/2

1 θ 2+( ) dθ ka3#
0

π/2

1 θ 2+( ) cos θ dθ+=

= −πa3

24
-------- 12 π2+( ) j

a3

4
----- π2 4–( )k+

Figure 3.18 Work done 
by a force F.

PP′

#
C

F dr⋅

3.4.2 Exercises

Evaluate ey ds along the parabola y = 2√x from

A(3, 2 ) to B(24, 4 ). 

Evaluate eB
A [2xy dx + (x 2 − y 2) dy] along the arc 

of the circle x 2 + y 2 = 1 in the first quadrant from 
A(1, 0) to B(0, 1).

Evaluate the integral eC V · dr, where 
V = (2yz + 3x2, y2 + 4xz, 2z2 + 6xy), and C is the 
curve with parametric equations x = t 3, y = t 2, z = t 
joining the points (0, 0, 0) and (1, 1, 1).

If A = (2y + 3)i + xz j + ( yz − x)k, evaluate eC A · dr 
along the following paths C:

(a) x = 2t 2, y = t, z = t 3 from t = 0 to t = 1;
(b) the straight lines from (0, 0, 0) to (0, 0, 1), 

then to (0, 1, 1) and then to (2, 1, 1);
(c) the straight line joining (0, 0, 0) to (2, 1, 1).

Prove that F = ( y 2 cos x + z 3) i + (2y sin x − 4) j 
+ (3xz 2 + z)k is a conservative force field. Hence 
find the work done in moving an object in this field 
from (0, 1, −1) to (π/2, −1, 2).

56

3 6

[Recall: 
ds
dy
------ 

 
2

 = 1 dx
dy
------ 

 
2

. ]+

57

58

59

60
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3.4.3 Double integrals

In the introduction to Section 3.4 we defined the definite integral of a function f (x) of
one variable by the limit

where a = x0 < x1 < x 2 < . . . < xn = b, Δxi = xi − xi−1 and xi−1 <  < xi. This integral is
represented by the area between the curve y = f (x) and the x axis and between x = a and
x = b, as shown in Figure 3.13.

Now consider z = f (x, y) and a region R of the (x, y) plane, as shown in Figure 3.19.
Define the integral of f (x, y) over the region R by the limit

where ΔAi (i = 1, . . . , n) is a partition of R into n elements of area ΔAi and 
is a point in ΔAi. Now z = f (x, y) represents a surface, and so f ΔAi = ΔAi is
the volume between z = 0 and z =  on the base ΔAi. The integral eeR f (x, y) dA is the
limit of the sum of all such volumes, and so it is the volume under the surface z = f (x, y)
above the region R.

#
a

b

f x( ) dx = lim
n ∞→

all Δxi 0→ i=1

n

 f x̃i( ) Δxi

x̃i

Figure 3.19 Volume 
as an integral.

##
R

f x, y( ) dA = lim
n ∞→

all ΔAi 0→ i=1

n

 f x̃i, ỹi( ) ΔAi

x̃i, ỹi( )
x̃i, ỹi( ) z̃i

z̃i

Find the work done in moving a particle in the force 
field F = 3x 2i + (2xz − y)j + zk along

(a) the curve defined by x2 = 4y, 3x3 = 8z from 
x = 0 to x = 2;

(b) the straight line from (0, 0, 0) to (2, 1, 3).

(c) Does this mean that F is a conservative force? 
Give reasons for your answer.

Prove that the vector field F = (3x2 − y, 2yz2 − x, 
2y 2z) is conservative, but not solenoidal. Hence 
evaluate the scalar line integral eC F · dr along 

any curve C joining the point (0, 0, 0) to the 
point (1, 2, 3).

If F = xy i − zj + x 2k and C is the curve x = t 2, y = 2t, 
z = t 3 from t = 0 to t = 1, evaluate the vector line 
integral eC F × dr.

If A = (3x + y, −x, y − z) and B = (2, −3, 1) 
evaluate the line integral rC (A × B) × dr around 
the circle in the (x, y) plane having centre at the 
origin and radius 2, traversed in the positive 
direction.

61

62

63

64
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The partition of R into elementary areas can be achieved using grid lines parallel to
the x and y axes as shown in Figure 3.20. Then ΔAi = Δxi Δyi, and we can write

Other partitions may be chosen, for example a polar grid as in Figure 3.21. Then the
element of area is (ri Δθi) Δri = ΔAi and

The expression for ΔA is more complicated when the grid lines do not intersect at right
angles; we shall discuss this case in Section 3.4.5.

We can evaluate integrals of the type eeR f (x, y) dx dy as repeated single integrals in
x and y. Consequently, they are usually called double integrals.

Consider the region R shown in Figure 3.22, with boundary ACBD. Let the curve
ACB be given by y = g1(x) and the curve ADB by y = g2(x). Then we can evaluate
eeR f (x, y) dx dy by summing for y first over the Δyi, holding x constant (x = , say),
from y = g1(xi) to y = g2(xi), and then summing all such strips from A to B; that is, from
x = a to x = b. Thus we may write

(n = min(n1, n2))

Here the integral inside the brackets is evaluated first, integrating with respect to y,
keeping the value of x fixed, and then the result of this integration is integrated with
respect to x.

(3.26)

##
R

f x, y( ) dA = ##
R

f x, y dxdy = lim
n ∞→

i=1

n

 f x̃i, ỹi Δ xi Δyi

Figure 3.20 A possible grid for the partition of R 
(rectangular cartesian).

Figure 3.21 Another possible grid for the partition of R 
(polar).

##
R

f x, y( ) d A = ##
R

f r cos θ, r sin θ( )r dr dθ

x̃i

##
R

f x, y( ) dA lim
n ∞→

all Δxi Δyi, 0→ i=1

n2


j=1

n1

 f x̃i , yj( )Δyj  Δ xi=

#
a

b

#
y=g1 x( )

y=g2 x( )

f x, y( ) dy d x=
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Alternatively, we can sum for x first and then y. If the curve CAD is represented by
x = h1( y) and the curve CBD by x = h2( y), we can write the integral as

(n = min(n1, n2))

If the double integral exists then these two results are equal, and in going from one to
the other we have changed the order of integration. Notice that the limits of integration
are also changed in the process. Often, when evaluating an integral analytically, it is
easier to perform the evaluation one way rather than the other.

Evaluate eeR (x 2 + y 2) dA over the triangle with vertices at (0, 0), (2, 0) and (1, 1).

Solution The domain of integration is shown in Figure 3.23(a). The triangle is bounded by the
lines y = 0, y = x and y = 2 − x.

##
S

f x, y( ) d A lim
n ∞→

all Δyj Δ xi, 0→ j=1

n1


i=1

n2

 f xi, ỹj( ) Δxi Δyj=

#
c

d

#
x=h1 y( )

x=h2 y( )

f x, y( ) dx dy=

Figure 3.22 The region R.

Example 3.20

Figure 3.23 Domain 
of integration for 
Example 3.20.
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(a) Integrating with respect to x first, as indicated in Figure 3.23(b), gives

(b) Integrating with respect to y first, as indicated in Figure 3.23(c), gives

Note that because the upper boundary of the region R has different equations for
it along different parts, the integral has to be split up into convenient subintegrals.
Evaluating the integrals we have

 = 1

Thus

, as before

Clearly, in this example it is easier to integrate with respect to x first.

Evaluate eeR (x + 2y)−1/2 dA over the region x − 2y < 1 and x > y 2 + 1.

##
R

x2 y2+( ) dA #
0

1

#
x y=

x 2 y–=

x2 y2+( ) dx dy=

#
0

1

1
3
---x3 y2x+[ ]x=y

x=2−y
dy=

#
0

1

8
3
--- 4y– 4y2 8

3
--- y

3–+[ ] dy=  = 4
3
---

##
R

x2 y2+( ) dA = #
0

1

#
y 0=

y = x

x2 y2+( ) dy dx #
1

2

#
y 0=

y 2 y–=

x2 y2+( ) dy dx+

#
0

1

#
y 0=

y = x

x2 y2+( ) dy dx #
0

1

x2y 1
3
--- y3+[ ]y=0

y=x
dx= #

0

1
4
3
---x3 dx 1

3
---==

#
0

2

#
y 0=

y 2 x–=

x2 y2+( ) dy dx #
1

2

x2y 1
3
--- y3+[ ]y=0

y=2−x
dx=

#
1

2

8
3
--- 4x– 4x2 4

3
---x3–+( ) dx=

##
R

x2 y2+( )d A = 1
3
--- 1 = 4

3
---+

Example 3.21

Figure 3.24 Domain 
of integration for 
Example 3.21.
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Solution The bounding curves intersect where 2y + 1 = y 2 + 1, which gives y = 0 (with x = 1)
and y = 2 (with x = 5). The region R is shown in Figure 3.24. In this example we choose to
take x first because the formula for the boundary is easier to deal with: x = y 2 + 1 rather
than y = (x − 1)1/2. Thus we obtain

As indicated earlier, the evaluation of integrals over a domain R is not restricted to
the use of rectangular cartesian coordinates (x, y). Example 3.22 shows how polar coor-
dinates can be used in some cases to simplify the analytical process.

Evaluate eeR x 2y dA, where R is the region x 2 + y 2 < 1.

Solution The fact that the domain of integration is a circle suggests that polar coordinates are a
natural choice for the integration process. Then, from (3.26), x = r cos θ, y = r sin θ and
dA = r dθ dr, and the integral becomes

=

Note that in this example the integration is such that we can separate the variables r and
θ and write

Furthermore, since the limits of integration with respect to θ do not involve r, we can
write

##
R

x 2y+( )−1/2 dA #
0

2

#
y

2+1

2y 1+

x 2y+( )−1/2 dx dy=

#
0

2

2 x 2y+( )1/2[ ]
x=y

2+1

x=2y+1
dy=

#
0

2

2 4y 1+( )1/2 2 y 1+( )–[ ] dy=

1
3
--- 4y 1+( )3/2 −  y2 − 2y[ ]0

2 2
3
---==

Example 3.22

##
R

x2y dA = #
r=0

1

#
θ =0

2π

r2 cos2θ r sin θ r dθ dr

#
r=0

1

#
θ =0

2π

r4 cos2θ sin θ dθ dr

##
R

x2y dA = #
r=0

1

r4#
θ=0

2π

cos2θ sin θ dθ dr

##
R

x2y dA = #
r=0

1

r4 d r#
θ=0

2π

cos2θ sin θ dθ
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and the double integral in this case reduces to a product of integrals. Thus we obtain

Reflecting on the nature of the integrand and the domain of integration, this is the result
one would anticipate.

There are several ways of evaluating double integrals using MATLAB. The simplest
uses the command dblquad (f, x0, x1, y0, y1). For example, consider

(x2 + y2)dx dy

Here we define the integrand as an inline function

f = inline (’x.^2 + y^2’, ’x’, ’y’);

(Note that x is taken as a vector argument.)

I = dblquad (f , 1 , 2 , 0 , 3)

returns the answer

I = 16

For non-rectangular domains, the same command is used but the integrand is
modified as shown below. Consider

(x2 + y2)dx dy

from Example 3.20 (b). Here we define the integrand as the inline function

f = inline (’(x.^2 + y^2).*(y-x <= 0)’, ’x’, ’y’);

where the logical expression (y – x <= 0) returns 1 if the expression is true and
0 otherwise, so that the command

I = dblquad (f , 0 , 1 , 0 , 1)

returns the required answer

I = 0.3333

despite integrating over a rectangular domain.

##
R

x2y dA = 1
5
--- r5[ ]0

1 −1
3
--- cos3θ[ ]0

2π
0=

#
1

2

#
0

3

#
0

1

#
0

x

3.4.4 Exercises

Evaluate the following:

(a) (b)

(c)

Evaluate

over the rectangle bounded by the lines x = 0, 
x = 2, y = 1 and y = 2.

65

#
0

3

#
1

2

xy x y+( ) dy d x #
2

3

#
1

5

x2y dy d x

#
−1

1

 #
−2

2

 2x2 y2+( ) dy d x

66

## x2

y
---- dx dy
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3.4.5 Green’s theorem in a plane

This theorem shows the relationship between line integrals and double integrals,
and will also provide a justification for the general change of variables in a double
integral.

Consider a simple closed curve, C, enclosing the region A as shown in Figure 3.25. If
P(x, y) and Q(x, y) are continuous functions with continuous partial derivatives then

(3.27)$
C

P dx Q dy+( ) = ##
A

∂ Q
∂ x
------- ∂ P

∂ y
------– 

  dx dy

Evaluate ee(x2 + y2) dx dy over the region for which 
x > 0, y > 0 and x + y < 1.

Sketch the domain of integration and evaluate

(a) (b)

(c)

Evaluate eesin π(x + y) dx dy over the triangle 
whose vertices are (0, 0), (2, 1), (1, 2).

Sketch the domains of integration of the double 
integrals

(a)

(b)

Change the order of integration, and hence evaluate 
the integrals.

Evaluate

Sketch the domain of integration of the double 
integral

Express the integral in polar coordinates, and hence 
show that its value is .

Sketch the domain of integration of the double 
integral

and evaluate the integral.

Evaluate

over the portion of the first quadrant lying inside the 
circle x 2 + y 2 = a2.

By using polar coordinates, evaluate the double 
integral

over the region in the first quadrant bounded by the arc
of the parabola y 2 = 4(1 − x) and the coordinate axes.

By transforming to polar coordinates, show that the 
double integral

taken over the area common to the two circles 
x 2 + y 2 = ax and x 2 + y 2 = by is ab.

67

68

#
1

2

d x#
x

2x
dy

x2 y2+
--------------- #

0

1

d x#
0

1−x

x y+( ) dy

#
0

1

d x#
x−x2( )

1−x2( ) 1

1 x2– y2–( )
--------------------------------- dy

69 1
2
---

70

#
0

1

d x#
x

1

 
xy dy

1 y4+( )
-----------------------

#
0

π/2

dy#
0

y

cos 2y( ) 1 k2 sin2x–( ) dx

71

#
0

1

dy#
y

1
dx

y 1 x2+( )[ ]
------------------------------

72

#
0

1

#
0

x−x
2( )

x

x2 y2+( )
------------------------ dy dx

1
3
---

73

#
0

1

dx#
0

1−x
2( )

x y+

x2 y2+( )
------------------------ dy

74

## x y+
x2 y2 a2+ +
--------------------------- dx dy

75

## x2 y2–
x2 y2+
--------------- dx dy

76

## x2 y2+( )2

xy( )2
---------------------- dx dy
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where C is traversed in the positive sense (that is, so that the bounded area is always on
the left). This result is called Green’s theorem in a plane.

The proof of this result is straightforward. Consider the first term on the right-hand
side. Then, with reference to Figure 3.25,

=

Similarly,

and hence

An elementary application is shown in Example 3.23.

Evaluate r [2x(x + y) dx + (x 2 + xy + y 2) dy] around the square with vertices at (0, 0),
(1, 0), (1, 1) and (0, 1) illustrated in Figure 3.26.

Solution Here P(x, y) = 2x(x + y) and Q(x, y) = x2 + xy + y2, so that ∂P/∂ y = 2x, ∂ Q/∂x = 2x + y
and ∂ Q/∂x − ∂P/∂ y = y. Thus the line integral transforms into an easy double integral

Figure 3.25 Green’s 
theorem.

##
R

∂ Q
∂ x
------- dx dy = #

c

d

#
g1 y( )

g2 y( )
∂ Q
∂ x
------- dx dy

#
c

d

Q g2 y( ), y( ) Q g1 y( ), y( )–[ ] dy

#
LMN

Q x, y( ) dy #
LKN

Q x, y( ) dy–=

#
LMNKL

Q x, y( ) dy $
C

Q x, y( ) dy==

−##
A

∂ P
∂ y
------ dx dy $

C

P x, y( ) dx=

##
A

∂ Q
∂ x
------- ∂ P

∂ y
------– 

  dx dy $
C

P x, y( ) dx Q x y,( ) dy+[ ]=

Example 3.23
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It follows immediately from Green’s theorem (3.27) that the area A enclosed by the
closed curve C is given by

Suppose that under a transformation of coordinates x = x(u, v) and y = y(u, v), the curve
becomes C ′, enclosing an area A′. Then

=

=

=

This implies that the element of area du dv is equivalent to the element

Here the modulus sign is introduced to preserve the orientation of the curve under the
mapping. Similarly, we may prove that

where ∂ (x, y)/∂ (u, v) is the Jacobian

(3.28)

$
C

2x x y+( ) dx x2 xy y2+ +( ) dy+[ ] ##
A

y dx dy=
y

(0, 1)

(0, 0)
(1, 0)

(1, 1)

Figure 3.26 Path 
of integration for 
Example 3.23.

#
0

1

#
0

1

y dx dy=

#
0

1

y dy #
0

1

dx=  = 1
2
---

A = ##
A

1 dx dy = $
C

x dy = − $
C

y dx = 1
2
--- $

C

−y dx x dy+( )

A′ ##
A′

du dv $
C ′

udv $
C

u
∂ v
∂ x
----- dx

∂ v
∂ y
----- dy+ 

 = = =

##
A

∂
∂ x
----- u

∂ v
∂ y
----- 

  ∂
∂ y
----- u

∂ v
∂ x
----- 

 – dx dy

##
A

∂ u
∂ x
------∂ v

∂ y
----- u

∂ 2v
∂ x∂ y
------------+ ∂ u

∂ y
------∂ v

∂ x
----- u

∂ 2v
∂ y∂ x
------------+–

 
 
 

dx dy

##
A

∂ u
∂ x
------∂ v

∂ y
----- ∂ u

∂ y
------∂ v

∂ x
-----–

 
  dx dy

∂ u
∂ x
------∂ v

∂ y
----- ∂ u

∂ y
------∂ v

∂ x
-----– 

  dx dy

dx dy
∂ x, y( )
∂ u, v( )
----------------- du dv=

∂ x
∂ u
------∂ y

∂ v
----- ∂ x

∂ v
-----∂ y

∂ u
------ J x, y( )=–
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This enables us to make a general change of coordinates in a double integral:

where A′ is the region in the (u, v) plane corresponding to A in the (x, y) plane.
Note that the above discussion confirms the result

as shown in Section 3.1.3. Using (3.29), the result (3.26) when using polar coordinates
is readily confirmed.

Evaluateeexy dx dy over the region in x > 0, y > 0 bounded by y = x2 + 4, y = x2,
y = 6 − x 2 and y = 12 − x 2.

Solution The domain of integration is shown in Figure 3.27(a). The bounding curves can be
rewritten as y − x 2 = 4, y − x 2 = 0, y + x 2 = 6 and y + x 2 = 12, so that a natural change
of coordinates is to set

u = y + x 2, v = y − x 2

Under this transformation, the region of integration becomes the rectangle 6 < u < 12,
0 < v < 4, as shown in Figure 3.27(b). Thus since

the integral simplifies to

(3.29)##
A

f x, y( ) dx dy = ##
A′

f x u, v( ), y u, v( )( ) J du dv

∂ u, v( )
∂ x, y( )
----------------- = ∂ x, y( )

∂ u, v( )
-----------------

−1

Example 3.24

Figure 3.27
Domain of 
integration for 
Example 3.24: 
(a) in the (x, y) plane; 
(b) in the (u, v) plane.

J x, y( ) = ∂ x, y( )
∂ u, v( )
----------------- = ∂ u, v( )

∂ x, y( )
-----------------

−1

 = 1
4x
------

##
A

xy dx dy = ##
A ′

xy
1

4x
------ du dv
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Hence

, since y = (u + v)/2

We remark in passing that Green’s theorem in a plane may be generalized to three
dimensions. Note that the result (3.27) may be written as

For a general surface S with bounding curve C as shown in Figure 3.28 this identity
becomes

where dS = n̂ dS is the vector element of surface area and n̂ is a unit vector along the
normal. This generalization is called Stokes’ theorem, and will be discussed in
Section 3.4.12 after we have formally introduced the concept of a surface integral.

##
A

xy dx dy = 1
4
--- ##

A

y du dv = 1
8
---##

A

u v+( ) du dv

= 1
8
--- #

0

4

dv #
6

12

u v+( ) du 33=

$
C

P, Q, 0( ) dr = ##
A

curl P, Q, 0( )[ ] k dx dy⋅⋅

$
C

F r( ) dr   ##
s

 curl F r( ) dS⋅=⋅

Figure 3.28
Three-dimensional 
generalization of 
Green’s theorem.

3.4.6 Exercises

Evaluate the line integral

taken in the anticlockwise sense, where C is the 
perimeter of the triangle formed by the lines

y = πx, y = π, x = 0

Verify your answer using Green’s theorem in a plane.

Use Green’s theorem in a plane to evaluate

as a double integral, where C is the triangle with 
vertices at (0, 0), (2, 0) and (2, 2) and is traversed 
in the anticlockwise direction.

77

$
C

sin y dx x cos y–( ) dy+[ ]

1
2
--- 1

2
---

78

$
C

xy2 y–( ) dx x y2+( ) dy+[ ]
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Evaluate the line integral

where C is the closed curve consisting of y = x 2 
from x = 0 to x = 1 and y =  from x = 1 to x = 0. 
Confirm your answer by applying Green’s theorem 
in the plane and evaluating I as a double integral.

Use Green’s theorem in a plane to evaluate the line 
integral

where C is the circle x 2 + y 2 = 4. (Hint: Use polar 
coordinates to evaluate the double integral.)

Evaluate

using the transformation of coordinates u = x + y, 
v = x − y.

Using the transformation

x + y = u,

show that

79

I $
C

xy dx x dy+( )=

x

80

$
C

ex 3y2–( ) dx e y 4x2+( ) dy+[ ]

81

#
0

a

d x#
x

2a−x
y x–

4a2 y x+( )2+
---------------------------------- dy

82

y
x-- v=

#
0

1

d y#
y

2−y
x y+

x2
----------- ex+y dx = #

0

2

du #
0

1

eu dv e2 1–=

3.4.7 Surface integrals

The extensions of the idea of an integral to line and double integrals are not the only
generalizations that can be made. We can also extend the idea to integration over a gen-
eral surface S. Two types of such integrals occur:

(a)

(b)

In case (a) we have a scalar field f (r) and in case (b) a vector field F(r). Note that
dS = n̂ dS is the vector element of area, where ƶn is the unit outward-drawn normal vec-
tor to the element dS.

In general, the surface S can be described in terms of two parameters, u and v say, so
that on S

r = r(u, v) = (x(u, v), y(u, v), z(u, v))

The surface S can be specified by a scalar point function C(r) = c, where c is a con-
stant. Curves may be drawn on that surface, and in particular if we fix the value of one
of the two parameters u and v then we obtain two families of curves. On one, Cu(r(u, v0)),
the value of u varies while v is fixed, and on the other, Cv(r(u0, v)), the value of v varies
while u is fixed, as shown in Figure 3.29. Then as indicated in Figure 3.29, the vector
element of area dS is given by

##
S

f x, y, z( ) dS

##
S

F r( ) Q̂ dS⋅  = ##
S

F r( ) d6⋅

Figure 3.29 Parametric 
curves on a surface.
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where

, , (3.30)

Hence

where F(r) = (P, Q, R) and A is the region of the (u, v) plane corresponding to S. Here,
of course, the terms in the integrands have to be expressed in terms of u and v.

In particular, u and v can be chosen as any two of x, y and z. For example, if z = z(x, y)
describes a surface as in Figure 3.30 then

r = (x, y, z(x, y))

with x and y as independent variables. This gives

, , J3 = 1

and

(3.31a)

(3.31b)

dS
∂ r
∂ u
------ du

∂ r
∂ v
----- dv

∂ r
∂ u
------ ∂ r

∂ v
----- du dv×=×=

∂ x
∂ u
------ , 

∂ y
∂ u
------ , 

∂ z
∂ u
------ 

  ∂ x
∂ v
----- , 

∂ y
∂ v
----- , 

∂ z
∂ v
----- 

  du dv× J1i J2 j J3k+ +( ) du dv==

J1
∂ y
∂ u
------∂ z

∂ v
----- ∂ y

∂ v
----- ∂ z

∂ u
------–= J2

∂ z
∂ u
------∂ x

∂ v
----- ∂ z

∂ v
-----∂ x

∂ u
------–= J3

∂ x
∂ u
------∂ y

∂ v
----- ∂ x

∂ v
-----∂ y

∂ u
------–=

##
S

F r( ) dS⋅  = ##
A

PJ1 QJ2 RJ3+ +( ) du dv

##
S

f x, y, z( ) dS = ##
A

f u, v( ) J 1
2 J 2

2 J 3
2+ +( ) du dv

J1 = −∂ z
∂ x
----- J2 = −∂ z

∂ y
-----

Figure 3.30 A surface 
described by 
z = z(x, y).

##
S

F r( ) dS⋅  = ##
A

−P
∂ z
∂ x
----- Q

∂ z
∂ y
-----– R+ 

  dx dy

##
S

f x, y, z( ) dS = ##
A

f x, y, z x, y( )( ) 1
∂ z
∂ x
-----
 
 

2 ∂ z
∂ y
-----
 
 

2

+ + dx dy
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Evaluate the surface integral

where S is the portion of the sphere x 2 + y 2 + z 2 = 1 that lies in the first quadrant.

Solution The surface S is illustrated in Figure 3.31(a). Taking

we have

,

giving

Using (3.31) then gives

where A is the quadrant of a circle in the (x, y) plane illustrated in Figure 3.31(b).

Example 3.25

##
S

x y z+ +( ) dS

Figure 3.31
(a) Surface S for 
Example 3.25; 
(b) quadrant of a 
circle in the (x, y) 
plane.

z 1 x2– y2–( )=

∂ z

∂ x
------ −x

1 x2– y2–( )
---------------------------------= ∂ z

∂ y
------ −y

1 x2– y2–( )
---------------------------------=

1
∂ z

∂ x
------
 
 
 

2

∂ z

∂ y
------
 
 
 

2

+ +  = x2 y2 1 x2– y2–( )+ +
1 x2– y2–( )

---------------------------------------------------

1

1 x2– y2–( )
---------------------------------=

##
S

x y z+ +( ) dS = ##
A

x y 1 x2– y2–( )+ +[ ] 1

1 x2– y2–( )
--------------------------------- dx dy
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Thus

= 

= 

= 

= 

An alternative approach to evaluating the surface integral in Example 3.25 is to evaluate
it directly over the surface of the sphere using spherical polar coordinates. As illustrated
in Figure 3.32, on the surface of a sphere of radius a we have

In the sphere of Example 3.25 the radius a = 1, so that

as determined in Example 3.25.

x = a sin θ cos φ, y = a sin θ sin φ

z = a cos θ, dS = a 2 sin θ dθ dφ

##
S

x y z+ +( ) dS #
0

1

d x #
0

1 x2–( )

 
x

1 x2– y2–( )
--------------------------------- y

1 x2– y2–( )
--------------------------------- 1+ + dy=

#
0

1

x  1–sin
y

1 x2–
-----------------   
 
 

1 x2– y2–( ) y+–

0

1 x2–( )

dx

#
0

1
π
2
---x 2 1 x2–( )+ dx

π
4
---x2 x 1 x2–( )  1–sin x+ +

0

1

3
4
---π

Figure 3.32 Surface 
element in spherical 
polar coordinates.

##
S

x y z+ +( ) dS = #
0

π/2

#
0

π/2

sin θ cos φ sin θ sin φ cos θ+ +( ) sin θ dθ dφ

#
0

π/2

1
4
--- π cos φ 1

4
--- π sin φ 1

2
---+ +[ ] dφ 3

4
--- π==
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In a similar manner, when evaluating surface integrals over the surface of a cylinder of
radius a, we have, as illustrated in Figure 3.33,

Find the surface area of the torus shown in Figure 3.34(a) formed by rotating a circle
of radius b about an axis distance a from its centre.

Solution From Figure 3.34(b), the position vector r of a point on the surface is given by

r = (a + b cos φ) cos θ i + (a + b cos φ) sin θ j + b sin φk

(Notice that θ and φ are not the angles used for spherical polar coordinates.) Thus
using (3.30), 

J1 = (a + b cos φ) cos θ(b cos φ) − (−b sin φ sin θ)(0)

J2 = (0)(−b sin φ cos θ) − (b cos φ)(a + b cos φ)(−sin θ)

J3 = −(a + b cos φ) sin θ(−b sin φ sin θ ) − (−b sin φ cos θ )(a + b cos φ) cos θ

x = a cos φ, y = a sin φ, z = z, dS = a dz dφ

Figure 3.33
Surface element 
in cylindrical 
polar coordinates.

Example 3.26

(a)

b
a

Figure 3.34 (a) Torus 
of Example 3.26; 
(b) position vector of a 
point on the surface of 
the torus.
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Simplifying, we obtain

J1 = b(a + b cos φ) cos θ cos φ

J2 = b(a + b cos φ) sin θ cos φ

J3 = b(a + b cos φ) sin φ

and the surface area is given by

= 4π2ab

Thus the surface area of the torus is the product of the circumferences of the two circles
that generate it.

Evaluate eeS V · dS, where V = zi + xj − 3y 2zk and S is the surface of the cylinder
x 2 + y 2 = 16 in the first octant between z = 0 and z = 5.

Solution The surface S is illustrated in Figure 3.35. From Section 3.2.1, the outward normal to
the surface is in the direction of the vector

n = grad (x 2 + y 2 − 16) = 2xi + 2y j

so that the unit outward normal n̂ is given by

n̂ = 

Hence on the surface x 2 + y 2 = 16,

n̂ = (xi + yj)

giving

dS = dS n̂ = dS(xi + yj)

Projecting the element of surface dS onto the (x, z) plane as illustrated in Figure 3.35,
the area dx dz of the projected element is given by

dx dz = dS cosβ

where β is the angle between the normal n̂ to the surface element and the normal j to the
(x, z) plane. Thus

dx dz = dS | n̂· j | = dS | (xi + yj ) · j | = dS y

S #
0

2π

#
0

2π

J 1
2 + J 2

2 + J 3
2( ) dθ dφ=

#
0

2π

#
0

2π

b a + bcos φ( ) dθ dφ=

Example 3.27

2xi 2yj+

2 x2 y2+( )
----------------------------

1
4
---

1
4
---

1
4
--- 1

4
---
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giving

Also,

V · dS = V · n̂ dS = (zi + xj − 3y 2zk) · dx dz = 

so that

where A is the rectangular region in the (x, z) plane bounded by 0 < x < 4, 0 < z < 5.
Noting that the integrand is still evaluated on the surface, we can write ,
so that

= 90

An alternative approach in this case is to evaluate ees (xz + xy) dS directly over
the surface using cylindrical polar coordinates. This is left as Exercise 90, in
Exercises 3.4.8.

dS = 4y--- d x dz

xL yM+
4

--------------- 
  4

y
--- xz xy+

y
----------------- dx dz

Figure 3.35
Surface S for 
Example 3.26.

##
S

V d S⋅  = ##
A

xz xy+
y

----------------- dx dz

y 16 x2–( )=

##
S

V d6⋅ #
0

4

#
0

5

x
xz

16 x2–( )
-------------------------+ dz dx=

#
0

4

xz
xz2

2 16 x2–( )
-----------------------------+

0

5

dx=

#
0

4

5x
25x

2 16 x2–( )
-----------------------------+ dx=

5
2
---x2 25

2
------ 16 x2–( )–[ ]0

4
=

1
4
---
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3.4.9 Volume integrals

In Section 3.4.7 we defined the integral of a function over a curved surface in three
dimensions. This idea can be extended to define the integral of a function of three
variables through a region T of three-dimensional space by the limit

where ΔVi (i = 1, . . . , n) is a partition of T into n elements of volume, and ( , , ) is
a point in ΔVi as illustrated in Figure 3.36.

In terms of rectangular cartesian coordinates the triple integral can, as illustrated in
Figure 3.37, be written as

(3.32)

Note that there are six different orders in which the integration in (3.32) can be
carried out.

As we saw for double integrals in (3.28), the expression for the element of volume
dV = dx dy dz under the transformation x = x (u, v, w), y = y(u, v, w), z = z(u, v, w) may
be obtained using the Jacobian

##
T

# f x y z, ,( ) dV = f x̃i, ỹi z̃i,( )
i=1

n

n ∞→
all Δvi 0→

lim ΔVi

x̃i ỹi z̃i

##
T

# f x y z, ,( ) dV = #
a

b

dx#
g1 x( )

g2 x( )

dy#
h1 x y,( )

h2 x y,( )

f x y z, ,( ) dz

3.4.8 Exercises

Evaluate the area of the surface z = 2 − x 2 − y 2 lying 
above the (x, y) plane. (Hint: Use polar coordinates 
to evaluate the double integral.)

Evaluate

(a) eeS (x 2 + y 2) dS, where S is the surface area of 
the plane 2x + y + 2z = 6 cut off by the planes 
z = 0, z = 2, y = 0, y = 3;

(b) eeS z dS, where S is the surface area of the 
hemisphere x 2 + y 2 + z 2 = 1 (z > 0) cut off 
by the cylinder x 2 − x + y 2 = 0.

Evaluate eeS v · dS, where

(a) v = (xy, −x 2, x + z) and S is the part of 
the plane 2x + 2y + z = 6 included in the 
first octant;

(b) v = (3y, 2x 2, z 3) and S is the surface of the 
cylinder x 2 + y 2 = 1, 0 < z < 1.

Show that eeS z 2 dS = π, where S is the surface of 
the sphere x 2 + y 2 + z 2 = 1, z > 0.

Evaluate the surface integral eeS U(x, y, z) dS, 
where S is the surface of the paraboloid 
z = 2 − (x 2 + y 2) above the (x, y) plane and 
U(x, y, z) is given by

(a) 1 (b) x 2 + y 2 (c) z

Give a physical interpretation in each case.

Determine the surface area of the plane 
2x + y + 2z = 16 cut off by x = 0, y = 0 
and x 2 + y 2 = 64.

Show that the area of that portion of the surface 
of the paraboloid x 2 + y 2 = 4z included between 
the planes z = 1 and z = 3 is π(4 − ).

Evaluate the surface integral in Example 3.27 using 
cylindrical polar coordinates.

If F = yi + (x − 2xz) j − xyk, evaluate the surface 
integral ees (curl F ) · dS, where S is the surface of 
the sphere x 2 + y 2 + z 2 = a2, z > 0.

83

84

85

86 2
3
---

87

88

89

16
3

------ 2

90

91
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as

dV = dx dy dz = |J |du dv dw (3.33)

For example, in the case of cylindrical polar coordinates

x = ρ cos φ, y = ρ sin φ, z = z

so that

a result illustrated in Figure 3.38.
Similarly, for spherical polar coordinates (r, θ, φ)

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ

so that

a result illustrated in Figure 3.39.

dV = ρ dρ dφ dz (3.34)

dV = r 2 sin θ dr dθ dφ (3.35)

J = 
x y z, ,( )∂
u v w, ,( )∂

------------------------  = 

x∂
u∂

------ y∂
u∂

------- z∂
u∂

------

x∂
v∂

------ y∂
v∂

------- z∂
v∂

------

x∂
w∂

-------- y∂
w∂

-------- z∂
w∂

--------

Figure 3.36 Partition of region T into 
volume elements ΔVi .

Figure 3.37 The volume integral in terms of rectangular 
cartesian coordinates.

J = ρ
cos φ sin φ 0

−sin φ cos φ 0

0 0 1

 = ρ

J = 

θsin cos φ θsin φsin cos θ
r cos θ cos φ r cos θ sin φ r– sin θ

r– sin θ sin φ r sin θ cos φ 0

 = r2 θsin
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Find the volume and the coordinates of the centroid of the tetrahedron defined by x > 0,
y > 0, z > 0 and x + y + z < 1.

Solution The tetrahedron is shown in Figure 3.40. Its volume is

Let the coordinates of the centroid be ( , , ); then, taking moments about the line x = 0, 
z = ,

Hence  = , and by symmetry  =  = .

Find the moment of inertia of a uniform sphere of mass M and radius a about a diameter.

Solution A sphere of radius a has volume 4πa3/3, so that its density is 3M/4πa3. Then the moment
of inertia of the sphere about the z axis is

Example 3.28

Figure 3.38 Volume element in 
cylindrical polar coordinates.

Figure 3.39 Volume element in spherical polar 
coordinates.

Figure 3.40
Tetrahedron for 
Example 3.28.

V = ###
tetrahedron

dx dy dz  = #
x=0

x=1

dx#
y=0

y=1−x

dy #
z=0

z=1−x−y

dz

= #
0

1

dx #
0

1−x

1 − x − y( ) dy = #
0

1
1
2
--- 1 − x( )2 dx = 1

6
---

x y z
z

xV = ###
tetrahedron

xdV  = ###
tetrahedron

x dx dy dz

= #
0

1

dx#
0

1−x

dy #
0

1−x−y

x dz = #
0

1
1
2
--- x 1 − x( )2 dx = 1

24
------

x 1
4
--- y z 1

4
---

Example 3.29

I = 
3M

4πa3
------------ ###

sphere

x2 + y2( ) dx dy dz
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In this example it is natural to use spherical polar coordinates, so that

Evaluating triple integrals using MATLAB uses the command triplequad. For
example, consider (see Example 3.28):

x dx dy dz

Here we write the integrand as the inline function

F = inline (’x.*( x + y + z <=1)’, ’x’, ’y’, ’z’);

so that the command

I = triplequad (f , 0 , 1 , 0 , 1, 0 , 1)

returns the answer

I = 0.0416

This procedure could be slow because of the large number of points at which the
integrand is evaluated.

I = 
3M

4πa3
------------ ###

sphere

r2 sin2θ( ) r2 sinθ dr dθ dφ

= 
3M

4πa3
------------#

0

a

r4 dr #
0

π

sin3θ dθ #
0

2π

dφ  = 
3M

4πa3
------------ 1

5
---a5( ) 4

3
---( ) 2π( )

= 2
5
--- Ma2

#
0

1

#
0

1 x–

#
0

1 x– y–

3.4.10 Exercises

Evaluate the triple integrals

Show that

Evaluate eee sin (x + y + z) dx dy dz over the 
portion of the positive octant cut off by the plane 
x + y + z = π.

Evaluate eeeV xyz dx dy dz, where V is the region 
bounded by the planes x = 0, y = 0, z = 0 and 
x + y + z = 1.

Sketch the region contained between the parabolic 
cylinders y = x 2 and x = y 2 and the planes z = 0 and 
x + y + z = 2. Show that the volume of the region 
may be expressed as the triple integral

and evaluate it.

Use spherical polar coordinates to evaluate

92

a( ) #
0

1

dx#
0

2

dy#
0

3

x2yz dz

b( )#
0

2

#
1

3

#
2

4

xyz2 dz dy dx

93

#
1–

1

dz#
0

z

dx#
x−z

x+z

x + y + z( ) dy = 0

94

95

96

#
0

1

#
x

2

x

#
0

2−x−y

dz dy dx

97

###
V

x x2 + y2 + z2( ) dx dy dz
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3.4.11 Gauss’s divergence theorem

In the same way that Green’s theorem relates surface and line integrals, Gauss’s theorem
relates surface and volume integrals.

Consider the closed volume V with surface area S shown in Figure 3.41. The surface
integral eeS F ·dS may be interpreted as the flow of a liquid with velocity field F(r)
out of the volume V. In Section 3.3.1 we saw that the divergence of F could be
expressed as

div F = ∇ · F = 

In terms of differentials, this may be written

div F dV = flow out of dV

Consider now a partition of the volume V given by ΔVi (i = 1, . . . , n). Then the total
flow out of V is the sum of the flows out of each ΔVi. That is, 

giving

This result is known as the divergence theorem or Gauss’s theorem. It enables us
to convert surface integrals into volume integrals, and often simplifies their evaluation.

 (3.36)

SV

Figure 3.41
Closed volume V 
with surface S.

ΔV 0→
lim

flow out of ΔV
ΔV

------------------------------------

##
S

F d S = flow out of ΔVi( )
i=1

n

n ∞→
lim  = div FΔVi( )

i=1

n

n ∞→
lim⋅

##
S

F dS = ##
V

# div F dV⋅

where V is the region in the first octant lying within 
the sphere x 2 + y 2 + z 2 = 1.

Evaluate eee x 2y 2z 2(x + y + z) dx dy dz throughout 
the region defined by x + y + z < 1, x > 0, y > 0, 
z > 0.

Show that if x + y + z = u, y + z = uv and z = uvw 
then

Hence evaluate the triple integral

where V is the volume of the tetrahedron 
bounded by the planes x = 0, y = 0, z = 0 and 
x + y + z = 1.

Evaluate eeeV yz dx dy dz taken throughout the prism 
with sides parallel to the z axis, whose base 
is the triangle with vertices at (0, 0, 0), (1, 0, 0), 
(0, 1, 0) and whose top is the triangle with vertices 
at (0, 0, 2), (1, 0, 1), (0, 1, 1). Find also the position 
of the centroid of this prism.

Evaluate eee z dx dy dz throughout the region 
defined by x 2 + y 2 < z 2, x 2 + y 2 + z 2 < 1, z > 0.

Using spherical polar coordinates, evaluate 
eee x dx dy dz throughout the positive octant of 
the sphere x 2 + y 2 + z 2 = a 2.

98

99

x y z, ,( )∂
u v w, ,( )∂

------------------------ = u2v

###
V

exp x + y + z( )3–[ ] dx dy dz

100

101

102
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A vector field F(r) is given by

F(r) = x 3yi + x 2y 2j + x 2yzk

Find eeS F · dS, where S is the surface of the region in the first octant for which
x + y + z < 1.

Solution We begin by sketching the region V enclosed by S, as shown in Figure 3.42. It is clear that
evaluating the surface integral directly will be rather clumsy, involving four separate
integrals (one over each of the four surfaces). It is simpler in this case to transform it into
a volume integral using the divergence theorem (3.36):

Here

div F = 3x 2y + 2x 2y + x 2y = 6x 2y

and we obtain

(see Example 3.28)

Verify the divergence theorem

when F = 2xzi + yzj + z2k and V is the volume enclosed by the upper hemisphere
x 2 + y 2 + z 2 = a2, z > 0.

Example 3.30

Figure 3.42 Region V 
and surface S for 
Example 3.30.

##
S

F dS⋅  = ##
V

# div F dV

##
S

F dS⋅  = #
0

1

dx#
0

1−x

dy #
0

1−x−y

6x2y dz

= 6#
0

1

x2 dx#
0

1−x

y dy #
0

1−x−y

dz

= 6 #
0

1

x2 dx #
0

1−x

1 − x( )y − y2[ ] dy

= #
0

1

x2 1 − x( )3 dx = 1
60
------

Example 3.31

##
S

F dS = ##
V

# div F dV⋅
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Solution The volume V and surface S of the hemisphere are illustrated in Figure 3.43. Note that
since the theorem relates to a closed volume, the surface S consists of the flat circular
base in the (x, y) plane as well as the hemispherical surface. In this case

div F = 2z + z + 2z = 5z

so that the volume integral is readily evaluated as

Considering the surface integral

The unit normal to the base is clearly n ̂
1 = −k, so

F · n̂ 1 = −z 2

giving

since z = 0 on this surface.
The hemispherical surface is given by

f (x, y, z) = x 2 + y 2 + z 2 − a2 = 0

so the outward unit normal n ̂2 is

Since x 2 + y 2 + z 2 = a2 on the surface, 

Figure 3.43
Hemisphere for 
Example 3.31.

###
V

5z dx dy dz = #
0

a

5zπr2 dz = #
0

a

5πz a2 − z2( )dz = 5
4
--- πa4

##
S

F dS = ##
circular base

F n̂1 dS + ##
hemisphere

F n̂2 dS⋅⋅⋅

##
circular base

F n̂1 dS = 0⋅

n̂2 = 
f∇
f∇

-----------  = 
2xi + 2yj + 2zk

2 x2 + y2 + z2( )
-----------------------------------------

n̂2 = 
x
a
--- i + 

y
a
--- j + 

z
a
--- k
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giving

Hence

since x 2 + y 2 + z 2 = a2 on the surface. Transforming to spherical polar coordinates, 

x = a sinθ cos φ, z = a cosθ, dS = a2 sinθ dθ dφ
the surface integral becomes

thus confirming that

3.4.12 Stokes’ theorem

Stokes’ theorem is the generalization of Green’s theorem, and relates line integrals in
three dimensions with surface integrals. At the end of Section 3.3.3 we saw that the curl
of the vector F could be expressed in the form

curl F·  n ̂ = 

In terms of differentials, this becomes

curl F · dS = flow round dS

Consider the surface S shown in Figure 3.44, bounded by the curve C. Then the
line integral rc F ·dr can be interpreted as the total flow of a fluid with velocity field
F around the curve C. Partitioning the surface S into elements ΔSi  (i = 1, . . . , n), we
can write

F n̂2⋅  = 
2x2z

a
----------  + 

y2z
a

-------  + 
z3

a
---- x2z

a
------- z

a
--- x2 y2 z2+ +( )+=

##
hemisphere

F n̂2 dS⋅  = ##
hemisphere

z
a
--- x2 + a2( ) dS

##
hemisphere

F n̂2 dS⋅  = a4 #
0

2π

#
0

π/2

( θsin θ cos + sin3θ θ cos2φ )cos dθ dφ

= a4 #
0

2π
1
2
--- sin2θ  + 1

4
--- sin

4θ cos2φ[ ]0
π/2 dφ

= a4 #
0

2π

1
2
--- + 1

4
--- cos2φ[ ]dφ  = 5

4
--- πa4

##
S

F dS = ##
V

# div F dV⋅

Δs 0→
lim

flow round ΔS
ΔS

-----------------------------------

S

C

Figure 3.44 Surface S 
bounded by curve C.

$
C

F dr = flow round ΔSi( )
i=1

n

n ∞→
lim  = curl F ΔSi⋅( )

i=1

n

n ∞→
lim⋅
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so that

This result is known as Stokes’ theorem. It provides a condition for a line integral to
be independent of its path of integration. For, if the integral e BA F ·dr is independent of
the path of integration then

where C1 and C2 are two different paths joining A and B as shown in Figure 3.45. Since

where −C2 is the path C2 traversed in the opposite direction, we have

That is, 

where C is the combined, closed curve formed from C1 and −C2. Stokes’ theorem
implies that if rC F · dr = 0 then

for any surface S bounded by C. Since this is true for all surfaces bounded by C, we
deduce that the integrand must be zero, that is curl F = 0. Writing F = (F1, F2, F3), we
then have that

F · dr = F1 dx + F2 dy + F3 dz

is an exact differential if curl F = 0; that is, if

Thus there is a function f (x, y, z) = f (r) such that

that is, such that F(r) = grad f.

(3.37)$
C

F dr = ##
S

curl F( ) dS⋅⋅

#
C1

F dr = #
C2

F dr⋅⋅

Figure 3.45 Two 
paths, C1 and C2, 
joining points A 
and B.

#
C1

F dr = − #
C2–

F dr⋅⋅

#
C1

F dr + #
C2–

F dr = 0⋅⋅

$
C

F dr = 0⋅

##
S

curl F( ) dS = 0⋅

F1∂
z∂

--------  = 
F3∂
x∂

-------- ,
F1∂
y∂

--------  = 
F2∂
x∂

-------- ,
F2∂
z∂

--------  = 
F3∂
y∂

--------

F1 = 
f∂
x∂

------ , F2 = 
f∂
y∂

------ , F3 = 
f∂
z∂

------
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When F(r) represents a field of force, the field is said to be conservative (since it
conserves rather than dissipates energy). When F(r) represents a velocity field for a
fluid, the field is said to be curl-free or irrotational.

Verify Stokes’ theorem for F = (2x − y)i − yz 2j − y 2zk, where S is the upper half of the
sphere x 2 + y 2 + z 2 = 1 and C is its boundary.

Solution The surface and boundary involved are illustrated in Figure 3.46. We are required to
show that

Since C is a circle of unit radius in the (x, y) plane, to evaluate rC F · dr, we take

x = cos φ, y = sin φ
so that

r = cos φ i + sin φ j

giving

dr = −sin φ dφ i + cos φ dφ j

Also, on the boundary C, z = 0, so that

F = (2x − y)i = (2 cos φ − sin φ)i

Thus

 

Example 3.32

Figure 3.46
Hemispherical 
surface and boundary 
for Example 3.32.

$
C

F dr = ##
S

curl F dS⋅⋅

$
C

F dr = #
0

2π

2 φcos  − φsin( ) i φsin– i  + φcos j( ) dφ⋅⋅

= #
0

2π

2– φsin φcos  + sin2φ( ) dφ #
0

2π

2φsin–  + 1
2
--- 1 + 2φcos( )[ ] dφ  =

π=

curl F = 

i j k

∂
x∂

------ ∂
y∂

------ ∂
z∂

------  

2x − y yz2– y2z–  

 = k
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The unit outward-drawn normal at a point (x, y, z) on the hemisphere is given by
(xi + yj + zk), since x 2 + y 2 + z 2 = 1. Thus

Hence rC F ·dr = eeS (curl F )·dS, and Stokes’ theorem is verified.

##
S

curl F d S⋅  = ##
S

k xi + yj  + zk( ) dS ⋅

=##
S

z dS

= #
0

2π

#
0

π/2

θ cos sin θ dθ dφ 

= 2π 1
2
--- sin2θ[ ]0

π/2
 = π

3.4.13 Exercises

Evaluate eeS F ·dS, where F = (4xz, −y 2, yz) and S is 
the surface of the cube bounded by the planes x = 0, 
x = 1, y = 0, y = 1, z = 0 and z = 1.

Use the divergence theorem to evaluate the surface 
integral eeS F · dS, where F = xzi + yzj + z 2k and S is 
the closed surface of the hemisphere x 2 + y 2 + z 2 = 4, 
z . 0. (Note that you are not required to verify the 
theorem.)

Verify the divergence theorem

for F = 4xi − 2y 2j + z 2k over the region bounded by 
x 2 + y 2 = 4, z = 0 and z = 3.

Prove that

Verify the divergence theorem for F = (xy + y2)i + x 2yj
and the volume V in the first octant bounded by 
x = 0, y = 0, z = 0, z = 1 and x2 + y2 = 4.

Use Stokes’ theorem to show that the value of the 
line integral eB

A F ·dr for

F = (36xz + 6y cos x, 3 + 6 sin x + z sin y,

18x 2 − cos y)

is independent of the path joining the points A and B.

Use Stokes’ theorem to evaluate the line integral 
rC A ·dr, where A = −yi + xj and C is the boundary 
of the ellipse x 2/a2 + y 2/b2 = 1, z = 0.

Verify Stokes’ theorem by evaluating both sides of

where F = (2x − y)i − yz 2j − y 2zk and S is the curved 
surface of the hemisphere x 2 + y 2 + z 2 = 16, z > 0.

By applying Stokes’ theorem to the function af(r), 
where a is a constant, deduce that

Verify this result for the function f (r) = 3xy2 and 
the rectangle in the plane z = 0 bounded by the 
lines x = 0, x = 1, y = 0 and y = 2.

Verify Stokes’ theorem for F = (2y + z, x − z, y − x) 
for the part of x 2 + y 2 + z 2 = 1 lying in the positive 
octant.
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##
S

F dS⋅  = ###
V

div F dV

106

###
V

grad φ( ) curl F( )⋅ dV = ##
S

F grad φ×( ) dS⋅

107

108

109

110

##
S

curl F( ) dS⋅  = $
C

F dr⋅

111

##
S

n grad×  f( ) dS   #
C

f r( )dr=

112
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Engineering application: streamlines in fluid dynamics
As we mentioned in Section 3.1.5, differentials often occur in mathematical modelling
of practical problems. An example occurs in fluid dynamics. Consider the case of
steady-state incompressible fluid flow in two dimensions. Using rectangular cartesian
coordinates (x, y) to describe a point in the fluid, let u and v be the velocities of the fluid
in the x and y directions respectively. Then by considering the flow in and flow out of
a small rectangle, as shown in Figure 3.47, per unit time, we obtain a differential
relationship between u(x, y) and v(x, y) that models the fact that no fluid is lost or gained
in the rectangle; that is, the fluid is conserved.

The velocity of the fluid q is a vector point function. The values of its components u
and v depend on the spatial coordinates x and y. The flow into the small rectangle in unit
time is

u(x, )Δy + v( , y)Δx

where  lies between x and x + Δx, and  lies between y and y + Δy. Similarly, the flow
out of the rectangle is

u(x + Δx, )Δy + v( , y + Δy)Δx

where  lies between x and x + Δx and  lies between y and y + Δy. Because no fluid is
created or destroyed within the rectangle, we may equate these two expressions, giving

u(x, )Δy + v( , y)Δx = u(x + Δx, )Δy + v( , y + Δy)Δx

Rearranging, we have

Letting Δx → 0 and Δy → 0 gives the continuity equation

The fluid actually flows along paths called streamlines so that there is no flow across a
streamline. Thus from Figure 3.48 we deduce that

v Δx = u Δy

and hence

v dx − u dy = 0

The condition for this expression to be an exact differential is

or

This is satisfied for incompressible flow since it is just the continuity equation, so that
we deduce that there is a function ψ (x, y), called the stream function, such that

3.5 Engineering application:

Figure 3.47 
Fluid flow.
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-------------------------------------------------------  = 0
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Figure 3.48
Streamline.
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It follows that if we are given u and v, as functions of x and y, that satisfy the continuity
equation then we can find the equations of the streamlines given by ψ (x, y) = constant.

Find the stream function ψ (x, y) for the incompressible flow that is such that the velocity
q at the point (x, y) is

(−y/(x 2 + y 2), x/(x 2 + y 2))

Solution From the definition of the stream function, we have

provided that

Here we have

so that

confirming that

Integrating

with respect to y, keeping x constant, gives

ψ (x, y) = ln(x 2 + y 2) + g(x)

Differentiating partially with respect to x gives

Since it is known that

v = 
∂ψ
∂ x
------- and u = −∂ ψ

∂ y
-------

Example 3.33

u x y,( ) = −∂ ψ
∂ y
------- and v x y,( ) = 

∂ ψ
x∂

-------

u∂
x∂

------  + 
v∂
y∂

------  = 0

u = 
y–

x2 + y2
----------------- and v = 

x

x2 + y2
-----------------

u∂
x∂

------- = 
2xy

x2 + y2( )2
----------------------- and

v∂
y∂

-------  = − 2yx

x2 + y2( )2
-----------------------

u∂
x∂

------ + 
v∂
y∂

------ = 0

∂ ψ
∂ y
------- = u x y,( )–  = 

y

x2 + y2
-----------------

1
2
---

∂ ψ
x∂

------- = 
x

x2 + y2
----------------- + 

dg

dx
------

∂ ψ
x∂

------- = v x y,( ) = 
x

x2 + y2
-----------------
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we have

which on integrating gives

g(x) = C

where C is a constant. Substituting back into the expression obtained for ψ (x, y), we have

ψ (x, y) = ln(x 2 + y 2) + C

A streamline of the flow is given by the equation ψ (x, y) = k, where k is a constant.
After a little manipulation this gives

x 2 + y 2 = a2 and ln a = k − C

and the corresponding streamlines are shown in Figure 3.49. This is an example of a
vortex.

Engineering application: heat transfer
In modelling heat transfer problems we make use of three experimental laws.

(1) Heat flows from hot regions to cold regions of a body.

(2) The rate at which heat flows through a plane section drawn in a body is proportional
to its area and to the temperature gradient normal to the section.

(3) The quantity of heat in a body is proportional to its mass and to its temperature.

In the simplest case we consider heat transfer in a medium for which the constants of
proportionality in the above laws are independent of direction. Such a medium is called
thermally isentropic. For any arbitrary region within such a medium we can obtain an
equation that models such heat flows. The total amount Q(t) of heat within the region V is

dg
dx
------ = 0

1
2
---

Figure 3.49
Streamline illustrating 
a vortex.

3.6 Engineering application:

Q t( ) ###
V

= cρu r t,( ) dV
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where c is the specific heat of the medium, ρ is the density and u(r, t) is the temperature
at the point r at time t. Heat flows out of the region through its bounding surface S. The
experimental laws (1) and (2) above imply that the rate at which heat flows across an
element ΔS of that surface is −k∇u ·ΔS, where k is the thermal conductivity of the
medium. (The minus sign indicates that heat flows from hot regions to cold.) Thus the
rate at which heat flows across the whole surface of the region is given by

Using Gauss’s theorem, we deduce that the rate at which heat flows out of the region is

If there are no sources or sinks of heat within the region, this must equal the rate at which
the region loses heat, −dQ/dt. Therefore

Since

this implies that

This models the situation for any arbitrarily chosen region V. The arbitrariness in the
choice of V implies that the value of the integral is independent of V and that the
integrand is equal to zero. Thus

The quantity k/cp is termed the thermal diffusivity of the medium and is usually
denoted by the Greek letter kappa, κ. The differential equation models heat flow within
a medium. Its solution depends on the initial temperature distribution u(r, 0) and on
the conditions pertaining at the boundary of the region. Methods for solving this equa-
tion are discussed in Chapter 9. This differential equation also occurs as a model for
water percolation through a dam, for neutron transport in reactors and in charge transfer
within charge-coupled devices. We shall now proceed to obtain its solution in a very
special case.

##
S

k∇u–( ) dS = k– ##
S

∇ u dS⋅⋅

k– ###
V

∇2u dV

d
dt
----- ###

V

cρu r t,( ) dV  = k– ###
V

∇2u dV–

d
dt
----- ###

V

u r t,( ) dV = ###
V

u∂
t∂

------ dV

###
V

k∇ 2u − cρ u∂
t∂

------ 
  dV = 0

∇ 2u = 
cρ
k

------ u∂
t∂

------
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A large slab of material has an initial temperature distribution such that one half is at
−u0 and the other at +u0. Obtain a mathematical model for this situation and solve it,
stating explicitly the assumptions that are made.

Solution When a problem is stated in such vague terms, it is difficult to know what approximations
and simplifications may be reasonably made. Since we are dealing with heat transfer, we
know that for an isentropic medium the temperature distribution satisfies the equation

throughout the medium. We know that the region we are studying is divided so that at
t = 0 the temperature in one part is −u0 while that in the other is +u0, as illustrated in
Figure 3.50. We can deduce from this figure that the subsequent temperature at a point
in the medium depends only on the perpendicular distance of the point from the
dividing plane. We choose a coordinate system so that its origin lies on the dividing
plane and the x axis is perpendicular to it, as shown in Figure 3.51. Then the differential
equation simplifies, since u(r, t) is independent of y and z, and we have

Thinking about the physical problem also provides us with some further information.
The heat flows from the hot region to the cold until (eventually) the temperature is
uniform throughout the medium. In this case that terminal temperature is zero,
since initially half the medium is at temperature +u0 and the other half at −u0. So we
know that u(x, t) → 0 as t → ∞. We also deduce from the initial temperature distribution
that −u0 < u(x, t) < u0 for all x and t, since there are no extra sources or sinks of heat
in the medium. Summarizing, we have

There are many approaches to solving this problem (see Chapter 9). One is to investigate
the effect of changing the scale of the independent variables x and t. Setting x = λX and
t = μT, where λ and μ are positive constants, the problem becomes

Example 3.34
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1
κ
--- u∂

t∂
------

∂ 2u
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---------  = 
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t∂
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u0 x  0<( )–
+u0 x > 0( )




u(r, 0) = –u0 u(r, 0) = +u0 u(r, 0) = +(x, 0)
= –u0

u(r, 0) = +(x, 0)
= +u0

Figure 3.50 Region for Example 3.34. Figure 3.51 Coordinate system for Example 3.34.

∂ 2u

x2∂
---------  = 

1

κ
--- u∂

t∂
------ ∞ , x , ∞ t > 0,–( ) with

u x 0,( ) = 
u0 x , 0( )–

+u0 x > 0( )

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u x t,( ) bounded for all x

u x t,( ) 0 as t ∞→→
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with U(X, T ) = u(x, t) and U(X, 0) = u0 sgn X. Choosing μ = λ2, we see that

with U(X, 0) = u0 sgn X

which implies that the solution u(x, t) of the original equation is also a solution of the
scaled equation. Thus

u(x, t) = u(λx, λ 2t)

which suggests that we should look for a solution expressed in terms of a new variable s
that is proportional to the ratio of x to . Setting s = ax / , we seek a solution as a
function of s:

u(x, t) = u 0 f (s)

This reduces the partial differential equation for u to an ordinary differential equation
for f, since

Thus the differential equation is transformed into

giving

Choosing the constant a such that a2 = 1/(4κ) reduces this to the equation

The initial condition is transformed into two conditions, since for x , 0, s → −∞ as
t → 0 and for x . 0, s → +∞ as t → 0. So we have

f (s) → 1 as s → ∞

f (s) → −1 as s → −∞

Integrating the differential equation once gives

where A is a constant

and integrating a second time gives

μ ∂ 2U

X2∂
----------  = 

λ2

κ
----- U∂

T∂
-------

∂ 2U

X2∂
---------- = 

1

κ
--- U∂

T∂
------- ,

t t

∂ u

x∂
-------  = 

au0

t
-------- d f

ds
------ ,

∂ 2u

x2∂
--------  = 

a2u0

t
---------- d2 f

ds2
------- ,

∂ u

t∂
------  = 1

2
---– axu0

t t
----------- d f

ds
------

a2

t
----- d2 f

ds2
-------  = 

ax

2κ t t
----------------– d f

ds
------

a2 d2 f

ds2
-------  = 

s

2κ
-------– d f

ds
------

d2 f

ds2
-------  = 2s– d f

ds
------

d f
ds
----- = A e s2– ,

f s( ) = B + A #e s
2– ds
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The integral occurring here is one that frequently arises in heat transfer problems, and
is given a special name. We define the error function, erf(x), by the integral

Its name derives from the fact that it is associated with the normal distribution, which
is a common model for the distribution of experimental errors (see Section 11.2.4).
This is a well-tabulated function, and has the property that erf(x) → 1 as x → ∞.

Writing the solution obtained above in terms of the error function, we have

f (s) = A erf(s) + B

Letting s → ∞ and s → −∞ gives two equations for A and B:

1 = A + B

−1 = −A + B

from which we deduce A = 1 and B = 0. Thus

f (s) = erf (s)

so that

erf x( ) = 
2

π
------- #

0

x

e z 2– dz

u x t,( ) = u0 erf
x

2 t
---------
 
 
 

 = 
2u0

π
-------- #

0

x /2 t

 e z 2– dz

3.7 Review exercises (1–21)

Show that u(x, y) = xnf(t), t = y/x, satisfies the 
differential equations

Verify these results for the function 
u(x, y) = x4 + y4 + 16x 2y2.

Find the values of the numbers a and b such that 
the change of variables u = x + ay, v = x + by 
transforms the differential equation

into

Hence deduce that the general solution of the 
equation is given by

u(x, y) = f (x + 3y) + g(x + y)

where f and g are arbitrary functions.
Find the solution of the differential equation 

that satisfies the conditions

u(x, 0) = sin x,  = 3 cos x

A differential P(x, y, z) dx + Q(x, y, z) dy + 
R(x, y, z) dz is exact if there is a function 
f(x, y, z) such that

P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz

= ∇f ·(dx, dy, dz)

Show that this implies ∇ × (P, Q, R) = 0. Deduce 
that curl grad f = 0.

1

a( ) x
u∂
x∂

------  + y
u∂
y∂

-------  = nu

b( ) x2 ∂ 2u

x2∂
-------- + 2xy

∂ 2u

x y∂∂
------------- + y2  

∂ 2u

y2∂
--------  = n n − 1( )u

2

9
∂ 2f

x2∂
-------- − 9

∂ 2f

x y∂∂
------------- + 2

∂ 2f

y2∂
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∂ 2f
u v∂∂

--------------- = 0

3
2
---

∂ u x 0,( )
y∂

--------------------
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Find grad f, plot some level curves f = constant 
and indicate grad f by arrows at some points 
on the level curves for f (r) given by

(a) xy (b) x/(x 2 + y 2)

Show that if ω is a constant vector then

(a) grad (ω · r) = ω

(b) curl (ω × r) = 2ω

(a) Prove that if f (r) is a scalar point function then 

curl grad f = 0

(b) Prove that if v = grad [zf (r)] + α f(r)k and 
∇2f = 0, where α is a constant and f is a 
scalar point function, then

div v = (2 + α) ∇2v = grad

Show that if F = (x 2 − y 2 + x)i − (2xy + y) j, 
then curl F = 0, and find f (r) such that 
F = grad f.

Verify that

A force F acts on a particle that is moving 
in two dimensions along the semicircle 
x = 1 − cosθ, y = sinθ (0 < θ < π). 
Find the work done when

(a) F =  

(b) F = 

n̂ being the unit vector tangential to the path.

A force F = (xy, −y, 1) acts on a particle as it moves 
along the straight line from (0, 0, 0) to (1, 1, 1). 
Calculate the work done.

The force F per unit length of a conducting wire 
carrying a current I in a magnetic field B is 
F = I × B. Find the force acting on a circuit 
whose shape is given by x = sin θ, y = cos θ, 
z = sin θ, when current I flows in it and when 
it lies in a magnetic field B = xi − yj + k.

The velocity v at the point (x, y) in a 
two-dimensional fluid flow is given by 

v = ( yi − x j )/(x 2 + y 2). Find the net 
circulation around the square x = ±1, y = ±1.

A metal plate has its boundary defined by 
x = 0, y = x2/c and y = c. The density at the 
point (x, y) is kxy (per unit area). Find the 
moment of inertia of the plate about an axis 
through (0, 0) and perpendicular to the plate.

A right circular cone of height h and base radius 
a is cut into two pieces along a plane parallel to 
and distance c from the axis of the cone. Find the 
volume of the smaller piece.

The axes of two circular cylinders of radius a 
intersect at right angles. Show that the volume 
common to both cylinders may be expressed as 
the triple integral

and hence evaluate it.

The elastic energy of a volume V of material 
is q2V/(2EI ), where q is its stress and E and I 
are constants. Find the elastic energy of a 
cylindrical volume of radius r and length l in 
which the stress varies directly as the distance 
from its axis, being zero at the axis and q0 at the 
outer surface.

The velocity of a fluid at the point (x, y, z) has 
components (3x 2y, xy 2, 0). Find the flow rate out 
of the triangular prism bounded by z = 0, z = 1, 
x = 0, y = 0 and x + y = 1.

An electrostatic field has components 
(2xy, −y 2, x + y) at the point (x, y, z). Find the total 
flux out of the sphere x 2 + y 2 + z 2 = a2.

Verify Stokes’ theorem

where F = (x 2 + y − 4, 3xy, 2xz + z 2) and S is 
the surface of the hemisphere x 2 + y 2 + z 2 = 16 
above the (x, y) plane.

Use the divergence theorem to evaluate the 
surface integral

4
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 

7

#
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9
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2
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11
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15
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F dr⋅  = ##
S

curl F( ) dS⋅

19



248 VECTOR CALCULUS

where a = xi + yj − 2zk and S is the surface of 
the sphere x 2 + y 2 + z 2 = a2 above the (x, y) 
plane.

Evaluate the volume integral

where V denotes the wedge-shaped region 
bounded in the positive octant by the four 
planes x = 0, y = 0, y = 1 − x and z = 2 − x.

Continuing the analysis of Section 3.5, show that 
the net circulation of fluid around the rectangular 
element shown in Figure 3.47 is given by

[u(x, y + Δy) − u(x, y)]Δx 
− [v(x + Δx, y) − v(x, y)]Δy

Deduce that if the fluid motion is irrotational at 
(x, y), then

Show that for irrotational incompressible flow, 
the stream function ψ satisfies Laplace equation

##
S

a dS⋅

20

###
V

xyz dV

21

∂u
∂y
------ ∂v

∂x
----- 0=–

∂ 2ψ
∂ x2
−−−−−− ∂ 2ψ

∂y2
−−−−−− 0=+
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Introduction
In the theory of alternating currents, the application of quantities such as the complex
impedance involves functions having complex numbers as independent variables. There
are many other areas in engineering where this is the case; for example, the motion of
fluids, the transfer of heat or the processing of signals. Some of these applications are
discussed later in this book.

Traditionally, complex variable techniques have been important, and extensively
used, in a wide variety of engineering situations. This has been especially the case in
areas such as electromagnetic and electrostatic field theory, fluid dynamics, aerodynamics
and elasticity. With the development of computer technology and the consequential use
of sophisticated algorithms for analysis and design in engineering there has, over the
last two decades or so, been less emphasis on the use of complex variable techniques
and a shift towards numerical techniques applied directly to the underlying full partial
differential equations model of the situation being investigated. However, even when
this is the case there is still considerable merit in having an analytical solution, possibly
for an idealized model, in order both to develop better understanding of the behaviour
of the solution and to give confidence in the numerical estimates for the solution of
enhanced models. Many sophisticated software packages now exist, many of which are
available as freeware, downloadable from various internet sites. The older packages
such as FLUENT and CFX are still available and still in use by engineering companies
to solve problems such as fluid flow and heat transfer in real situations. The finite-element
package TELEMAC is modular in style and is useful for larger-scale environmental
problems; these types of software programs use a core plus optional add-ons tailored
for specific applications. The best use of all such software still requires knowledge of
mappings and use of complex variables. One should also mention the computer
entertainment industry which makes use of such mathematics to enable accurate
simulation of real life. The kind of mappings that used to be used extensively in
aerodynamics are now used in the computer games industry. In particular the ability
to analyse complicated flow patterns by mapping from a simple geometry to a complex
one and back again remains very important. Examples at the end of the chapter illustrate
the techniques that have been introduced. Many engineering mathematics texts have
introduced programming segments that help the reader to use packages such as
MATLAB or MAPLE to carry out the technicalities. This has not been done in this
chapter since, in the latest version of MAPLE, the user simply opens the program and
uses the menu to click on the application required (in this chapter a derivative or an
integral), types in the problem and presses return to get the answer. Students are
encouraged to use such software to solve any of the problems; the understanding of
what the solutions mean is always more important than any tricks used to solve what
are idealized problems.

Throughout engineering, transforms in one form or another play a major role
in analysis and design. An area of continuing importance is the use of Laplace, z,
Fourier and other transforms in areas such as control, communication and signal
processing. Such transforms are considered later in the book where it will be seen
that complex variables play a key role. This chapter is devoted to developing under-
standing of the standard techniques of complex variables so as to enable the reader
to apply them with confidence in application areas.

4.1
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Complex functions and mappings 
The concept of a function involves two sets X and Y and a rule that assigns to each
element x in the set X (written x ∈ X ) precisely one element y ∈ Y. Whenever this situ-
ation arises, we say that there is a function f that maps the set X to the set Y, and
represent this symbolically by 

y = f (x) (x ∈ X )

Schematically we illustrate a function as in Figure 4.1. While x can take any value in
the set X, the variable y = f (x) depends on the particular element chosen for x. We therefore
refer to x as the independent variable and y as the dependent variable. The set X is
called the domain of the function, and the set of all images y = f (x) (x ∈ X ) is called
the image set or range of f. Previously we were concerned with real functions, so that
x and y were real numbers. If the independent variable is a complex variable z = x + jy,
where x and y are real and , then the function f (z) of z will in general also
be complex. For example, if f (z) = z2 then, replacing z by x + jy and expanding, we have

f (z) = (x + jy)2 = (x2 − y2) + j2xy = u + jv (say)

where u and v are real. Such a function f (z) is called a complex function, and we write 

w = f (z)

where, in general, the dependent variable w = u + jv is also complex.
The reader will recall that a complex number z = x + jy can be represented on a plane

called the Argand diagram, as illustrated in Figure 4.2(a). However, we cannot plot
the values of x, y and f (z) on one set of axes, as we were able to do for real functions
y = f (x). We therefore represent the values of

w = f (z) = u + jv

on a second plane as illustrated in Figure 4.2(b). The plane containing the independent
variable z is called the z plane and the plane containing the dependent variable w is
called the w plane. Thus the complex function w = f (z) may be regarded as a mapping
or transformation of points P within a region in the z plane (called the domain) to
corresponding image points P′ within a region in the w plane (called the range).

It is this facility for mapping that gives the theory of complex functions much of its
application in engineering. In most useful mappings the entire z plane is mapped onto
the entire w plane, except perhaps for isolated points. Throughout this chapter the
domain will be taken to be the entire z plane (that is, the set of all complex numbers,
denoted by C| ). This is analogous, for real functions, to the domain being the entire real

4.2

Figure 4.1 Real 
mapping y = f (x).

j 1–( )=

Figure 4.2 Complex 
mapping w = f (z).
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line (that is, the set of all real numbers R). If this is not the case then the complex
function is termed ‘not well defined’. In contrast, as for real functions, the range of the
complex function may well be a proper subset of C.

Find the image in the w plane of the straight line y = 2x + 4 in the z plane, z = x + jy,
under the mapping

w = 2z + 6

Solution Writing w = u + jv, where u and v are real, the mapping becomes

w = u + jv = 2(x + jy) + 6

or

u + jv = (2x + 6) + j2y

Equating real and imaginary parts then gives

u = 2x + 6, v = 2y (4.1)

which, on solving for x and y, leads to

x = (u − 6), y = v

Thus the image of the straight line

y = 2x + 4

in the z plane is represented by

v = 2 × (u − 6) + 4

or

v = 2u − 4

which corresponds to a straight line in the w plane. The given line in the z plane and the
mapped image line in the w plane are illustrated in Figures 4.3(a) and (b) respectively.

Note from (1.1) that, in particular, the point P1(−2 + j0) in the z plane is mapped to
the point P ′1(2 + j0) in the w plane, and that the point P2(0 + j4) in the z plane is mapped
to the point P ′2(6 + j8) in the w plane. Thus, as the point P moves from P1 to P2 along

Example 4.1

1
2
---

1
2
---

1
2
---

1
2
---

Figure 4.3
The mapping of 
Example 4.1.
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the line y = 2x + 4 in the z plane, the mapped point P′ moves from P ′1 to P ′2 along the
line v = 2u − 4 in the w plane. It is usual to indicate this with the arrowheads as
illustrated in Figure 4.3.

4.2.1 Linear mappings

The mapping w = 2z + 6 in Example 4.1 is a particular example of a mapping
corresponding to the general complex linear function

w = αz + β (4.2)

where w and z are complex-valued variables, and α and β are complex constants. In this
section we shall investigate mappings of the z plane onto the w plane corresponding to
(4.2) for different choices of the constants α and β. In so doing we shall also introduce
some general properties of mappings.

Case (a) α = 0

Letting α = 0 (or α = 0 + j0) in (4.2) gives

w = β
which implies that w = β, no matter what the value of z. This is quite obviously a
degenerate mapping, with the entire z plane being mapped onto the one point w = β
in the w plane. If nothing else, this illustrates the point made earlier in this section,
that the image set may only be part of the entire w plane. In this particular case the
image set is a single point. Since the whole of the z plane maps onto w = β, it follows
that, in particular, z = β maps to w = β. The point β is thus a fixed point in this
mapping, which is a useful concept in helping us to understand a particular mapping.
A further question of interest when considering mappings is that of whether, given a
point in the w plane, we can tell from which point in the z plane it came under the
mapping. If it is possible to get back to a unique point in the z plane then it is said to
have an inverse mapping. Clearly, for an inverse mapping z = g(w) to exist, the point
in the w plane has to be in the image set of the original mapping w = f (z). Also, from
the definition of a mapping, each point w in the w plane image set must lead to a single
point z in the z plane under the inverse mapping z = g(w). (Note the similarity to the
requirements for the existence of an inverse function f −1(x) of a real function f (x).) For
the particular mapping w = β considered here the image set is the single point w = β in
the w plane, and it is clear from Figure 4.4 that there is no way of getting back to just
a single point in the z plane. Thus the mapping w = β has no inverse.

Figure 4.4
The degenerate 
mapping w = β.
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Case (b) β = 0, α ≠ 0

With such a choice for the constants α and β, the mapping corresponding to (4.2) becomes

w = αz

Under this mapping, the origin is the only fixed point, there being no other fixed points
that are finite. Also, in this case there exists an inverse mapping

z = w

that enables us to return from the w plane to the z plane to the very same point
from which we started under w = αz. To illustrate this mapping at work, let us choose
α = 1 + j, so that

w = (1 + j)z (4.3)

and consider what happens to a general point z0 in the z plane under this mapping. In
general, there are two ways of doing this. We can proceed as in Example 4.1 and split
both z and w into real and imaginary parts, equate real and imaginary parts and hence
find the image curves in the w plane to specific curves (usually the lines
Re(z) = constant, Im(z) = constant) in the z plane. Alternatively, we can rearrange the
expression for w and deduce the properties of the mapping directly. The former course
of action, as we shall see in this chapter, is the one most frequently used.
Here, however, we shall take the latter approach and write α = 1 + j in polar form as 

Then, if

z = re jθ

in polar form it follows from (4.3) that

(4.4)

We can then readily deduce from (4.4) what the mapping does. The general point in the
z plane with modulus r and argument θ is mapped onto an image point w, with modulus

 and argument θ + π in the w plane as illustrated in Figure 4.5.
It follows that in general the mapping

w = αz

maps the origin in the z plane to the origin in the w plane (fixed point), but effects
an expansion by |α | and an anticlockwise rotation by arg α. Of course, arg α need not
be positive, and indeed it could even be zero (corresponding to α being real). The mapping
can be loosely summed up in the phrase ‘magnification and rotation, but no translation’.

1
α---

1 j+ 2ejπ 4⁄=

w r 2ej θ π 4⁄+( )=

r 2 1
4
---

Figure 4.5
The mapping 
w = (1 + j)z.
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Certain geometrical properties are also preserved, the most important being that straight
lines in the z plane will be transformed to straight lines in the w plane. This is readily
confirmed by noting that the equation of any straight line in the z plane can always be
written in the form

| z − a | = | z − b |
where a and b are complex constants (this being the equation of the perpendicular
bisector of the join of the two points representing a and b on the Argand diagram).
Under the mapping w = αz, the equation maps to

(α ≠ 0)

or

| w − aα | = | w − bα |
in the w plane, which is clearly another straight line.

We now return to the general linear mapping (4.2) and rewrite it in the form

w − β = αz

This can be looked upon as two successive mappings: first,

ζ = αz

identical to w = αz considered earlier, but this time mapping points from the z plane to
points in the ζ plane; secondly,

w = ζ + β (4.5)

mapping points in the ζ plane to points in the w plane. Elimination of ζ regains
equation (4.2). The mapping (4.5) represents a translation in which the origin in the ζ
plane is mapped to the point w = β in the w plane, and the mapping of any other point
in the ζ plane is obtained by adding β to the coordinates to obtain the equivalent point
in the w plane. Geometrically, the mapping (4.5) is as if the ζ plane is picked up and,
without rotation, the origin placed over the point β. The original axes then represent the
w plane as illustrated in Figure 4.6. Obviously all curves, in particular straight lines,
are preserved under this translation.

We are now in a position to interpret (4.2), the general linear mapping, geometrically
as a combination of mappings that can be regarded as fundamental, namely

• translation

• rotation, and

• magnification

that is, 

w
α---- − a

w
α---- − b=

Figure 4.6
The mapping 
w = ζ + β.

α e jθ α e jθz + β αz + β = w= z translation⎯⎯→z rotation⎯⎯→ e jθz magnification⎯⎯⎯→ 
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It clearly follows that a straight line in the z plane is mapped onto a corresponding
straight line in the w plane under the linear mapping w = αz + β. A second useful
property of the linear mapping is that circles are mapped onto circles. To confirm this,
consider the general circle

| z − z0 | = r

in the z plane, having the complex number z0 as its centre and the real number r as its
radius. Rearranging the mapping equation w = αz + β gives

(α ≠ 0)

so that

where w0 = αz0 + β. Hence

| z − z0 | = r

implies

| w − w0 | = |α |r

which is a circle, with centre w0 given by the image of z0 in the w plane and with radius
|α |r given by the radius of the z plane circle magnified by |α |.

We conclude this section by considering examples of linear mappings.

Examine the mapping

w = (1 + j)z + 1 − j

as a succession of fundamental mappings: translation, rotation and magnification.

Solution The linear mapping can be regarded as the following sequence of simple mappings:

Figure 4.7 illustrates this process diagrammatically. The shading in Figure 4.7 helps to
identify how the z plane moves, turns and expands under this mapping. For example,
the line joining the points 0 + j2 and 1 + j0 in the z plane has the cartesian equation

y + x = 1

Taking w = u + jv and z = x + jy, the mapping

w = (1 + j)z + 1 − j

becomes

u + jv = (1 + j)(x + jy) + 1 − j = (x − y + 1) + j(x + y − 1)

z
w
α---- − 

β
α---=

z − z0 = 
w
α---- − 

β
α--- − z0 = 1

α--- w − w0( )

Example 4.2

z   ejπ /4z       2ejπ /4z  2ejπ /4z + 1 − j = w
rotation

anticlockwise

by 
1
4
---π

magnification

by 2

translation
0 1− j or→

0 0,( ) 1,−1( )→  

⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→

1
2
---
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Equating real and imaginary parts then gives

u = x − y + 1, v = x + y − 1

which on solving for x and y gives

2x = u + v, 2y = v − u + 2

Substituting for x and y into the equation y + x = 1 then gives the image of this line in
the w plane as the line

3v + u = 2

which crosses the real axis in the w plane at 2 and the imaginary axis at . Both lines
are shown dashed, in the z and w planes respectively, in Figure 4.7.

The mapping w = αz + β (α, β constant complex numbers) maps the point z = 1 + j
to the point w = j, and the point z = 1 − j to the point w = −1.

(a) Determine α and β.

(b) Find the region in the w plane corresponding to the right half-plane Re(z) > 0
in the z plane.

(c) Find the region in the w plane corresponding to the interior of the unit circle
| z | < 1 in the z plane.

(d) Find the fixed point(s) of the mapping.

In (b)− (d) use the values of α and β determined in (a).

Figure 4.7
The mappings of
Example 4.2.

1
2
---

2
3
---

Example 4.3
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Solution (a) The two values of z and w given as corresponding under the given linear mapping
provide two equations for α and β as follows: z = 1 + j mapping to w = j
implies

j = α (1 + j) + β

while z = 1 − j mapping to w = −1 implies

−1 = α (1 − j) + β

Subtracting these two equations in α and β gives

j + 1 = α (1 + j) − α(1 − j)

so that 

Substituting back for β then gives

β = j − (1 + j)α = j − (1 − j2) = j − 1

so that

w = (1 − j)z + j − 1 = (1 − j)( z − 1)

(b) The best way to find specific image curves in the w plane is first to express
z (= x + jy) in terms of w (= u + jv) and then, by equating real and imaginary parts,
to express x and y in terms of u and v. We have

w = (1 − j)( z − 1)

which, on dividing by 1 − j, gives

Taking w = u + jv and z = x + jy and then rationalizing the left-hand side, we have 

(u + jv)(1 + j) = (x + jy) − 1

Equating real and imaginary parts then gives

u − v = x − 2, u + v = y (4.6)

The first of these can be used to find the image of x > 0. It is u − v > −2, which
is also a region bordered by the straight line u − v = −2 and shown in Figure 4.8.
Pick one point in the right half of the z plane, say z = 2, and the mapping gives
w = 0 as the image of this point. This allays any doubts about which side of
u − v = −2 corresponds to the right half of the z plane, x > 0. The two
corresponding regions are shown ‘hatched’ in Figure 4.8. 

α = 
1 + j

j2
------------ = 1

2
--- 1 − j( )

1
2
---

1
2
---

1
2
---

1
2
---

w
1 − j
------------ 1

2
--- z − 1=

1
2
---

1
2
---

Note that the following is always true, although we shall not prove it here. If a
curve cuts the z plane in two then the corresponding curve in the w plane also cuts
the w plane in two, and, further, points in one of the two distinct sets of the z plane
partitioned by the curve correspond to points in just one of the similarly partitioned
sets in the w plane.



4.2  COMPLEX FUNCTIONS AND MA PPINGS 259

(c) In cartesian form, with z = x + jy, the equation of the unit circle | z | = 1 is 

x2 + y2 = 1

Substituting for x and y from the mapping relationships (4.6) gives the image of
this circle as

(u − v + 2)2 + (u + v)2 = 1

or

u2 + v2 + 2u − 2v +  = 0

which, on completing the squares, leads to

(u + 1)2 + (v − 1)2 = 

As expected, this is a circle, having in this particular case centre (−1, 1) and radius
. If x 2 + y 2 < 1 then (u + 1)2 + (v − 1)2 < , so the region inside the circle

| z | = 1 in the z plane corresponds to the region inside its image circle in the w
plane. Corresponding regions are shown shaded in Figure 4.8.

(d) The fixed point(s) of the mapping are obtained by putting w = z in w = αz + β,
leading to

z = ( z − 1)(1 − j)

that is,

z = z − jz − 1 + j

so that

is the only fixed point.

One final point is in order before we leave this example. In Figure 4.8 the images of
x = 0 and x2 + y2 = 1 can also be seen in the context of translation, rotation (the line in
Figure 4.8 rotates about z = 2j) and magnification (in fact, shrinkage, as can be seen by
the decrease in diameter of the circle compared with its image in the w plane).

Figure 4.8
The mappings of 
Example 4.3.

3
2
---

1
2
---

1
2
--- 1

2
---

1
2
---

1
2
---

1
2
---

z
−1 + j
1
2
---  + 1

2
--- j

---------------- j2= =
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4.2.3 Inversion

The inversion mapping is of the form

(4.7)

and in this subsection we shall consider the image of circles and straight lines in the
z plane under such a mapping. Clearly, under this mapping the image in the w plane of
the general circle

| z − z0 | = r

in the z plane, with centre at z0 and radius r, is given by

(4.8)

but it is not immediately obvious what shaped curve this represents in the w plane. To
investigate, we take w = u + jv and z0 = x 0 + jy0 in (4.8), giving

w 1
z
---=

1
w
---- − z0  = r

Find in the cartesian form y = mx + c (m and c real 
constants) the equations of the following straight 
lines in the z plane, z = x + jy:

(a) | z − 2 + j | = | z − j + 3 |

(b) z + z* + 4j(z − z*) = 6

where * denotes the complex conjugate.

Find the point of intersection and the angle of 
intersection of the straight lines

| z − 1 − j | = | z − 3 + j |

| z − 1 + j | = | z − 3 − j |

The function w = jz + 4 − 3j is a combination of 
translation and rotation. Show this diagrammatically, 
following the procedure used in Example 4.2. Find 
the image of the line 6x + y = 22 (z = x + jy) in the 
w plane under this mapping.

Show that the mapping w = (1 − j)z, where 
w = u + jv and z = x + jy, maps the region y >1 
in the z plane onto the region u + v >2 in the 
w plane. Illustrate the regions in a diagram.

Under the mapping w = jz + j, where w = u + jv 
and z = x + jy, show that the half-plane x > 0 
in the z plane maps onto the half-plane v > 1 in the 
w plane.

For z = x + jy find the image region in the w plane 
corresponding to the semi-infinite strip x > 0, 
0 < y < 2 in the z plane under the mapping 
w = jz + 1. Illustrate the regions in both planes.

Find the images of the following curves under 
the mapping

w = ( j + )z + j  − 1

(a) y = 0 (b) x = 0

(c) x2 + y2 = 1 (d) x2 + y2 + 2y = 1

where z = x + jy.

The mapping w = αz + β (a, β both constant 
complex numbers) maps the point z = 1 + j to 
the point w = j and the point z = −1 to the point 
w = 1 + j.

(a) Determine α and β.
(b) Find the region in the w plane 

corresponding to the upper half-plane 
Im(z) >0 and illustrate diagrammatically.

(c) Find the region in the w plane corresponding to 
the disc | z | < 2 and illustrate diagrammatically.

(d) Find the fixed point(s) of the mapping.

In (b)−(d) use the values of α and β determined 
in (a).

4.2.2 Exercises

1

2

3

4

5

6

7

3 3

8
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Squaring we have

which on expanding leads to

or

 = r 2 − x 2
0 − y 2

0 

so that

(u2 + v 2)(r 2 − x 2
0 − y 2

0) + 2ux0 − 2vy0 = 1 (4.9)

The expression is a quadratic in u and v, with the coefficients of u2 and v 2 equal and no
term in uv. It therefore represents a circle, unless the coefficient of u2 + v2 is itself zero,
which occurs when

x 2
0 + y 2

0 = r 2, or | z0 | = r

and we have

2ux0 − 2vy0 = 1

which represents a straight line in the w plane.

When | z0 | ≠ r, we can divide the equation of the circle (4.9) in the w plane by the
factor r 2 − x 2

0 − y 2
0 to give

which can be written in the form

(u − u0)
2 + (v − v0)

2 = R2

where (u0, v0) are the coordinates of the centre and R the radius of the w plane circle. It
is left as an exercise for the reader to show that

Next we consider the general straight line

| z − a1 | = | z − a2 |

u − jv

u2 v2+
---------------- − x0 − jy0  = r

u

u2 v2+
---------------- − x0

 
 
 

2

+ 
v

u2 v2+
---------------- + y0

 
 
 

2

 =  r2

u2

u 2 v2+( )2
---------------------- − 

2ux0

u2 v2+
---------------- x0

2 v2

u2 v2+( )2
---------------------- + 

2vy0

u2 v2+( )
-------------------- y0

2+ + +  = r2

u2 v2+
u2 v2+( )2

---------------------- + 
2vy0 − 2ux0

u2 v2+
------------------------------

Summarizing, the inversion mapping w = 1/z maps the circle | z − z0 | = r in the z
plane onto another circle in the w plane unless | z0 | = r, in which case the circle is
mapped onto a straight line in the w plane that does not pass through the origin.

u2 v2 2x0u

r2 − x0
2 − y0

2
-----------------------------

2y0v

r2 − x0
2 − y0

2
-----------------------------–+ + 1

r2 − x0
2 − y0

2
-----------------------------=

u0, v0( ) − x0

r2 z0
2–

---------------------,
y0

r2 z0
2–

---------------------
 
 
 

, R
r

r2 z0
2–

---------------------= =
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in the z plane, where a1 and a2 are constant complex numbers with a1 ≠ a2. Under the
mapping (4.7), this becomes the curve in the w plane represented by the equation

(4.10)

Again, it is not easy to identify this curve, so we proceed as before and take

w = u + jv, a1 = p + jq, a2 = r + js

where p, q, r and s are real constants. Substituting in (4.10) and squaring both sides, we
have

Expanding out each term, the squares of u /(u2 + v 2) and v/(u2 + v2) cancel, giving

which on rearrangement becomes

(u2 + v2) ( p2 + q2 − r2 − s2) + 2u(r − p) + 2v(q − s) = 0 (4.11)

Again this represents a circle through the origin in the w plane, unless

p2 + q2 = r2 + s2

which implies | a1 | = | a2 |, when it represents a straight line, also through the origin, in
the w plane. The algebraic form of the coordinates of the centre of the circle and its
radius can be deduced from (4.11).

To see why this is the case, we first note that the fixed points of the mapping, determined
by putting w = z, are

z = , or z2 = 1

so that z = ±1.
We also note that z = 0 is mapped to infinity in the w plane and w = 0 is mapped to

infinity in the z plane and vice versa in both cases. Further, if we apply the mapping a
second time, we get the identity mapping. That is, if 

w = , and ζ = 

1
w
---- − a1  = 

1
w
---- − a2

u

u2 + v2
----------------- − p

 
 
 

2

 + 
v

u2 + v2
----------------- + q

 
 
 

2
u

u2 + v2
----------------- − r

 
 
 

2

 + 
v

u2 + v2
----------------- + s

 
 
 

2

=

− 2up

u2 + v2
----------------- + p2 2vq

u2 + v2
----------------- + q2+ − 2ur

u2 + v2
----------------- + r2 2vs

u2 + v2
-----------------  + s2+=

We can therefore make the important conclusion that the inversion mapping
w = 1/z takes circles or straight lines in the z plane onto circles or straight lines in
the w plane. Further, since we have carried out the algebra, we can be more
specific. If the circle in the z plane passes through the origin (that is, | z0 | = r in (4.9) )
then it is mapped onto a straight line that does not pass through the origin in the w
plane. If the straight line in the z plane passes through the origin ( | a1 | = | a2 | in
(4.11)) then it is mapped onto a straight line through the origin in the w plane.
Figure 4.9 summarizes these conclusions.

1
z
---

1
z
---

1
w
----
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then

ζ =  = z

which is the identity mapping.
The inside of the unit circle in the z plane, | z | < 1, is mapped onto | 1/w | < 1 or

| w | > 1, the outside of the unit circle in the w plane. By the same token, therefore,
the outside of the unit circle in the z plane | z | > 1 is mapped onto | 1/w | > 1 or
| w | < 1, the inside of the unit circle in the w plane. Points actually on | z | = 1 in the
z plane are mapped to points on | w | = 1 in the w plane, with ±1 staying fixed, as
already shown. Figure 4.10 summarizes this property.

It is left as an exercise for the reader to show that the top half-boundary of | z | = 1 is
mapped onto the bottom half-boundary of | w | = 1.

For any point z0 in the z plane the point 1/z0 is called the inverse of z0 with respect
to the circle | z | = 1; this is the reason for the name of the mapping. (Note the double
meaning of inverse; here it means the reciprocal function and not the ‘reverse’

Figure 4.9
The inversion 
mapping w = 1/z.

1
1/z
-------
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mapping.) The more general definition of inverse is that for any point z0 in the z plane
the point r 2/z0 is the inverse of z0 with respect to the circle | z | = r, where r is a real
constant.

Determine the image path in the w plane corresponding to the circle | z − 3 | = 2 in the
z plane under the mapping w = 1/z. Sketch the paths in both the z and w planes and
shade the region in the w plane corresponding to the region inside the circle in the
z plane.

Solution The image in the w plane of the circle | z − 3 | = 2 in the z plane under the mapping
w = 1/z is given by

which, on taking w = u + jv, gives

Squaring both sides, we then have

or

which reduces to

1 − 6u + 5(u2 + v2) = 0

or

(u − )2 + v 2 = 

Thus the image in the w plane is a circle with centre ( , 0) and radius . The corresponding
circles in the z and w planes are shown in Figure 4.11.

Figure 4.10 Mapping 
of the unit circle under 
w = 1/z.

Example 4.4

1
w
---- − 3  = 2

u − jv

u2 + v2
----------------- − 3  = 2

u

u2 + v2
----------------- − 3

 
 
 

2

 + 
−v

u2 + v2
-----------------

 
 
 

2

 = 4

u2 + v2

u2 + v2( )2
------------------------ − 

6u

u2 + v2
----------------- + 5 = 0

3
5
---

4
25
------

3
5
---

2
5
---
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Taking z = x + jy, the mapping w = 1/z becomes

which, on equating real and imaginary parts, gives

We can now use these two relationships to determine the images of particular points
under the mapping. In particular, the centre (3, 0) of the circle in the z plane is mapped
onto the point u = , v = 0 in the w plane, which is inside the mapped circle. Thus, under
the mapping, the region inside the circle in the z plane is mapped onto the region inside
the circle in the w plane.

Further, considering three sample points A(1 + j0), B(3 − j2) and C(5 + j0) on the
circle in the z plane, we find that the corresponding image points on the circle in the w
plane are A′(1, 0), B′( ) and C′( , 0). Thus, as the point z traverses the circle in the
z plane in an anticlockwise direction, the corresponding point w in the w plane will also
traverse the mapped circle in an anticlockwise direction as indicated in Figure 4.11.

4.2.4 Bilinear mappings  

where a, b, c and d are prescribed complex constants. It is called the bilinear mapping
in z and w since it can be written in the form Awz + Bw + Cz + D = 0, which is linear
in both z and w.

Clearly the bilinear mapping (4.12) is more complicated than the linear mapping
given by (4.2). In fact, the general linear mapping is a special case of the bilinear
mapping, since setting c = 0 and d = 1 in (4.12) gives (4.2). In order to investigate the
bilinear mapping, we rewrite the right-hand side of (4.12) as follows:

u + jv = 
1

x + jy
--------------- = 

x − jy

x2 + y2
-----------------

u = 
x

x2 + y2
-----------------, v = 

−y

x2 + y2
-----------------

1
3
---

Figure 4.11
The mapping of 
Example 4.4.

3
13
------ , 2

13
------ 1

5
---

A bilinear mapping is a mapping of the form

(4.12)w
az + b
cz + d
----------------=

w
az + b
cz + d
----------------

a
c
--- cz + d( ) − 

ad
c

------ + b

cz + d
-------------------------------------------------= =
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so that

(4.13)

This mapping clearly degenerates to w = a/c unless we demand that bc − ad ≠ 0. We
therefore say that (4.12) represents a bilinear mapping provided the determinant

= ad − bc

is non-zero. This is sometimes referred to as the determinant of the mapping. When
the condition holds, the inverse mapping

obtained by rearranging (4.12), is also bilinear, since

 = da − cb ≠ 0

Renaming the constants so that λ = a/c, μ = bc − ad, α = c2 and β = cd, (4.13)
becomes

w = λ + 

and we can break the mapping down into three steps as follows:

z1 = αz + β

z2 = 

w = λ + μz2

The first and third of these steps are linear mappings as considered in Section 4.2.1,
while the second is the inversion mapping considered in Section 4.2.3. The bilinear
mapping (4.12) can thus be generated from the following elementary mappings:

We saw in Section 4.2.1 that the general linear transformation w = αz + β does not
change the shape of the curve being mapped from the z plane onto the w plane. Also,
in Section 4.2.3 we saw that the inversion mapping w = 1/z maps circles or straight lines
in the z plane onto circles or straight lines in the w plane. It follows that the bilinear
mapping also exhibits this important property, in that it also will map circles or straight
lines in the z plane onto circles or straight lines in the w plane.

w
a
c
--- + 

bc − ad
c cz + d( )
-----------------------=

a b

c d

z
−dw + b
cw − a

---------------------=

−d   b

c   −a

μ
αz β+
----------------

1
z1
----

z   αz   αz β  
1

αz β+
----------------+

rotation
and

magnification

translation inversion
⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→

 
μ

αz β+
---------------- λ μ

αz β+
----------------+ w=

magnification
and

rotation

translation
⎯⎯⎯→ ⎯⎯⎯→
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Investigate the mapping

by finding the images in the w plane of the lines Re(z) = constant and Im(z) = constant.
Find the fixed points of the mapping.

Solution Since we are seeking specific image curves in the w plane, we first express z in terms
of w and then express x and y in terms of u and v, where z = x + jy and w = u + jv.
Rearranging

gives

Taking z = x + jy and w = u + jv, we have

x + jy = 

= 

which reduces to

Equating real and imaginary parts then gives

(4.14a)

(4.14b)

It follows from (4.14a) that the lines Re(z) = x = c1, which are parallel to the imaginary
axis in the z plane, correspond to the curves

where c1 is a constant, in the w plane. Rearranging this leads to

c1(1 − 2u + u2 + v2) = 1 − u2 − v2

or, assuming that 1 + c1 ≠ 0,

u2 + v 2 −  = 0

Example 4.5

w
z 1–
z 1+
-----------=

w
z 1–
z 1+
-----------=

z
1 w+
1 w–-------------=

1 u jv+ +
1 u– jv–
-----------------------

1 u jv+ +
1 u– jv–
-----------------------

1 u– jv+
1 u– jv+
-----------------------

x + jy = 
1 − u2 v2–
1 u–( )2 v2+

----------------------------- + j
2v

1 u–( )2 v2+
-----------------------------

x = 
1 − u 2 v2–
1 u–( )2 v2+

-----------------------------

y = 
2v

1 u–( )2 v2+
-----------------------------

c1 = 
1 − u 2 v2–
1 u–( )2 v2+

-----------------------------

2c1u
1 + c1

--------------- + 
c1 1–
c1 + 1
---------------



268 FUNCTIONS OF A  COMPLEX VARIAB LE

which, on completing squares, gives

It is now clear that the corresponding curve in the w plane is a circle, centre (u =
c1/(1 + c1), v = 0) and radius (1 + c1)

−1.
In the algebraic manipulation we assumed that c1 ≠ −1, in order to divide by 1 + c1.

In the exceptional case c1 = −1, we have u = 1, and the mapped curve is a straight line
in the w plane parallel to the imaginary axis.

Similarly, it follows from (4.14b) that the lines Im(z) = y = c2, which are parallel to
the imaginary axis in the z plane, correspond to the curves 

where c2 is a constant, in the w plane. Again, this usually represents a circle in the w
plane, but exceptionally will represent a straight line. Rearranging the equation we have

(1 − u)2 + v2 = 

provided that c2 ≠ 0. Completing the square then leads to

which represents a circle in the w plane, centre (u = 1, v = 1/c2) and radius 1/c2.
In the exceptional case c2 = 0, v = 0 and we see that the real axis y = 0 in the z plane

maps onto the real axis v = 0 in the w plane.
Putting a sequence of values to c1 and then to c2, say −10 to +10 in steps of +1,

enables us to sketch the mappings shown in Figure 4.12. The fixed points of
the mapping are given by 

u
c1

1 c1+
--------------–

 
 
 

2

v2+ 1
1 c1+
--------------
 
 
 

2

=

c2 = 
2v

1 u–( )2 v2+
-----------------------------

2v
c2
------

u 1–( )2 v
1

c2

----–
 
 
 

2

+  = 
1

c2
2

----

Figure 4.12
The mapping of
Example 4.5.

z = 
z − 1
z + 1
-------------
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that is,

z2 = −1, or z = ± j

In general, all bilinear mappings will have two fixed points. However, although there
are mathematically interesting properties associated with particular mappings having
coincident fixed points, they do not impinge on engineering applications, so they only
deserve passing reference here.

Find the image in the w plane of the circle | z | = 2 in the z plane under the bilinear
mapping

Sketch the curves in both the z and w planes and shade the region in the w plane corresponding
to the region inside the circle in the z plane.

Solution Rearranging the transformation, we have

so that the image in the w plane of the circle | z | = 2 in the z plane is determined by

(4.15)

One possible way of proceeding now is to put w = u + jv and proceed as in Example 4.4,
but the algebra becomes a little messy. An alternative approach is to use the property of
complex numbers that | z1/z2 | = | z1 | / | z2 |, so that (4.15) becomes

| jw + j | = 2 | 1 − w |

Taking w = u + jv then gives

| −v + j(u + 1) | = 2 | (1 − u) − jv |

which on squaring both sides leads to

v2 + (1 + u)2 = 4[(1 − u)2 + v2] 

or

u2 + v2 − u + 1 = 0

Completing the square of the u term then gives

(u − )2 + v2 = 

indicating that the image curve in the w plane is a circle centre (u = , v = 0) and radius
. The corresponding circles in the z and w planes are illustrated in Figure 4.13. To

identify corresponding regions, we consider the mapping of the point z = 0 + j0
inside the circle in the z plane. Under the given mapping, this maps to the point

Example 4.6

w = 
z − j
z + j
-----------

z = 
jw + j
1 − w
---------------

jw + j
1 − w
---------------  = 2

10
3
------

5
3
---

16
9
------

5
3
---

4
3
---



270 FUNCTIONS OF A  COMPLEX VARIAB LE

w =  = −1 + j0

in the w plane. It then follows that the region inside the circle | z | = 2 in the z plane maps
onto the region outside the mapped circle in the w plane.

An interesting property of (4.12) is that there is just one bilinear transformation that
maps three given distinct points z1, z2 and z3 in the z plane onto three specified distinct
points w1, w2 and w3 respectively in the w plane. It is left as an exercise for the reader
to show that the bilinear transformation is given by

(4.16)

The right-hand side of (4.16) is called the cross-ratio of z1, z2, z3 and z. We shall illustrate
with an example.

Find the bilinear transformation that maps the three points z = 0, − j and −1 onto the
three points w = j, 1, 0 respectively in the w plane.

Solution Taking the transformation to be

on using the given information on the three pairs of corresponding points we have

j = (4.17a)

1 = (4.17b)

0 = (4.17c)

From (4.17c) a = b; then from (4.17a)

d =  = − jb = − ja

0 − j
0 + j
------------

Figure 4.13
The mapping of
Example 4.6.

w − w1( ) w2 − w3( )
w − w3( ) w2 − w1( )

----------------------------------------------- = 
z − z1( ) z2 − z3( )
z − z3( ) z2 − z1( )

----------------------------------------

Example 4.7

w = 
az + b
cz + d
----------------

a 0( ) + b
c 0( ) + d
--------------------- = 

b
d
---

a −j( ) + b
c −j( ) + d
------------------------

a −1( ) + b
c −1( ) + d
-------------------------

b
j
---
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and from (4.17b) c = ja. Thus

Alternatively, using (4.16) we can obtain

or

as before.

w = 
az + a

jaz − ja
-------------------- = 

1
j
---

z + 1
z − 1
------------- = − j

z + 1
z − 1
-------------

w − j( ) 1 − 0( )
w − 0( ) 1 − j( )

------------------------------------- = 
z − 0( ) −j + 1( )
z + 1( ) −j − 0( )

---------------------------------------

w = − j
z + 1
z − 1
-------------

Show that if z = x + jy, the image of the half-plane 
y > c (c constant) under the mapping w = 1/z is the 
interior of a circle, provided that c > 0. What is 
the image when c = 0 and when c < 0? Illustrate 
with sketches in the w plane.

Determine the image in the w plane of the circle

under the inversion mapping w = 1/z.

Show that the mapping w = 1/z maps the circle 
| z − a | = a, with a being a positive real constant, 
onto a straight line in the w plane. Sketch the 
corresponding curves in the z and w planes, 
indicating the region onto which the interior 
of the circle in the z plane is mapped.

Find a bilinear mapping that maps z = 0 to w = j, 
z = −j to w = 1 and z = −1 to w = 0. Hence sketch 
the mapping by finding the images in the w plane 
of the lines Re(z) = constant and Im(z) = constant in 
the z plane. Verify that z = ( j − 1)(−1 ± ) are 
fixed points of the mapping.

The two complex variables w and z are related 
through the inverse mapping

(a) Find the images of the points z = 1, 1 − j and 
0 in the w plane.

(b) Find the region of the w plane corresponding 
to the interior of the unit circle | z | < 1 in the 
z plane.

(c) Find the curves in the w plane corresponding 
to the straight lines x = y and x + y = 1 in the 
z plane.

(d) Find the fixed points of the mapping.

Given the complex mapping

where w = u + jv and z = x + j y, determine the 
image curve in the w plane corresponding to the 
semicircular arc x2 + y2 = 1 (x < 0) described from 
the point (0, −1) to the point (0, 1).

(a) Map the region in the z plane (z = x + jy) that 
lies between the lines x = y and y = 0, with x < 0, 
onto the w plane under the bilinear mapping

(Hint: Consider the point w =  to help identify 
corresponding regions.)

(b) Show that, under the same mapping as in (a), 
the straight line 3x + y = 4 in the z plane 
corresponds to the unit circle | w | = 1 in the 
w plane and that the point w = 1 does not 
correspond to a finite value of z.

If w = (z − j)/(z + j), find and sketch the image in 
the w plane corresponding to the circle | z | = 2 in the 
z plane.

Show that the bilinear mapping

4.2.5 Exercises

9

10

z + 3
4
---  + j  = 7

4
---

11

12

1
2
--- 3

13

w = 
1 + j

z
------------

14

w = 
z + 1
z − 1
-------------

15

w = 
z + j
z − 3
-------------

2
3
---

16

17

w e
jθ0 z − z0

z − z 0*
-----------------=
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4.2.6 The mapping w = z2

There are a number of other mappings that are used by engineers. For example, in
dealing with Laplace and z transforms, the subjects of Chapters 5 and 6 respectively, we
are concerned with the polynomial mapping

w = a0 + a1z + . . . + anz n

where a0, a1, . . . , an are complex constants, the rational function

where P and Q are polynomials in z, and the exponential mapping

w = a ebz

where e = 2.718 28 . . . , the base of natural logarithms. As is clear from the bilinear
mapping in Section 4.2.4, even elementary mappings can be cumbersome to analyse.
Fortunately, we have two factors on our side. First, very detailed tracing of specific
curves and their images is not required, only images of points. Secondly, by using complex
differentiation, the subject of Section 4.3, various facets of these more complicated
mappings can be understood without lengthy algebra. As a prelude, in this subsection
we analyse the mapping w = z2, which is the simplest polynomial mapping.

Investigate the mapping w = z2 by plotting the images on the w plane of the lines
x = constant and y = constant in the z plane.

Solution There is some difficulty in inverting this mapping to get z as a function of w, since
square roots lead to problems of uniqueness. However, there is no need to invert here,
for taking w = u + jv and z = x + jy, the mapping becomes 

w = u + jv = (x + jy)2 = (x2 − y2) + j2xy

which, on taking real and imaginary parts, gives

u = x2 − y2

v = 2xy
(4.18)

w = 
P z( )
Q z( )
-----------

Example 4.8

where θ 0 is a real constant 0 < θ0 < 2π, z0 a fixed 
complex number and z*0 its conjugate, maps the 
upper half of the z plane (Im(z) > 0) onto the inside 
of the unit circle in the w plane ( | w | < 1). Find the 
values of z0 and θ0 if w = 0 corresponds to z = j and 
w = −1 corresponds to z = ∞.

Show that, under the mapping

circular arcs or the straight line through z = 0 and 
z = j in the z plane are mapped onto circular arcs 
or the straight line through w = 0 and w = j in the 
w plane. Find the images of the regions | z − | <  
and | z | < | z − j | in the w plane.

Find the most general bilinear mapping that maps 
the unit circle | z | = 1 in the z plane onto the unit 
circle | w | = 1 in the w plane and the point z = z0 in 
the z plane to the origin w = 0 in the w plane.

18

w = 
2jz

z + j
-----------

1
2
---

1
2
---

19
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If x = α, a real constant, then (4.18) becomes

u = α 2 − y 2, v = 2αy

which, on eliminating y, gives

u = α 2 − 

or

4α 2u = 4α 4 − v2

so that

v2 = 4α 4 − 4α 2u = 4α 2(α 2 − u)

This represents a parabola in the w plane, and, since the right-hand side must be
positive, α 2 > u so the ‘nose’ of the parabola is at u = α 2 on the positive real axis in
the w plane.

If y = β, a real constant, then (4.18) becomes

u = x2 − β 2, v = 2xβ

which, on eliminating x, gives

or

4β 2 = v2 − 4β 4

so that

v2 = 4β 2u + 4β 4 = 4β 2(u + β 2)

This is also a parabola, but pointing in the opposite direction. The right-hand side, as
before, must be positive, so that u > −β 2 and the ‘nose’ of the parabola is on the
negative real axis. These curves are drawn in Figure 4.14.

v2

4α2
---------

u = 
v2

4β2
-------- − β2

Figure 4.14
The mapping of 
Example 4.8.
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We shall not dwell further on the finer points of the mapping w = z2. Instead, we note
that in general it is extremely difficult to plot images of curves in the z plane, even the
straight lines parallel to the axes, under polynomial mappings. We also note that we do
not often need to do so, and that we have done it only as an aid to understanding.

The exercises that follow should also help in understanding this topic. We shall then
return to examine polynomial, rational and exponential mappings in Section 4.3.4, after
introducing complex differentiation.

Find the image region in the w plane corresponding 
to the region inside the triangle in the z plane having 
vertices at 0 + j0, 2 + j0 and 0 + j2 under the 
mapping w = z2. Illustrate with sketches.

Find the images of the lines y = x and y = −x under 
the mapping w = z 2. Also find the image of the 
general line through the origin y = mx. By putting 
m = tanθ 0, deduce that straight lines intersecting at 
the origin in the z plane map onto lines intersecting 
at the origin in the w plane, but that the angle 
between these image lines is double that between 
the original lines.

Consider the mapping w = zn, where n is an integer 
(a generalization of the mapping w = z2). Use the 
polar representation of complex numbers to show 
that 

(a) Circles centred at the origin in the z plane are 
mapped onto circles centred at the origin in the 
w plane.

(b) Straight lines passing through the origin 
intersecting with angle θ0 in the z plane are 
mapped onto straight lines passing through the 
origin in the w plane but intersecting at an 
angle nθ0.

If the complex function

is represented by a mapping from the z plane onto 
the w plane, find u in terms of x and y, and v in terms 
of x and y, where z = x + jy, w = u + jv. Find the 
image of the unit circle | z | = 1 in the w plane. Show 
that the circle centred at the origin, of radius r, in 
the z plane ( | z | = r) is mapped onto the curve

(r ≠ 1)

in the w plane. What kind of curves are these? What 
happens for very large r?

4.2.7 Exercises

20

21

22

23

w = 
1 + z2

z
---------------

r2u

r2 + 1
---------------

 
 
  2

r2v

r2 − 1
---------------

 
 
 2

+  =  r2

Complex differentiation
The derivative of a real function f (x) of a single real variable x at x = x0 is given by the
limit

f ′(x0) = 

Here, of course, x0 is a real number and so can be represented by a single point on the
real line. The point representing x can then approach the fixed x0 either from the left or
from the right along this line. Let us now turn to complex variables and functions
depending on them. We know that a plane is required to represent complex numbers,
so z0 is now a fixed point in the Argand diagram, somewhere in the plane. The definition
of the derivative of the function f (z) of the complex variable z at the point z0 will thus be

4.3

lim
x x0→

f x( ) − f x0( )
x − x0

----------------------------
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f ′(z0) = 

It may appear that if we merely exchange z for x, the rest of this section will follow
similar lines to the differentiation of functions of real variables. For real variables taking
the limit could only be done from the left or from the right, and the existence of a
unique limit was not difficult to establish. For complex variables, however, the point that
represents the fixed complex number z0 can be approached along an infinite number of
curves in the z plane. The existence of a unique limit is thus a very stringent requirement.
That most complex functions can be differentiated in the usual way is a remarkable
property of the complex variable. Since z = x + jy, and x and y can vary independently,
there are some connections with the calculus of functions of two real variables, but we
shall not pursue this connection here.

Rather than use the word ‘differentiable’ to describe complex functions for which a
derivative exists, if the function f(z) has a derivative  f ′(z) that exists at all points of a region
R of the z plane then f(z) is called analytic in R. Other terms such as regular or
holomorphic are also used as alternatives to analytic. (Strictly, functions that have
a power series expansion – see Section 4.4.1 – are called analytic functions. Since
differentiable functions have a power series expansion they are referred to as analytic
functions. However, there are examples of analytic functions that are not differentiable.)

4.3.1 Cauchy–Riemann equations

The following result is an important property of the analytic function.

It is instructive to prove this result. Since f ′(z) exists at any point z0 in R,

f ′(z0) = 

where z can tend to z0 along any path within R. Examination of (4.19) suggests that
we might choose paths parallel to the x direction and parallel to the y direction, since
these will lead to partial derivatives with respect to x and y. Thus, choosing z − z0 = Δx,
a real path, we see that

f ′(z0) = 

Since f (z) = u + jv, this means that

f ′(z0) = 

lim
z z0→

f z( ) − f z0( )
z − z0

----------------------------

If z = x + jy and f (z) = u (x, y) + jv (x, y), and f (z) is analytic in some region R of the
z plane, then the two equations

(4.19)

known as the Cauchy–Riemann equations, hold throughout R.

∂ u
∂x
------  = 

∂ v
∂y
-----,

∂ u
∂ y
------ = −∂ v

∂x
-----

lim
z z0→

f z( ) − f z0( )
z − z0

----------------------------

lim
Δx 0→

f z0 + Δx( ) − f z0( )
Δx

--------------------------------------------

lim
Δx 0→

u x0 + Δx, y0( ) + jv x0 + Δx, y0( ) u x0, y0( ) − jv x0, y0( )–
Δx

------------------------------------------------------------------------------------------------------------------------------------------
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or, on splitting into real and imaginary parts,

f ′(z0) = 

giving

f ′(z0) = (4.20)

Starting again from the definition of f ′(z0), but this time choosing z − z0 = jΔy for the
path parallel to the y axis, we obtain

f ′(z0) = 

Once again, using f (z) = u + jv and splitting into real and imaginary parts, we see that

f ′(z0) = 

= 

giving

f ′(z0) = (4.21)

Since f ′(z0) must be the same no matter what path is followed, the two values obtained
in (4.20) and (4.21) must be equal. Hence

Equating real and imaginary parts then gives the required Cauchy–Riemann equations

at the point z = z0. However, z0 is an arbitrarily chosen point in the region R; hence the
Cauchy–Riemann equations hold throughout R, and we have thus proved the required
result.

It is tempting to think that should we choose more paths along which to let z − z0

tend to zero, we could derive more relationships along the same lines as the Cauchy–
Riemann equations. It turns out, however, that we merely reproduce them or expressions
derivable from them, and it is possible to prove that satisfaction of the Cauchy–Riemann
equations (4.19) is a necessary condition for a function f(z) = u(x, y) + jv(x, y), z = x + jy,
to be analytic in a specified region. At points where f ′(z) exists it may be obtained from
either (4.20) or (4.21) as

f ′(z) = 

lim
Δx 0→

u x0 + Δx, y0( ) u x0, y0( )–
Δx

--------------------------------------------------------------- + j
v x0 + Δx, y0( ) v x0, y0( )–

Δx
--------------------------------------------------------------

∂u
∂x
------  + j

∂v
∂x
-----

x=x0, y=y0

lim
jΔy 0→

f z0 + jΔy( ) − f z0( )
jΔy

----------------------------------------------

lim
jΔy 0→

u x0, y0 + Δy( ) + jv x0, y0 + Δy( ) u x0, y0( ) − jv x0, y0( )–
jΔy

------------------------------------------------------------------------------------------------------------------------------------------

lim
Δy 0→

1
j
---

u x0, y0 + Δy( ) − u x0, y0( )
Δy

---------------------------------------------------------------- + 
v x0, y0 + Δy( ) − v x0, y0( )

Δy
----------------------------------------------------------------

1
j
---

∂u
∂y
------ + 

∂v
∂y
-----

x=x0, y=y0

∂u
∂x
------ + j

∂ v
∂x
-----

1
j
---

∂u
∂ y
------ + 

∂ v
∂ y
----- −j

∂u
∂ y
------ + 

∂ v
∂ y
-----= =

∂ u
∂x
------ = 

∂ v
∂y
-----,

∂ v
∂x
----- = −∂u

∂ y
------

∂u
∂x
------ + j

∂ v
∂x
-----



4.3  COMPLEX DIF FERENTIATION 277

or

f ′(z) = 

If z is given in the polar form z = r e jθ then

f (z) = u(r, θ) + jv(r, θ)

and the corresponding polar forms of the Cauchy–Riemann equations are

(4.22)

At points where f ′(z) exists it may be obtained from either of

f ′(z) = e−jθ (4.23a)

or

f ′(z) = e−jθ (4.23b)

Verify that the function f(z) = z2 satisfies the Cauchy–Riemann equations, and determine
the derivative f ′(z).

Solution Since z = x + jy, we have

f (z) = z2 = (x + jy)2 = (x2 − y2) + j2xy

so if f (z) = u(x, y) + jv(x, y) then

u = x2 − y2, v = 2xy

giving the partial derivatives as

 = 2x,  = −2y

 = 2y,  = 2x

It is readily seen that the Cauchy–Riemann equations

are satisfied.
The derivative f ′(z) is then given by

f ′(z) =  = 2x + j2y = 2z

as expected.

∂ v
∂y
-----  − j

∂ u
∂ y
------

∂ u
∂r
------ = 

1
r
---

∂ v
∂θ------ ,

∂ v
∂r
-----  = − 1

r
---

∂u
∂θ------

∂u
∂r
------ + j

∂ v
∂r
-------

 
 
 

1
r
---

∂ v
∂θ------ − 

j
r
--

∂u
∂θ--------

 
 
 

Example 4.9

∂u
∂x
------

∂ u
∂ y
------

∂ v
∂x
-----

∂ v
∂y
-----

∂u
∂x
------

∂v
∂y
-----,

∂u
∂ y
------ − ∂ v

∂x
-----= =

∂u
∂x
------ + j

∂ v
∂ x
-----
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Verify that the exponential function f (z) = eαz, where α is a constant, satisfies the
Cauchy–Riemann equations, and show that f ′(z) = α eαz.

Solution f (z) = u + jv = eαz = eα(x+jy ) = eαx e jαy = eαx (cos αy + j sin αy)

so, equating real and imaginary parts,

u = eα x cos αy, v = eα x sin αy

The partial derivatives are

 = α eα x cos αy,  = α eα x sin αy

 = −α eα x sin αy,  = α eα x cos αy

confirming that the Cauchy–Riemann equations are satisfied. The derivative f ′(z) is
then given by

f ′(z) =  = α eα x (cos αy + j sin αy) = α eαz

so that

eα z = α eα z (4.24)

As in the real variable case, we have (see Section 4.3.1)

e jz = cos z + j sin z (4.25)

so that cos z and sin z may be expressed as

(4.26a)

Using result (4.24) from Example 4.10, it is then readily shown that

(sin z) = cos z

(cos z) = −sin z

Similarly, we define the hyperbolic functions sinh z and cosh z by

(4.26b) 

Example 4.10

∂u
∂x
------

∂ v
∂x
-----

∂u
∂y
------

∂ v
∂ y
-----

∂u
∂x
------ + j

∂ v
∂x
-----

d
dz
-----

z cos = 
e jz + e−jz

2
---------------------

zsin  = 
e jz − e−jz

2j
---------------------









d
dz
-----

d
dz
-----

sinh z = 
ez  − e−z

2
------------------ − j jzsin=

cosh z = 
ez + e−z

2
------------------ jzcos=








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from which, using (4.24), it is readily deduced that

(sinh z) = cosh z

(cosh z) = sinh z

We note from above that ez has the following real and imaginary parts:

Re(ez) = ex cos y

Im(ez) = ex sin y

In real variables the exponential and circular functions are contrasted, one being
monotonic, the other oscillatory. In complex variables, however, the real and imaginary
parts of ez are (two-variable) combinations of exponential and circular functions, which
might seem surprising for an exponential function. Similarly, the circular functions of
a complex variable have unfamiliar properties. For example, it is easy to see that |cos z|
and |sin z| are unbounded for complex z by using the above relationships between circular
and hyperbolic functions of complex variables. Contrast this with |cos x| < 1 and
|sin x| < 1 for a real variable x.

In a similar way to the method adopted in Examples 4.9 and 4.10 it can be shown
that the derivatives of the majority of functions f (x) of a real variable x carry over to the
complex variable case f (z) at points where f (z) is analytic. Thus, for example,

z n = nz n−1

for all z in the z plane, and

ln z = 

for all z in the z plane except for points on the non-positive real axis, where ln z is
non-analytic.

It can also be shown that the rules associated with derivatives of a function of a real
variable, such as the sum, product, quotient and chain rules, carry over to the complex
variable case. Thus,

d
dz
-----

d
dz
-----

d
dz
-----

d
dz
-----

1
z
---

d
dz
----- f z( ) + g z( )[ ] d f z( )

dz
------------ + 

dg z( )
dz

-------------=

d
dz
----- f z( ) g z( )[ ] f z( )dg z( )

dz
------------- + 

d f z( )
dz

------------g z( )=

d
dz
----- f g z( )( ) d f

dg
------ 

dg
dz
------=

d
dz
----- f z( )

g z( )
----------

g z( ) f ′ z( ) − f z( ) g ′ z( )
g z( )[ ]2

----------------------------------------------------- =
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4.3.2 Conjugate and harmonic functions

A pair of functions u(x, y) and v(x, y) of the real variables x and y that satisfy the
Cauchy–Riemann equations (4.19) are said to be conjugate functions. (Note here
the different use of the word ‘conjugate’ to that used in complex number work,
where z* = x − jy is the complex conjugate of z = x + jy.) Conjugate functions satisfy
the orthogonality property in that the curves in the (x, y) plane defined by u(x, y) =
constant and v(x, y) = constant are orthogonal curves. This follows since the gradient at
any point on the curve u(x, y) = constant is given by

and the gradient at any point on the curve v(x, y) = constant is given by

It follows from the Cauchy–Riemann equations (4.19) that

so the curves are orthogonal.
A function that satisfies the Laplace equation in two dimensions is said to be

harmonic; that is, u(x, y) is a harmonic function if

It is readily shown (see Example 4.12) that if f (z) = u(x, y) + jv(x, y) is analytic, so that
the Cauchy–Riemann equations are satisfied, then both u and v are harmonic functions.
Therefore u and v are conjugate harmonic functions. Harmonic functions have
applications in such areas as stress analysis in plates, inviscid two-dimensional fluid
flow and electrostatics.

Given u(x, y) = x2 − y2 + 2x, find the conjugate function v(x, y) such that f (z) =
u(x, y) + jv(x, y) is an analytic function of z throughout the z plane.

Solution We are given u(x, y) = x2 − y2 + 2x, and, since f (z) = u + jv is to be analytic, the Cauchy–
Riemann equations must hold. Thus, from (4.19),

Integrating this with respect to y gives

v = 2xy + 2y + F(x)

where F(x) is an arbitrary function of x, since the integration was performed holding x
constant. Differentiating v partially with respect to x gives

dy
dx
------

u

 = −∂u
∂ y
------

∂u
∂x
------

dy
dx
------

v

 = −∂ v
∂ y
-----

∂ v
∂x
-----

dy
dx
------

u

dy
dx
------

v

−1=

∂ 2u

∂ x2
-------- + 

∂ 2u

∂ y2
-------- 0=

Example 4.11

∂ v
∂ y
----- = 

∂u
∂x
------  = 2x 2+
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but this equals −∂u /∂ y by the second of the Cauchy–Riemann equations (4.19). Hence

But since u = x2 − y2 + 2x, ∂u /∂y = −2y, and comparison yields F(x) = constant. This
constant is set equal to zero, since no conditions have been given by which it can be
determined. Hence

u(x, y) + jv(x, y) = x2 − y2 + 2x + j(2xy + 2y)

To confirm that this is a function of z, note that f (z) is f (x + jy), and becomes just f (x)
if we set y = 0. Therefore we set y = 0 to obtain

f (x + j0) = f (x) = u(x, 0) + jv(x, 0) = x2 + 2x

and it follows that

f (z) = z2 + 2z

which can be easily checked by separation into real and imaginary parts.

Show that the real and imaginary parts u(x, y) and v(x, y) of a complex analytic function
f (z) are harmonic.

Solution Since

f (z) = u(x, y) + jv(x, y)

is analytic, the Cauchy–Riemann equations

are satisfied. Differentiating the first with respect to x gives

which is −∂ 2v/∂y2, by the second Cauchy–Riemann equation. Hence

, or

and v is a harmonic function.
Similarly,

so that

∂ v
∂x
----- 2y

dF
dx
-------+=

∂u
∂y
------ −2y − 

d F
dx
-------=

Example 4.12

∂ v
∂ x
----- −∂u

∂ y
------,

∂u
∂x
------

∂ v
∂ y
-----==

∂ 2v

∂ x2
-------- − ∂ 2u

∂x∂y
------------ − ∂ 2u

∂y∂x
------------ − ∂

∂y
----- ∂u

∂x
--------

 
 
 = = =

∂ 2v

∂x2
-------- −∂ 2v

∂y2
--------= ∂ 2v

∂x2
-------- + 

∂ 2v

∂y2
-------- 0=

∂ 2u

∂y2
-------- − ∂ 2v

∂y∂x
------------ − ∂

∂x
----- ∂ v

∂ y
--------

 
 
  −∂ 2u

∂x2
--------= = =
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and u is also a harmonic function. We have assumed that both u and v have continuous
second-order partial derivatives, so that

∂ 2v

∂x2
-------- + 

∂ 2v

∂y2
-------- 0=

∂ 2u
∂x∂y
------------

∂ 2u
∂ y∂x
------------,

∂ 2v
∂x∂y
------------

∂ 2v
∂y∂x
------------==

Determine whether the following functions are 
analytic, and find the derivative where appropriate:

(a) z ez (b) sin 4z

(c) zz* (d) cos 2z

Determine the constants a and b in order that 

w = x2 + ay2 − 2xy + j(bx2 − y2 + 2xy)

be analytic. For these values of a and b find the 
derivative of w, and express both w and dw/dz as 
functions of z = x + jy.

Find a function v(x, y) such that, given u = 2x(1 − y), 
f (z) = u + jv is analytic in z.

Show that φ(x, y) = ex(x cos y − y sin y) is a harmonic 
function, and find the conjugate harmonic function 
ψ (x, y). Write φ(x, y) + jψ (x, y) as a function of 
z = x + jy only.

Show that u(x, y) = sin x cosh y is harmonic. Find the 
harmonic conjugate v(x, y) and express w = u + jv as 
a function of z = x + jy.

Find the orthogonal trajectories of the following 
families of curves:

(a) x3y − xy3 = α (constant α)

(b) e−x cos y + xy = α (constant α)

Find the real and imaginary parts of the functions

(a) z2 e2z

(b) sin 2z

Verify that they are analytic and find their 
derivatives.

Give a definition of the inverse sine function 
sin−1 z for complex z. Find the real and imaginary 
parts of sin−1 z. (Hint: Put z = sin w, split into 
real and imaginary parts, and with w = u + jv 
and z = x + jy solve for u and v in terms of x 
and y.) Is sin−1 z analytic? If so, what is its 
derivative?

Establish that if z = x + jy, 
| sinh y | < | sin z | < cosh y.

4.3.3 Exercises

24

25

26

27

28

29

30

31

32

4.3.4 Mappings revisited

In Section 4.2 we examined mappings from the z plane to the w plane, where in the
main the relationship between w and z, w = f(z) was linear or bilinear. There is an
important property of mappings, hinted at in Example 4.8 when considering the
mapping w = z2. A mapping w = f(z) that preserves angles is called conformal. Under
such a mapping, the angle between two intersecting curves in the z plane is the same as
the angle between the corresponding intersecting curves in the w plane. The sense of
the angle is also preserved. That is, if θ is the angle between curves 1 and 2 taken in the
anticlockwise sense in the z plane then θ is also the angle between the image of curve
1 and the image of curve 2 in the w plane, and it too is taken in the anticlockwise sense.
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Figure 4.15 should make the idea of a conformal mapping clearer. If f (z) is analytic
then w = f (z) defines a conformal mapping except at points where the derivative f ′(z)
is zero.

Clearly the linear mappings

w = αz + β (α ≠ 0)

are conformal everywhere, since dw/dz = α and is not zero for any point in the z plane.
Bilinear mappings given by (4.12) are not so straightforward to check. However, as we
saw in Section 4.2.4, (4.12) can be rearranged as

w = λ + (α, μ ≠ 0)

Thus

which again is never zero for any point in the z plane. In fact, the only mapping we have
considered so far that has a point at which it is not conformal everywhere is w = z2

(cf. Example 4.8), which is not conformal at z = 0.

Determine the points at which the mapping w = z + 1/z is not conformal and demon-
strate this by considering the image in the w plane of the real axis in the z plane.

Solution Taking z = x + jy and w = u + jv, we have

w = u + jv = x + jy + 

which, on equating real and imaginary parts, gives

u = x + 

v = y − 

Figure 4.15
Conformal mappings.

μ
αz β+
----------------

dw
dz
------- − μα

αz β+( )2
----------------------=

Example 4.13

x − jy

x2 + y2
-----------------

x

x2 + y2
-----------------

y

x2 + y2
-----------------
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The real axis, y = 0, in the z plane corresponds to v = 0, the real axis in the w plane.
Note, however, that the fixed point of the mapping is given by

z = z + 

or z = ∞. From the Cauchy–Riemann equations it is readily shown that w is analytic
everywhere except at z = 0. Also, dw/dz = 0 when

, that is z = ±1

which are both on the real axis. Thus the mapping fails to be conformal at z = 0 and
z = ±1. The image of z = 1 is w = 2, and the image of z = −1 is w = −2. Consideration
of the image of the real axis is therefore perfectly adequate, since this is a curve passing
through each point where w = z + 1/z fails to be conformal. It would be satisfying if we
could analyse this mapping in the same manner as we did with w = z2 in Example 4.8.
Unfortunately, we cannot do this, because the algebra gets unwieldy (and, indeed, our
knowledge of algebraic curves is also too scanty). Instead, let us look at the image of
the point z = 1 + ε, where ε is a small real number. ε > 0 corresponds to the point Q
just to the right of z = 1 on the real axis in the z plane, and the point P just to the
left of z = 1 corresponds to ε < 0 (Figure 4.16).

If z = 1 + ε then

w = 1 + ε + 

= 1 + ε + (1 + ε)−1

= 1 + ε + 1 − ε + ε 2 − ε 3 + . . . 

. 2 + ε 2

if | ε | is much smaller than 1 (we shall discuss the validity of the power series expansion
in Section 4.4). Whether ε is positive or negative, the point w = 2 + ε 2 is to the right of
w = 2 in the w plane as indicated by the point R in Figure 4.16. Therefore, as ε → 0, a
curve (the real axis) that passes through z = 1 in the z plane making an angle θ = π
corresponds to a curve (again the real axis) that approaches w = 2 in the w plane along
the real axis from the right making an angle θ = 0. Non-conformality has thus been
confirmed. The treatment of z = −1 follows in an identical fashion, so the details
are omitted. Note that when y = 0 (v = 0), u = x + 1/x so, as the real axis in the z plane
is traversed from x = −∞ to x = 0, the real axis in the w plane is traversed from

1
z
---

1 1

z2
----–  = 0

Figure 4.16 Image 
of z = 1 + ε of 
Example 4.13.

1
1 + ε-----------
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u = −∞ to −2 and back to u = −∞ again (when x = −1, u reaches −2). As the real
axis in the z plane is traversed from x = 0 through x = 1 to x = +∞, so the real axis in
the w plane is traversed from u = +∞ to u = +2 (x = 1) back to u = ∞ again. Hence the
points on the real axis in the w plane in the range −2 < u < 2 do not correspond to real
values of z. Solving u = x + 1/x for x gives

x = [u ± ]

which makes this point obvious. Figure 4.17 shows the image in the w plane of the real
axis in the z plane. This mapping is very rich in interesting properties, but we shall not
pursue it further here. Aeronautical engineers may well meet it again if they study the
flow around an aerofoil in two dimensions, for this mapping takes circles centred at the
origin in the z plane onto meniscus (lens-shaped) regions in the w plane, and only a
slight alteration is required before these images become aerofoil-shaped.

Examine the mapping

w = ez

by (a) finding the images in the w plane of the lines x = constant and y = constant in
the z plane, and (b) finding the image in the w plane of the left half-plane (x < 0) in the
z plane.

Solution Taking z = x + jy and w = u + jv, for w = ez we have

u = ex cos y

v = ex sin y

Squaring and adding these two equations, we obtain

u2 + v2 = e2x

On the other hand, dividing the two equations gives

 = tan y

We can now tackle the questions.

(a) Since u2 + v2 = e2x, putting x = constant shows that the lines parallel to the imaginary
axis in the z plane correspond to circles centred at the origin in the w plane. The
equation

 = tan y

shows that the lines parallel to the real axis in the z plane correspond to straight
lines through the origin in the w plane (v = u tan α if y = α, a constant).
Figure 4.18 shows the general picture.

1
2
--- u2 4–( )

Figure 4.17 Image 
in w plane of the real 
axis in the z plane for 
Example 4.13.

Example 4.14

v
u
---

v
u
---
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(b) Since u2 + v2 = e2x, if x = 0 then u2 + v2 = 1, so the imaginary axis in the z plane
corresponds to the unit circle in the w plane. If x < 0 then e2x < 1, and as x → −∞,
e2x → 0, so the left half of the z plane corresponds to the interior of the unit circle
in the w plane, as illustrated in Figure 4.19. 

Figure 4.18 Mapping 
of lines under w = ez for 
Example 4.14.

Figure 4.19 Mapping 
of half-plane under 
w = ez for Example 
4.14.

Determine the points at which the following 
mappings are not conformal:

(a) w = z2 − 1 (b) w = 2z3 − 21z2 + 72z + 6

(c) w = 8z + 

Follow Example 4.13 for the mapping w = z − 1/z. 
Again determine the points at which the mapping is 
not conformal, but this time demonstrate this by 
looking at the image of the imaginary axis.

Find the region of the w plane corresponding to 
the following regions of the z plane under the 
exponential mapping w = ez:

(a) 0 < x < ∞ (b) 0 < x < 1, 0 < y < 1

(c) π < y < π, 0 < x < ∞

Consider the mapping w = sin z. Determine the 
points at which the mapping is not conformal. 
By finding the images in the w plane of the 
lines x = constant and y = constant in the z plane 
(z = x + jy), draw the mapping along similar lines to 
Figures 4.14 and 4.18.

Show that the transformation

z = ζ + 

where z = x + jy and ζ = R e jθ maps a circle, with 
centre at the origin and radius a, in the ζ plane, onto 
a straight-line segment in the z plane. What is the 
length of the line? What happens if the circle in the 
ζ plane is centred at the origin but is of radius b, 
where b ≠ a?

4.3.5 Exercises

33

1

2z2
-------

34

35

1
2
---

36

37

a2

ζ-----
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Complex series
In Modern Engineering Mathematics (MEM) we saw that there were distinct advantages in
being able to express a function f(x), such as the exponential, trigonometric and logarithmic
functions, of a real variable x in terms of its power series expansion

f (x) =  = a0 + a1x + a2x 2 + . . . + ar x
r + . . . (4.27)

Power series are also very important in dealing with complex functions. In fact, any real
function f(x) which has a power series of the form in (4.27) has a corresponding complex
function f(z) having the same power series expansion, that is

f (z) =  = a0 + a1z + a2z 2 + . . . + ar z r + . . . (4.28)

This property enables us to extend real functions to the complex case, so that methods
based on power series expansions have a key role to play in formulating the theory of
complex functions. In this section we shall consider some of the properties of the power
series expansion of a complex function by drawing, wherever possible, an analogy with
the power series expansion of the corresponding real function.

4.4.1 Power series

A series having the form

(z − z0)
n = a0 + a1(z − z0) + a2(z − z0)

2 + . . . + ar(z − z0)
r + . . . (4.29)

in which the coefficients ar are real or complex and z0 is a fixed point in the complex
z plane is called a power series about z0 or a power series centred on z0. Where z0 = 0,
the series (4.29) reduces to the series (4.28), which is a power series centred at the
origin. In fact, on making the change of variable z ′ = z − z0, (4.29) takes the form (4.28),
so there is no loss of generality in considering the latter below.

Tests for the convergence or divergence of complex power series are similar to those
used for power series of a real variable. However, in complex series it is essential that
the modulus | an | be used. For example, the geometric series

 

has a sum to N terms

and converges, if | z | < 1, to the limit 1/(1 − z) as N → ∞. If | z | > 1, the series diverges.
These results appear to be identical with the requirement that | x | < 1 to ensure convergence
of the real power series

4.4

anxn

n=0

∞



an zn

n=0

∞



an

n=0

∞



zn

n=0

∞



SN zn

n=0

N−1


1 − zN

1 − z
---------------= =
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However, in the complex case the geometrical interpretation is different in that the con-
dition | z | < 1 implies that z lies inside the circle centred at the origin and radius 1 in
the z plane. Thus the series ∞

n=0 z n converges if z lies inside this circle and diverges if
z lies on or outside it. The situation is illustrated in Figure 4.20.

The existence of such a circle leads to an important concept in that in general there
exists a circle centred at the origin and of radius R such that the series

The radius R is called the radius of convergence of the power series; what happens
when | z | = R is normally investigated as a special case.

We have introduced the radius of convergence based on a circle centred at the
origin, while the concept obviously does not depend on the location of the centre of
the circle. If the series is centred on z0 as in (4.29) then the convergence circle would
be centred on z0. Indeed it could even be centred at infinity, when the power series
becomes

which we shall consider further in Section 4.4.5.
In order to determine the radius of convergence R for a given series, various tests for

convergence, such as those introduced in MEM for real series, may be applied. In particular,
using d’Alembert’s ratio test, it can be shown that the radius of convergence R of the
complex series ∞

n=0 anz n is given by

R = (4.30)

provided that the limit exists. Then the series is convergent within the disc | z | < R.
In general, of course, the limit may not exist, and in such cases an alternative method
must be used.

1
1 − x
------------- xn

n=0

∞

=

Figure 4.20
Region of 
convergence 
of ∞

n=0 zn.

an zn

n=0

∞


converges if z R<
diverges if  z R>




an z−n

n=0

∞

 a0 + 
a1

z
----- + 

a2

z2
----- + . . . + 

ar

zr
---- + . . .=

lim
n ∞→

an

an+1
---------
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Find the power series, in the form indicated, representing the function 1/(z − 3) in the
following three regions:

(a) | z | < 3; anz n

(b) | z − 2 | < 1; an(z − 2)n

(c) | z | > 3;

and sketch these regions on an Argand diagram.

Solution We know that the binomial series expansion

is valid for | z | < 1. To solve the problem, we exploit this result by expanding
the function 1/(z − 3) in three different ways:

(a)

for | z | < 1, that is | z | < 3, giving the power series

( | z | < 3)

(b)  = [(z − 2) − 1]−1

= −[1 + (z − 2) + (z − 2)2 + . . . ] ( | z − 2 | < 1)

giving the power series

= −1 − (z − 2) − (z − 2)2 − . . . ( | z − 2 |  < 1)

(c)

giving the power series

( | z | > 3)

The three regions are sketched in Figure 4.21. Note that none of the regions includes
the point z = 3, which is termed a singularity of the function, a concept we shall discuss
in Section 4.5.1.

Example 4.15

n=0

∞



n=0

∞



an

zn
-----

n=0

∞



1 z+( )n = 1 + nz + 
n n 1–( )

2!
--------------------z2 + . . . + 

n n 1–( ) n 2–( ) . . . n − r + 1( )
r!

----------------------------------------------------------------------------zr + . . .

1
z 3–
-----------

−1
3
---

1 1
3
---z–

------------- −1
3
--- 1 1

3
---z–( )−1

 =  −1
3
--- 1 1

3
--- z 1

3
--- z( )2 . . . 1

3
--- z( )n . . .+ + + + +[ ]= =

1
3
---

1
z 3–----------- −1

3
---  − 1

9
---z − 1

27
------z2 . . .–=

1
z 3–
----------- = 

1
z 2–( ) 1–

-------------------------

1
z 3–-----------

1
z 3–
----------- = 

1/z
1 3/z–
---------------- = 

1
z
--- 1

3
z
---

3
z
--- 
 

2
. . .  + + +

1

z 3–
----------- = 

1

z
---

3

z2
----

9

z3
---- . . .+ + +
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In Example 4.15 the whole of the circle |z| = 3 was excluded from the three regions
where the power series converge. In fact, it is possible to include any selected point in
the z plane as a centre of the circle in which to define a power series that converges to
1/(z − 3) everywhere inside the circle, with the exception of the point z = 3. For example,
the point z = 4j would lead to the expansion of

in a binomial series in powers of (z − 4j)/(4j − 3), which converges to 1/(z − 3) inside
the circle

| z − 4j | = | 4j − 3 | =  = 5

We should not expect the point z = 3 to be included in any of the circles, since the
function 1/(z − 3) is infinite there and hence not defined.

Prove that both the power series ∞
n=0 an zn and the corresponding series of derivatives

∞
n=0 nanz n−1 have the same radius of convergence.

Solution Let R be the radius of convergence of the power series ∞
n=0 an zn. Since limn→∞ (anz n

0) = 0
(otherwise the series has no chance of convergence), if | z0 | < R for some complex number
z0 then it is always possible to choose

| an | < | z0 |−n

for n > N, with N a fixed integer. We now use d’Alembert’s ratio test, namely 

if

if

Figure 4.21 Regions 
of convergence for the 
series in Example 4.15.

1
z − 4j + 4j − 3
-------------------------------------- = 

1
4j − 3
---------------

1
z − 4j
4j − 3
--------------- + 1
--------------------------

16 9+( )

Example 4.16

lim
n ∞→

an+1

an

--------- 1 then an zn

n=0

∞

 converges<

lim
n ∞→

an+1

an

--------- 1 then an zn

n=0

∞

 diverges>
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The differentiated series ∞
n=0 nanz n−1 satisfies

which, by the ratio test, converges if 0 < | z0 | < R, since | z | < | z0 | and | z0 | can be as
close to R as we choose. If, however, | z | > R then limn→∞ (anz n) ≠ 0 and thus
limn→∞ (nanz n−1) ≠ 0 too. Hence R is also the radius of convergence of the differentiated
series ∞

n=1 nanzn−1.

The result obtained in Example 4.16 is important, since if the complex function 

f (z) = 

converges in | z | < R then the derivative

f ′(z) = 

also converges in | z | < R. We can go on differentiating f (z) through its power series and
be sure that the differentiated function and the differentiated power series are equal
inside the circle of convergence.

nanzn−1 <
n=1

∞

 n an z n−1

n=1

∞

  n
z n−1

z0
n

-------------
n=1

∞

<

anzn

n=0

∞



nanzn−1

n=1

∞



Find the power series representation for the function 
1/(z − j) in the regions

(a) | z | < 1

(b) | z | > 1

(c) | z − 1 − j | < 

Deduce that the radius of convergence of the 
power series representation of this function is 
| z0 − j |, where z = z0 is the centre of the circle of 
convergence (z0 ≠ j).

Find the power series representation of the function 

in the disc | z | < 1. Use Example 4.16 to deduce the 
power series for

(a) (b)  

valid in this same disc.

4.4.2 Exercises

38

2

39

f z( ) 1

z2 + 1
---------------=

1

z2 + 1( )2
----------------------

1

z2 + 1( )3
----------------------

4.4.3 Taylor series

In MEM we introduced the Taylor series expansion 

f (x + a) = f (a) + f (1)(a) + f (2)(a) + . . . = f (n)(a) (4.31)

of a function f(x) of a real variable x about x = a and valid within the interval of
convergence of the power series. For the engineer the ability to express a function in
such a power series expansion is seen to be particularly useful in the development of
numerical methods and the assessment of errors. The ability to express a complex

x
1!
-----

x2

2!-----
xn

n!-----
n=0

∞


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function as a Taylor series is also important to engineers in many fields of applications,
such as control and communications theory. The form of the Taylor series in the complex
case is identical with that of (4.31).

If f (z) is a complex function analytic inside and on a simple closed curve C (usually
a circle) in the z plane then it follows from Example 4.16 that the higher derivatives of
f (z) also exist inside C. If z0 and z0 + h are two fixed points inside C then

f (z0 + h) = f (z0) + hf (1)(z0) + f (2)(z0) + . . . + f (n)(z0) + . . . 

where f (k)(z0) is the k th derivative of f (z) evaluated at z = z0. Normally, z = z0 + h is
introduced so that h = z − z0, and the series expansion then becomes 

The power series expansion (4.32) is called the Taylor series expansion of the complex
function f (z) about z0. The region of convergence of this series is |z − z0 | <R, a disc
centred on z = z0 and of radius R, the radius of convergence. Figure 4.22 illustrates
the region of convergence. When z0 = 0, as in real variables, the series expansion about
the origin is often called a Maclaurin series expansion.

Since the proof of the Taylor series expansion does not add to our understanding
of how to apply the result to the solution of engineering problems, we omit it at this
stage.

Determine the Taylor series expansion of the function

about the point z = j:

(a) directly up to the term (z − j)4,

(b) using the binomial expansion.

Determine the radius of convergence.

Solution (a) The disadvantage with functions other than the most straightforward is that
obtaining their derivatives is prohibitively complicated in terms of algebra. It is
easier in this particular case to resolve the given function into partial fractions as 

f (z) = f (z0) + (z − z0) f (1)(z0) + f (2)(z0) + . . .

+ f (n)(z0) + . . . = f (n)(z0) (4.32)

h2

2!
-----

hn

n!
-----

z z0–( )2

2!
-------------------

z z0–( )n

n!-------------------
z z0–( )n

n!-------------------
n=0

∞



Figure 4.22 Region 
of convergence of the 
Taylor series.

Example 4.17

f z( ) 1
z z − 2j( )
----------------------=

f z( ) 1
z z − 2j( )
---------------------- 1

2j
-----

1
z − 2j
--------------- − 

1
z
-----

 
 
 = =
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The right-hand side is now far easier to differentiate repeatedly. Proceeding to
determine f (k)( j), we have

f (z) = , so that f ( j) = 1

f (1)(z) = , so that f (1)( j) = 0

f (2)(z) = , so that f (2)( j) = −2

f (3)(z) = , so that f (3)( j) = 0

f (4)(z) = , so that f (4)( j) = 24

leading from (4.32) to the Taylor series expansion

= 1 − (z − j)2 + (z − j)4 + . . . 

(b) To use the binomial expansion, we first express z(z − 2j) as (z − j + j)(z − j − j),
which, being the difference of two squares ((z − j)2 − j2), leads to

f (z) = = [1 + (z − j)2]−1

Use of the binomial expansion then gives

f (z) = 1 − (z − j)2 + (z − j)4 − (z − j)6 + . . . 

valid for | z − j | < 1, so the radius of convergence is 1.

The points where f (z) is infinite (its singularities) are precisely at distance 1 away
from z = j, so this value for the radius of convergence comes as no surprise.

Suggest a function to represent the power series

and determine its radius of convergence.

Solution Set

f (z) = 1 + z + 

1
2j
-----

1
z − 2j
--------------- − 

1
z
-----

 
 
 

1
2j
----- − 1

z − 2j( )2
--------------------- + 

1

z2
----

1
2j
-----

2

z − 2j( )3
--------------------- − 

2

z3
----

1
2j
----- − 6

z − 2j( )4
--------------------- + 

6

z4
----

1
2j
-----

24

z − 2j( )5
--------------------- − 

24

z5
------

1
z z − 2j( )
---------------------- = 1 − 

2
2!
----- z − j( )2 + 

24
4!
------ z − j( )4 + . . .

1

z z − 2j( )
----------------------

1

z − j( )2 + 1
-----------------------------=

Example 4.18

1 z + 
z2

2!-----
z3

3!----- . . . zn

n!----- . . .+ + + + +

z2

2!
----- + 

z3

3!
----- . . .+ zn

n!
-----

n=0

∞

=
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Assuming we can differentiate the series for f (z) term by term, we obtain

f ′(z) = 

Hence f (z) is its own derivative. Since ex is its own derivative in real variables, and is
the only such function, it seems sensible to propose that

(4.33)

the complex exponential function. Indeed the complex exponential ez is defined by the
power series (4.33). According to d’Alembert’s ratio test the series ∞

n=0 an is convergent
if |an+1/an | → L < 1 as n → ∞, where L is a real constant. If an = zn/n! then |an+1/an | = |z|/
(n + 1) which is less than unity for sufficiently large n, no matter how big |z| is. Hence
∞

n=0 zn/n! is convergent for all z and so has an infinite radius of convergence. Note that
this is confirmed from (4.30). Such functions are called entire.

In the same way as we define the exponential function ez by the power series expansion
(4.31), we can define the circular functions sin z and cos z by the power series expansions

both of which are valid for all z. Using these power series definitions, we can readily
prove the result (4.25), namely

e jz = cos z + j sin z

nzn−1

n!
------------

n=1

∞


zn−1

n − 1( )!
--------------------

n=1

∞

 f z( )= =

f z( ) zn

n!
-----

n=0

∞

 ez= =

zsin z − 
z3

3!----- + 
z5

5!----- − 
z7

7!----- + . . . + −1( )n z2n+1

2n + 1( )!----------------------- + . . .=

zcos 1 − 
z2

2!----- + 
z4

4!----- − 
z6

6!----- + . . . + −1( )n z2n

2n( )!------------- + . . .=

Find the first four non-zero terms of the Taylor 
series expansions of the following functions about 
the points indicated, and determine the radius of 
convergence in each case:

(a)  (z = 1) (b)  (z = 2j)

(c)  (z = 1 + j)

Find the Maclaurin series expansion of the function

up to and including the term in z3.

Without explicitly finding each Taylor series 
expansion, find the radius of convergence of 
the function

about the three points z = 0, z = 1 + j and z = 2 + 2j.
Why is there no Taylor series expansion of this 
function about z = j?

Determine a Maclaurin series expansion 
of f(z) = tan z. What is its radius of 
convergence?

4.4.4 Exercises

40

1
1 + z
-------------

1
z z − 4j( )
----------------------

1

z2
----

41

f z( ) 1

1 + z + z2
-------------------------=

42

f z( ) 1

z4 − 1
---------------=

43
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4.4.5 Laurent series

Let us now examine more closely the solution of Example 4.15(c), where the power
series obtained was 

valid for | z | > 3. In the context of the definition, this is a power series about ‘z = ∞’,
the ‘point at infinity’. Some readers, quite justifiably, may not be convinced that there
is a single unique point at infinity. Figure 4.23 shows what is termed the Riemann
sphere. A sphere lies on the complex z plane, with the contact point at the origin O. Let
O′ be the top of the sphere, at the diametrically opposite point to O. Now, for any
arbitrarily chosen point P in the z plane, by joining O′ and P we determine a unique
point P′ where the line O′P intersects the sphere. There is thus exactly one point P′ on
the sphere corresponding to each P in the z plane. The point O′ itself is the only point on
the sphere that does not have a corresponding point on the (finite) z plane; we therefore
say it corresponds to the point at infinity on the z plane.

Returning to consider power series, we know that, inside the radius of convergence,
a given function and its Taylor series expansion are identically equal. Points at which a
function fails to be analytic are called singularities, which we shall discuss in Sec-
tion 4.5.1. No Taylor series expansion is possible about a singularity. Indeed, a Taylor
series expansion about a point z0 at which a function is analytic is only valid within a
circle, centre z0, up to the nearest singularity. Thus all singularities must be excluded in
any Taylor series consideration. The Laurent series representation includes (or at least
takes note of) the behaviour of the function in the vicinity of a singularity.

If f (z) is a complex function analytic on concentric circles C1 and C2 of radii r1 and
r2 (with r2 < r1), centred at z0, and also analytic throughout the region between the
circles (that is, an annular region), then for each point z within the annulus (Figure 4.24)
f (z) may be represented by the Laurent series

1

z 3–
-----------

1

z
--- + 

3

z2
---- + 

9

z3
---- + . . .=

Figure 4.23
The Riemann sphere.

Figure 4.24 Region of 
validity of the Laurent 
series.
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where in general the coefficients cr are complex. The annular shape of the region is
necessary in order to exclude the point z = z0, which may be a singularity of f (z), from
consideration. If f (z) is analytic at z = z0 then cn = 0 for n = −1, −2, . . . , −∞, and the
Laurent series reduces to the Taylor series.

The Laurent series (4.34) for f (z) may be written as

and the first sum on the right-hand side, the ‘non-Taylor’ part, is called the principal
part of the Laurent series.

Of course, we can seldom actually sum a series to infinity. There is therefore often more
than theoretical interest in the so-called ‘remainder terms’, these being the difference
between the first n terms of a power series and the exact value of the function. For
both Taylor and Laurent series these remainder terms are expressed, as in the case of
real variables, in terms of the (n + 1)th derivative of the function itself.

For f (z) = 1/z2(z + 1) find the Laurent series expansion about (a) z = 0 and (b) z = −1.
Determine the region of validity in each case.

Solution As with Example 4.15, problems such as this are tackled by making use of the binomial
series expansion

provided that | z | < 1.

(a) In this case z0 = 0, so we need a series in powers of z. Thus

= (1 − z + z2 − z3 + z4 − . . . ) (0 < | z | < 1)

Thus the required Laurent series expansion is

f (z) = 

= . . . + 

+ c1(z − z0) + . . . + cr(z − z0)
r + . . .

(4.34)

cn z z0–( )n

n=−∞

∞


c−r

z z0–( )r
------------------- + 

c−r+1

z z0–( )r−1
----------------------- + . . . + 

c−1

z z0–------------ + c0

f z( ) cn z − z0( )n + cn z − z0( )n

n=0

∞


n=−∞

−1

=

Example 4.19

1 z+( )n = 1 nz
n n 1–( )

2!--------------------z2 . . . n n 1–( ) n 2–( ) . . . n r– 1+( )
r!--------------------------------------------------------------------------zr . . .+ + + + +

1

z2 1 z+( )
---------------------

1

z2
---- 1 z+( )−1=

1

z2
----

1

z2 z 1+( )
---------------------

1

z2
---- 1

z
---– 1 z– z2 . . .+ +=
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valid for 0 < | z | < 1. The value z = 0 must be excluded because of the first two
terms of the series. The region 0 < | z | < 1 is an example of a punctured disc,
a common occurrence in this branch of mathematics.

(b) In this case z0 = −1, so we need a series in powers of (z + 1). Thus

(z + 1 − 1)−2

= [1 − (z + 1)]−2

= [1 + 2(z + 1) + 3(z + 1)2 + . . . ]

=  + 2 + 3(z + 1) + 4(z + 1)2 + . . . 

valid for 0 < | z + 1 | < 1. Note that in a meniscus-shaped region (that is, the
region of overlap between the two circular regions | z | < 1 and | z + 1 | < 1) both
Laurent series are simultaneously valid. This is quite typical, and not a cause for
concern.

Determine the Laurent series expansions of

valid for

(a) 1 < | z | < 3

(b) | z | > 3

(c) 0 < | z + 1 | < 2

(d) | z | < 1

Solution (a) Resolving into partial functions,

Since | z | > 1 and | z | < 3, we express this as

f (z) = 

= 

= 

= 

1

z2 z 1+( )
---------------------

1

z 1+( )
-----------------=

1
z 1+( )

----------------

1
z 1+( )

----------------

1
z 1+
-----------

Example 4.20

f z( ) 1
z 1+( ) z 3+( )

---------------------------------=

f z( ) 1
2
---

1
z 1+
----------- 
   − 1

2
---

1
z 3+
----------- 
 =

1
2z
-----

1
1 1/z+
----------------- 
   − 1

6
---

1
1 1

3
---z+

-------------
 
 
 

1
2z
----- 1

1
z
---+ 

 
−1

 − 1
6
--- 1 1

3
---z+( )−1

1

2z
------ 1 − 

1

z
--- + 

1

z2
---- − 

1

z3
---- + . . . 

 
 
 

 − 1
6
--- 1 − 1

3
---z + 1

9
---z2 − 1

27
------z3 + . . . 

 
 

. . . − 
1

2z4
------- + 

1

2z3
------- − 

1

2z2
------- + 

1

2z
------ − 1

6
---  + 1

18
------ z − 1

54
------ z2 + 1

162
--------- z3 . . .–
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(b)

Since | z | > 3, we express this as

f (z) = 

= 

= 

= 

(c) We can proceed as in Example 4.18. Alternatively, we can take z + 1 = u; then 
0 < | u | < 2 and

f (u) = 

= 

giving

(d)

Since | z | < 1, we express this as

f (z) = 

= 

= 

= 

Determine the Laurent series expansion of the function f (z) = z3e1/z about 

(a) z = 0

(b) z = a, a finite, non-zero complex number

(c) z = ∞

Solution (a) From (4.33),

ez = 1 + z +  + . . . (0 < | z | < ∞)

f z( ) 1
2
---

1
z + 1
------------- 

   − 1
2
---

1
z + 3
------------- 

 =

1
2z
-----

1
1 1/z+
----------------- 
   − 

1
2z
-----

1
1 3/z+
----------------- 

 

1
2z
----- 1 + 

1
z
--- 

 
−1

 − 
1
2z
----- 1 + 

3
z
--- 

 
−1

1

2z
------ 1 − 

1

z
--- + 

1

z2
---- − 

1

z3
---- + . . . 

 
 
 

 − 
1

2z
------ 1 − 

3

z
--- + 

9

z2
---- − 27

z3
------ + . . . 

 
 
 

1

z2
---- − 

4

z3
---- + 

13

z4
------ − 

40

z5
------ + . . .

1
u u 2+( )
--------------------

1
2u 1 1

2
---u+( )

--------------------------=

1
2u
------ 1 1

2
---u– 1

4
---u2 1

8
---u3– . . .+ +( )

f z( ) 1
2 z 1+( )
------------------- 1

4
---– 1

8
--- z 1+( ) 1

16
------ z 1+( )2 . . .+–+=

f z( ) 1
2 z 1+( )
------------------- − 

1
2 z 3+( )
-------------------=

1
2 1 z+( )
-------------------

1
6 1 1

3
---z+( )

----------------------–

1
2
--- 1 z+( )−1 1

6
--- 1 1

3
---z+( )−1–

1
2
--- 1 z– z2 z3– . . .+ +( ) 1

6
--- 1( 1

3
---z– 1

9
---z2 1

27
------z3– . . . )+ +–

1
3
---

4
9
---z– 13

27
------z2 40

81
------z3– . . .+ +

Example 4.21

z2

2!
-----
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Substituting 1/z for z, we obtain

e1/z = 1 +  + . . . (0 < | z | < ∞)

so that

z3 e1/z = z3 + z2 +  + . . . (0 < | z | < ∞)

This series has infinitely many terms in its principal part, but stops at z3 (it is
written back to front). Series with never-ending principal parts are a problem, and
fortunately are uncommon in engineering. Note also that the series is valid in an
infinite punctured disc.

(b) The value of f (a) must be a3 e1/a, which is not infinite since a ≠ 0. Therefore f (z)
has a Taylor series expansion

f (z) = f (a) + (z − a) f (1)(a) + f (2)(a) + . . . 

about z = a. We have

f (1)(z) = (z 3 e1/z) = 3z2 e1/z − z e1/z

f (2)(z) = (3z2 e1/z − z e1/z) = 6z e1/z − 4 e1/z + e1/z

giving the series as

z3 e1/z = a3 e1/a + (z − a)(3a2 e1/a − a e1/a )

+  + . . . 

which is valid in the region | z − a | < R, where R is the distance between the
origin, where f (z) is not defined, and the point a; hence R = | a |. Thus the region
of validity for this Taylor series is the disc | z − a | < | a |.

(c) To expand about z = ∞, let w = 1/z, so that 

Expanding about w = 0 then gives

= (0 < | w | < ∞)

Note that this time there are only three terms in the principal part of f (z)(= f (1/w)).

1

z
--- + 

1

2!z2
---------

z

2!
-----

1

3!
-----

1

4!z
-------

1

5!z2
---------+ + +

z a–( )2

2!------------------

d
dz
-----

d
dz
-----

1

z2
----

1
2!----- z a–( )2 6a e1/a 4e1/a– 1

a2
----- e1/a+ 

 

f z( ) 1

w3
------ ew=

f
1
w
---- 
  1

w3
------ 1 w

w2

2!
------

w3

3!
------ . . . + + + + 

 =

1

w3
------

1

w2
------

1

2!w
---------

1

3!
-----

w

4!
----- . . .+ + + + +
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Singularities and zeros
As indicated in Section 4.4.5 a singularity of a complex function f(z) is a point of the
z plane where f(z) ceases to be analytic. Normally, this means f(z) is infinite at such a
point, but it can also mean that there is a choice of values, and it is not possible to pick
a particular one. In this chapter we shall be mainly concerned with singularities at
which f(z) has an infinite value. A zero of f(z) is a point in the z plane at which f(z) = 0.

Singularities can be classified in terms of the Laurent series expansion of f (z) about
the point in question. If f (z) has a Taylor series expansion, that is a Laurent series
expansion with zero principal part, about the point z = z0, then z0 is a regular point of
f (z). If f (z) has a Laurent series expansion with only a finite number of terms in its
principal part, for example

f (z) =  + . . . +  + a0 + a1(z − z0) + . . . + am(z − z0)
m + . . . 

then f (z) has a singularity at z = z0 called a pole. If there are m terms in the principal
part, as in this example, then the pole is said to be of order m. Another way of defining
this is to say that z0 is a pole of order m if

(z − z0)
m f (z) = a−m (4.35)

where a−m is finite and non-zero. If the principal part of the Laurent series for f (z) at
z = z0 has infinitely many terms, which means that the above limit does not exist for any
m, then z = z0 is called an essential singularity of f (z). (Note that in Example 4.20 the
expansions given as representations of the function f (z) = 1/[(z + 1)(z + 3)] in parts (a)
and (b) are not valid at z = 0. Hence, despite appearances, they do not represent
a function which possesses an essential singularity at z = 0. In this case f (z) is regular
at z = 0 with a value .)

4.5

a−m

z z0–( )m
--------------------

a−1

z z0–( )
-----------------

z z0→
lim

1
3
---

Determine the Laurent series expansion of

about (a) z = 0 and (b) z = 1, and specify the region 
of validity for each.

Determine the Laurent series expansion of the 
function

f (z) = z2 sin

about the points

(a) z = 0 (b) z = ∞

(c) z = a, a finite non-zero complex number

(For (c), do not calculate the coefficients explicitly.)

Expand

f (z) = 

in a Laurent series expansion valid for

(a) | z | < 1 (b) 1 < | z | < 2 (c) | z | > 2

(d) | z − 1 | > 1 (e) 0 < | z − 2 | < 1

4.4.6 Exercises

44

f z( ) 1

z z 1–( )2
--------------------=

45

1
z
---

46

z
z 1–( ) 2 z–( )

--------------------------------
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If f (z) appears to be singular at z = z0, but it turns out to be possible to define a Taylor
series expansion there, then z = z0 is called a removable singularity. The following
examples illustrate these cases.

(a) f (z) = z−1 has a pole of order one, called a simple pole, at z = 0.

(b) f (z) = (z − 1)−3 has a pole of order three at z = 1.

(c) f (z) = e1/(z−j) has an essential singularity at z = j.

(d) The function

has a zero at z = 1, a simple pole at z = −2 and a pole of order two at z = 3. 

(e) The function

is not defined at z = 0, and appears to be singular there. However, defining

sinc z = 

gives a function having a Taylor series expansion

sinc z = 1 − 

that is regular at z = 0. Therefore the (apparent) singularity at z = 0 has been
removed, and thus f (z) = (sin z)/z has a removable singularity at z = 0.

Functions whose only singularities are poles are called meromorphic and, by and
large, in engineering applications of complex variables most functions are meromorphic.
To help familiarize the reader with these definitions, the following example should
prove instructive.

Find the singularities and zeros of the following complex functions:

(a) (b) 

(c) (d) 

Solution (a) For

f (z) = 

f z( ) z 1–
z 2+( ) z 3–( )2

-----------------------------------=

f z( ) zsin
z

-----------=

zsin( )/z z 0≠( )
1 z = 0( )




z2

3!
----- + 

z4

5!
----- − . . .

Example 4.22

1

z4 z2 1 j+( )– j+
--------------------------------------

z 1–
z4 z2 1 j+( )– j+
--------------------------------------

z 1–( )sin

z4 z2 1 j+( )– j+
--------------------------------------

1

z4 z2 1 j+( )– j+[ ]3
---------------------------------------------

1

z4 z2 1 j+( )– j+
--------------------------------------
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the numerator is never zero, and the denominator is only infinite when z is
infinite. Thus f (z) has no zeros in the finite z plane. The denominator is zero
when

z4 − z2(1 + j) + j = 0

which factorizes to give

(z2 − 1)(z2 − j) = 0

leading to

z2 = 1 or j

so that the singularities are at

z = +1, −1, (1 + j)/ , (−1 − j)/ (4.36)

all of which are simple poles since none of the roots are repeated.

(b) The function

f (z) = 

is similar to f(z) in (a), except that it has the additional term z − 1 in the numerator.
Therefore, at first glance, it seems that the singularities are as in (4.36). However, a
closer look indicates that f(z) can be rewritten as

and the factor z − 1 cancels, rendering z = 1 a removable singularity, and reducing
f (z) to

which has no (finite) zeros and z = −1, (1 + j) and (−1 − j) as simple poles.

(c) In the case of 

f (z) = 

the function may be rewritten as

f (z) = 

Now

 → 1 as z → 1

so once again z = 1 is a removable singularity. Also, as in (b), z = −1, (1 + j)
and (−1 − j) are simple poles and the only singularities. However,

sin(z − 1) = 0

2 2

z 1–
z4 z2 1 j+( )– j+
--------------------------------------

f z( ) z 1–
z 1–( ) z 1+( ) z 1

2
--- 1 j+( )+[ ] z 1

2
--- 1 j+( )–[ ]

---------------------------------------------------------------------------------------------------------=

f z( ) 1

z 1+( ) z 1
2
--- 1 j+( )+[ ] z 1

2
--- 1 j+( )–[ ]

-----------------------------------------------------------------------------------------=

1
2
---

1
2
---

z 1–( )sin

z4 z2 1 j+( )– j+
--------------------------------------

z 1–( )sin
z 1–

-----------------------
1

z 1+( ) z 1
2
--- 1 j+( )+[ ] z 1

2
--- 1 j+( )–[ ]

-----------------------------------------------------------------------------------------

z 1–( )sin
z 1–

-----------------------

1
2
---

1
2
---
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has the general solution z = 1 + Nπ (N = 0, ±1, ±2, . . . ). Thus, apart from N = 0,
all of these are zeros of f (z).

(d) For

f (z) = 

factorizing as in (b), we have

f (z) = 

so −1, +1, (1 + j) and (−1 − j) are still singularities, but this time they are
triply repeated. Hence they are all poles of order three. There are no zeros.

1

z4 z2 1 j+( )– j+[ ]3
---------------------------------------------

1

z 1–( )3 z 1+( )3
z 1

2
--- 1 j+( )+[ ]

3
z 1

2
--- 1 j+( )–[ ]

3
------------------------------------------------------------------------------------------------------------------

1
2
---

1
2
---

Determine the location of, and classify, the 
singularities and zeros of the following functions. 
Specify also any zeros that may exist.

(a) (b) (c) 

(d) coth z (e) (f ) ez/(1−z)

(g) (h) 

(i)

Expand each of the following functions in a Laurent 
series about z = 0, and give the type of singularity 
(if any) in each case:

(a)

(b)

(c) z−1 cosh z−1

(d) tan−1(z2 + 2z + 2)

Show that if f (z) is the ratio of two polynomials then 
it cannot have an essential singularity.

4.5.1 Exercises

47

zcos

z2
------------

1

z j+( )2 z j–( )
--------------------------------

z

z4 1–
-------------

zsin

z2 π2+
----------------

z 1–
z2 1+
-------------

z j+
z 2+( )3 z 3–( )

-----------------------------------

1

z2 z2 4z– 5+( )
-----------------------------------

48

1 zcos–
z

---------------------

ez 2

z3
-----

49
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Engineering application: analysing AC circuits
In the circuit shown in Figure 4.25 we wish to find the variation in impedance Z and
admittance Y as the capacitance C of the capacitor varies from 0 to ∞. Here

Writing

we clearly have

(4.37)

Equation (4.37) can be interpreted as a bilinear mapping with Z and C as the two variables.
We examine what happens to the real axis in the C plane (C varies from 0 to ∞ and, of
course, is real) under the inverse of the mapping given by (4.37). Rearranging (4.37),
we have

(4.38)

Taking Z = x + jy

(4.39)

Equating imaginary parts, and remembering that C is real, gives

0 = x2 + y2 − Rx (4.40)

which represents a circle, with centre at  and of radius R. Thus the real axis
in the C plane is mapped onto the circle given by (4.40) in the Z plane. Of course, C is
positive. If C = 0, (4.40) indicates that Z = R. The circuit of Figure 4.25 confirms
that the impedance is R in this case. If C → ∞ then Z → 0, so the positive real axis in
the plane is mapped onto either the upper or lower half of the circle. Equating real parts
in (4.39) gives

so C > 0 gives y < 0, implying that the lower half of the circle is the image in the Z
plane of the positive real axis in the C plane, as indicated in Figure 4.26. A diagram

4.6 Engineering application:

1
Z
--- 1

R
--- jω C Y,+ 1

Z
---= =

Figure 4.25
AC circuit of 
Section 4.6.

1
Z
--- 1 jω CR+

R
-----------------------=

Z
R

1 jω CR+
-----------------------=

C
R Z–
jωRZ
-------------=

C
R x– jy–

jωR x jy+( )
----------------------------- x jy R–+

ωR y jx–( )
--------------------------- x jy R–+( ) y jx+( )

ωR x2 y2+( )
-----------------------------------------------= = =

1
2

------R 0, 
  1

2
---

C
−y

ω x2 y2+( )
-------------------------=
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such as Figure 4.26 gives an immediate visual impression of how the impedance Z
varies as C varies.

The admittance Y = 1/Z is given by

which represents a linear mapping as shown in Figure 4.27.

Engineering application: use of harmonic functions
In this section we discuss two engineering applications where use is made of the
properties of harmonic functions.

4.7.1 A heat transfer problem

We saw in Section 4.3.2 that every analytic function generates a pair of harmonic
functions. The problem of finding a function that is harmonic in a specified region
and satisfies prescribed boundary conditions is one of the oldest and most important
problems in science-based engineering. Sometimes the solution can be found by
means of a conformal mapping defined by an analytic function. This, essentially, is a
consequence of the ‘function of a function’ rule of calculus, which implies that every
harmonic function of x and y transforms into a harmonic function of u and v under the
mapping

w = u + jv = f (x + jy) = f (z)

where f (z) is analytic. Furthermore, the level curves of the harmonic function in the
z plane are mapped onto corresponding level curves in the w plane, so that a harmonic

Figure 4.26 Mapping 
for the impedance Z.

Y
1
R
--- jωC+=

Figure 4.27 Mapping 
for the admittance Y.

4.7 Engineering application:
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function that has a constant value along part of the boundary of a region or has a zero
normal derivative along part of the boundary is mapped onto a harmonic function with
the same property in the w plane.

For heat transfer problems the level curves of the harmonic function correspond
to isotherms, and a zero normal derivative corresponds to thermal insulation. To
illustrate these ideas, consider the simple steady-state heat transfer problem shown
schematically in Figure 4.28. There is a cylindrical pipe with an offset cylindrical cavity
through which steam passes at 100 °C. The outer temperature of the pipe is 0 °C. The
radius of the inner circle is  of that of the outer circle, so by choosing the outer radius
as the unit of length the problem can be stated as that of finding a harmonic function
T(x, y) such that

in the region between the circles | z | = 1 and | z − 0.3 | = 0.3, and T = 0 on | z | = 1 and
T = 100 on | z − 0.3 | = 0.3.

The mapping

transforms the circle | z | = 1 onto the circle | w | = 1 and the circle |z − 0.3 | = 0.3 onto
the circle | w | = 3 as shown in Figure 4.29. Thus the problem is transformed into the
axially symmetric problem in the w plane of finding a harmonic function T(u, v) such
that T(u, v) = 100 on | w | = 1 and T(u, v) = 0 on | w | = 3. Harmonic functions with such
axial symmetry have the general form

T(u, v) = A ln (u2 + v2) + B

where A and B are constants.
Here we require, in addition to the axial symmetry, that T(u, v) = 100 on u2 + v2 = 1

and T(u, v) = 0 on u2 + v2 = 9. Thus B = 100 and A = −100 ln 9, and the solution on the
w plane is

T(u, v) = 

We need the solution on the z plane, which means in general we have to obtain u and v
in terms of x and y. Here, however, it is a little easier, since u2 + v2 = | w |2 and

Figure 4.28 
Schematic diagram of 
heat transfer problem.

3
10
------

∂ 2T

∂x2
-------- ∂2T

∂ y2
--------+ 0=

w
z 3–

3z 1–
--------------=

Figure 4.29
The mapping 
w = (z − 3)/(3z − 1).

100 1 u2 v2+( )ln–[ ]
9ln

-------------------------------------------------
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| w |2 = 

Thus

T(x, y) = {1 − ln [(x − 3)2 + y2] − ln [(3x − 1)2 + 9y2]}

4.7.2 Current in a field-effect transistor

The fields (Ex , Ey ) in an insulated-gate field-effect transistor are harmonic conjugates
that satisfy a nonlinear boundary condition. For the transistor shown schematically in
Figure 4.30 we have

with conditions

Ex = 0 on the electrodes

on the channel

Ey → as x → −∞ (0 < y < h)

Ey → as x → ∞ (0 < y < h)

where V0 is a constant with dimensions of potential, h is the insulator thickness, I is the
current in the channel, which is to be found, μ, ε0 and εr have their usual meanings, and
the gate potential Vg and the drain potential Vd are taken with respect to the source
potential.

The key to the solution of this problem is the observation that the nonlinear
boundary condition

contains the harmonic function (now of Ex and Ey)

H(Ex, Ey) = 2Ex

z 3–
3z 1–
--------------

2 z 3– 2

3z 1– 2
--------------------- x 3–( )2 y2+

3x 1–( )2 9y2+
------------------------------------= =

100
9ln

---------

Figure 4.30
(a) Schematic diagram 
for an insulated-gate 
field-effect transistor; 
(b) an appropriate 
coordinate system for 
the application.

∂Ey

∂ x
-------- ∂Ex

∂ y
--------,

∂Ey

∂ y
-------- −∂Ex

∂ x
------------==

Ex Ey

V0

h
-----+ 

  I
2με0ε r

----------------–=

−Vg

h
-----

Vd Vg–
h

-----------------

2Ex Ey

V0

h
-----+ 

  I
με0εr

------------–=

Ey

V0

h
-----+ 

 
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A harmonic conjugate of H is the function

G(Ex, Ey) =  − E 2
x

Since Ex and Ey are harmonic conjugates with respect to x and y, so are G and H. Thus
the problem may be restated as that of finding harmonic conjugates G and H such that

H = 0 on the electrodes

H = on the channel

G → as x → ∞ (0 < y < h)

G → as x → −∞ (0 < y < h)

Using the sequence of mappings shown in Figure 4.31, which may be composed into
the single formula

where a = ebL/2 and b = π/h, the problem is transformed into finding harmonic-conjugate
functions G and H (on the w plane) such that

H = 0 on v = 0 (u > 0) (4.41)

H = on v = 0 (u < 0) (4.42)

G = at w = ebL (4.43)

G = at w = 1 (4.44)

The conditions (4.41), (4.42) and (4.44) are sufficient to determine H and G completely 

Ey

V0

h
-----+ 

 
2

− I
με0εr

------------

V0 Vg–
h

----------------- 
 

2

V0 Vd Vg–+
h

----------------------------- 
 

2

w
a ebz a2–
a ebz 1–
---------------------=

− I
με0 ε r
-------------

V0 Vg–
h

----------------- 
 

2

V0 Vd Vg–+
h

----------------------------- 
 

2

H −I arg w( )
πμε0εr

--------------------=

G
I wln
πμε0εr

----------------- V0 Vd Vg–+
h

----------------------------- 
 

2

+=
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while the condition (4.43) determines the values of I

I = (2V0 − 2Vg + Vd)Vd

This example shows the power of complex variable methods for solving difficult
problems arising in engineering mathematics. The following exercises give some
simpler examples for the reader to investigate.

Figure 4.31
Sequence of mappings 
to simplify the 
problem.

με0εr

Lh
------------
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Show that the transformation w = 1/z, w = u + jv, 
z = x + jy, transforms the circle x2 + y2 = 2ax in the 
z plane into the straight line u = 1/2a in the w plane. 
Two long conducting wires of radius a are placed 
adjacent and parallel to each other, so that their 
cross-section appears as in Figure 4.32. The 
wires are separated at O by an insulating gap of 
negligible dimensions, and carry potentials ±V0 
as indicated. Find an expression for the potential 
at a general point (x, y) in the plane of the cross-
section and sketch the equipotentials. 

Find the images under the mapping

z = x + jy, of

(a) the points A(−1, 0), B(0, 1), C( ) and 
D( , 0) in the z plane,

(b) the straight line y = 0,
(c) the circle x2 + y2 = 1.

Illustrate your answer with a diagram showing the 
z and w planes and shade on the w plane the region 
corresponding to x2 + y2 < 1.

A semicircular disc of unit radius, [(x, y):
x2 + y2 < 1, y > 0], has its straight boundary at 
temperature 0 °C and its curved boundary at 100 °C. 
Prove that the temperature at the point (x, y) is

(a) Show that the function

G(x, y) = 2x(1 − y)

satisfies the Laplace equation and construct 
its harmonic conjugate H(x, y) that satisfies 
H(0, 0) = 0. Hence obtain, in terms of z, where 
z = x + jy, the function F such that W = F(z) 
where W = G + jH. 

(b) Show that under the mapping w = ln z, the 
harmonic function G(x, y) defined in (a) is 
mapped into the function

G(u, v) = 2eucos v − e2u sin 2v

Verify that G(u, v) is harmonic.

(c) Generalize the result (b) to prove that under 
the mapping w = f (z), where f ′(z) exists, a 
harmonic function of (x, y) is transformed 
into a harmonic function of (u, v).

Show that if w = (z + 3)/(z − 3), w = u + jv, 
z = x + jy, the circle u2 + v2 = k 2 in the w plane 
is the image of the circle

x2 + y2 + 6 x + 9 = 0 (k 2 ≠ 1)

in the z plane.
Two long cylindrical wires, each of radius 

4 mm, are placed parallel to each other with their 
axes 10 mm apart, so that their cross-section 
appears as in Figure 4.33. The wires carry potentials 
±V0 as shown. Show that the potential V(x, y) at the 
point (x, y) is given by

V = {ln [(x + 3)2 + y2] − ln [(x − 3)2 + y2]}

Find the image under the mapping

z = x + jy, w = u + jv, of

(a) the points A(1, 0), B(0, 1), C(0, −1) in the 
z plane,

(b) the straight line y = 0,
(c) the circle x2 + y2 = 1.

A circular plate of unit radius, [(x, y): x2 + y2 < 1], 
has one half (with y > 0) of its rim, x2 + y2 = 1, at 
temperature 0 °C and the other half (with y < 0) at 
temperature 100 °C. Using the above mapping, prove 
that the steady-state temperature at the point (x, y) is

4.7.3 Exercises

50

Figure 4.32 Conducting wires of Exercise 50.

51

w
z 1+
1 z–
-----------=

24
25
------ , 7

25
------

3
4
--

 

52

53

1 k2+
1 k2–
--------------

V0

4ln
---------

Figure 4.33 Cylindrical wires of Exercise 53.

54

w
j 1 z–( )

1 z+
------------------=

T
100
π

--------- 1 x2– y2–
2y

------------------------ 
 −1

tan=

T
200

π
--------- 2 y

1 x2– y2–
------------------------

 
 
 −1

tan=
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The problem shown schematically in 
Figure 4.34 arose during a steady-state heat 
transfer investigation. T is the temperature. 
By applying the successive mappings

, w = ln z1

show that the temperature at the point (x, y) in the 
shaded region in the figure is given by

T(x, y) = 

The functions

w = z + , w = 

perform the mappings shown in Figure 4.35. A long 
bar of semicircular cross-section has the temperature 
of the part of its curved surface corresponding to 
the arc PQ in Figure 4.36 kept at 100 °C while the 
rest of the surface is kept at 0 °C. Show that the 
temperature T at the point (x, y) is given by

T = [arg(z2 + z + 1) − arg(z2 − z + 1)]

 

55

Figure 4.34 Schematic representation of 
Exercise 55.

z1
z j4+
z j4–
-------------=

50

3ln
--------- x2 4 y+( )2+

x2 4 y–( )2+
-----------------------------ln

56

1
z
--- z 1+

z 1–
-----------

100
π

---------

Figure 4.35 Mappings of Exercise 56.

Figure 4.36 Cross-section of bar of Exercise 56.

Find the images of the following points under the 
mappings given:

(a) z = 1 + j under w = (1 + j)z + j

(b) z = 1 − j2 under w = j3z + j + 1

(c) z = 1 under w = (1 − j)z + (1 + j)

(d) z = j2 under w = (1 − j)z + (1 + j)

Under each of the mappings given in Review 
exercise 1, find the images in the w plane of the 
two straight lines 

(a) y = 2x

(b) x + y = 1

in the z plane, z = x + jy.

1

1
2
--- 1

2
---

1
2
--- 1

2
---

2

4.8 Review exercises (1–19)
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The linear mapping w = αz + β, where α and β are 
complex constants, maps the point z = 2 − j in the 
z plane to the point w = 1 in the w plane, and the 
point z = 0 to the point w = 3 + j.

(a) Determine α and β.
(b) Find the region in the w plane corresponding to 

the left half-plane Re(z) < 0 in the z plane.
(c) Find the region in the w plane corresponding to 

the circular region 5| z | < 1 in the z plane.
(d) Find the fixed point of the mapping.

Map the following straight lines from the 
z plane, z = x + jy, to the w plane under the 
inverse mapping w = j/z:

(a) x = y + 1
(b) y = 3x
(c) the line joining A(1 + j) to B(2 + j3) in the 

z plane 
(d) y = 4

In each case sketch the image curve.

Two complex variables w and z are related by the 
mapping

Sketch this mapping by finding the images 
in the w plane of the lines Re(z) = constant and 
Im(z) = constant. Find the fixed points of the 
mapping.

The mapping

takes points from the z plane to the w plane. Find 
the fixed points of the mapping, and show that the 
circle of radius r with centre at the origin in the 
z plane is transformed to the ellipse

in the w plane, where w = u + jv. Investigate what 
happens when r = 1.

Find the real and imaginary parts of the complex 
function w = z3, and verify the Cauchy–Riemann 
equations.

Find a function v(x, y) such that, given 

u(x, y) = x sin x cosh y − y cos x sinh y

f(z) = u + jv is an analytic function of z,  f (0) = 0.

Find the bilinear transformation that maps the three 
points z = 0, j and (1 + j) in the z plane to the 
three points w = ∞, −j and 1 − j respectively in the 
w plane. Check that the transformation will map 

(a) the lower half of the z plane onto the upper 
half of the w plane

(b) the interior of the circle with centre z = j  
and radius  in the z plane onto the half-plane 
Im(w) < −1 in the w plane.

Show that the mapping

z = ζ + 

where z = x + jy and ζ = R e jθ maps the circle 
R = constant in the ζ plane onto an ellipse in the 
z plane. Suggest a possible use for this mapping.

Find the power series representation of the 
function

in the disc | z | < 1. Deduce the power series for

valid in the same disc.

Find the first four non-zero terms of the Taylor 
series expansion of the following functions about 
the point indicated, and determine the radius of 
convergence of each:

(a) (z = 0) (b) (z = 1)

(c) (z = j)

Find the radius of convergence of each Taylor 
series expansion of the following function about the 
points indicated, without finding the series itself:

at the points z = 1, −1, 1 + j, 1 + j  and 2 + j3.

3

4

5

w
z 1+
z 1–
-----------=

6

w
1 z2–

z
-------------=

ur2

r2 1–
-------------

 
 
 

2

vr2

r2 1+
-------------

 
 
 

2

+ r2=

7

8

9
1
2
---

1
2
---

1
2
---

10

a2

4ζ
------

11

1

1 z3+
-------------

1

1 z3+( )2
--------------------

12

1 z–
1 z+
----------- 1

z2 1+
-------------

z
z 1+
-----------

13

f z( ) 1

z z2 1+( )
---------------------=

1
2
---
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Determine the Laurent series expansion of the 
function

about the points (a) z = 0 and (b) z = 1, and 
determine the region of validity of each.

Find the Laurent series expansion of the function

f (z) = ez sin

about (a) z = 0, (b) z = 1 and (c) z = ∞, indicating the 
range of validity in each case. (Do not find terms 
explicitly; indicate only the form of the principal 
part.)

Find the real and imaginary parts of the functions

(a) ez sinh z (b) cos 2z

(c) (d) tan z

Determine whether the following mappings are 
conformal, and, if not, find the non-conformal points:

(a) w = 

(b) w = 2z3 + 3z2 + 6(1 − j)z + 1

(c) w = 64z + 

Consider the mapping w = cos z. Determine the points 
where the mapping is not conformal. By finding the 
images in the w plane of the lines x = constant and 
y = constant in the z plane (z = x + jy), draw the 
mapping similarly to Figures 4.14 and 4.18.

Determine the location of and classify the 
singularities of the following functions:

(a) (b)

(c) (d) sech z

(e) sinh z (f ) sin (g) z z

14

f z( ) 1

z2 1+( )z
---------------------=

15

1
1 z–
----------- 
 

16

zsin
z

-----------

17

1

z2
----

1

z3
----

18

19

zsin

z2
----------- 1

z3 8–( )2
--------------------

z 1+
z4 1–
-------------

1
z
--- 

 





5 Laplace Transforms

 

Chapter 5 Contents

5.1 Introduction 316

5.2 Step and impulse functions 320

 5.3 Transfer functions 356

5.4 Solution of state-space equations 378

5.5 Engineering application: frequency response 390

5.6 Engineering application: pole placement 398

5.7 Review exercises (1–18) 401



316 LA PLACE TRANSFOR MS

Introduction
The Laplace transform was introduced in Chapter 11 of Modern Engineering Mathe-
matics (MEM), and a brief summary of that material serves to introduce further useful
properties and their applications to engineering. In most engineering applications it is
useful at the outset to think of the Laplace transform in terms of an input to a system
and the subsequent response, see Figure 5.1. 

5.1.1 Definition and notation
Definition 5.1:

It is an operator performed upon the function f(t) and the output is a function F(s) where

This relationship is depicted graphically in Figure 5.2.

5.1

Figure 5.1 Schematic 
representation of a 
system.

The Laplace transform of a function f(t) can be defined as

(5.1)

where the symbol + is the Laplace transform operator.

+ f t( ){ } = #
0

∞

e st– f t( ) dt

 (5.2)F s( ) #
0

∞

e st– f t( ) dt=

Figure 5.2
The Laplace transform 
operator.

The Heaviside step function is in fact where this chapter actually starts in earnest a
bit later with new applications; however, it is defined as

(5.3)H t( )
0 t 0,( )
1 t . 0( )




=
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and it is useful in representing any function f(t) as H(t)f(t) where f(t) is defined for all t
but, for practical applications, focus is on values t . 0, see Figure 5.3.

In MEM the two-sided Laplace transform is defined for the cases where the behaviour
of f(t) for t , 0 is of interest. Behaviour at t 5 0 is addressed later when impulses are
introduced. In MEM various elementary properties of the Laplace transform are
derived. A short list of the Laplace transforms of some elementary function is given
in the table below.

A more extensive one is available in specialist books (see, for example, Phil Dyke, An
Introduction to Laplace Transforms and Fourier Series, second edition, London,
Springer, 2014, or online).

Of course it is also important to know if the Laplace transform of a given function
actually exists, and this is assured as long as the following inequality is true: that there
exists a real number s and positive constants M and T such that

f(t) f(t)H(t)

ttO O

Figure 5.3
Graph of f(t) and 
its causal equivalent 
function.

F(s) f(t)

1

, n = 1, 2, . . .

ckt

cos(at)

sin(at)

c2kt cos(at)

c2kt sin(at)

1
s---

1
sn----

tn 1–

n 1–( )!
------------------

1
s k–
-----------

s

s2 a2+
---------------

a

s2 a2+
---------------

s

s k+( )2 a2+
-----------------------------

a

s k+( )2 a2+
-----------------------------

f t( ) , Meσt
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for all t . T. This is called f (t) being of exponential order. This means almost all rea-
sonable functions are included, but functions that grow faster than exponential such as

are excluded. Functions that have jumps are not excluded, see later, but of course
there cannot be gaps, that is values of t where f (t) is not defined.

The Laplace transform is linear, in other words + obeys the rule

+{af(t) 1bg(t)} 5 a+{f(t)} 1b+{g(t)}

This enables results to be combined, finding the Laplace transform of 2 sin 3t 1
3 cos 2t for example. Another useful property is the first shift theorem (MEM Theorem
11.2).

First shift theorem

This is a useful result as shown through the examples in MEM.

5.1.2 Other results from MEM
Treating the Laplace transform as a mapping from the t domain to the s domain, one
needs to consider the reverse mapping from the s domain to the t domain. The formal
process involves complex variable theory and is too technical (but again see specialist
books such as that by Phil Dyke referred to above), so in these two texts the process is
to use tables either in the old fashioned way, or to use MATLAB or MAPLE to help
with the details. This is covered in MEM.

One of the useful applications of Laplace transforms is to the solution of differential
equations, so taking the Laplace transform of a derivative is required. Here is a useful
result:

Straight away it is apparent that the process of using the Laplace transform operator
eliminates the derivative. In MEM this result is proved using integration by parts to
integrate out the derivative. The Laplace transform of the second derivative uses inte-
gration by parts twice and the result is

where the dash denotes differentiation with respect to t. These results can be applied
to solving both single-variable differential equations and simultaneous differential
equations. The application to the solution of partial differential equations is covered in
Section 9.3.3.

et
2

Theorem 5.1

If f (t) is a function having Laplace transform F(s), with Re(s) . sc then the function
eat f (t) has a Laplace transform given by

+{cat f (t)} 5 F(s 2 a) Re(s) . σc 1 Re(a)

end of theorem

+ 
df
dt
-----

 
 
 

sF s( ) f 0( )–=

+ 
d2f

dt2
-------

 
 
 

s2F s( ) sf 0( )– f ′ 0( )–=
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Another result, perhaps not quite so useful, is the Laplace transform of an integral:

One of the most important applications to the solution of either single or simultaneous
differential equations is the detection of resonance and other vibrations in either elec-
trical or mechanical systems, and there is a lot of space devoted to this in MEM. This
brings us up to speed and we are now ready to embark on new results and applications
of the very powerful Laplace transform. We start with more about the step function.

(Section 5.2 follows on the next page)

+ #
0

t

f t( )dt
 
 
  1

s
---F s( )=
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Step and impulse functions

5.2.1 The Heaviside step function

In Sections 11.3.3 and 11.3.5 of MEM we considered linear differential equations in
which the forcing functions were continuous. In many engineering applications the
forcing function may frequently be discontinuous, for example a square wave result-
ing from an on/off switch. In order to accommodate such discontinuous functions, we
use the Heaviside unit step function H(t), which, as we saw in Section 5.2.1, or in
section 11.2.1 of MEM, is defined by

 

and is illustrated graphically in Figure 5.4(a). The Heaviside function is also frequently
referred to simply as the unit step function. A function representing a unit step at t = a
may be obtained by a horizontal translation of duration a. This is depicted graphically
in Figure 5.4(b), and defined by

The product function f(t)H(t − a) takes values

so the function H(t − a) may be interpreted as a device for ‘switching on’ the function
f (t) at t = a. In this way the unit step function may be used to write a concise
formulation of piecewise-continuous functions. To illustrate this, consider the
piecewise-continuous function f (t) illustrated in Figure 5.5 and defined by 

5.2

H t( )
0 t , 0( )
1 t > 0( )




=

H t a–( )
0 t , a( )
1 t > a( )




=  
 

Figure 5.4
Heaviside unit 
step function.

f t( )H t a–( )
0 t , a( )
f t( ) t > a( )




=

Figure 5.5
Piecewise-continuous 
function.



5.2  STEP AND IMPULSE FUNCTIONS 321

To construct this function f (t), we could use the following ‘switching’ operations:

(a) switch on the function f1(t) at t = 0;
(b) switch on the function f2(t) at t = t1 and at the same time switch off the function

f1(t);
(c) switch on the function f3(t) at t = t2 and at the same time switch off the function

f2(t).

In terms of the unit step function, the function f (t) may thus be expressed as

f (t) = f1(t)H(t) + [ f2(t) − f1(t)]H(t − t1) + [ f3(t) − f2(t)]H(t − t2)

Alternatively, f (t) may be constructed using the top hat function H(t − a) − H(t − b).
Clearly,

(5.4)

which, as illustrated in Figure 5.6, gives

Using this approach, the function f (t) of Figure 5.5 may be expressed as

f (t) = f1(t)[H(t) − H(t − t1)] + f2(t)[H(t − t1) − H(t − t2)] + f3(t)H(t − t2)

giving, as before,

f (t) = f1(t)H(t) + [ f2(t) − f1(t)]H(t − t1) + [ f3(t) − f2(t)]H(t − t2)

It is easily checked that this corresponds to the given formulation, since for 0 < t < t1

H(t) = 1, H(t − t1) = H(t − t2) = 0

giving

f (t) = f1(t) (0 < t < t1)

while for t1 < t < t2

H(t) = H(t − t1) = 1, H(t − t2) = 0

giving

f (t) = f1(t) + [ f2(t) − f1(t)] = f2(t) (t1 < t < t2)

f t( )
f1 t( ) 0 < t , t1( )
f2 t( ) t1 < t , t2( )
f3 t( ) t > t2( )






=
 

 

 

H t a–( ) H t b–( )–
1 a < t , b( )
0 otherwise




=
 

f t( ) H t a–( ) H t b–( )–[ ]
f t( ) a < t , b( )
0 otherwise




=

Figure 5.6
Top hat function.
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and finally for t > t2

H(t) = H(t − t1) = H(t − t2) = 1

giving

f (t) = f1(t) + [ f2(t) − f1(t)] + [ f3(t) − f2(t)] = f3(t) (t > t2)

Express in terms of unit step functions the piecewise-continuous causal function

Solution f (t) is depicted graphically in Figure 5.7, and in terms of unit step functions it may be
expressed as

f (t) = 2t 2H(t) + (t + 4 − 2t 2)H(t − 3) + (9 − t − 4)H(t − 5)

That is,

f (t) = 2t 2H(t) + (4 + t − 2t 2)H(t − 3) + (5 − t)H(t − 5)

Express in terms of unit step functions the piecewise-continuous causal function

Solution f (t) is depicted graphically in Figure 5.8, and in terms of unit step functions it may be
expressed as

f (t) = 1H(t − 1) + (3 − 1)H(t − 3) + (2 − 3)H(t − 5) + (0 − 2)H(t − 6)

That is,

f (t) = 1H(t − 1) + 2H(t − 3) − 1H(t − 5) − 2H(t − 6)

Example 5.1

Figure 5.7
Piecewise-continuous 
function of 
Example 5.1.

f t( )
2t2 0 < t , 3( )
t 4+ 3 < t , 5( )
9 t > 5( )






=

 

Example 5.2

f t( )

0 t , 1( )
1 1 < t , 3( )
3 3 < t , 5( )
2 5 < t , 6( )
0 t > 6( )










=
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5.2.2 Laplace transform of unit step function
By definition of the Laplace transform, the transform of H(t − a), a > 0, is given by

 

That is,

and in the particular case of a = 0

Figure 5.8
Piecewise-continuous 
function of 
Example 5.2.

(5.5)

+ H t a–( ){ } #
0

∞

H t a–( ) e st– dt #
0

a

0 e st– dt #
a

∞

1 e st– dt+==

e st–

s–
-------

a

∞

= e as–

s
--------=

+ H t a–( ){ } e as–

s
-------- a 0( )= > 

(5.6)+ H t( ){ } 1
s
---=

This may be implemented in MATLAB using the commands

syms s t
H=sym(ʻHeaviside(t)’)
laplace(H)

which return

ans=1/s

It may also be obtained directly using the command

laplace(sym(ʻHeaviside(t)ʼ))
Likewise to obtain the Laplace transform of H(t-2) we use the commands

H2=sym(ʻHeaviside(t-2)’)
laplace(H2)
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Determine the Laplace transform of the rectangular pulse

Solution The pulse is depicted graphically in Figure 5.9. In terms of unit step functions, it may
be expressed, using the top hat function, as

f (t) = K [H(t − a) − H(t − b)]

Then, taking Laplace transforms,

+{ f (t)} = K+{H(t − a)} − K+{H(t − b)}

which, on using the elementary properties of the Laplace transform, specifically (11.23)
in MEM, gives

That is,

Determine the Laplace transform of the piecewise-constant function f (t) shown in
Figure 5.8.

Solution From Example 5.2 f (t) may be expressed as

f (t) = 1H(t − 1) + 2H(t − 3) − 1H(t − 5) − 2H(t − 6)

Taking Laplace transforms,

+{ f (t)} = 1+{H(t − 1)} + 2+{H(t − 3)} − 1+{H(t − 5)} − 2+{H(t − 6)}

which, on using the result (5.5), gives

That is,

which return

ans=exp(-2*s)/s

In MAPLE the results are obtained using the commands:

with(inttrans):
laplace(Heaviside(t),t,s);
laplace(Heaviside(t-2),t,s);

Example 5.3

f t( )
0 t , a( )
K a < t , b( ) K constant, b . a . 0

0 t > b( )





=
 

 

Figure 5.9
Rectangular pulse.

+ f t( ){ } K
e as–

s
-------- K

e bs–

s
--------–=

+ f t( ){ } K
s
---- e as– e bs––( )=

Example 5.4

+ f t( ){ } e s–

s
------ 2

e 3s–

s
-------- e 5s–

s
-------- 2

e 6s–

s
--------––+=

+ f t( ){ } 1
s
--- e s– 2 e 3s– e 5s– 2 e 6s–––+( )=
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5.2.3 The second shift theorem
This theorem is dual to the first shift theorem given as Theorem 5.1, and is sometimes
referred to as the Heaviside or delay theorem.

Proof By definition,

Making the substitution T = t − a,

Since  it follows that

+{ f (t − a)H(t − a)} = e−asF(s)

Check that the same answer is obtained using the MATLAB sequence of commands

symsst
H1=sym(ʻHeaviside(t-1)ʼ);
H3=sym(ʻHeaviside(t-3)ʼ);
H5=sym(ʻHeaviside(t-5)ʼ);
H6=sym(ʻHeaviside(t-6)ʼ);
laplace(H1-2*H3-H5-2*H6)

In MAPLE the commands

with(inttrans):
laplace(Heaviside(t-1)+Heaviside(t-3)*2 - Heaviside(t-5) 

- Heaviside(t-6)*2,t,s);

return the answer 

e s–( ) 2e 3s–( )  – e 5s–( ) – 2e 6s–( )+
s

-----------------------------------------------------------------------------

If +{ f (t)} = F(s) then for a positive constant a

+{ f (t − a)H(t − a)} = e−asF(s)

Theorem 5.2

+ f t a–( )H t a–( ){ } #
0

∞

f t a–( )H t a–( ) e st– dt=

#
a

∞

= f t a–( ) e st– dt

+ f t a–( )H t a–( ){ } #
0

∞

f T( ) e s T+a( )– dT=

e sa– #
0

∞

= f T( ) e sT– dT

F s( ) + f t( ){ } #
0

∞

f T( ) e sT– ,==

end of theorem
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It is important to distinguish between the two functions f (t)H(t − a) and f (t − a)H(t − a).
As we saw earlier, f (t)H(t − a) simply indicates that the function f (t) is ‘switched on’
at time t = a, so that

On the other hand, f (t − a)H(t − a) represents a translation of the function f (t) by a units
to the right (to the right, since a > 0), so that 

The difference between the two is illustrated graphically in Figure 5.10. f (t − a)H(t − a)
may be interpreted as representing the function f (t) delayed in time by a units. Thus, when
considering its Laplace transform e−asF(s), where F(s) denotes the Laplace transform of
f (t), the component e−as

 may be interpreted as a delay operator on the transform F(s),
indicating that the response of the system characterized by F(s) will be delayed in time
by a units. Since many practically important systems have some form of delay inherent
in their behaviour, it is clear that the result of this theorem is very useful.

Determine the Laplace transform of the causal function f (t) defined by

Solution f (t) is illustrated graphically in Figure 5.11, and is seen to characterize a sawtooth pulse
of duration b. In terms of unit step functions,

f (t) = tH(t) − tH(t − b)

In order to apply the second shift theorem, each term must be rearranged to be of the
form f (t − a)H(t − a); that is, the time argument t − a of the function must be the same
as that of the associated step function. In this particular example this gives

f (t) = tH(t) − (t − b)H(t − b) − bH(t − b)

Taking Laplace transforms,

+{ f (t)} = +{tH(t)} − +{(t − b)H(t − b)} − b+{H(t − b)}

f t( )H t a–( )
0 t , a( )
f t( ) t > a( )




=

f t a–( )H t a–( )
0 t , a( )
f t a–( ) t > a( )




=

Figure 5.10 Illustration of f (t − a)H(t − a).

Example 5.5

f t( )
t 0 < t , b( )
0 t > b( )




=

Figure 5.11
Sawtooth pulse.
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which, on using the second shift theorem, Theorem 5.2, leads to

giving

It should be noted that this result could have been obtained without the use of the
second shift theorem, since, directly from the definition of the Laplace transform,

as before.

Obtain the Laplace transform of the piecewise-continuous causal function

considered in Example 5.1.

Solution In Example 5.1 we saw that f (t) may be expressed in terms of unit step functions as

f (t) = 2t 2H(t) − (2t 2 − t − 4)H(t − 3) − (t − 5)H(t − 5)

Before we can find +{ f (t)}, the function 2t 2 − t − 4 must be expressed as a function of
t − 3. This may be readily achieved as follows. Let z = t − 3. Then

2t 2 − t − 4 = 2(z + 3)2 − (z + 3) − 4

= 2z2 + 11z + 11

= 2(t − 3)2 + 11(t − 3) + 11

Hence

f (t) = 2t 2H(t) − [2(t − 3)2 + 11(t − 3) + 11]H(t − 3) − (t − 5)H(t − 5)

Taking Laplace transforms,

+{ f (t)} = 2+{t 2H(t)} − +{[2(t − 3)2 + 11(t − 3) + 11]H(t − 3)}

− +{(t − 5)H(t − 5)}

+ f t( ){ } 1

s2
---- e bs–

+ t( )– b
e bs–

s
--------  1

s2
---- e bs–

s2
--------– b

e bs–

s
--------–=–=

+ f t( ){ } 1

s 2
---- 1 e bs––( ) b

s
--- e bs––=

+ f t( ){ } #
0

∞

f t( ) e st– dt #
0

b

t e st– dt #
b

∞

0 e st– dt+==

t e st–

s
----------–

0

b

#
0

b
e st–

s
-------dt 

t e st–

s
----------– e st–

s2
-------–

0

b

=+=

b e sb–

s
------------– e sb–

s2
--------–

 
 
  1

s2
----–

 
 
 –= 1

s2
---- 1 e bs––( ) b

s
---e bs––=

Example 5.6

f t( )
2t2 0 < t , 3( )
t 4 3 < t , 5( )+
9 t > 5( )






=



328 LA PLACE TRANSFOR MS

which, on using Theorem 5.2, leads to

Again this result could have been obtained directly from the definition of the Laplace
transform, but in this case the required integration by parts is a little more tedious.

5.2.4 Inversion using the second shift theorem

We have seen in Examples 5.3 and 5.4 that, to obtain the Laplace transforms of piece-
wise-continuous functions, use of the second shift theorem could be avoided, since it is
possible to obtain such transforms directly from the definition of the Laplace transform.

In practice, the importance of the theorem lies in determining inverse transforms,
since, as indicated earlier, delays are inherent in most practical systems and engineers
are interested in knowing how these influence the system response. Consequently, by
far the most useful form of the second shift theorem is

Comparing (5.7) with the result (11.11) (see p. 918 of MEM), namely

+ −1{F(s)} = f (t)H(t)

we see that

+ −1{e−asF(s)} = [ f (t  − a)H(t  − a)] with t − a instead of t

Having set up s and t as symbolic variables and specified H, H1 and H5 then the
MATLAB commands

laplace(2*t^2*H-(2*t^2-t-4)*H3-(t-5)*H5);
pretty(ans)

generate

ans= 4/s3-11exp(-3s)/s-11exp(-3s)/s2-4exp(-3s)/s3-exp(-5s)/s2

In MAPLE the commands

with(inttrans):
laplace(Heaviside(t)*2*t^2 - Heaviside(t-3)*(2*t^2-t-4) 

- Heaviside(t-5)*(t-5),t,s);

return the answer

+ f t( ){ } 2
2

s3
---- e 3s– + 2t2 11t 11+ +{ }–= e 5s– + t{ }–

4

s3
---- e 3s– 4

s3
---- 11

s2
------ 11

s
------+ +

 
 
  e 5s–

s2
--------––=

e 5s–( )

s2
-------------– 4 – e 3s–( ) 11s2 11s 4+ +( )

s3
------------------------------------------------------------------------+

+ −1{e−asF(s)} = f (t − a)H(t − a) (5.7)
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indicating that the response f (t) has been delayed in time by a units. This is why the
theorem is sometimes called the delay theorem.

Determine 

Solution This may be written as + −1{e−4sF (s)}, where

First we obtain the inverse transform f (t) of F(s). Resolving into partial fractions,

which, on inversion, gives

f (t) = 2 − 2 e−2t

a graph of which is shown in Figure 5.12(a). Then, using (5.7), we have

 

= (2 − 2e−2(t−4))H(t − 4)

giving

which is plotted in Figure 5.12(b). 

This is readily implemented in MATLAB using the command ilaplace.

Example 5.7 + 1– 4 e 4s–

s s 2+( )
-------------------

 
 
 

.

Using MATLAB confirm that the commands

ilaplace(4*exp(-4*s)/(s*(s+2)));
pretty(ans)

generate the answer

2H(t-4)(1-exp(-2t+8))

The same answer is obtained in MAPLE using the commands

with(inttrans):
invlaplace(4*exp(-4*s)/(s*(s+2)),s,t);

F s( ) 4
s s 2+( )
-------------------=

F s( ) 2
s
--- 2

s 2+
-----------–=

+ 1– e 4s– 4
s s 2+( )
-------------------

 
 
 

+ 1– e 4s– F s( ){ } f t 4–( )H t 4–( )= =

+
1– 4 e 4s–

s s 2+( )
-------------------

 
 
  0 t , 4( )

2 1 e 2 t −4( )––( ) t > 4( )



=
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Determine 

Solution This may be written as + −1{e−sπF(s)}, where

Resolving into partial fractions,

which, on inversion, gives

f (t) = 3 − 3 cos t + sin t

a graph of which is shown in Figure 5.13(a). Then, using (5.7), we have

= [3 − 3 cos (t − π) + sin (t − π)]H(t − π)

= (3 + 3 cos t − sin t)H(t − π)

Figure 5.12 Inverse 
transforms of 
Example 5.7.

Example 5.8 + 1– e sπ– s 3+( )
s s2 1+( )

-------------------------
 
 
 

.

F s( ) s 3+
s s2 1+( )
---------------------=

F s( ) 3

s
--- 3s
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giving

which is plotted in Figure 5.13(b). 

5.2.5 Differential equations

We now return to the solution of linear differential equations for which the forcing
function f (t) is piecewise-continuous, like that illustrated in Figure 5.5. One approach
to solving a differential equation having such a forcing function is to solve
it separately for each of the continuous components f1(t), f2(t), and so on, comprising
f (t), using the fact that in this equation all the derivatives, except the highest, must
remain continuous so that values at the point of discontinuity provide the
initial conditions for the next section. This approach is obviously rather tedious, and
a much more direct one is to make use of Heaviside step functions to specify f (t). Then
the method of solution follows that used in Section 11.3 of MEM and we shall simply
illustrate it by examples.

+ 1– e sπ– s 3+( )
s s2 1+( )

-------------------------
 
 
  0 t , π( )

3 3 t tsin–cos t > π( )+



=

Figure 5.13 Inverse transforms of Example 5.8.
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Obtain the solution x(t), t > 0, of the differential equation

(5.8)

where f (t) is the pulse function

and subject to the initial conditions x(0) = 0 and x·(0) = 2.

Solution To illustrate the advantage of using a step function formulation of the forcing function
f (t), we shall first solve separately for each of the time ranges.

Method 1 For 0 < t < 6, (5.8) becomes

with x(0) = 0 and x·(0) = 2.
Taking Laplace transforms gives

(s2 + 5s + 6)X(s) = sx(0) + x·(0) + 5x(0) +  = 2 + 

That is,

which, on inversion, gives

We now determine the values of x(6) and x· (6) in order to provide the initial conditions
for the next stage:

x·(6) = −e−12 + 3 e−18 = β

For t > 6 we make the change of independent variable T = t − 6, whence (5.8) becomes

subject to x(T = 0) = α and x·(T = 0) = β.
Taking Laplace transforms gives

(s2 + 5s + 6)X(s) = sx(T = 0) + x·(T = 0) + 5x(T = 0) = αs + 5α + β

That is,

Example 5.9
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s
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--------------------------------- β 3α+
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which, on taking inverse transforms, gives

x(T ) = ( β + 3α)e−2T − ( β + 2α)e−3T

Substituting the values of α and β and reverting to the independent variable t gives

x(t) =  + e−2(t−6) − (1 + e−18) e−3(t−6) (t > 6)

That is,

x(t) =  + (t > 6)

Thus the solution of the differential equation is

The forcing function f (t) and response x(t) are shown in Figures 5.14(a) and (b)
respectively.

Method 2 In terms of Heaviside step functions,

f (t) = 3H(t) − 3H(t − 6)

so that, using (5.5),

Taking Laplace transforms in (5.8) then gives

(s2 + 5s + 6)X(s) = sx(0) + x·(0) + 5x(0) + +{ f (t)} 

That is,

Taking inverse Laplace transforms and using the result (5.7) gives

x(t) = − H(t − 6)
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Figure 5.14
Forcing function 
and response of 
Example 5.9.
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which is the required solution. This corresponds to that obtained in Method 1, since,
using the definition of H(t − 6), it may be written as

This approach is clearly less tedious, since the initial conditions at the discontinuities
are automatically taken account of in the solution.

Determine the solution x(t), t > 0, of the differential equation

(5.9)

where

and subject to the initial conditions x(0) = 0 and x·(0) = 3.

Solution Following the procedures of Example 5.5, we have

f (t) = tH(t) − tH(t − π)

= tH(t) − (t − π)H(t − π) − πH(t − π)

so that, using Theorem 5.2,

It seems that the standard dsolve command is unable to deal with differential
equations having such Heaviside functions as their forcing function. To resolve this
problem use can be made of the maple command in MATLAB, which lets us access
MAPLE commands directly. Confirm that the following commands produce the
correct solution:

maple(ʻde:=diff(x(t),t$2)+5*diff(x(t),t)+6*x(t)
=3*Heaviside-3*Heaviside(t-6);’)

ans=
de := diff(x(t),ʻ$ʼ(t,2))+5*diff(x(t),t)+6*x(t)

= 3*Heaviside-3*Heaviside(t-6)
maple(ʻdsolve({de,x(0)=0,D(x)(0)=2},x(t)),method=laplace;ʼ)

In MAPLE the answer may be obtained directly using the commands

with(inttrans):
de:=diff(x(t),t$2)+5*diff(x(t),t)+6*x(t) 

-3*Heaviside-3*Heaviside(t-6);
dsolve({de,x(0)=0,D(x)(0)=2},x(t)),method=laplace;
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Taking Laplace transforms in (5.9) then gives

(s2 + 2s + 5)X(s) = sx(0) + x·(0) + 2x(0) + +{ f (t)}

using the given initial conditions.
Thus

which, on resolving into partial fractions, leads to

Taking inverse Laplace transforms and using (5.7) gives the desired solution:

x(t) = (−2 + 5t + 2 e−t cos 2t + 36 e−t sin 2t)

− [(5π − 2) + 5(t − π) − (5π − 2) e−(t−π) cos 2(t − π)

− (5π + 3) e−(t−π) sin 2(t − π)]H(t − π)

That is,

x(t) = [5t − 2 + 2 e−t(cos 2t + 18 sin 2t)]

− {5t − 2 − eπ e−t [(5π − 2) cos 2t + (5π + 3) sin 2t]}H (t − π)

or, in alternative form,

5.2.6 Periodic functions

We have already determined the Laplace transforms of periodic functions, such
as sin ω t and cos ω t, which are smooth (differentiable) continuous functions. In many
engineering applications, however, one frequently encounters periodic functions that
exhibit discontinuous behaviour. Examples of typical periodic functions of practical
importance are shown in Figure 5.15.

Such periodic functions may be represented as infinite series of terms involving step
functions; once expressed in such a form, the result (5.5) may then be used to obtain
their Laplace transforms. 
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Obtain the Laplace transform of the square wave illustrated in Figure 5.15(a).

Solution In terms of step functions, the square wave may be expressed in the form

f (t) = KH(t) − 2KH  + 2KH(t − T ) − 2KH  + 2KH(t − 2T ) + . . .

= K[H(t) − 2H  + 2H(t − T ) − 2H  + 2H(t − 2T ) + . . . ]

Taking Laplace transforms and using the result (5.5) gives

Figure 5.15
Typical practically 
important periodic 
functions: (a) square 
wave; (b) sawtooth 
wave; (c) repeated 
pulse wave; (d) half-
wave rectifier.

Example 5.11

t 1
2

---------T– 
  t 3

2
---------T– 

 

t 1
2

---------T– 
  t 3

2
---------T– 

 

+ f t( ){ } F s( ) K
1
s
--- 2

s
--- e sT/2–– 2

s
--- e sT– 2

s
--- e 3sT/2–– 2

s
--- e 2sT–  + . . . + + 

 = =

2K
s

------- 1 e sT /2– e sT/2–( )2
e sT/2–( )3– e sT/2–( )4

 − . . .  + +–[ ] K
s
----–=



5.2  STEP AND IMPULSE FUNCTIONS 337

The series inside the square brackets is an infinite geometric progression with first
term 1 and common ratio −e−sT/2, and therefore has sum (1 + e−sT/2)−1. Thus,

That is,

The approach used in Example 5.11 may be used to prove the following theorem, which
provides an explicit expression for the Laplace transform of a periodic function.

Proof If, as illustrated in Figure 5.16, the periodic function f (t) is piecewise-continuous over
an interval of length T, then its Laplace transform exists and can be expressed as a series
of integrals over successive periods; that is,

If in successive integrals we make the substitutions

t = τ + nT (n = 0, 1, 2, 3, . . . )

then

F s( ) 2K
s

------- 1

1 e sT/2–+
--------------------- K

s
----– K

s
---- 1 e sT/2––

1 e sT/2–+
---------------------= =

+ f t( ){ } F s( ) K
s
---- 1

4
--- sTtanh= =

If f (t), defined for all positive t, is a periodic function with period T, that is
f (t + nT ) = f (t) for all integers n, then

Theorem 5.3
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Figure 5.16
Periodic function 
having period T.
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Since f (t) is periodic with period T,

f (τ + nT ) = f (t) (n = 0, 1, 2, 3, . . . )

so that

The series ∞
n=0 e−snT = 1 + e−sT + e−2sT + e−3sT + . . . is an infinite geometric progression

with first term 1 and common ratio e−sT. Its sum is given by (1 − e−sT)−1, so that

Since, within the integral, τ is a ‘dummy’ variable, it may be replaced by t to give the
desired result.

We note that, in terms of the Heaviside step function, Theorem 5.3 may be stated as
follows:

This formulation follows since f (t) is periodic and f1(t) = 0 for t > T. For the periodic
function f (t) shown in Figure 5.16 the corresponding function f1(t) is shown in
Figure 5.17. We shall see from the following examples that this formulation simplifies
the process of obtaining Laplace transforms of periodic functions.

Confirm the result obtained in Example 5.11 using Theorem 5.3.

Solution For the square wave f (t) illustrated in Figure 5.15(a), f (t) is defined over the period
0 < t < T by

Hence we can write f1(t) = K [H(t) − 2H(t − T ) + H(t − T )], and thus
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end of theorem

If f (t), defined for all positive t, is a periodic function with period T and

f1(t) = f (t)(H(t) − H(t − T ))

then

+{ f (t)} = (1 − e−sT )−1+{ f1(t)}

Figure 5.17
Plot of periodic 
function within one 
period.
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Using the result of Theorem 5.3,

confirming the result obtained in Example 5.11.

Determine the Laplace transform of the rectified half-wave defined by

f (t + 2nπ/ω) = f (t) for all integers n

Solution f (t) is illustrated in Figure 5.15(d), with T = 2π/ω. We can express f1(t) as 

f1(t) = sin ω t [H(t) − H(t − π/ω)]

= sin ω tH(t) + sinω (t − π/ω)H(t − π/ω)

So

Then, by the result of Theorem 5.3,
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Check your answers using MATLAB or MAPLE whenever possible.

A function f (t) is defined by

Express f(t ) in terms of Heaviside unit step 
functions and show that

Express in terms of Heaviside unit step functions the 
following piecewise-continuous causal functions. In 
each case obtain the Laplace transform of the 
function.

Obtain the inverse Laplace transforms of the 
following:

(b)
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(c) (d)

(e) (f )

Given that x = 0 when t = 0, obtain the solution of 
the differential equation

 

where f(t ) is the function defined in Exercise 1. 
Sketch a graph of the solution.

Given that x = 1 and dx /dt = 0, obtain the solution 
of the differential equation

where g(t ) is the piecewise-continuous function 
defined in Exercise 2(b).

Show that the function

may be expressed in the form f (t) = cos (t − π) 
H(t − π), where H(t ) is the Heaviside unit step 
function. Hence solve the differential equation

where f(t ) is given above, and x = 1 and 
dx/dt = −1 when t = 0.

Express the function

in terms of Heaviside unit step functions and obtain 
its Laplace transform. Obtain the response of the 
harmonic oscillator

x·· + x = f (t )

to such a forcing function, given that x = 1 and 
dx/dt = 0 when t = 0.

The response θo(t) of a system to a forcing function 
θi(t ) is determined by the second-order differential 
equation

θ··o + 6θ·o + 10θo = θi (t > 0)

Suppose that θi(t) is a constant stimulus applied for 
a limited period and characterized by

Determine the response of the system at time t 
given that the system was initially in a quiescent 
state. Show that the transient response at time 
T (> a) is

e−3T{cos T + 3 sin T − e3a[cos (T − a)

+ 3 sin (T − a)]}

The input θi(t ) and output θo(t ) of a servomechanism
are related by the differential equation

θ··o + 8θ·o + 16θo = θi (t > 0)

and initially θo(0) = θ·o(0) = 0. For θi = f (t), where

Show that

and hence obtain an expression for the response of 
the system at time t.

During the time interval t1 to t2, a constant 
electromotive force e0 acts on the series RC circuit 
shown in Figure 5.18. Assuming that the circuit is 
initially in a quiescent state, show that the current 
in the circuit at time t is

Sketch this as a function of time.

A periodic function f (t ), with period 4 units, is 
defined within the interval 0 < t , 4 by

Sketch a graph of the function for 0 < t , 12 and 
obtain its Laplace transform.

Obtain the Laplace transform of the periodic 
sawtooth wave with period T, illustrated in 
Figure 5.15(b).
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Figure 5.18 Circuit of Exercise 10.
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5.2.8 The impulse function

Suppose a hammer is used to strike a nail then the hammer will be in contact with the
nail for a very short period of time, indeed almost instantaneously. A similar situation
arises when a golfer strikes a golf ball. In both cases the force applied, during this short
period of time, builds up rapidly to a large value and then rapidly decreases to zero.
Such short sharp forces are known as impulsive forces and are of interest in many
engineering applications. In practice it is not the duration of contact that is important
but the momentum transmitted, this being proportional to the time integral of the force
applied. Mathematically such forcing functions are represented by the impulse function.
To develop a mathematical formulation of the impulse function and obtain some insight
into its physical interpretation, consider the pulse function φ(t) defined by

and illustrated in Figure 5.19(a). Since the height of the pulse is A/T and its duration (or
width) is T, the area under the pulse is A; that is,

If we now consider the limiting process in which the duration of the pulse approaches
zero, in such a way that the area under the pulse remains A, then we obtain a
formulation of the impulse function of magnitude A occurring at time t = a. It is
important to appreciate that the magnitude of the impulse function is measured by
its area.

The impulse function whose magnitude is unity is called the unit impulse function
or Dirac delta function (or simply delta function). The unit impulse occurring at
t = a is the limiting case of the pulse φ(t) of Figure 5.19(a) with A having the value unity.
It is denoted by δ(t − a) and has the properties

δ (t − a) = 0 (t ≠ a)

Likewise, an impulse function of magnitude A occurring at t = a is denoted by Aδ (t − a)
and may be represented diagrammatically as in Figure 5.19(b).

An impulse function is not a function in the usual sense, but is an example of a class
of what are called generalized functions, which may be analysed using the theory of
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Figure 5.19
Impulse function.
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generalized calculus. (It may also be regarded mathematically as a distribution and
investigated using the theory of distributions.) However, its properties are such that,
used with care, it can lead to results that have physical or practical significance and
which in many cases cannot be obtained by any other method. In this context it provides
engineers with an important mathematical tool. Although, clearly, an impulse function
is not physically realizable, it follows from the above formulation that physical signals
can be produced that closely approximate it.

We noted that the magnitude of the impulse function is determined by the area under
the limiting pulse. The actual shape of the limiting pulse is not really important,
provided that the area contained within it remains constant as its duration approaches
zero. Physically, therefore, the unit impulse function at t = a may equally well be
regarded as the pulse φ1(t) of Figure 5.20 in the limiting case as T approaches zero.

In some applications we need to consider a unit impulse function at time t = 0. This
is denoted by δ (t) and is defined as the limiting case of the pulse φ2(t) illustrated in
Figure 5.21 as T approaches zero. It has the properties

δ (t) = 0 (t ≠ 0)

5.2.9 The sifting property

An important property of the unit impulse function that is of practical significance is
the so-called sifting property, which states that if f (t) is continuous at t = a then

This is referred to as the sifting property because it provides a method of isolating, or
sifting out, the value of a function at any particular point.

For theoretical reasons it is convenient to use infinite limits in (5.10), while in reality
finite limits can be substituted. This follows since for α < a < β, where α and β are
constants,

(5.11)

Figure 5.20 Approximation to a unit pulse. Figure 5.21 Pulse at the origin.

#
∞–

∞

δ t( ) dt 1=

(5.10)#
∞–

∞

f t( )δ t a–( ) dt f a( )=

#
α

β

f t( )δ t a–( ) dt f a( )=
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For example,

5.2.10 Laplace transforms of impulse functions

By the definition of the Laplace transform, we have for any a . 0

which, using the sifting property, gives the important result

or, in terms of the inverse transform,

As mentioned earlier, in many applications we may have an impulse function δ (t) at
t = 0, and it is in order to handle such a function that we must carefully specify whether
the lower limit in the Laplace integral defined in Section 5.1.1 is 0− or 0+. Adopting the
notation

we have

If f (t) does not involve an impulse function at t = 0 then clearly ++{ f (t)} = +−{ f (t)}.
However, if f (t) does involve an impulse function at t = 0 then

and it follows that

++{ f (t)} ≠ +−{ f (t)}

We adopt the definition (see Section 11.2 of MEM)

+{ f (t)} = +−{ f (t)}

so that (5.12) and (5.13) hold for a = 0, giving

#
0

2π

tδcos t 1
3
---π–( ) dt 1

3
--- πcos 1

2
---= =

+{δ (t − a)} = e−as (5.12)

+ −1{e−as} = δ (t − a) (5.13)

+ δ t a–( ){ } #
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∞

= δ t a–( ) e st– dt

++ f t( ){ } = #
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f t( ) e st– dt

+− f t( ){ } #=
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∞

f t( ) e st– dt

+− f t( ){ } #=
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0+

f t( ) e st– dt + #
0+

∞

f t( ) e st– dt

#
0−

0+

f t( ) dt 0≠

+ δ t( ){ } #=
0−

∞

δ t( ) e st– dt e s0– 1= =



344 LA PLACE TRANSFOR MS

so that

or, in inverse form,

Determine .

Solution Since

we have

giving

+{δ (t)} = 1 (5.14)

+
−1{1} = δ (t) (5.15)

This transform can be implemented in MATLAB using the sequence of commands

syms s t
del=sym(ʻDirac(t)ʼ);
laplace(del)

Likewise for (5.12); for example, if a = 2 then the Laplace transform of δ (t – 2) is
generated by the commands

del2=sym(ʻDirac(t-2)ʼ);
laplace(del2)

or directly using the command

laplace(sym(ʻDirac(t-2)ʼ))
giving the answer exp(-2*s) in each case.

In MAPLE the commands

with(inttrans):
laplace(Dirac(t-2), t, s);

return the answer e(−2s).

Example 5.14 +
1– s2

s2 4+
-------------
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 

s2

s2 4+
------------- s2 4 4–+

s2 4+
---------------------- 1 4

s2 4+
-------------–= =

+ 1– s2

s2 4+
-------------

 
 
 

+ 1– 1{ } + 1– 4

s2 4+
-------------

 
 
 

–=

+ 1– s2

s2 4+
-------------

 
 
  δ t( ) 2 2tsin–=
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Determine the solution of the differential equation

(5.16)

subject to the initial conditions x(0) = �(0) = 0.

Solution Taking Laplace transforms in (5.16) gives

[s2X(s) − sx(0) − x·(0)] + 3[sX(s) − x(0)] + 2X(s) = +{1} + +{δ (t − 4)}

which, on incorporating the given initial conditions and using (5.12), leads to

(s2 + 3s + 2)X (s) =  + e−4s

giving

Resolving into partial fractions, we have

which, on taking inverse transforms and using the result (5.7), gives the required
response:

x(t) = (1 + e−2t − 2 e−t) + (e−(t−4) − e−2(t−4))H(t − 4)

or, in an alternative form,

We note that, although the response x(t) is continuous at t = 4, the consequence of the
impulsive input at t = 4 is a step change in the derivative x· (t). 

In MATLAB this is obtained directly, with the commands

ilaplace(s^2/(s^2+4));
pretty(ans)

generating the answer

Dirac(t)-2sin2t

The answers may also be obtained in MAPLE using the commands

with(inttrans):
invlaplace(s^2/(s^2+4), s, t);

Example 5.15
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5.2.11 Relationship between Heaviside step and 
impulse functions

From the definitions of H(t) and δ (t), it can be argued that

(5.17)

since the interval of integration contains zero if t > 0 but not if t < 0. Conversely, (5.17)
may be written as

which expresses the fact that H ′(t) is zero everywhere except at t = 0, when the jump
in H(t) occurs.

While this argument may suffice in practice, since we are dealing with generalized
functions a more formal proof requires the development of some properties of
generalized functions. In particular, we need to define what is meant by saying that two
generalized functions are equivalent.

One method of approach is to use the concept of a test function θ (t), which is a
continuous function that has continuous derivatives of all orders and that is zero outside
a finite interval. One class of testing function, adopted by R. R. Gabel and R. A. Roberts
(Signals and Linear Systems, New York, Wiley, 1973), is

For a generalized function g(t) the integral

As was the case in Example 5.9, when considering Heaviside functions as forcing
terms, it seems that the dsolve command in MATLAB cannot be used directly in
this case. Using the maple command the following commands:

maple(ʻde:=diff(x(t),t$2)+3*diff(x(t),t)+2*x(t) 
= 1+Dirac(t-4);ʼ)
ans=
de := diff(x(t),ʻ$ʼ(t,2))+3*diff(x(t),t)+2*x(t) 
= 1+Dirac(t-4)
maple(ʻdsolve({de,x(0)=0,D(x)(0)=0},x(t)), 
method=laplace;ʼ)

output the required answer:

x(t)=1/2-exp(-t)+1/2*exp(-2*t)-Heaviside(t-4)*
exp(-2*t+8)+Heaviside(t-4)*exp(-t+4)

δ (t) = H(t) = H ′(t) (5.18)

H t( ) #
∞–

t

= δ τ( ) dτ

d
dt
-----

θ t( ) e d
2
/ d

2−t
2( )– t  d,( ), where d = constant

0 otherwise



=
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is evaluated. This integral assigns the number G(θ) to each function θ (t), so that G(θ)
is a generalization of the concept of a function: it is a linear functional on the space of
test functions θ (t). For example, if g(t) = δ (t) then

so that in this particular case, for each weighting function θ(t), the value θ (0) is
assigned to G(θ ).

We can now use the concept of a test function to define what is meant by saying that
two generalized functions are equivalent or ‘equal’.

Definition 5.2: The equivalence property

The test function may be regarded as a ‘device’ for examining the generalized
function. Gabel and Roberts draw a rough parallel with the role of using the output of
a measuring instrument to deduce properties about what is being measured. In such an
analogy g1(t) = g2(t) if the measuring instrument can detect no differences between
them.

Using the concept of a test function θ(t), the Dirac delta function δ (t) may be
defined in the generalized form

Interpreted as an ordinary integral, this has no meaning. The integral and the function
δ (t) are merely defined by the number θ (0). In this sense we can handle δ (t) as if it
were an ordinary function, except that we never talk about the value of δ (t); rather we
talk about the value of integrals involving δ (t).

Using the equivalence property, we can now confirm the result (5.18), namely that

δ (t) = H(t) = H ′(t)

To prove this, we must show that

(5.19)

Integrating the right-hand side of (5.19) by parts, we have

If g1(t) and g2(t) are two generalized functions then g1(t) = g2(t) if and only if 

for all test functions θ(t) for which the integrals exist.

G θ( ) #
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= θ t( )g t( ) dt

G θ( ) #
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= θ t( )δ t( ) dt θ 0( )=

#
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∞

θ t( )g1 t( ) dt #
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∞

θ t( )g2 t( ) dt=

#
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∞

θ t( )δ t( ) dt θ 0( )=

d
dt
-----

#
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θ t( )δ t( ) dt #
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∞

θ t( )H′ t( ) dt=
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(by the definitions of θ(t) and H(t))

Since the left-hand side of (5.19) is also θ(0), the equivalence of δ(t) and H ′(t) is proved.
Likewise, it can be shown that 

The results (5.18) and (5.20) may be used to obtain the generalized derivatives of
piecewise-continuous functions having jump discontinuities d1, d2, . . . , dn at times
t1, t2, . . . , tn respectively, as illustrated in Figure 5.22. On expressing f (t) in terms of
Heaviside step functions as in Section 5.2.1, and differentiating using the product rule,
use of (5.18) and (5.20) leads to the result

where g′(t) denotes the ordinary derivative of f (t) where it exists. The result (5.21) tells
us that the derivative of a piecewise-continuous function with jump discontinuities
is the ordinary derivative where it exists plus the sum of delta functions at the disconti-
nuities multiplied by the magnitudes of the respective jumps.

By the magnitude di of a jump in a function f (t) at a point ti, we mean the difference
between the right-hand and left-hand limits of f (t) at ti; that is,

di = f (ti + 0) − f (ti − 0)

It follows that an upward jump, such as d1 and d2 in Figure 5.22, is positive, while a
downward jump, such as d3 in Figure 5.22, is negative.

The result (5.21) gives an indication as to why the use of differentiators in practical
systems is not encouraged, since the introduction of impulses means that derivatives
increase noise levels in signal reception. In contrast, integrators have a smoothing effect
on signals, and are widely used.

δ (t − a) = H(t − a) = H ′(t − a) (5.20)

(5.21)

#
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θ t( )H′ t( ) dt H t( )θ t( )[ ] ∞–
∞  #
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 H t( )θ ′ t( ) dt–=

0= #
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θ t( )[ ]0
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d
dt
-----

f ′ t( ) g′ t( ) diδ t ti–( )
i=1

n

+=

Figure 5.22
Piecewise-continuous 
function with jump 
discontinuities.



5.2  STEP AND IMPULSE FUNCTIONS 349

Obtain the generalized derivative of the piecewise-continuous function

Solution f (t) is depicted graphically in Figure 5.23, and it has jump discontinuities of
magnitudes 1, −12 and −5 at times t = 0, 3 and 5 respectively. Using (5.21), the
generalized derivative is

f ′(t) = g′(t) + 1δ (t) − 12δ (t − 3) − 5δ (t − 5)

where

A system is characterized by the differential equation model

(5.22)

Determine the response of the system to a forcing function u(t) = e−t applied at time
t = 0, given that it was initially in a quiescent state.

Solution Since the system is initially in a quiescent state, the transformed equation
corresponding to (5.22) is

(s2 + 5s + 6)X(s) = (3s + 1)U(s)

giving

In the particular case when u(t) = e−t, U(s) = 1/(s + 1), so that

Example 5.16
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Figure 5.23 Piecewise-
continuous function of 
Example 5.16.
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which, on taking inverse transforms, gives the desired response as

x(t) = − e−t + 5 e−2t − 4 e−3t (t > 0)

One might have been tempted to adopt a different approach and substitute for u(t)
directly in (5.22) before taking Laplace transforms. This leads to

 = e−t − 3 e−t = −2 e−t

which, on taking Laplace transforms, leads to

(s2 + 5s + 6)X(s) = 

giving

which, on inversion, gives

x(t) = −e−t + 2 e−2t − e−3t (t > 0)

Clearly this approach results in a different solution, and therefore appears to lead to a
paradox. However, this apparent paradox can be resolved by noting that the second
approach is erroneous in that it ignores the important fact that we are dealing with
causal functions. Strictly speaking,

u(t) = e−tH(t)

and, when determining du/dt, the product rule of differential calculus should be
employed, giving

= −e−tH(t) + e−tδ (t)

Substituting this into (5.22) and taking Laplace transforms gives

That is,

leading to the same response

x(t) = −e−t + 5 e−2t − 4 e−3t (t > 0)

as in the first approach above.
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The differential equation used in Example 5.17 is of a form that occurs frequently in
practice, so it is important that the causal nature of the forcing term be recognized.

The derivative δ ′(t) of the impulse function is also a generalized function, and, using
the equivalence property, it is readily shown that

or, more generally,

provided that f ′(t) is continuous at t = a.
Likewise, the nth derivative satisfies

provided that f (n)(t) is continuous at t = a.
Using the definition of the Laplace transform, it follows that

+{δ (n)(t − a)} = s ne−as

and, in particular,

+{δ (n)(t)} = s n (5.23)
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Check your answers using MATLAB or MAPLE whenever possible.

Obtain the inverse Laplace transforms of the 
following:

Solve for t > 0 the following differential equations, 
subject to the specified initial conditions:

subject to x = 0 and  = 0 at t = 0

subject to x = 0 and  = 0 at t = 0

subject to x = 1 and  = 1 at t = 0

Obtain the generalized derivatives of the following 
piecewise-continuous functions:

5.2.12 Exercises
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5.2.13 Bending of beams

So far, we have considered examples in which Laplace transform methods have been
used to solve initial-value-type problems. These methods may also be used to solve
boundary-value problems, and, to illustrate, we consider in this section the application
of Laplace transform methods to determine the transverse deflection of a uniform thin
beam due to loading.

Consider a thin uniform beam of length l and let y(x) be its transverse displacement,
at distance x measured from one end, from the original position due to loading. The
situation is illustrated in Figure 5.24, with the displacement measured upwards. Then,
from the elementary theory of beams, we have

where W(x) is the transverse force per unit length, with a downwards force taken to be
positive, and EI is the flexural rigidity of the beam (E is Young’s modulus of elasticity
and I is the moment of inertia of the beam about its central axis). It is assumed that the
beam has uniform elastic properties and a uniform cross-section over its length, so that
both E and I are taken to be constants.

(5.24)

Figure 5.24
Transverse deflection 
of a beam: (a) initial 
position; (b) displaced 
position.

EI
d4y
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Solve for t > 0 the differential equation

subject to x = 0 and dx/dt = 2 at t = 0 and where 
u(t) = e−2tH(t).

A periodic function f (t) is an infinite train of unit 
impulses at t = 0 and repeated at intervals of t = T. 
Show that

The response of a harmonic oscillator to such a periodic 
stimulus is determined by the differential equation

 + ω 2x = f (t ) (t > 0)

Show that

and sketch the responses from t = 0 to t = 6π /ω for 
the two cases (a) T = π /ω and (b) T = 2π /ω.

An impulse voltage Eδ(t ) is applied at time t = 0 
to a circuit consisting of a resistor R, a capacitor 
C and an inductor L connected in series. Prior to 
application of this voltage, both the charge on 
the capacitor and the resulting current in the 
circuit are zero. Determine the charge q(t ) on the 
capacitor and the resulting current i(t ) in the circuit 
at time t.
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Equation (5.24) is sometimes written as

where y(x) is the transverse displacement measured downwards and not upwards as
in (5.24).

In cases when the loading is uniform along the full length of the beam, that is
W(x) = constant, (5.24) may be readily solved by the normal techniques of integral
calculus. However, when the loading is non-uniform, the use of Laplace transform
methods has a distinct advantage, since by making use of Heaviside unit functions and
impulse functions, the problem of solving (5.24) independently for various sections of
the beam may be avoided.

Taking Laplace transforms throughout in (5.24) gives

EI [s4Y(s) − s3y(0) − s2y1(0) − sy2(0) − y3(0)] = −W(s) (5.25)

where

and may be interpreted physically as follows:

EIy3(0) is the shear at x = 0

EIy2(0) is the bending moment at x = 0

y1(0) is the slope at x = 0

y(0) is the deflection at x = 0

Solving (5.25) for y(s) leads to

(5.26)

Thus four boundary conditions need to be found, and ideally they should be the shear,
bending moment, slope and deflection at x = 0. However, in practice these boundary
conditions are not often available. While some of them are known, other boundary
conditions are specified at points along the beam other than at x = 0, for example
conditions at the far end, x = l, or conditions at possible points of support along
the beam. That is, we are faced with a boundary-value problem rather than an initial-
value problem.

To proceed, known conditions at x = 0 are inserted, while the other conditions among
y(0), y1(0), y2(0) and y3(0) that are not specified are carried forward as undetermined
constants. Inverse transforms are taken throughout in (5.7) to obtain the deflection y(x),
and the outstanding undetermined constants are obtained using the boundary conditions
specified at points along the beam other than at x = 0.

The boundary conditions are usually embodied in physical conditions such as the
following:

(a) The beam is freely, or simply, supported at both ends, indicating that both the
bending moments and deflection are zero at both ends, so that y = d2y/dx2 = 0 at
both x = 0 and x = l.

(b) At both ends the beam is clamped, or built into a wall. Thus the beam is horizontal
at both ends, so that y = dy/dx = 0 at both x = 0 and x = l.
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(c) The beam is a cantilever with one end free (that is, fixed horizontally at one end,
with the other end free). At the fixed end (say x = 0)

at x = 0

and at the free end (x = l), since both the shearing force and bending moment are 
zero, 

at x = l

If the load is not uniform along the full length of the beam, use is made of Heaviside
step functions and impulse functions in specifying W(x) in (5.24). For example, a
uniform load w per unit length over the portion of the beam x = x1 to x = x2 is specified
as wH(x − x1) − wH(x − x2), and a point load w at x = x1 is specified as wδ (x − x1).

Figure 5.25 illustrates a uniform beam of length l, freely supported at both ends, bending
under uniformly distributed self-weight W and a concentrated point load P at x = l.
Determine the transverse deflection y(x) of the beam.

Solution As in Figure 5.24, the origin is taken at the left-hand end of the beam, and the deflection
y(x) measured upwards from the horizontal at the level of the supports. The deflection
y(x) is then given by (5.24), with the force function W(x) having contributions from the
weight W, the concentrated load P and the support reactions R1 and R2. However, since
we are interested in solving (5.24) for 0 < x < l, point loads or reactions at the end
x = l may be omitted from the force function.

As a preliminary, we need to determine R1. This is done by taking static moments
about the end x = l, assuming the weight W to be concentrated at the centroid x = l,
giving

or

The force function W(x) may then be expressed as 

W(x) = H(x) + Pδ (x − l ) − ( W + P)δ (x)

with a Laplace transform

y
dy
dx
------ 0= =

d2y

dx2
-------- d3y

dx3
-------- 0= =

Example 5.18
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Figure 5.25
Loaded beam of 
Example 5.18.
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Since the beam is freely supported at both ends, the deflection and bending moments
are zero at both ends, so we take the boundary conditions as

y = 0 at x = 0 and x = l

at x = 0 and x = l

The transformed equation (5.26) becomes

Taking inverse transforms, making use of the second shift theorem (Theorem 5.2), gives
the deflection y(x) as

To obtain the value of the undetermined constants y1(0) and y3(0), we employ the
unused boundary conditions at x = l, namely y(l ) = 0 and y2(l ) = 0. For x . l

Thus taking y2(l ) = 0 gives y3(0) = 0, and taking y(l ) = 0 gives

so that

Substituting back, we find that the deflection y(x) is given by

or, for the two sections of the beam,

d2y

dx2
-------- 0=
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------– W

ls5
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s4
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s2
------------ y3 0( )

s4
------------+ +=

y x( ) 1
EI
------– 1

24
------

W
l

----- x4 1
6
--- P x 1

3
--- l–( )3

H x 1
3
--- l–( ) 1

6
--- 1

2
---W 2

3
--- P+( )x3–+=

+ y1 0( )x 1
6
--- y3 0( )x3+

1
3
---

y x( ) 1
EI
------– 1

24
------

W
l

----- x4 1
6
--- P x 1

3
--- l–( )3 1

6
--- 1

2
---W 2

3
--- P+( )x3–+ y1 0( )x 1

6
--- y3 0( )x3++=

d2y

dx2
-------- y2 x( ) 1

EI
−−−– Wx2

2l
---------- P x 1

3
--- l–( ) 1

3
---W

2P

3
----------+

 
 
 

x–+ y3 0( )x+= =

1
EI
------– 1

24
--------- Wl3 4

81
------ Pl 3 1

12
------Wl3 1

9
--- Pl 3––+ 

  y1 0( )l+ 0=

y1 0( ) l2

El
-----– 1

24
---------W 5

81
------ P+ 

 =

y x( ) W
EI
------– x 4

24l
-------- 1

12
------ x3– 1

24
------ l2x+ 

  P
EI
------ 5

81
--------- l2x 1

9
--- x

3– 
 – P

6EI
--------- x 1

3
--------- l– 

 
3

H x 1
3

--------- l– 
 –=

y x( ) = 

W
EI
------– x

24l
-------- 1

12
------ x3– 1

24
------ l2x+ 

  P
EI
------ 5

81
--------- l2x 1

9
--- x

3– 
  0 x 1

3
---------l, , 

 –

W
EI
------– x4

24l
-------- 1

12
------ x3– 1

24
------ l2x+ 

  P
EI
------ 19

162
------------ l2x 1

18
------ x3 − 1

6
--- x2l − 1

162
--------- l3+ 

   1
3

---------l x l, , 
 –









 



356 LA PLACE TRANSFOR MS

Transfer functions

5.3.1 Definitions

The transfer function of a linear time-invariant system is defined to be the ratio of
the Laplace transform of the system output (or response function) to the Laplace
transform of the system input (or forcing function), under the assumption that all the
initial conditions are zero (that is, the system is initially in a quiescent state).

Transfer functions are frequently used in engineering to characterize the input–
output relationships of linear time-invariant systems, and play an important role in the
analysis and design of such systems.

Consider a linear time-invariant system characterized by the differential equation

(5.27)

where n > m, the as and bs are constant coefficients, and x(t) is the system response or
output to the input or forcing term u(t) applied at time t = 0. Taking Laplace transforms
throughout in (5.27) will lead to the transformed equation. Since all the initial condi-
tions are assumed to be zero, using the relationship between the Laplace transform and
derivatives as shown in MEM (11.14) we see that, in order to obtain the transformed
equation, we simply replace d/dt by s, giving

(ans n + an−1s
n−1 + . . . + a0)X(s) = (bms m + . . . + b0)U(s)

where X(s) and U(s) denote the Laplace transforms of x(t) and u(t) respectively.
The system transfer function G(s) is then defined to be

(5.28)

with (5.28) being referred to as the transfer function model of the system characterized
by the differential equation model (5.27). Diagramatically this may be represented by the
input–output block diagram of Figure 5.26.

Writing

P(s) = bmsm + . . . + b0

Q(s) = ansn + . . . + a0

5.3

an
dnx

dtn
-------- an−1

dn−1x

dtn−1
------------ . . . a0x+ + + bm

dmu

dtm
--------- . . . b0u+ +=

G s( ) X s( )
U s( )
----------- bmsm . . . b0+ +

ansn . . . a0+ +
------------------------------------= =

Figure 5.26
Transfer function block 
diagram.

Find the deflection of a beam simply supported at its 
ends x = 0 and x = l, bending under a uniformly 
distributed self-weight M and a concentrated load 
W at x = l.

A cantilever beam of negligible weight and of 
length l is clamped at the end x = 0. Determine the 
deflection of the beam when it is subjected to a load 

per unit length, w, over the section x = x1 to x = x2. 
What is the maximum deflection if x1 = 0 and x2 = l?

A uniform cantilever beam of length l is subjected 
to a concentrated load W at a point distance b from 
the fixed end. Determine the deflection of the beam, 
distinguishing between the sections 0 < x < b and 
b , x < l.

5.2.14 Exercises

19

1
2
---

20

21
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the transfer function may be expressed as

where, in order to make the system physically realizable, the degrees m and n of the
polynomials P(s) and Q(s) must be such that n > m. This is because it follows from
(5.23) that if m > n then the system response x(t) to a realistic input u(t) will involve
impulses.

The equation Q(s) = 0 is called the characteristic equation of the system; its order
determines the order of the system, and its roots are referred to as the poles of the
transfer function. Likewise, the roots of P(s) = 0 are referred to as the zeros of the
transfer function.

It is important to realize that, in general, a transfer function is only used to
characterize a linear time-invariant system. It is a property of the system itself, and is
independent of both system input and output.

Although the transfer function characterizes the dynamics of the system, it provides
no information concerning the actual physical structure of the system, and in fact
systems that are physically different may have identical transfer functions; for example,
the mass–spring–damper system of Figure 11.12 in MEM and the LCR circuit of
Figure 11.8 in MEM both have the transfer function

In the mass–spring–damper system X(s) determines the displacement x(t) of the mass
and U(s) represents the applied force F(t), while α denotes the mass, β the damping
coefficient and γ the spring constant. On the other hand, in the LCR circuit X(s)
determines the charge q(t) on the condenser and U(s) represents the applied emf e(t),
while α denotes the inductance, β the resistance and γ the reciprocal of the capacitance.

In practice, an overall system may be made up of a number of components each
characterized by its own transfer function and related operation box. The overall system
input–output transfer function is then obtained by the rules of block diagram algebra.

Since G(s) may be written as

where the zis and pis are the transfer function zeros and poles respectively, we observe
that G(s) is known, apart from a constant factor, if the positions of all the poles and
zeros are known. Consequently, a plot of the poles and zeros of G(s) is often used as
an aid in the graphical analysis of the transfer function (a common convention is to
mark the position of a zero by a circle s and that of a pole by a cross ×). Since the
coefficients of the polynomials P(s) and Q(s) are real, all complex roots always occur in
complex conjugate pairs, so that the pole–zero plot is symmetrical about the real axis.

The response x(t) of a system to a forcing function u(t) is determined by the differential
equation

G s( ) P s( )
Q s( )
-----------=

G s( ) X s( )
U s( )
----------- 1

αs2 βs γ+ +
-----------------------------= =

G s( ) bm

am

----- s z1–( ) s z2–( ) . . . s zm–( )
s p1–( ) s p2–( ) . . . s pn–( )

------------------------------------------------------------------=

Example 5.19

9
d2x

dt2
-------- 12

dx

dt
------ 13x+ + 2

du

dt
------ 3u+=
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(a) Determine the transfer function characterizing the system.
(b) Write down the characteristic equation of the system. What is the order of the

system?
(c) Determine the transfer function poles and zeros, and illustrate them

diagrammatically in the s plane.

Solution (a) Assuming all the initial conditions to be zero, taking Laplace transforms throughout
in the differential equation

leads to

(9s2 + 12s + 13)X(s) = (2s + 3)U(s)

so that the system transfer function is given by

(b) The characteristic equation of the system is

9s2 + 12s + 13 = 0

and the system is of order 2.

(c) The transfer function poles are the roots of the characteristic equation

9s2 + 12s + 13 = 0

which are

That is, the transfer function has simple poles at

s = −  + j and s = −  − j

The transfer function zeros are determined by equating the numerator polynomial
2s + 3 to zero, giving a single zero at

s = −

The corresponding pole–zero plot in the s plane is shown in Figure 5.27.

9
d2x

dt2
-------- 12

dx

dt
------ 13x+ + 2

du

dt
------ 3u+=

G s( ) X s( )
U s( )
----------- 2s 3+

9s2 12s 13+ +
-----------------------------------= =

s
−12 ± 144 468–( )

18
------------------------------------------------- −2 ± j3

3
------------------= =

2
3
--- 2

3
---

3
2
---

Figure 5.27
Pole (×)–zero (s) plot 
for Example 5.19.
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5.3.2 Stability

The stability of a system is a property of vital importance to engineers. Intuitively, we
may regard a stable system as one that will remain at rest unless it is excited by an
external source, and will return to rest if all such external influences are removed. Thus
a stable system is one whose response, in the absence of an input, will approach zero
as time approaches infinity. This then ensures that any bounded input produces a
bounded output; this property is frequently taken to be the definition of a stable linear
system.

Clearly, stability is a property of the system itself, and does not depend on the
system input or forcing function. Since a system may be characterized in the s domain
by its transfer function G(s), it should be possible to use the transfer function to specify
conditions for the system to be stable.

In considering the time response of

X(s) = G(s)U(s),

to any given input u(t), it is necessary to factorize the denominator polynomial

Q(s) = ans n + an−1s
n−1 +  . . . + a0

and various forms of factors can be involved.

Simple factor of the form s + α , with α  real

This corresponds to a simple pole at s = −α, and will in the partial-fractions expansion
of G(s) lead to a term of the form c/(s + α) having corresponding time response
c e−α tH(t), using the strict form of the inverse given in (11.11) of MEM. If α > 0, so
that the pole is in the left half of the s plane, the time response will tend to zero as
t → ∞. If α < 0, so that the pole is in the right half of the s plane, the time response
will increase without bound as t → ∞. It follows that a stable system must have real-
valued simple poles of G(s) in the left half of the s plane.

α = 0 corresponds to a simple pole at the origin, having a corresponding time
response that is a step cH(t). A system having such a pole is said to be marginally

A transfer function (tf ) is implemented within MATLAB using the commands

s = tf(ʻsʼ)
G = G(s)

Thus, entering G=(2*s+3)/(9*s^2+12*s+13) generates

transfer function = 

The command poly(G) generates the characteristic polynomial, whilst the commands
pole(G) and zero(G) generate the poles and zeros respectively. The command
pzmap(G) draws the pole–zero map.

2s + 3

9s2 + 12s + 13
-------------------------------------------

G s( ) P s( )
Q s( )
-----------=
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stable; this does not ensure that a bounded input will lead to a bounded output, since,
for example, if such a system has an input that is a step d applied at time t = 0 then the
response will be a ramp cdtH(t), which is unbounded as t → ∞.

Repeated simple factors of the form (s + α )n, with a  real

This corresponds to a multiple pole at s = −α, and will lead in the partial-fractions
expansion of G(s) to a term of the form c/(s + α)n having corresponding time response
[c/(n − 1)!]t n−1 e−αtH(t). Again the response will decay to zero as t → ∞ only if α > 0,
indicating that a stable system must have all real-valued repeated poles of G(s) in the
left half of the s plane.

Quadratic factors of the form (s + α )2 + β 2, with α  and β  real

This corresponds to a pair of complex conjugate poles at s = −α + jβ, s = −α − jβ, and
will lead in the partial-fractions expansion of G(s) to a term of the form

having corresponding time response

e−α t(c cos β t + d sin βt) ≡ A e−α t sin (β t + γ )

where A =  and γ = tan−1(c/d ).
Again we see that poles in the left half of the s plane (corresponding to α > 0) have

corresponding time responses that die away, in the form of an exponentially damped
sinusoid, as t → ∞. A stable system must therefore have complex conjugate poles
located in the left half of the s plane; that is, all complex poles must have a negative
real part.

If α = 0, the corresponding time response will be a periodic sinusoid, which will not
die away as t → ∞. Again this corresponds to a marginally stable system, and will, for
example, give rise to a response that increases without bound as t → ∞ when the input
is a sinusoid at the same frequency β.

A summary of the responses corresponding to the various types of poles is given in
Figure 5.28.

The concept of stability may be expressed in the form of Definition 5.3.

Definition 5.3

The requirement in the definition that the system be physically realizable, that is n > m
in the transfer function G(s) of (5.28), avoids terms of the form sm−n in the partial-
fractions expansion of G(s). Such a term would correspond to differentiation of
degree m − n, and were an input such as sin ωt used to excite the system then the
response would include a term such as ω m−n sin ω t or ω m−n cos ω t, which could be made
as large as desired by increasing the input frequency ω.

c s α+( ) dβ+
s α+( )2 β2+

---------------------------------

c2 d2+( )

A physically realizable causal time-invariant linear system with transfer function
G(s) is stable provided that all the poles of G(s) are in the left half of the s plane.
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In terms of the poles of the transfer function G(s), its abscissa of convergence σc

corresponds to the real part of the pole located furthest to the right in the s plane. For
example, if

then the abscissa of convergence σc = −2.

Figure 5.28
Relationship between 
transfer function poles 
and time response.

G s( ) s 1+
s 3+( ) s 2+( )

---------------------------------=



362 LA PLACE TRANSFOR MS

It follows from Definition 5.3 that the transfer function G(s) of a stable system has an
abscissa of convergence σc = −α, with α > 0. Thus its region of convergence includes
the imaginary axis, so that G(s) exists when s = jω. We shall return to this result when
considering the relationship between Laplace and Fourier transforms in Section 8.4.1.

According to Definition 5.3, in order to prove stability, we need to show that all the
roots of the characteristic equation

Q(s) = ansn + an−1s n−1 + . . . + a1s + a0 = 0 (5.29)

have negative real parts (that is, they lie in the left half of the s plane). Various criteria
exist to show that all the roots satisfy this requirement, and it is not necessary to solve
the equation to prove stability. One widely used criterion is the Routh–Hurwitz criterion,
which can be stated as follows: 

Show that the roots of the characteristic equation

s4 + 9s3 + 33s2 + 51s + 26 = 0

all have negative real parts.

Solution In this case n = 4, a0 = 26, a1 = 51, a2 = 33, a3 = 9, a4 = 1 and ar = 0 (r > 4). The
determinants of the Routh–Hurwitz criterion are

Δ1 = |an−1 | = |a3 | = |9 | = 9 > 0

A necessary and sufficient condition for all the roots of equation (5.29) 
to have negative real parts is that the determinants Δ1, Δ 2, . . . , Δn are 
all positive, where

it being understood that in each determinant all the as with subscripts 
that are either negative or greater than n are to be replaced by zero.

(5.30)Δ r

an−1 an 0 0 … 0

an−3 an−2 an−1 an … 0

an−5 an−4 an−3 an−2 … 0

    
an− 2r−1( ) an−2r an−2r−1 an−2r−2 … an−r

=

Example 5.20

Δ2

an−1 an

an−3 an−2

a3 a4

a1 a2

= =

9 1

51 33
246 . 0= =

Δ3

an−1 an 0

an−3 an−2 an−1

an−5 an−4 an−3

a3 a4 0

a1 a2 a3

a−1 a0 a1

= =
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Thus Δ1 > 0, Δ2 > 0, Δ3 > 0 and Δ4 > 0, so that all the roots of the given characteristic
equation have negative real parts. This is readily checked, since the roots are −2, −1,
−3 + j2 and −3 − j2.

The steady motion of a steam-engine governor is modelled by the differential equations

mη·· + bͶ + dη − eω = 0 (5.31)

I0ω·  = −fη (5.32)

where η is a small fluctuation in the angle of inclination, ω a small fluctuation in the
angular velocity of rotation, and m, b, d, e, f and I0 are all positive constants. Show that
the motion of the governor is stable provided that

Solution Differentiating (5.31) gives

mη··· + bη·· + dη·  − eω·  = 0

which, on using (5.32), leads to

mη··· + bη·· + dη· +  = 0

for which the corresponding characteristic equation is

ms3 + bs2 + ds +  = 0

This is a cubic polynomial, so the parameters of (5.29) are

n = 3, a0 = a1 = d, a2 = b, a3 = m (ar = 0, r > 3)

The determinants (5.30) of the Routh–Hurwitz criterion are

Δ1 = |a2 | = b > 0

Δ4

an−1 an 0 0

an−3 an−2 an−1 an

an−5 an−4 an−3 an−2

an−7 an−6 an−5 an−4

a3 a4 0 0

a1 a2 a3 a4

a−1 a0 a1 a2

a−3 a−2 a−1 a0

= =

9 1 0 0

51 33 9 1

0 26 51 37

0 0 0 26

= 26Δ3 . 0=

Example 5.21
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m
------  . 

ef
I0

----

ef
I0

----η

ef
I0

----

ef
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Δ2

a2 a3

a0 a1

b m

ef /I0 d
bd mef

I0

---------–= = =
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(and so Δ2 > 0 provided that bd – mef /I0 > 0 or bd/m > ef/I0), and

if Δ2 > 0

Thus the action of the governor is stable provided that Δ2 > 0; that is,

5.3.3 Impulse response

From (5.28), we find that for a system having transfer function G(s) the response x(t)
of the system, initially in a quiescent state, to an input u(t) is determined by the trans-
formed relationship

X(s) = G(s)U(s)

If the input u(t) is taken to be the unit impulse function δ (t) then the system response
will be determined by

X(s) = G(s)+ {δ (t)} = G(s)

Taking inverse Laplace transforms leads to the corresponding time response h(t), which
is called the impulse response of the system (it is also sometimes referred to as the
weighting function of the system); that is, the impulse response is given by

h(t) = + −1{X(s)} = + −1{G(s)} (5.33)

We therefore have the following definition.

Definition 5.4: Impulse response

Since the impulse response is the inverse Laplace transform of the transfer function,
it follows that both the impulse response and the transfer function carry the same
information about the dynamics of a linear time-invariant system. Theoretically,
therefore, it is possible to determine the complete information about the system by
exciting it with an impulse and measuring the response. For this reason, it is common
practice in engineering to regard the transfer function as being the Laplace transform of
the impulse response, since this places greater emphasis on the parameters of the
system when considering system design.

We saw in Section 5.3.2 that, since the transfer function G(s) completely characterizes
a linear time-invariant system, it can be used to specify conditions for system stability,
which are that all the poles of G(s) lie in the left half of the s plane. Alternatively,
characterizing the system by its impulse response, we can say that the system is stable
provided that its impulse response decays to zero as t → ∞.

Δ3

a2 a3 0

a0 a1 a2

0 0 a0

a0Δ2 . 0= =

bd
m
------  . 

ef
I0

----

The impulse response h(t) of a linear time-invariant system is the response of the
system to a unit impulse applied at time t = 0 when all the initial conditions are zero.
It is such that + {h(t)} = G(s), where G(s) is the system transfer function.
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Determine the impulse response of the linear system whose response x(t) to an input
u(t) is determined by the differential equation

(5.34)

Solution The impulse response h(t) is the system response to u(t) = δ (t) when all the initial
conditions are zero. It is therefore determined as the solution of the differential equation

 (5.35)

subject to the initial conditions h(0) = h·(0) = 0. Taking Laplace transforms in (5.35) gives

(s2 + 5s + 6)H(s) = 5+ {δ (t)} = 5

so that

which, on inversion, gives the desired impulse response

h(t) = 5(e−2t − e−3t)

Alternatively, the transfer function G(s) of the system determined by (5.34) is

so that h(t) = + −1{G(s)} = 5(e−2t − e−3t) as before.

Note: This example serves to illustrate the necessity for incorporating 0− as the lower
limit in the Laplace transform integral, in order to accommodate for an impulse applied
at t = 0. The effect of the impulse is to cause a step change in x·(t) at t = 0, with the initial
condition accounting for what happens up to 0 −. 

5.3.4 Initial- and final-value theorems

The initial- and final-value theorems are two useful theorems that enable us to predict
system behaviour as t → 0 and t → ∞ without actually inverting Laplace transforms.

The initial-value theorem 

Example 5.22

d2x

dt2
-------- 5

dx

dt
------ 6x+ + 5u t( )=

In MATLAB a plot of the impulse response is obtained using the commands

s=tf(ʻsʼ)
G=G(s)
impulse(G)

d2h

dt2
-------- 5

dh

dt
------ 6h+ + 5δ t( )=

H s( ) 5
s 3+( ) s 2+( )

--------------------------------- 5
s 2+
----------- 5

s 3+
-----------–= =

G s( ) 5

s2 5s 6+ +
-------------------------=

Theorem 5.4

If f (t) and f ′(t) are both Laplace-transformable and if sF(s) exists thenlim
s ∞→

lim
t 0+→

f t( ) f 0+( ) lim
s ∞→

sF s( )= =
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Proof From MEM (11.12) or simply by direct integration,

+{ f ′(t)} = f ′(t) e−st dt = sF(s) − f (0−)

where we have highlighted the fact that the lower limit is 0−. Hence

[sF(s) − f (0−)] = f ′(t) e−st dt

= f ′(t) e−st dt + f ′(t) e−st dt (5.36)

If f (t) is discontinuous at the origin, so that f (0+) ≠ f (0−), then, from (5.21), f ′(t) contains
an impulse term [ f (0+) − f (0−)]δ (t), so that

f ′(t) e−st dt = f (0+) − f (0−)

Also, since the Laplace transform of f ′(t) exists, it is of exponential order and we have

f ′(t) e−st dt = 0

so that (5.36) becomes

sF(s) − f (0−) = f (0+) − f (0−)

giving the required result:

sF(s) = f (0+)

If f (t) is continuous at the origin then f ′(t) does not contain an impulse term, and the
right-hand side of (5.36) is zero, giving

sF(s) = f (0−) = f (0+)

It is important to recognize that the initial-value theorem does not give the initial
value f (0−) used when determining the Laplace transform, but rather gives the value of
f (t) as t → 0+. This distinction is highlighted in the following example.

The circuit of Figure 5.29 consists of a resistance R and a capacitance C connected in
series together with constant voltage source E. Prior to closing the switch at time t = 0,
both the charge on the capacitor and the resulting current in the circuit are zero.
Determine the current i(t) in the circuit at time t after the switch is closed, and
investigate the use of the initial-value theorem.

#
0−

∞

lim
s ∞→

lim
s ∞→ #

0−

∞

lim
s ∞→ #

0−

0
+

lim
s ∞→ #

0
+

∞

lim
s ∞→ #

0−

0
+

lim
s ∞→ #

0
+

∞

lim
s ∞→

lim
s ∞→

lim
s ∞→

end of theorem

Example 5.23
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Solution Applying Kirchhoff ’s law to the circuit of Figure 5.29, we have

which, on taking Laplace transforms, gives the transformed equation

Therefore

Taking inverse transforms gives the current i(t) at t > 0 as

(5.37)

Applying the initial-value theorem,

That is,

i(0+) = 

a result that is readily confirmed by allowing t → 0+ in (5.37). We note that this is
not the same as the initial state i(0) = 0 owing to the fact that there is a step change in
i(t) at t = 0.

The final-value theorem

Proof From (11.12) of MEM, the Laplace transform of a derivative,

+{ f ′(t)} = f ′(t) e−st dt = sF(s) − f (0−)

Taking limits, we have

[sF(s) − f (0−)] = f ′(t) e−st dt = f ′(t) dt = [ f (t)]0−
∞

= f (t) − f (0−)

Figure 5.29
RC circuit of 
Example 5.23.

Ri
1
C
---- # i dt+ E0=

RI s( ) 1
c
--- I s( )

s
---------+ E0

s
-----=

I s( ) E0/R
s 1/RC+
---------------------=

i t( )
E0

R
----- e−t/RC=

lim
t 0+→

i t( ) lim
s ∞→

sI(s) lim
s ∞→

sE0/R
s 1/RC+
--------------------- lim

s ∞→

E0/R
1 1/RCs+
------------------------ E0

R
-----= == =

E0

R
-----

Theorem 5.5

If f (t) and f ′(t) are both Laplace-transformable and f (t) exists thenlim
t ∞→

lim
t ∞→

f t( ) lim
s 0→

sF s( )=

#
0−

∞+

lim
s 0→

lim
s 0→ #

0−

∞

#
0−

∞

lim
t ∞→
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giving the required result:

f (t) = sF(s)

The restriction that f (t) must exist means that the theorem does not hold for
functions such as et, which tends to infinity as t → ∞, or sin ω t, whose limit is
undefined. Since in practice the final-value theorem is used to obtain the behaviour of f (t)
as t → ∞ from knowledge of the transform F(s), it is more common to express the
restriction in terms of restrictions on F(s), which are that sF(s) must have all its
poles in the left half of the s plane; that is, sF(s) must represent a stable transfer
function. It is important that the theorem be used with caution and that this
restriction be fully recognized, since the existence of sF(s) does not imply that
f (t) has a limiting value as t → ∞.

Investigate the application of the final-value theorem to the transfer function

(5.38)

Solution

so the use of the final-value theorem implies that for the time function f (t) corresponding
to F(s) we have

f (t) = 0

However, taking inverse transforms in (5.38) gives

f (t) = (e3t − e−2t)

implying that f (t) tends to infinity as t → ∞. This implied contradiction arises since the
theorem is not valid in this case. Although sF(s) exists, sF(s) has a pole at s = 3,
which is not in the left half of the s plane.

The final-value theorem provides a useful vehicle for determining a system’s steady-
state gain (SSG) and the steady-state errors, or offsets, in feedback control systems,
both of which are important features in control system design.

The SSG of a stable system is the system’s steady-state response, that is the response
as t → ∞, to a unit step input. For a system with transfer function G(s) we have,
from (5.28), that its response x(t) is related to the input u(t) by the transformed equation

X(s) = G(s)U(s)

For a unit step input

u(t ) = 1H(t) giving U(s) = 

lim
t ∞→

lim
s 0→

end of theorem

lim
t ∞→

lim
t ∞→

Example 5.24

F s( ) 1
s 2+( ) s 3–( )

---------------------------------=

lim
s 0→

sF s( ) lim
s 0→

s
s 2+( ) s 3–( )

--------------------------------- 0= =

lim
t ∞→

1
s
---

lim
s 0→

1
s
---
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so that

X(s) = 

From the final-value theorem, the steady-state gain is

SSG = x(t) = sX(s) = G(s)

Determine the steady-state gain of a system having transfer function

Solution The response x(t) to a unit step input u(t) = 1H(t) is given by the transformed equation

X(s) = G(s)U(s) 

Then, by the final-value theorem, the steady-state gain is given by

SSG = x(t) = sX(s) 

Note that for a step input of magnitude K, that is u(t) = KH(t), the steady-state response
will be kG(s) = 2K; that is,

steady-state response to step input = SSG × magnitude of step input

A unity feedback control system having forward-path transfer function G(s), reference
input or desired output r(t) and actual output x(t) is illustrated by the block diagram
of Figure 5.30. Defining the error to be e(t) = r(t) − x(t), it follows that

G(s)E(s) = X(s) = R(s) − E(s)

giving

Thus, from the final-value theorem, the steady-state error (SSE) is

SSE = e(t) = sE(s) = (5.39)

Determine the SSE for the system of Figure 5.30 when G(s) is the same as in
Example 5.19 and r(t) is a step of magnitude K.

Solution Since r(t) = KH(t), we have R(s) = K /s, so, using (5.39),

G s( )
s

-----------

lim
t ∞→

lim
s 0→

lim
s 0→

Example 5.25

G s( ) 20 1 3s+( )
s2 7s 10+ +
----------------------------=

20 1 3s+( )
s2 7s 10+ +
---------------------------- 1

s
---=

lim
t ∞→

lim
s 0→

lim
s 0→

20 1 3s+( )
s2 7s 10+ +
----------------------------= 2=

lim
s 0→

Figure 5.30 Unity 
feedback control 
system.

E s( ) R s( )
1 G s( )+
---------------------=

lim
t ∞→

lim
s 0→

lim
s 0→

sR s( )
1 G s( )+
---------------------

Example 5.26

SSE lim
s 0→

sK/s
1 G s( )+
--------------------- K

1 SSG+
--------------------= =
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where SSG = 2 as determined in Example 5.25. Thus

SSE = K

It is clear from Example 5.26 that if we are to reduce the SSE, which is clearly
desirable in practice, then the SSG needs to be increased. However, such an increase
could lead to an undesirable transient response, and in system design a balance must be
achieved. Detailed design techniques for alleviating such problems are not considered
here; for such a discussion the reader is referred to specialist texts (see, for example
J. Schwarzenbach and K. F. Gill, System Modelling and Control, third edition,
Oxford, Butterworth-Heinemann, 1992).

1
3
---

The response x(t) of a system to a forcing function 
u(t) is determined by the differential equation model

(a) Determine the transfer function characterizing 
the system.

(b) Write down the characteristic equation of the 
system. What is the order of the system?

(c) Determine the transfer function poles and 
zeros, and illustrate them diagrammatically in 
the s plane.

Repeat Exercise 22 for a system whose response 
x(t) to an input u(t) is determined by the differential 
equation

Which of the following transfer functions represent 
stable systems and which represent unstable systems?

(a) (b)

(c) (d)

(e)

Which of the following characteristic equations are 
representative of stable systems?

(a) s2 − 4s + 13 = 0

(b) 5s3 + 13s2 + 31s + 15 = 0

(c) s3 + s2 + s + 1 = 0

(d) 24s4 + 11s3 + 26s2 + 45s + 36 = 0

(e) s3 + 2s2 + 2s + 1 = 0

The differential equation governing the motion of a 
mass–spring–damper system with controller is

where m, c, K and r are positive constants. Show 
that the motion of the system is stable provided that 
r < c/m.

The behaviour of a system having a gain controller 
is characterized by the characteristic equation

s4 + 2s3 + (K + 2)s2 + 7s + K = 0

where K is the controller gain. Show that the system 
is stable provided that K > 2.1.

A feedback control system has characteristic equation

s3 + 15Ks2 + (2K − 1)s + 5K = 0

where K is a constant gain factor. Determine the 
range of positive values of K for which the system 
will be stable.

Determine the impulse responses of the linear 
systems whose response x(t) to an input u(t) is 
determined by the following differential equations:

(a)

(b)

5.3.5 Exercises

22

d2x

dt2
-------- 2

dx

dt
------ 5x+ + 3

du

dt
------ 2u+=

23

d3x

dt3
-------- 5

d2x

dt2
-------- 17

dx

dt
------ 13x+ + + d2u

dt2
-------- 5

du

dt
------ 6+ +=

24

s 1–
s 2+( ) s2 4+( )

----------------------------------- s 2+( ) s 2–( )
s 1+( ) s 1–( ) s 4+( )

-------------------------------------------------

s 1–
s 2+( ) s 4+( )

--------------------------------- 6

s2 s 1+ +( ) s 1+( )2
----------------------------------------------

5 s 10+( )
s 5+( ) s2 s– 10+( )

----------------------------------------------

25

26

m
d3x

dt3
-------- c

d2x

dt2
-------- K

dx

dt
------ Krx+ + + 0=

27

28

29

d2x

dt2
-------- 15

dx

dt
------ 56x+ + 3u t( )=

d2x

dt2
-------- 8

dx

dt
------ 25x+ + u t( )=
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(c)

(d)

What can be said about the stability of each of the 
systems?

The response of a given system to a unit step 
u(t) = 1H(t) is given by

What is the transfer function of the 
system?

Verify the initial-value theorem for the functions

(a) 2 − 3 cos t (b) (3t − 1)2 (c) t + 3 sin 2t

Verify the final-value theorem for the functions

(a) 1 + 3e−t sin 2t (b) t 2 e−2t

(c) 3 − 2e−3t  + e−t cos 2t

Use the initial- and final-value theorems to find the 
jump at t = 0 and the limiting value as t → ∞ for the 
solution of the initial-value problem

+ 5y = 4 + e−3t + 2δ (t)

with y(0−) = −1.

d2x

dt2
-------- 2

dx

dt
------– 8x– 4u t( )=

d2x

dt2
-------- 4

dx

dt
------– 13x+ u t( )=

30

x t( ) 1 7
3
--- e−t– 3

2
--- e−2t 1

6
--- e−4t–+=

31

32

33

7
dy
dt
------

5.3.6 Convolution

Convolution is a useful concept that has many applications in various fields of
engineering. In Section 5.3.7 we shall use it to obtain the response of a linear system to
any input in terms of the impulse response.

Definition 5.5: Convolution

In the particular case when f (t) and g(t) are causal functions

f (τ ) = g(τ) = 0 (τ < 0), g(t − τ) = 0 (τ > t)

and we have

f * g(t) = f (τ)g(t − τ) dτ (5.40)

The notation f * g(t) indicates that the convolution f * g is a function of t; that is, it could
also be written as ( f * g) (t). The integral e ∞

−∞ f (τ) g(t − τ ) dτ is called the convolution
integral. Alternative names are the superposition integral, Duhamel integral, folding
integral and faltung integral.

Convolution can be considered as a generalized function, and as such it has many of
the properties of multiplication. In particular, the commutative law is satisfied, so that

f * g(t) = g * f (t)

Given two piecewise-continuous functions f (t) and g(t), the convolution of f (t) and
g(t), denoted by f * g(t), is defined as

f * g(t) = f (τ)g(t − τ) dτ#
∞–

∞

#
0

t
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or, for causal functions,

This means that the convolution can be evaluated by time-shifting either of the two
functions. The result (5.41) is readily proved, since by making the substitution τ1 = t − τ
in (5.40) we obtain

f * g(t) = f (t − τ1)g(τ1)(−dτ1) = f (t − τ1)g(τ1) dτ1 = g * f (t)

For the two causal functions

f (t) = tH(t), g(t) = sin 2t H(t)

show that f * g(t) = g * f (t).

Solution f * g(t) = f (τ )g(t − τ ) dτ = τ sin 2(t − τ ) dτ

Integrating by parts gives

f * g(t) = [ τ cos 2(t − τ) + sin 2(t − τ )]t
0 = t − sin 2t

g * f (t) = f (t − τ)g(τ) dτ = (t − τ) sin 2τ dτ

= [− (t − τ) cos 2τ − sin 2τ]t
0 = t − sin 2t

so that f * g(t) = g * f (t).

The importance of convolution in Laplace transform work is that it enables us to
obtain the inverse transform of the product of two transforms. The necessary result for
doing this is contained in the following theorem.

Convolution theorem for Laplace transforms

f (τ)g(t − τ ) dτ = f (t − τ )g(τ) dτ (5.41)#
0

t

#
0

t

#
t

0

#
0

t

Example 5.27

#
0

t

#
0

t

1
2
--- 1

4
--- 1

2
--- 1

4
---

#
0

t

#
0

t

1
2
--- 1

4
--- 1

2
--- 1

4
---

Theorem 5.6

If f(t) and g(t) are of exponential order σ, piecewise-continuous on t > 0 and
have Laplace transforms F (s) and G(s) respectively, then, for s > σ,

or, in the more useful inverse form,

+ −1{F(s)G(s)} = f * g(t) (5.42)

+ #
0

t

f t( )g t τ–( ) dt
 
 
 

+ f * g t( ){ } F s( )G s( )= =
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Proof By definition,

where we have used the ‘dummy’ variables x and y, rather than t, in the integrals to
avoid confusion. This may now be expressed in the form of the double integral

F(s)G(s) = e−s(x+y) f (x)g(y) dx dy = e−s(x+y) f (x)g(y) dx dy

where R is the first quadrant in the (x, y) plane, as shown in Figure 5.31(a). On making
the substitution

x + y = t, y = τ

the double integral is transformed into

F(s)G(s) = e−st f (t − τ )g(τ )dt dτ

where R1 is the semi-infinite region in the (τ, t) plane bounded by the lines τ = 0 and
τ = t, as shown in Figure 5.31(b). This may be written as

= e−st [g * f (t)] dt  = +{g * f (t)}

and, since convolution is commutative, we may write this as

F(s)G(s) = +{ f * g(t)}

which concludes the proof.

Using the convolution theorem, determine + −1 .

Solution We express 1/s2(s + 2)2 as (1/s2)[1/(s + 2)2]; then, since

+{t} = , +{t e−2t} = 

F s( )G s( ) + f t( ){ }+ g t( ){ } #
0

∞

e−sx f x( ) dx #
0

∞

e−syg y( ) dy= =

#
0

∞

#
0

∞

##
R

##
R1

F s( )G s( ) #
0

∞

e−st #
0

t

f t τ–( ) g τ( ) dτ
 
 
 

dt= #
0

∞

Figure 5.31
Regions of integration.

end of theorem

Example 5.28 1

s2 s 2+( )2
-----------------------

 
 
 

1

s2
---- 1

s 2+( )2
------------------



374 LA PLACE TRANSFOR MS

taking f (t) = t and g(t) = t e−2t in the convolution theorem gives

+ −1  = f (t − τ)g(τ ) dτ = (t − τ )τ e−2τ dτ

which on integration by parts gives

= [t − 1 + (t + 1)e−2t]

We can check this result by first expressing the given transform in partial-fractions form
and then inverting to give

so that 

as before.

5.3.7 System response to an arbitrary input
The impulse response of a linear time-invariant system is particularly useful in practice
in that it enables us to obtain the response of the system to an arbitrary input using the
convolution integral. This provides engineers with a powerful approach to the analysis
of dynamical systems.

Let us consider a linear system characterized by its impulse response h(t). Then
we wish to determine the response x(t) of the system to an arbitrary input u(t) such as
that illustrated in Figure 5.32(a). We first approximate the continuous function u(t) by
an infinite sequence of impulses of magnitude u(nΔT ), n = 0, 1, 2, . . . , as shown in
Figure 5.32(b). This approximation for u(t) may be written as

u(t) . u(nΔT )δ (t − nΔT ) ΔT (5.43)

Since the system is linear, the principle of superposition holds, so that the response of
the system to the sum of the impulses is equal to the sum of the responses of the system
to each of the impulses acting separately. Depicting the impulse response h(t) of the
linear system by Figure 5.33, the responses due to the individual impulses forming the
sum in (5.43) are illustrated in the sequence of plots in Figure 5.34.
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1
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1
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4
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4
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4
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4
--- t 1– t 1+( )e−2t+[ ]= =
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∞



Figure 5.32
Approximation to a 
continuous input.
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Summing the individual responses, we find that the response due to the sum of the
impulses is

u(nΔT )h (t − nΔT ) ΔT (5.44)

Allowing ΔT → 0, so that nΔT approaches a continuous variable τ, the above sum will
approach an integral that will be representative of the system response x(t) to the
continuous input u(t). Thus

x(t) = u(τ )h(t − τ ) dτ = u(τ )h(t − τ) dτ (since h(t) is a causal function)

Figure 5.33
Impulse response 
of a linear system.

Figure 5.34 Responses due to individual impulses.

n=0

∞



#
0

∞

#
0

t
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That is,

x(t) = u * h(t)

Since convolution is commutative, we may also write

x(t) = h * u(t) = h(τ )u(t − τ) dτ 

It is important to realize that this is the response of the system to the input u(t) assuming
it to be initially in a quiescent state.

The response θo(t) of a system to a driving force θi(t) is given by the linear differential
equation

Determine the impulse response of the system. Hence, using the convolution integral,
determine the response of the system to a unit step input at time t = 0, assuming that it
is initially in a quiescent state. Confirm this latter result by direct calculation.

Solution The impulse response h(t) is the solution of

subject to the initial conditions h(0) = h
.
(0) = 0. Taking Laplace transforms gives

(s2 + 2s + 5)H(s) = +{δ (t)} = 1

so that

which, on inversion, gives the impulse response as

h(t) = e−t sin 2t

Using the convolution integral

θo(t) = h(τ)θi(t − τ) dτ

with θi(t) = 1H(t) gives the response to the unit step as

θo(t) = e−τ sin 2τ dτ

#
0

t

In summary, we have the result that if the impulse response of a linear time-invariant
system is h(t) then its response to an arbitrary input u(t) is

x(t) = u(τ )h(t − τ ) dτ = h(τ)u(t − τ ) dτ (5.45)#
0

t

#
0

t

Example 5.29
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Integrating by parts twice gives

θo(t) = − e−t sin 2t  − e−t cos 2t  + 1 − e−τ sin 2τ dτ

= − e−t sin 2t  − e−t cos 2t  + 1 − 4θo(t)

Hence

θo(t) = (1 − e−t cos 2t − e−t sin 2t)

(Note that in this case, because of the simple form of θi(t), the convolution integral
et

0 h(τ )θi(t − τ ) dτ is taken in preference to et
0θi(τ)h(t − τ ) dτ.)

To obtain the step response directly, we need to solve for t > 0 the differential
equation

subject to the initial conditions θo(0) = θ·
o(0) = 0. Taking Laplace transforms gives

(s2 + 2s + 5)Θ(s) = 

so that

which, on inversion, gives

θo(t) =  − e−t(cos 2t + sin 2t) = (1 − e−t cos 2t − e−t sin 2t)

confirming the previous result.

We therefore see that a linear time-invariant system may be characterized in the fre-
quency domain (or s domain) by its transfer function G(s) or in the time domain by its
impulse response h(t), as depicted in Figures 5.35(a) and (b) respectively. The
response in the frequency domain is obtained by algebraic multiplication, while the
time-domain response involves a convolution. This equivalence of the operation of
convolution in the time domain with algebraic multiplication in the frequency domain
is clearly a powerful argument for the use of frequency-domain techniques in
engineering design.

1
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t
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2
---

1
5
--- 1

2
---
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------- 5θo+ + 1=

1
s
---

Θ 1

s s2 2s 5+ +( )
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1
5
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s
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5
---

s 2+
s 1+( )2 4+

---------------------------–= =

1
5
--- 1

5
--- 1

2
--- 1

5
--- 1

2
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Figure 5.35 (a) Frequency-domain and (b) time-domain representations of a linear 
time-invariant system.
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For the following pairs of causal functions f (t) and 
g(t) show that f * g(t) = g * f (t):

(a) f (t) = t, g(t) = cos 3t

(b) f (t) = t + 1, g(t) = e−2t

(c) f (t) = t 2, g(t) = sin 2t

(d) f (t) = e−t, g(t) = sin t

Using the convolution theorem, determine the 
following inverse Laplace transforms. Check your 
results by first expressing the given transform in 
partial-fractions form and then inverting using the 
standard results:

Taking f(λ) = λ and g(λ) = e−λ, use the inverse form 
(5.42) of the convolution theorem to show that the 
solution of the integral equation

y(t) = λ e−(t−λ) dλ

is

y(t) = (t − 1) + e−t.

Find the impulse response of the system 
characterized by the differential equation

and hence find the response of the system to the 
pulse input u(t) = A[H(t) − H(t − T )], assuming that 
it is initially in a quiescent state.

The response θo(t) of a servomechanism to a driving 
force θi(t) is given by the second-order differential 
equation

(t > 0)

Determine the impulse response of the system, 
and hence, using the convolution integral, obtain the 
response of the servomechanism to a unit step 
driving force, applied at time t = 0, given that the 
system is initially in a quiescent state.

Check your answer by directly solving the 
differential equation

subject to the initial conditions θo = θ· o = 0 
when t = 0.

5.3.8 Exercises

34
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c( ) + 1– 1

s2 s 4+( )
---------------------

 
 
 

36

#
0

t

37

d2x

dt2
-------- 7

dx

dt
------ 12x+ + u t( )=

38

d2θo

dt2
--------- 4

dθo

dt
------- 5θo+ + θi=

d2θo

dt2
--------- 4

dθo

dt
------- 5θo+ + 1=

Solution of state-space equations
In this section we return to consider further the state-space model of dynamical systems
introduced in Section 1.9. In particular we consider how Laplace transform methods
may be used to solve the state-space equations.

5.4.1 SISO systems

In Section 1.9.1 we saw that the single-input–single-output system characterized by the
differential equation (1.63) may be expressed in the state-space form

x·  = Ax + bu (5.46a)

y = cTx (5.46b)

5.4
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where x = x(t) = [x1 x2 . . . xn]
T is the state vector and y the scalar output, the

corresponding input–output transfer function model being

(5.47)

where Y(s) and U(s) are the Laplace transforms of y(t) and u(t) respectively. Defining
A and b as in (1.63), that is, we take A to be the companion matrix of the left-hand side
of (1.63) and take b = [0 0 . . . 0 1]T. In order to achieve the desired response, the vector
c is chosen to be

c = [b0 b1 . . . bm0 . . . 0]T (5.48)

a structure we can confirm to be appropriate using Laplace transform notation. Defining
Xi(s) = +{xi(t)} and taking

we have

X2(s) = sX1(s), X3(s) = sX2(s) = s2X1(s), . . . , Xn(s) = sXn−1(s) = sn−1X1(s)

so that

Y(s) = b0X1(s) + b1X2(s) + . . . + bm Xm+1(s)

which confirms (5.48).
Note that adopting this structure for the state-space representation the last row in A

and the vector c may be obtained directly from the transfer function (5.47) by reading
the coefficients of the denominator and numerator backwards as indicated by the
arrows, and negating those in the denominator.

For the system characterized by the differential equation model

(5.49)

considered in Example 1.40, obtain

(a) a transfer function model;
(b) a state-space model

Solution (a) Assuming all initial conditions to be zero, taking Laplace transforms throughout
in (5.49) leads to

(s3 + 6s2 + 11s + 3)Y(s) = (5s2 + s + 1)U(s)

so that the transfer-function model is given by

G s( ) Y s( )
U s( )
-----------

bmsm . . . b0+ +
sn an−1sn−1 . . . a0+ + +
------------------------------------------------------

c←
A←

-------------= =

X1 s( ) 1

sn an−1sn−1 · · · a0+ + +
-----------------------------------------------------U s( )=

=
b0 b1s b2s2 . . . bmsm+ + +

sn an−1sn−1 . . . a0+ + +
--------------------------------------------------------------U s( )

Example 5.30

d3y

dt3
-------- 6

d2y

dx2
-------- 11

dy
dt
------ 3y+ + + 5

d2u

dt2
--------

du
dt
------ u+ +=

G s( ) Y s( )
U s( )
-----------

5s2 s 1+ +
s3 6s2 11s 3+ + +
------------------------------------------

c←
A←

-------------= =
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(b) Taking A to be the companion matrix  then 

c = [1 1 5]T and the corresponding state-space model is given by (5.46).

Note: The eigenvalues of the state matrix A are given by the roots of the
characteristic equation | λI − A| = λ3 + 6λ2 + 11λ + 3 = 0, which are the same as
the poles of the transfer function G(s).

Defining

+{x(t)} = 

and then taking the Laplace transform throughout in the state equation (5.46a) gives

sX(s) − x(0) = AX(s) + bU(s)

which on rearranging gives

(sI − A)X(s) = x(0) + bU(s)

where I is the identity matrix. Premultiplying throughout by (sI − A)−1 gives

X(s) = (sI − A)−1x(0) + (sI − A)−1bU(s) (5.50)

which on taking inverse Laplace transforms gives the response as

Having obtained an expression for the system state x(t) its output, or response, y(t) may
be obtained from the linear output equation (5.46b). 

Taking the Laplace transform throughout in (5.46b) gives

Y(s) = cTX(s) (5.52)

Assuming zero initial conditions in (5.50) we have

X(s) = (sI − A)−1bU(s)

which, on substitution in (5.52), gives the input–output relationship

Y(s) = cT(sI − A)−1bU(s) (5.53)

From (5.53) it follows that the system transfer function G(s) may be expressed in the form

G(s) = cT(sI − A)−1b = 

which indicates that the eigenvalues of A are the same as the poles of G(s), as noted at
the end of Example 5.30. It follows, from Definition 5.2, that the system is stable pro-
vided all the eigenvalues of the state matrix A have negative real parts.

x(t) = +−1{(sI − A)−1}x(0) + +−1{(sI − A)−1bU(s)} (5.51)

A
0   1 0

0 0 1

3– 11– 6–
 and b

0

0

1

= =

+ x1 t( ){ }
+ x2 t( ){ }


+ xn t( ){ }

X1 s( )
X2 s( )


Xn s( )

X s( )= =

cTadj sI A–( )b
det sI A–( )

------------------------------------
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On comparing the solution (5.51) with that given in (1.78), we find that the transition
matrix F (t ) = eA t may also be written in the form

F (t ) = + −1{(sI − A)−1}

As mentioned in Section 1.10.3, having obtained F (t ),

may be obtained by simply replacing t by t − t0.

Using the Laplace transform approach, obtain an expression for the state x(t) of the
system characterized by the state equation

when the input u(t) is the unit step function

and subject to the initial condition x(0) = [1 1]T.

Solution In this case

, , u(t ) = H(t ), x0 = [1 1]T

Thus

, det(sI − A) = (s + 1)(s + 3)

giving

which, on taking inverse transforms, gives the transition matrix as

so that the first term in the solution (5.51) becomes

(5.54)

Φ t t0,( ) = eA t−t0( )

Example 5.31

x· t( ) = 
x· 1 t( )
x· 2 t( )

 = 
−1 0

1 −3

x1 t( )
x2 t( )

1

1
u t( )+

u t( ) = H t( ) = 
0 t , 0( )
1 t > 0( )




A = −1 0

1 −3
b = 1

1

sI A–  = s 1 0+
−1 s 3+

sI A–( )−1 = 1
s 1+( ) s 3+( )

---------------------------------
s 3 0+

1 s 1+
 = 

1
s 1+
----------- 0

1
2 s 1+( )
------------------- 1

2 s 3–( )
-------------------– 1

s 3+
-----------

eAt = + −1 sI A–( )−1{ } = 
e−t 0

1
2
--- e−t 1

2
--- e−3t– e−3t

+ −1 sI A–( )−1{ }x0 = 
e−t 0

1
2
--- e−t 1

2
--- e−3t– e−3t

1

1
 = 

e−t

1
2
--- e−t 1

2
--- e−3t+
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Since U(s) = +{H(t )} = 1/s,

so that the second term in (5.51) becomes

(5.55)

Combining (5.54) and (5.55), the response x(t) is given by

sI A–( )−1bU s( ) = 1
s 1+( ) s 3+( )

---------------------------------
s 3 0+

1 s 1+
1

1
1
s---

= 1
s s 1+( ) s 3+( )
------------------------------------

s 3+
s 2+

= 

1
s
---

1
s 1+
-----------–

2
3s
-----

1
2 s 1+( )
-------------------– 1

6 s 3+( )
-------------------–

+ −1 sI A–( )−1bU s( ){ } = 
1 e−t–

2
3
---

1
2
--- e−t– 1

6
--- e−3t–

x t( ) = 
e−t

1
2
--- e−t 1

2
--- e

−3t+

1 e−t–
2
3
---

1
2
--- e−t– 1

6
--- e−3t–

 = 
1

2
3
---

1
3
--- e

−3t+
+

A system is modelled by the following differential 
equations

x·1 + 5x1 + x2 = 2u
x·2 − 3x1 + x2 = 5u

coupled with the output equation

y = x1 + 2x2

Express the model in state-space form and obtain 
the transfer function of the system.

Find the state-space representation of the second 
order system modelled by the transfer function

Obtain the dynamic equations in state-space form 
for the systems having transfer-function models

(a) (b)

using the companion form of the system matrix in 
each case.

In formulating the state-space model (5.46) it is 
sometimes desirable to specify the output y to 
be the state variable x1; that is, we take 
cT = [1 0 . . . 0]T. If A is again taken to be 
the companion matrix of the denominator then it 
can be shown that the coefficients b1, b2, . . . , bn of 
the vector b are determined as the first n coefficients 
in the series in s−1 obtained by dividing the 
denominator of the transfer function (5.47) into the 
numerator. Illustrate this approach for the transfer-
function model of Figure 5.36.

5.4.2 Exercises

39

40

G s( ) Y s( )
U s( )
-----------

s 1+
s2 7s 6+ +
-------------------------= =

41

s2 3s 5+ +
s3 6s2 5s 7+ + +
---------------------------------------

s2 3s 2+ +
s3 4s2 3s+ +
------------------------------

42

Figure 5.36 Transfer-function model of Exercise 44.
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A system is governed by the vector–matrix 
differential equation

(t > 0)

where x(t) and u(t) are respectively the state 
and input vectors of the system. Use Laplace 
transforms to obtain the state vector x(t) for the 
input u(t) = [4 3]T and subject to the initial 
condition x(0) = [1 2]T. 

Given that the differential equations modelling a 
certain control system are

x·1 = x1 − 3x2 + u

x·2 = 2x1 − 4x2 + u

use (5.51) to determine the state vector 
x = [x1 x2]

T for the control input u = e−3t, 
applied at time t = 0, given that x1 = x2 = 1 at time 
t = 0.

Using the Laplace transform approach, obtain 
an expression for the state x(t) of the system 
characterized by the state equation

(t > 0)

where the input is

and subject to the initial condition x(0) = [1 0]T.

A third-order single-input–single-output system is 
characterized by the transfer-function model

Express the system model in the state-space form

x·  = Ax + bu (5.56a)

y = cTx (5.56b)

where A is in the companion form. By making a 
suitable transformation x = Mz, reduce the state-
space model to its canonical form, and comment 
on the stability, controllability and observability 
of the system.

Given that

(i) a necessary and sufficient condition for 
the system (5.56) to be controllable is 
that the rank of the Kalman matrix 
[b Ab A2b . . . An−1b] be the same 
as the order of A, and

(ii) a necessary and sufficient condition for it to 
be observable is that the rank of the Kalman 
matrix [c ATc (AT)2c . . . (AT)n−1c] be the 
same as the order of A,

evaluate the ranks of the relevant Kalman matrices 
to confirm your earlier conclusions on the 
controllability and observability of the given 
system.

Repeat Exercise 46 for the system characterized by 
the transfer-function model

43

[· t( ) = 
3 4

2 1
x t( )

0 1

1 1
u t( )+

44

45

x·  = 
x· 1

x· 2

 = 
0 1

−2 −3

x· 1

x· 2

2

0
u+

u t( ) = 
0 t , 0( )

e−t t > 0( )



46

Y s( )
U s( )
----------- = 3s2 2s 1+ +

s3 6s2 11s 6+ + +
------------------------------------------

47

s2 3s 5+ +
s3 6s2 5s+ +
------------------------------

5.4.3 MIMO systems

As indicated in (1.66) the general form of the state-space model representation of an
nth-order multi-input–multi-output system subject to r inputs and l outputs is

x·  = Ax + Bu (5.57a)

y = Cx + Du (5.57b)

where x is the n-state vector, u is the r-input vector, y is the l-output vector, A is the
n × n system matrix, B is the n × r control (or input) matrix and C and D are respectively
l × n and l × r output matrices, with the matrix D relating to the part of the input that is
applied directly into the output.
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Defining

and taking Laplace transforms throughout in the state equation (5.57a), following the
same procedure as for the SISO case, gives

X(s) = (sI − A)−1x(0) + (sI − A)−1BU(s) (5.58)

Taking inverse Laplace transforms in (5.58) gives

x(t) = +−1{(sI − A)−1}x(0) + +−1{(sI − A)−1BU(s)} (5.59)

The output, or response, vector y(t) may then be obtained directly from (5.57b).
We can also use the Laplace transform formulation to obtain the transfer matrix

G(s), between the input and output vectors, for a multivariable system. Taking Laplace
transforms throughout in the output equation (5.57b) gives

Y(s) = CX(s) + DU(s) (5.60)

Assuming zero initial conditions in (5.58) we have

X(s) = (sI − A)−1BU(s)

Substituting in (5.60), gives the system input–output relationship

Y(s) = [C(sI − A)−1B + D]U(s)

Thus the transfer matrix G(s) model of a state-space model defined by the quadruple
{A, B, C, D} is

G(s) = C(sI − A)−1B + D (5.61)

The reverse problem of obtaining a state-space model from a given transfer matrix
is not uniquely solvable. For example, in Section 1.10.6 we showed that a state-space
model can be reduced to canonical form and indicated that this was without affecting the
input–output behaviour. In Section 1.10.6 it was shown that under the transformation
x = Tz, where T is a non-singular matrix, (5.57) may be reduced to the form

z· = A-z + B-u

y =  C
-
z + D

-
u (5.62)

where z is now a state vector and

A- = T −1AT, B- = T −1B, C- = CT, D
-

= D

+ y t( ){ }

+ y1 t( ){ }
+ y2 t( ){ }


+ yl t( ){ }

Y1 s( )
Y2 s( )


Yl s( )

Y s( )= = =

+ u t( ){ }

+ u1 t( ){ }
+ u2 t( ){ }


+ ur t( ){ }

U1 s( )
U2 s( )


Ur s( )

U s( )= = =
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From (5.61), the input–output transfer matrix corresponding to (5.62) is

G1(s) = (sI − )−1  + 

= CT (sI − T −1AT )−1T −1B + D

= CT (sT −1IT − T −1AT )−1T −1B + D

= CT [T −1(sI − A)T ]−1T −1B + D

= CT [T −1(sI − A)−1T ]T −1B + D (using the commutative property)

= C (sI − A)−1B + D

= G(s)

where G(s) is the transfer matrix corresponding to (5.57), confirming that the input–output
behaviour of the state-space model defined by the quadruple {A, B, C, D} is the same as
that defined by the quadruple {

-
A,

-
B, -C,

-
D}. The problem of finding state-space models

that have a specified transfer-function matrix is known as the realization problem.
It follows from (5.61) that

Clearly, if s = p is a pole of G(s) then it must necessarily be an eigenvalue of the state
matrix A, but the converse is not necessarily true. It can be shown that the poles of G(s)
are identical to the eigenvalues of A when it is impossible to find a state-space model
with a smaller state dimension than n having the same transfer-function matrix. In such
cases the state-space model is said to be in minimal form.

(a) Obtain the state-space model characterizing the network of Figure 5.37. Take the
inductor current and the voltage drop across the capacitor as the state variables,
take the input variable to be the output of the voltage source, and take the output
variables to be the currents through L and R2 respectively.

(b) Find the transfer-function matrix relating the output variables y1 and y2 to the
input variable u. Thus find the system response to the unit step u(t) = H(t), assuming
that the circuit is initially in a quiescent state.

Solution (a) The current iC in the capacitor is given by

iC = Cv· C = Cx·1

Applying Kirchhoff ’s second law to the outer loop gives

e = R1(iL + iC) + vC + R2iC = R1(x2 + Cx·1) + x1 + R2Cx·1

C̃ Ã B̃ D̃

G s( ) Cadj sI A–( )B
det sI A–( )

------------------------------------ D+=

Example 5.32

Figure 5.37 Network 
of Example 5.32.
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leading to

Applying Kirchhoff ’s second law to the left-hand loop gives

e = R1(iL + iC) + Li
·
L = R1(x2 + Cx·1) + Lx·2

leading to

Also,

y1 = x2

Substituting the given parameter values leads to the state-space representation

which is of the standard form

x·  = Ax + bu

y = Cx + du

(b) From (5.61), the transfer-function matrix G (s) relating the output variables y1 and
y2 to the input u is

G (s) = C (sI − A)−1b + d

Now

giving

x· 1 = − 1
C R1 R2+( )
--------------------------x1

R1

C R1 R2+( )
--------------------------x2– e

C R1 R2+( )
--------------------------+

x· 2 = R1

L R1 R2+( )
--------------------------x1

R1R2

L R1 R2+( )
--------------------------x2– e

L
---

R2

R1 R2+
-----------------+

y2 = Cx· 1 = − 1
R1 R2+
-----------------x1

R1

R1 R2+
-----------------x2– e

R1 R2+
-----------------+

x· 1

x· 2

 = 
−2 −4

2 −11

x1

x2

2
11
2
------

u+

y1

y2

 = 
0 1

− 2
15
------ − 4

15
------

x1

x2

0
2
15
------

u+

sI A–  = s 2 4+
−2 s 11+

sI A–( )−1 = 1
s 3+( ) s 10+( )

------------------------------------
s 11 −4+

2 s 2+

C sI A–( )−1b = 1
s 3+( ) s 10+( )

------------------------------------
0 1

− 2
15
------ − 4

15
------

s 11 −4+

2 s 2+

2
11
2
------

= 1
s 3+( ) s 10+( )

------------------------------------
11
2
------s 15+

−26
15
------s 4–
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so that

The output variables y1 and y2 are then given by the inverse Laplace transform of

Y(s) = G (s)U(s)

where U(s) = + [u(t)] = + [H(t)] = 1/s; that is,

which on taking inverse Laplace transforms gives the output variables as

In MATLAB the function tf2ss can be used to convert a transfer function to state-
space form for SISO systems. At present there appears to be no equivalent function
for MIMO systems. Thus the command

[A,B,C,D] = tf2ss(b,a)

returns the A, B, C, D matrices of the state-form representation of the transfer function

where the input vector a contains the denominator coefficients and the vector b
contains the numerator coefficients, both in ascending powers of s.

(Note: The function tfss can also be used in the case of single-input–multi-output
systems. In such cases the matrix numerator must contain the numerator coefficients
with as many rows as there are outputs.)

To illustrate consider the system of Example 5.30, for which

G s( ) = 1
s 3+( ) s 10+( )

------------------------------------
11
2
------s 15+

−26
15
------s 4–

0

2
15
------

+  = 

11
2
------s 15+

s 3+( ) s 10+( )
------------------------------------

−26
15
------s 4–

s 3+( ) s 10+( )
------------------------------------ 2

15
------+

Y s( ) = 

11
2
------s 15+

s s 3+( ) s 10+( )
---------------------------------------

−26
15
------s 4–

s s 3+( ) s 10+( )
---------------------------------------

2
15s
--------+

= 

1
2
---

s
--

1
14
------

s 3+
-----------

4
7
---

s 10+
--------------–+

− 2
15
------

s
-------

2
35
------

s 3+
-----------–

4
21
------

s 10+
--------------

2
15
------

s
---+ +

y1

y2

 = 
1
2
---

1
14
------ e−3t 4

7
--- e−10t–+

− 2
35
------ e−3t 4

21
------ e−10t+

t > 0( )

G s( ) C sI A–( ) 1– B D+
b1s

m 1–
··· b+ m 1– s bm+ +

a1s
n 1–

··· a+ n 1– s an+ +
---------------------------------------= =

G s( ) 5s2
1s11

s3
16s2

111s13
----------------------=
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In this case the commands

b = [5 1 1];
a = [1 6 11 3];
[A,B,C,D] = tf2ss(b,a)

return

A = -6 -11 -3
1 0 0
0 1 0

B = 1
0
0

C = 5 1 1
D = 0

giving the state-space model

(Note: This state-space model differs from the one given in the answer to
Example 5.30. Both forms are equivalent to the given transfer function model, with
an alternative companion form taken as indicated in Section 1.9.1.)

Likewise, in MATLAB the function ss2tf converts the state-space
representation to the equivalent transfer function/matrix representation (this being
applicable to both SISO and MIMO systems). The command

[b,a] = ss2tf(A,B,C,D,iu)

returning the transfer function/matrix

G(s) = C(sI − A)−1B + D

from the iu-th input. Again the vector a contains the coefficients of the denominator
in ascending powers of s and the numerator coefficients are returned in array b with
as many rows as there are outputs.

(Note: The entry iu in the command can be omitted when considering SISO
systems so, for example, the commands

A = [-6 -11 -3; 1 0 0; 0 1 0];
B=[1;0;0];
C=[5 1 1];
D=0;
[b,a]=ss2tf(A,B,C,D)

return

b = 0 5.0000 1.0000 1.0000
a = 1.0000 6.0000 11.0000 3.0000

x·1

x·2

x·3

6–
1

0

11–
0

1

3–
0

0

x1

x2

x3

1

0

0

u  y;+ [5 1 1]

x1

x2

x3

= =
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giving the transfer function representation

which confirms the answer to the above example. As an exercise confirm that the
state-space model obtained in the answer to Example 5.30 is also equivalent to this
transfer function representation.)

To illustrate a MIMO system consider the system in Exercise 49, in which the
state-space model is

and we wish to determine the equivalent transfer matrix. The commands

A = [0 1 0 0;-1 -1 0 1;0 0 0 1;0 1 -1 -1];
B=[0 0;1 0;0 0;0 1];
C=[1 0 0 0 ; 0 0 1 0];
D=[0 0 ;0 0];
[b1,a] = ss2tf(A,B,C,D,1)

return the response to u1

b1 = 0 0 1.0000 1.0000 1.0000
0 0.0000 0.0000 1.0000 0.0000

a = 1.0000 2.0000 2.0000 2.0000 1.0000

and the additional command

[b2,a] = ss2tf(A,B,C,D,2)

returns response to u2

b2 = 0 0.0000 0.0000 1.0000 0.0000
0 0.0000 1.0000 1.0000 1.0000

A = 1.0000 2.0000 2.0000 2.0000 1.0000

leading to the transfer matrix model

G s( ) 5s2 s 1+ +
s3 6s2 11s 3+ + +
------------------------------------------=

x·1

x·2

x·3

x·4

0

1–
0

0

1

1–
0

1

0 0

0 1

0 1

1– 1–

x1

x2

x3

x4

0

1

0

0

0

0

0

1

u1

u2

+=

y1

y2

1

0

0

0

0

1

0

0

x1

x2

x3

x4

=

G s( ) 1

s4 2s3 2s2 2s 1+ + + +
-----------------------------------------------------

s2 s 1 s+ +

s s2 s 1+ +
=

1

s 1+( )2 s2 1+( )
-------------------------------------

s2 s 1 s+ +

s s2 s 1+ +
=
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Engineering application: frequency response
Frequency-response methods provide a graphical approach for the analysis and design
of systems. Traditionally these methods have evolved from practical considerations,
and as such are still widely used by engineers, providing tremendous insight into overall
system behaviour. In this section we shall illustrate how the frequency response can be
readily obtained from the system transfer function G(s) by simply replacing s by jω.
Methods of representing it graphically will also be considered.

Consider the system depicted in Figure 5.26, with transfer function

(m < n) (5.63)

When the input is the sinusoidally varying signal

u(t) = A sin ω t

5.5 Engineering application:

G s( ) K s z1–( ) s z2–( ) . . . s zm–( )
s p1–( ) s p2–( ) . . . s pn–( )

---------------------------------------------------------------------=

Determine the response y = x1 of the system 
governed by the differential equations

to an input u = [u1 u2]
T

 = [1 t]T and subject to 
the initial conditions x1(0) = 0, x2(0) = 1.

Consider the 2-input–2-output system modelled by 
the pair of simultaneous differential equations

ÿ1 + y· 1 − y· 2 + y1 = u1

ÿ2 + y· 2 − y· 1 + y2 = u2

Taking the state vector to be x = [y1 y·1 y2 y·2
]T 

express the model as a state-space model of the form

x· = Ax + Bu

y = Cx

Determine the transfer matrix and verify that its 
poles are identical to the eigenvalues of the state 
matrix A.

Considering the network of Figure 5.38

(a) Determine the state-space model in the form

x· = Ax + Bu

y = Cx

Take the inductor currents in L1, L2 and L3 as 
the state variables x1, x2, x3 respectively; take 
the input variables u1 and u2 to be the outputs 
of the current and voltage sources respectively; 
and take the output variables y1 and y2 to be the 
voltage across R2 and the current through L3 
respectively.

(b) Determine the transfer matrix G(s) relating the 
output vector to the input vector.

(c) Assuming that the circuit is initially in a 
quiescent state, determine the response y(t) 
to the input pair

u1(t) = H(t)

u2(t) = tH(t)

where H(t) denotes the Heaviside function.

5.4.4 Exercises

48

x· 1 = −2x2 u1 u2–+
x· 2 = x1 3x2– u1 u2+ + 




t > 0( )

49

50

Figure 5.38 Network of Exercise 50.
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applied at time t = 0, the system response x(t) for t > 0 is determined by

X(s) = G(s)+{A sin ω t}

That is,

X(s) = G(s)

 

which, on expanding in partial fractions, gives

where α1, α2, β1, β2, . . . , βn are constants. Here the first two terms in the summation are
generated by the input and determine the steady-state response, while the remaining
terms are generated by the transfer function and determine the system transient response.

Taking inverse Laplace transforms, the system response x(t), t > 0, is given by

x(t) = α1 e jω t + α 2 e−jω t + βi e pi t (t > 0)

In practice we are generally concerned with systems that are stable, for which the poles
pi, i = 1, 2, . . . , n, of the transfer function G(s) lie in the left half of the s plane.
Consequently, for practical systems the time-domain terms βi e

pit, i = 1, 2, . . . , n, decay
to zero as t increases, and will not contribute to the steady-state response xss(t) of the
system. Thus for stable linear systems the latter is determined by the first two terms as

xss(t) = α1 e jω t + α 2 e−jω t

Using the ‘cover-up’ rule for determining the coefficients α1 and α2 in the partial-
fraction expansions gives

so that the steady-state response becomes

xss(t) = G( jω) e jω t − G(−jω) e−jω t (5.64)

G( jω) can be expressed in the polar form

G( jω) = |G( jω) | e j arg G(jω)

where |G( jω) | denotes the magnitude (or modulus) of G( jω). (Note that both the
magnitude and argument vary with frequency ω.) Then, assuming that the system has
real parameters,

G(− jω) = |G( jω) | e−j arg G(jω)

Aω
s2 ω2+
----------------

KAω s z1–( ) s z2–( ) . . . s zm–( )
s p1–( ) s p2–( ) . . . s pn–( ) s jω–( ) s jω+( )

------------------------------------------------------------------------------------------------------------=

X s( )
α1

s jω–
--------------

α2

s jω+
--------------

βi

s pi–
------------

i=1

n

+ +=

i=1

n



α1
s jω–( )G s( )Aω
s jω–( ) s jω+( )

----------------------------------------
s=jω

A
2j
----G jω( )= =

α2
s jω+( )G s( )Aω
s jω–( ) s jω+( )

----------------------------------------
s=−jω

− A
2j
----G −jω( )= =

A
2j
----

A
2j
----
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and the steady-state response (5.64) becomes

xss(t) = [ |G( jω) |e j arg G( jω)] e jω t − [ |G( jω) | e−j arg G( jω) ] e−jω t

= |G( jω) |[e j[ω t+arg G( jω)] − e−j[ω t+arg G( jω)]]

That is,

xss(t) = A |G( jω) | sin [ω t + arg G(jω) ] (5.65)

This indicates that if a stable linear system with transfer function G(s) is subjected to a
sinusoidal input then

(a) the steady-state system response is also a sinusoid having the same frequency ω
as the input;

(b) the amplitude of this response is |G( jω) | times the amplitude A of the input
sinusoid; the input is said to be amplified if |G( jω) | > 1 and attenuated if
|G( jω) | < 1;

(c) the phase shift between input and output is arg G( jω). The system is said to lead
if arg G(jω) > 0 and lag if arg G(jω)  < 0.

The variations in both the magnitude |G( jω) | and argument arg G( jω) as the
frequency ω of the input sinusoid is varied constitute the frequency response of the
system, the magnitude |G( jω) | representing the amplitude gain or amplitude ratio
of the system for sinusoidal input with frequency ω , and the argument arg G( jω)
representing the phase shift.

The result (5.65) implies that the function G( jω) may be found experimentally by
subjecting a system to sinusoidal excitations and measuring the amplitude gain and
phase shift between output and input as the input frequency is varied over the range
0 < ω < ∞. In principle, therefore, frequency-response measurements may be used to
determine the system transfer function G(s).

In Chapters 7 and 8, dealing with Fourier series and Fourier transforms, we shall see
that most functions can be written as sums of sinusoids, and consequently the response
of a linear system to almost any input can be deduced in the form of the corresponding
sinusoidal responses. It is important, however, to appreciate that the term ‘response’ in
the expression ‘frequency response’ only relates to the steady-state response behaviour
of the system.

The information contained in the system frequency response may be conveniently
displayed in graphical form. In practice it is usual to represent it by two graphs: one
showing how the amplitude |G( jω) | varies with frequency and one showing how the
phase shift arg G( jω) varies with frequency.

Determine the frequency response of the RC filter shown in Figure 5.39. Sketch the
amplitude and phase-shift plots.

Solution The input–output relationship is given by

A
2j
----

A
2j
----

A
2j
----

Example 5.33

Eo s( ) 1
RCs 1+
-------------------Ei s( )=
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so that the filter is characterized by the transfer function

Therefore

giving the frequency-response characteristics

amplitude ratio = |G( jω) | 

=

= 

phase shift = arg G( jω) = −tan−1(RCω)

Note that for ω = 0

|G( jω) | = 1, arg G(jω) = 0

and as ω → ∞

|G( jω) | → 0, arg G( jω) → − π

Plots of the amplitude and phase-shift curves are shown in Figures 5.40(a) and (b)
respectively.

For the simple transfer function of Example 5.33, plotting the amplitude and phase-
shift characteristics was relatively easy. For higher-order transfer functions it can be
a rather tedious task, and it would be far more efficient to use a suitable computer

Figure 5.39 RC filter.

G s( ) 1
RCs 1+
-------------------=

G jω( ) 1
RC jω 1+
-----------------------

1 jRCω–
1 R2C2ω2+
---------------------------= =

1

1 R2C2ω2+
---------------------------= j

RCω
1 R2C2ω2+
---------------------------–

1

1 R2C2ω2+( )2
----------------------------------

R2C2ω2

1 R2C2ω2+( )2
----------------------------------+

1

1 R2C2ω2+( )
-----------------------------------

1
2
---

Figure 5.40
Frequency-response 
plots for Example 5.33: 
(a) amplitude plot; 
(b) phase-shift plot.
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package. However, to facilitate the use of frequency-response techniques in system
design, engineers adopt a different approach, making use of Bode plots to display
the relevant information. This approach is named after H. W. Bode, who developed
the techniques at the Bell Laboratories in the late 1930s. Again it involves drawing
separate plots of amplitude and phase shift, but in this case on semi-logarithmic graph
paper, with frequency plotted on the horizontal logarithmic axis and amplitude, or phase,
on the vertical linear axis. It is also normal to express the amplitude gain in decibels
(dB); that is,

amplitude gain in dB = 20 log |G( jω) |

and the phase shift arg G( jω) in degrees. Thus the Bode plots consist of

(a) a plot of amplitude in decibels versus log ω , and

(b) a plot of phase shift in degrees versus log ω .

Note that with the amplitude gain measured in decibels, the input signal will be
amplified if the gain is greater than zero and attenuated if it is less than zero.

The advantage of using Bode plots is that the amplitude and phase information can
be obtained from the constituent parts of the transfer function by graphical addition. It
is also possible to make simplifying approximations in which curves can be replaced by
straight-line asymptotes. These can be drawn relatively quickly, and provide sufficient
information to give an engineer a ‘feel’ for the system behaviour. Desirable system
characteristics are frequently specified in terms of frequency-response behaviour, and
since the approximate Bode plots permit quick determination of the effect of changes,
they provide a good test for the system designer.

Draw the approximate Bode plots corresponding to the transfer function

(5.66)

Solution First we express the transfer function in what is known as the standard form, namely

giving

Taking logarithms to base 10,

20 log |G( jω) | = 20 log 10 + 20 log |1 + j0.2ω | − 20 log | jω |
− 20 log |1 + j0.01ω | − 20 log |1 + j0.05ω |

arg G( jω) = arg 10 + arg (1 + j0.2ω) − arg jω − arg (1 + j0.01ω)

− arg(1 + j0.05ω) (5.67)

The transfer function involves constituents that are again a simple zero and simple
poles (including one at the origin). We shall now illustrate how the Bode plots can be
built up from those of the constituent parts.

Example 5.34

G s( ) 4 103 5 s+( )×
s 100 s+( ) 20 s+( )
---------------------------------------------=

G s( ) 10 1 0.2s+( )
s 1 0.01s+( ) 1 0.05s+( )
---------------------------------------------------------=

G jω( ) 10 1 j0.2ω+( )
jω 1 j0.01ω+( ) 1 j0.05ω+( )
---------------------------------------------------------------------=



5.5  ENGINEERING A PPLICATION: FREQUENC Y RESPONSE 395

Consider first the amplitude gain plot, which is a plot of 20 log |G( jω) | versus log ω:

(a) for a simple gain k a plot of 20 log k is a horizontal straight line, being above the
0 dB axis if k > 1 and below it if k < 1;

(b) for a simple pole at the origin a plot of −20 log ω is a straight line with slope
−20 dB/decade and intersecting the 0 dB axis at ω = 1;

(c) for a simple zero or pole not at the origin we see that

Note that the graph of 20 log τω is a straight line with slope 20 dB/decade and
intersecting the 0 dB axis at ω = 1/τ. Thus the plot of 20 log |1 + jτω | may be
approximated by two straight lines: one for ω < 1/τ and one for ω > 1/τ. The frequency
at intersection ω = 1/τ is called the breakpoint or corner frequency; here |1 + jτω | =

, enabling the true curve to be indicated at this frequency. Using this approach,
straight-line approximations to the amplitude plots of a simple zero and a simple pole,
neither at zero, are shown in Figures 5.41(a) and (b) respectively (actual plots are also
shown).

Using the approximation plots for the constituent parts as indicated in (a)–(c)
earlier, we can build up the approximate amplitude gain plot corresponding to (5.66) by
graphical addition as indicated in Figure 5.42. The actual amplitude gain plot, produced
using a software package, is also shown.

The idea of using asymptotes can also be used to draw the phase-shift Bode plots,
again taking account of the accumulated effects of the individual components making
up the transfer function, namely that

(i) the phase shift associated with a constant gain k is zero;

(ii) the phase shift associated with a simple pole or zero at the origin is +90 ° or −90°
respectively;

(iii) for a simple zero or pole not at the origin

tan−1(ωτ) → 

tan−1(ωτ) = 45° when ωτ = 1

20 log |1 jτω+ | →
0 as ω 0→  

20 τωlog 20 ωlog 20 1/τ( )log–= as ω ∞→



2

Figure 5.41 Straight-line approximations to Bode amplitude plots: (a) simple zero; (b) simple pole.

0 as ω 0→
90° as ω ∞→



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With these observations in mind, the following approximations are made. For
frequencies ω less than one-tenth of the corner frequency ω = 1/τ (that is, for ω < 1/10τ)
the phase shift is assumed to be 0°, and for frequencies greater than ten times the corner
frequency (that is, for ω > 10/τ) the phase shift is assumed to be ±90°. For frequencies
between these limits (that is, 1/10τ < π < 10/τ ) the phase-shift plot is taken to be a
straight line that passes through 0° at ω = 1/10τ, ±45 ° at ω = 1/τ, and ±90° at ω = 10/τ.
In each case the plus sign is associated with a zero and the minus sign with a pole. With
these assumptions, straight-line approximations to the phase-shift plots for a simple zero
and pole, neither located at the origin, are shown in Figures 5.43(a) and (b) respectively
(the actual plots are represented by the broken curves).

Using these approximations, a straight-line approximate phase-gain plot
corresponding to (5.67) is shown in Figure 5.44. Again, the actual phase-gain plot,
produced using a software package, is shown.

Figure 5.42
Amplitude Bode 
plots for the G(s) 
of Example 5.34.

Figure 5.43
Approximate Bode 
phase-shift plots: 
(a) simple zero; 
(b) simple pole.
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In the graphical approach adopted in this section, separate plots of amplitude gain
and phase shift versus frequency have been drawn. It is also possible to represent the
frequency response graphically using only one plot. When this is done using the pair of
polar coordinates ( |G(jω) |, arg G(jω)) and allowing the frequency ω to vary, the resulting
Argand diagram is referred to as the polar plot or frequency-response plot. Such a
graphical representation of the transfer function forms the basis of the Nyquist approach
to the analysis of feedback systems. In fact, the main use of frequency-response methods
in practice is in the analysis and design of closed-loop control systems. For the unity
feedback system of Figure 5.30 the frequency-response plot of the forward-path
transfer function G(s) is used to infer overall closed-loop system behaviour. The Bode
plots are perhaps the quickest plots to construct, especially when straight-line
approximations are made, and are useful when attempting to estimate a transfer
function from a set of physical frequency-response measurements. Other plots used in
practice are the Nichols diagram and the inverse Nyquist (or polar) plot, the first of
these being useful for designing feedforward compensators and the second for
designing feedback compensators. Although there is no simple mathematical
relationship, it is also worth noting that transient behaviour may also be inferred from
the various frequency-response plots. For example, the reciprocal of the inverse M
circle centred on the −1 point in the inverse Nyquist plot gives an indication of the
peak overshoot in the transient behaviour (see, for example, G. Franklin, D. Powell
and A. Naeini-Emami, Feedback Control of Dynamic Systems, seventh edn, Boston,
MA, Pearson, 2015).

In MATLAB the amplitude and phase-gain plots are generated using the commands

s=tf(ʻsʼ)
G=4*10^3*(s+5)/(s*(100+s)*(20+s));
bode(G)

Investigation of such design tools may be carried out in MATLAB, incorporating
Control Toolbox, using the command rltool(G).

Figure 5.44
Phase-shift Bode 
plot for the G(s) 
of Example 5.34.
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Engineering application: pole placement
In Chapter 1 we examined the behaviour of linear continuous-time systems modelled in
the form of vector-matrix (or state-space) differential equations. In this chapter we have
extended this, concentrating on the transform domain representation using the Laplace
transform. In Chapter 6 we shall extend the approach to discrete-time systems using the
z transform. So far we have concentrated on system analysis; that is, the question ‘Given
the system, how does it behave?’ In this section we turn our attention briefly to consider
the design or synthesis problem, and while it is not possible to produce an exhaustive
treatment, it is intended to give the reader an appreciation of the role of mathematics in
this task.

5.6.1 Poles and eigenvalues

By now the reader should be convinced that there is an association between system
poles as deduced from the system transfer function and the eigenvalues of the system
matrix in state-space form. Thus, for example, the system modelled by the second-order
differential equation

has transfer function

The system can also be represented in the state-space form

x·  = Ax + bu, y = cTx (5.68)

where

x = [x1 x2]
T, A  = , b = [0 1]T, c = [1 0]T

It is easy to check that the poles of the transfer function G(s) are at s = −1 and s = ,
and that these values are also the eigenvalues of the matrix A. Clearly this is an unsta-
ble system, with the pole or eigenvalue corresponding to s =  located in the right half
of the complex plane. In Section 5.6.2 we examine a method of moving this unstable
pole to a new location, thus providing a method of overcoming the stability problem.

5.6.2 The pole placement or eigenvalue location technique

We now examine the possibility of introducing state feedback into the system. To do
this, we use as system input

u = kTx + uext

5.6 Engineering application:

d2y

dt2
-------- + 1

2
---

dy

dt
------ − 1

2
--- y = u

G s( ) = 1

s2 1
2
--- s − 1

2
---+

------------------------

0 1
1
2
--- −1

2
---

1
2
---

1
2
---
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where k = [k1 k2]
T and uext is the external input. The state equation in (5.68) then

becomes

[(k1x1 + k2x2) + u ext ]

That is,

Calculating the characteristic equation of the new system matrix, we find that the
eigenvalues are given by the roots of

λ2 − (k2 − )λ − (k1 + ) = 0

Suppose that we not only wish to stabilize the system, but also wish to improve the
response time. This could be achieved if both eigenvalues were located at (say) λ = −5,
which would require the characteristic equation to be

λ2 + 10λ + 25 = 0

In order to make this pole relocation, we should choose

− (k2 − ) = 10, − (k1 + ) = 25

indicating that we take k1 = −  and k2 = − . Figure 5.45 shows the original system and
the additional state-feedback connections as dotted lines. We see that for this example
at least, it is possible to locate the system poles or eigenvalues wherever we please in
the complex plane, by a suitable choice of the vector k. This corresponds to the choice
of feedback gain, and in practical situations we are of course constrained by the need
to specify reasonable values for these. Nevertheless, this technique, referred to as pole
placement, is a powerful method for system control. There are some questions that
remain. For example, can we apply the technique to all systems? Also, can it be extended
to systems with more than one input? The following exercises will suggest answers to
these questions, and help to prepare the reader for the study of specialist texts.

x·  = 
0 1
1
2
--- −1

2
---

x
0

1
+

x·  = 
 0 1

k1
1
2
--- k2

1
2
---–+

x
0

1
uext+

1
2
---

1
2
---

1
2
---

1
2
---

51
2
------

19
2
------

Figure 5.45 Feedback 
connections for eigen-
value location.
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An unstable system has Laplace transfer function

H(s) = 

Make an appropriate choice of state variables to 
represent this system in the form

x·  = Ax + bu, y = cTx

where

x = [x1 x2]
T, A  = 

b = [0 1]T, c = [1 0]T

This particular form of the state-space model in 
which A  takes the companion form and b has a 
single 1 in the last row is called the control 
canonical form of the system equations, and 
pole placement is particularly straightforward 
in this case.

Find a state-variable feedback control of the 
form u = kTx that will relocate both system poles 
at s = −4, thus stabilizing the system.

Find the control canonical form of the state-space 
equations for the system characterized by the 
transfer function

Calculate or (better) simulate the step response 
of the system, and find a control law that relocates 
both poles at s = −5. Calculate or simulate the step 
response of the new system. How do the two 
responses differ?

The technique for pole placement can be adapted 
to multi-input systems in certain cases. Consider 
the system

x·  = Ax + Bu, y = cTx

where

x = [x1 x2]
T, u = [u1 u2]

T

Writing Bu = b1u1 + b2u2, where b1 = [1 1]T and 
b2 = [0 1]T, enables us to work with each input 
separately. As a first step, use only the input u1 
to relocate both the system poles at s = −5. 
Secondly, use input u2 only to achieve the same 
result. Note that we can use either or both inputs 
to obtain any pole locations we choose, subject of 
course to physical constraints on the size of the 
feedback gains.

The bad news is that it is not always possible to 
use the procedure described in Exercise 53. In the 
first place, it assumes that a full knowledge of the 
state vector x(t) is available. This may not always be 
the case; however, in many systems this problem 
can be overcome by the use of an observer. For 
details, a specialist text on control should be 
consulted.

There are also circumstances in which the 
system itself does not permit the use of the 
technique. Such systems are said to be 
uncontrollable, and the following example, which 
is more fully discussed in J. G. Reed, Linear System 
Fundamentals (Tokyo, McGraw-Hill, 1983), 
demonstrates the problem. Consider the system

with

y = [0 1]x

Find the system poles and attempt to relocate both 
of them, at, say, s = −2. It will be seen that no gain 
vector k can be found to achieve this. Calculating 
the system transfer function gives a clue to the 
problem, but Exercise 55 shows how the problem 
could have been seen from the state-space form of 
the system.

In Exercise 46 it was stated that the system

x·  = Ax + bu

y = cTx 

where A  is an n × n matrix, is controllable provided 
that the Kalman matrix

M = [b Ab A 2b . . . A n−1b]

5.6.3 Exercises

51
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53

A = 
0 1

6 1
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1 0

1 1
, F = 1 0[ ]T

54
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2

1
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55
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is of rank n. This condition must be satisfied if 
we are to be able to use the procedure for pole 
placement. Calculate the Kalman controllability 
matrix for the system in Exercise 54 and confirm 
that it has rank less than n = 2. Verify that the 
system of Exercise 53 satisfies the controllability 
condition.

We have noted that when the system equations 
are expressed in control canonical form, the 
calculations for pole relocation are particularly 
easy. The following technique shows how to 
transform controllable systems into this form. 
Given the system

x· = Ax + bu, y = cTx 

calculate the Kalman controllability matrix M, 
defined in Exercise 55, and its inverse M −1. 
Note that this will only exist for controllable 
systems. Set vT as the last row of M −1 and form 
the transformation matrix

A transformation of state is now made by introducing 
the new state vector z(t) = Tx(t), and the resulting 
system will be in control canonical form. To illustrate 
the technique, carry out the procedure for the system 
defined by

and show that this leads to the system

Finally, check that the two system matrices have 
the same eigenvalues, and show that this will always 
be the case.

56

T = 

YT

YTA


YTAn−1

x·  = 
8 −2

35 −9
[

1

4
u+

z· = 
0 1

2 −1
]

0

1
u+

5.7 Review exercises (1–18)

Check your answers using MATLAB or MAPLE whenever possible.

(a) Given that α is a positive constant, use the 
second shift theorem to 

(i) show that the Laplace transform of 
sin t H(t − α) is

(ii) find the inverse transform of

(b) Solve the differential equation

+ 5y = sin t − sin t H(t − π)

given that y = dy/d t = 0 when t = 0.

Show that the Laplace transform of the 
voltage v(t), with period T, defined by

is 

This voltage is applied to a capacitor of 100 μF and 
a resistor of 250 Ω in series, with no charge initially 
on the capacitor. Show that the Laplace transform 
I(s) of the current i(t) flowing, for t > 0, is

and give an expression, involving Heaviside step 
functions, for i(t) where 0 < t < 2T. For T = 10−3 s, 
is this a good representation of the steady-state 
response of the circuit? Briefly give a reason for 
your answer.

1

e−αs αcos s αsin+
s2 1+

------------------------------------

s e−αs

s2 2s 5+ +
-------------------------

d2y

dt2
-------- 2

dy

dt
------+

2

v t( )
1 0 < t , 1

2
---T( )

−1 1
2
---T < t , T( )

v t T+( ) v t( )=




=

V s( ) 1
s
---

1 e−sT/2–
1 e−sT/2+
---------------------=

I s( ) 1
250 s 40+( )
----------------------------

1 e−sT/2–
1 e−sT/2+
---------------------=
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The response x(t) of a control system to a forcing 
term u(t) is given by the differential equation

(t > 0)

Determine the impulse response of the system, and 
hence, using the convolution integral, obtain the 
response of the system to a unit step u(t) = 1H(t) 
applied at t = 0, given that initially the system is in 
a quiescent state. Check your solution by directly 
solving the differential equation

(t > 0)

with x = dx/dt = 0 at t = 0.

A light horizontal beam, of length 5 m and constant 
flexural rigidity EI, built in at the left-hand end 
x = 0, is simply supported at the point x = 4 m and 
carries a distributed load with density function

Write down the fourth-order boundary-value 
problem satisfied by the deflection y(x). Solve this 
problem to determine y(x), and write down the 
resulting expressions for y(x) for the cases 0 < x 
< 4 and 4 < x < 5. Calculate the end reaction 
and moment by evaluating appropriate derivatives 
of y(x) at x = 0. Check that your results satisfy 
the equation of equilibrium for the beam as a 
whole.

(a) Sketch the function defined by

Express f (t) in terms of Heaviside step 
functions, and use the Laplace transform to 
solve the differential equation

given that x = 0 at t = 0.

(b) The Laplace transform I(s) of the current i(t) 
in a certain circuit is given by 

where E, L, R and C are positive constants. 
Determine (i) i(t) and (ii) i(t).

Show that the Laplace transform of the half-
rectified sine-wave function

of period 2π, is

Such a voltage v(t) is applied to a 1 Ω resistor and 
a 1 H inductor connected in series. Show that the 
resulting current, initially zero, is ∞

n =0 f (t − nπ), 
where f (t) = (sin t − cos t + e − t)H(t). Sketch a 
graph of the function f (t).

(a) Find the inverse Laplace transform of 
1/s2(s + 1)2 by writing the expression in 
the form (1/s2)[1/(s + 1)2] and using the 
convolution theorem.

(b) Use the convolution theorem to solve the 
integral equation

y(t) = t + 2 y (u) cos(t − u) du

and the integro-differential equation

y″(u) y ′(t − u) du = y (t)

where y (0) = 0 and y′(0) = y1. Comment on 
the solution of the second equation.

A beam of negligible weight and length 3l carries a 
point load W at a distance l from the left-hand end. 
Both ends are clamped horizontally at the same 
level. Determine the equation governing the 
deflection of the beam. If, in addition, the beam 
is now subjected to a load per unit length, w, 
over the shorter part of the beam, what will then 
be the differential equation determining the 
deflection?

(a) Using Laplace transforms, solve the 
differential equation

(a > 0)

where H(t) is the Heaviside unit step function, 
given that x = 0 and dx/dt = 0 at t = 0.

(b) The output x(t) from a stable linear control 
system with input sin ω t and transfer function 
G(s) is determined by the relationship

X(s) = G(s)+{sin ω t}

3

d2x

dt2
-------- 2

dx

dt
------ 2x+ + u t( )=

d2x

dt2
-------- 2

dx

dt
------ 2x+ + 1=

4

W x( ) 12 kNm−1 0 , x , 4( )
24 kNm−1 4 , x , 5( )




=

5

f t( )
0 0 < t , 1( )
1 1 < t , 2( )
0 t . 2( )






=

dx
dt
------ x+ f t( )=

I s( ) E
s Ls R/ 1 Cs+( )+[ ]
----------------------------------------------=

lim
t 0→

lim
t ∞→

6

v t( )
tsin 0 < t < π( )

0 π < t < 2π( )



=

1

1 s2+( ) 1 e−πs–( )
-----------------------------------------

7

#
0

t

#
0

t

8

9 

d2x

dt2
-------- 3

dx

dt
------– 3x+ H t a–( )=
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where X(s) = +{x(t)}. Show that, after a long 
time t, the output approaches xs(t), where

Consider the feedback system of Figure 5.46, where 
K is a constant feedback gain.

(a) In the absence of feedback (that is, K = 0) is the 
system stable?

(b) Write down the transfer function G1(s) for the 
overall feedback system.

(c) Plot the locus of poles of G1(s) in the s plane 
for both positive and negative values of K.

(d) From the plots in (c), specify for what range of 
values of K the feedback system is stable.

(e) Confirm your answer to (d) using the 
Routh–Hurwitz criterion.

(a) For the feedback control system of 
Figure 5.47(a) it is known that the impulse 
response is h(t) = 2 e−2t sin t. Use this to 
determine the value of the parameter α.

(b) Consider the control system of Figure 5.47(b), 
having both proportional and rate feedback. 
Determine the critical value of the gain K for 
stability of the closed-loop system.

A continuous-time system is specified in 
state-space form as

x· (t) = Ax(t) + bu(t)

y(t) = cTx(t)

where

(a) Draw a block diagram to represent the 
system.

(b) Using Laplace transforms, show that 
the state transition matrix is given by

(c) Calculate the impulse response of the system, 
and determine the response y(t) of the system to 
an input u(t) = 1 (t > 0), subject to the initial 
state x(0) = [1 0]T.

A single-input–single-output system is represented 
in state-space form, using the usual notation, as

x· (t) = Ax(t) + bu(t)

y(t) = cTx(t)

For

show that

and find x(t) given the x(0) = 0 and u(t) = 1 (t > 0).
Show that the Laplace transfer function of the 

system is

H(s) =  = c(sI − A)−1b

and find H(s) for this system. What is the system 
impulse response?

A controllable linear plant that can be 
influenced by one input u(t) is modelled by 
the differential equation

x· (t) = Ax(t) + bu(t)

xs t( ) Re
ejω tG jω( )

j
------------------------ 
 =

10

Figure 5.46 Feedback system of Review 
exercise 10.

11

Figure 5.47 Feedback control systems of 
Review exercise 11.

12

A = 
0 6

−1 −5
, E = 

0

1
, c = 

1

1

eAt = 
3 e−2t 2 e−3t– 6 e−2t 6 e−3t–

e−3t e−2t– 3 e−3t 2 e−2t–

13

A = 
−2 −1

2 0
, E = 

1

0
, c = 

1

1

eA t = 
e−t tcos tsin–( ) −e−t tsin

2 e− t tsin  e−t tcos tsin+( )

Y s( )
U s( )
-----------

14
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where x(t) = [x1(t) x2(t) . . . xn(t)]
T is 

the state vector, A  is a constant matrix with 
distinct real eigenvalues λ1, λ2, . . . , λ n and 
b = [b1 b2 . . . bn]

T is a constant vector. 
By the application of the feedback control

u(t) = KvT
Kx(t)

where vK is the eigenvector of AT corresponding 
to the eigenvalue λK of AT (and hence of A), the 
eigenvalue λK can be changed to a new real value ρK 
without altering the other eigenvalues. To achieve 
this, the feedback gain K is chosen as

where pK = vT
Kb.

Show that the system represented by

is controllable, and find the eigenvalues and 
corresponding eigenvectors of the system matrix. 
Deduce that the system is unstable in the absence 
of control, and determine a control law that will 
relocate the eigenvalue corresponding to the 
unstable mode at the new value −5.

A second-order system is modelled by the 
differential equations

x· 1 + 2x1 − 4x2 = u

x· 2 − x2 = u

coupled with the output equation

y = x1

(a) Express the model in state-space form.

(b) Determine the transfer function of the system 
and show that the system is unstable.

(c) Show that by using the feedback control law

u(t) = r(t) − ky(t)

where k is a scalar gain, the system will be 
stabilized provided k > .

(d) If r(t) = H(t), a unit step function, and k >  
show that y(t) → 1 as t → ∞ if and only if k = .

(An extended problem) The transient response 
of a practical control system to a unit step input 
often exhibits damped oscillations before reaching 
steady state. The following properties are some 
of those used to specify the transient response 
characteristics of an underdamped system:

rise time, the time required for the response 
to rise from 0 to 100% of its final value;

peak time, the time required for the response 
to reach the first peak of the overshoot;

settling time, the time required for the response 
curve to reach and stay within a range about 
the final value of size specified by an absolute 
percentage of the final value (usually 2% or 5%);

maximum overshoot, the maximum peak 
value of the response measured from unity.

Consider the feedback control system of 
Figure 5.48 having both proportional and 
derivative feedback. It is desirable to choose the 
values of the gains K and K1 so that the system 
unit step response has a maximum overshoot of 
0.2 and a peak time of 1 s.

(a) Obtain the overall transfer function of the 
closed-loop system.

(b) Show that the unit step response of the 
system, assuming zero initial conditions, 
may be written in the form

(t > 0)

where ωd = ωn , ω n
2  = K and 

2ωnξ = 1 + KK1.

(c) Determine the values of the gains K and K1 so 
that the desired characteristics are achieved.

(d) With these values of K and K1, determine the 
rise time and settling time, comparing both 
the 2% and 5% criteria for the latter.

K = 
ρK λK–

pK

-----------------

x· t( ) = 

1 2 0

0 −1 0

−3 −3 −2

[ t( )
0

1

0

u t( )+

15

2
3
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2
3
---

2
3
---
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Figure 5.48 Feedback control system of Review 
exercise 16.
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ξ
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(An extended problem) The mass M1 of the 
mechanical system of Figure 5.49(a) is subjected to 
a harmonic forcing term sin ω t. Determine the 
steady-state response of the system.

It is desirable to design a vibration absorber to 
absorb the steady-state oscillations so that in the 
steady state x(t) ≡ 0. To achieve this, a secondary 
system is attached as illustrated in Figure 5.49(b).

(a) Show that, with an appropriate choice of M2 
and K2, the desired objective may be achieved.

(b) What is the corresponding steady-state 
motion of the mass M2?

(c) Comment on the practicality of your design.

(An extended problem) The electronic amplifier 
of Figure 5.50 has open-loop transfer function G(s) 
with the following characteristics: a low-frequency 
gain of 120 dB and simple poles at 1 MHz, 10 MHz 
and 25 MHz. It may be assumed that the amplifier 
is ideal, so that K/(1 + Kβ ) . 1/β, where β is 

the feedback gain and K the steady-state gain 
associated with G(s).

(a) Construct the magnitude versus log frequency 
and phase versus log frequency plots (Bode 
plots) for the open-loop system.

(b) Determine from the Bode plots whether or 
not the system is stable in the case of unity 
feedback (that is, β = 1).

(c) Determine the value of β for marginal stability, 
and hence the corresponding value of the 
closed-loop low-frequency gain.

(d) Feedback is now applied to the amplifier to 
reduce the overall closed-loop gain at low 
frequencies to 100 dB. Determine the gain 
and phase margin corresponding to this 
closed-loop configuration.

(e) Using the given characteristics, express G(s) 
in the form

and hence obtain the input–output transfer 
function for the amplifier.

(f ) Write down the characteristic equation for the 
closed-loop system and, using the Routh–
Hurwitz criterion, reconsider parts (b) and (c).

17

Figure 5.49 Vibration absorber of 
Review exercise 17.

18

Figure 5.50 Electronic amplifier of Review 
exercise 18.
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Introduction
In this chapter we focus attention on discrete-(time) processes. With the advent of fast
and cheap digital computers, there has been renewed emphasis on the analysis and
design of digital systems, which represent a major class of engineering systems. The
main thrust of this chapter will be in this direction. However, it is a mistake to believe
that the mathematical basis of this area of work is of such recent vintage. The first
comprehensive text in English dealing with difference equations was The Treatise of the
Calculus of Finite Differences by George Boole and published in 1860. Much of the
early impetus for the finite calculus was due to the need to carry out interpolation and
to approximate derivatives and integrals. Later, numerical methods for the solution of
differential equations were devised, many of which were based on finite-difference
methods, involving the approximation of the derivative terms to produce a difference
equation. The underlying idea in each case so far discussed is some form of
approximation of an underlying continuous function or continuous-time process. There
are situations, however, where it is more appropriate to propose a discrete-time model
from the start.

Digital systems operate on digital signals, which are usually generated by sampling
a continuous-time signal, that is a signal defined for every instant of a possibly infinite
time interval. The sampling process generates a discrete-time signal, defined only at
the instants when sampling takes place so that a digital sequence is generated. After
processing by a computer, the output digital signal may be used to construct a new
continuous-time signal, perhaps by the use of a zero-order hold device, and this in
turn might be used to control a plant or process. Digital signal processing devices
have made a major impact in many areas of engineering, as well as in the home. For
example, compact disc players, which operate using digital technology, offered
such a significant improvement in reproduction quality that the 1980s saw them
rapidly take over from cassette tape players and vinyl record decks. DVD players
have taken over from video players and digital radios are setting the standard for
broadcasting. Both of these are based on digital technology.

We have seen in Chapter 5 that the Laplace transform was a valuable aid in the
analysis of continuous-time systems, and in this chapter we develop the z transform,
which will perform the same task for discrete-time systems. We introduce the transform in
connection with the solution of difference equations, and later we show how difference
equations arise as discrete-time system models.

The chapter includes two engineering applications. The first is on the design of
digital filters, and highlights one of the major applications of transform methods as
a design tool. It may be expected that whenever sampling is involved, performance will
improve as sampling rate is increased. Engineers have found that this is not the full
story, and the second application deals with some of the problems encountered. This
leads on to an introduction to the unifying concept of the $ transform, which brings
together the theories of the Laplace and z transforms.

6.1



6.2  THE Z  TRANSFOR M 409

The z transform
Since z transforms relate to sequences, we first review the notation associated with
sequences, which were considered in more detail in Chapter 7 of Modern Engineering
Mathematics (MEM). A finite sequence  is an ordered set of n + 1 real or
complex numbers:

 = {x0, x1, x2, . . . , xn}

Note that the set of numbers is ordered so that position in the sequence is important.
The position is identified by the position index k, where k is an integer. If the number
of elements in the set is infinite then this leads to the infinite sequence

 = {x0, x1, x2, . . . }

When dealing with sampled functions of time t, it is necessary to have a means of
allowing for t , 0. To do this, we allow the sequence of numbers to extend to infinity
on both sides of the initial position x0, and write

 = { . . . , x−2, x−1, x0, x1, x2, . . . }

Sequences  for which xk = 0 (k , 0) are called causal sequences, by analogy
with continuous-time causal functions f (t)H(t) defined in Section 11.2.1 of MEM as

While for some finite sequences it is possible to specify the sequence by listing all the
elements of the set, it is normally the case that a sequence is specified by giving a
formula for its general element xk.

6.2.1 Definition and notation

The process of taking the z transform of a sequence thus produces a function
of a complex variable z, whose form depends upon the sequence itself. The symbol
] denotes the z-transform operator; when it operates on a sequence {xk} it
transforms the latter into the function X(z) of the complex variable z. It is usual to
refer to {xk}, X(z) as a z-transform pair, which is sometimes written as {xk} ↔
X(z). Note the similarity to obtaining the Laplace transform of a function in Section
11.2.1 of MEM. We shall return to consider the relationship between Laplace and z
transforms in Section 6.7.

6.2

xk{ }0
n

xk{ }0
n

xk{ }0
∞

xk{ } ∞–
∞

xk{ } ∞–
∞

f t( )H t( ) = 
0 t 0<( )
f t( ) t    0( )




>

The z transform of a sequence  is defined in general as

(6.1)

whenever the sum exists and where z is a complex variable, as yet undefined.

xk{ } ∞–
∞

] xk{ } ∞–
∞  = X z( ) = 

xk

zk
-----

k=−∞

∞


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In this chapter we shall be concerned with causal sequences, and so the definition
given in (6.2) will be the one that we shall use henceforth. We shall therefore from now
on take {xk} to denote . Non-causal sequences, however, are of importance, and
arise particularly in the field of digital image processing, among others.

Determine the z transform of the sequence

{xk} = {2k} (k > 0)

Solution From the definition (6.2),

which we recognize as a geometric series, with common ratio r = 2/z between successive
terms. The series thus converges for | z | . 2, when

leading to

(6.3)

so that

is an example of a z-transform pair.

From Example 6.1, we see that the z transform of the sequence {2k} exists provided
that we restrict the complex variable z so that it lies outside the circle |z | = 2 in the
z plane. From another point of view, the function

may be thought of as a generating function for the sequence {2k}, in the sense that the
coefficient of z−k in the expansion of X(z) in powers of 1/z generates the kth term of the
sequence {2k}. This can easily be verified, since

For sequences  that are causal, that is

xk = 0 (k , 0)

the z transform given in (6.1) reduces to

(6.2)

xk{ } ∞–
∞

] xk{ }0
∞ = X z( ) = 

xk

zk
-----

k=0

∞



xk{ }0
∞

Example 6.1

] 2k{ } = 
2k

zk
-----

k=0

∞

  = 
2
z
--- 
 

k

k=0

∞



2
z
--- 

 
k

k=0

∞

  = 
1 2/z( )k–

1 2/z–----------------------- = 
k ∞→
lim

1
1 2/z–----------------

] 2k{ } = 
z

z 2–----------- | z | 2>( )

xk{ } = 2k{ }

X z( ) = 
z

z 2–
-----------







X z( ) = 
z

z 2–
----------- | z | 2>( )
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and, since | z | . 2, we can expand this as

and we see that the coefficient of z−k is indeed 2k, as expected.
We can generalize the result (6.3) in an obvious way to determine ]{ak}, the z

transform of the sequence {ak}, where a is a real or complex constant. At once

so that

Show that

Solution Taking a =  in (6.4), we have

so that

 

Further z-transform pairs can be obtained from (6.4) by formally differentiating
with respect to a, which for the moment we regard as a parameter. This gives

leading to

(6.5)

In the particular case a = 1 this gives

(6.6)

(6.4)

z
z 2–----------- = 

1
1 2/z–---------------- = 1 2

z
---– 

 
1–

1 2
z
---– 

 
1–
 = 1

2
z
---

2
z
--- 

 
2

… 2
z
--- 

 
k

…+ + + + +

] ak{ } = 
ak

zk
-----

k=0

∞

  = 
1

1 a/z–
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z
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----------- | z |  > | a |( )

Example 6.2
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∞


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da
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z
z a–
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 
 

] kak−1{ } = 
z
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Find the z transform of the sequence

{2k} = {0, 2, 4, 6, 8, . . . }

Solution From (6.6),

Using the definition (6.1),

so that

(6.7)

Example 6.3 demonstrates the ‘linearity’ property of the z transform, which we shall
consider further in Section 6.3.1.

A sequence of particular importance is the unit pulse or impulse sequence

{δk} = {1} = {1, 0, 0, . . . }

It follows directly from the definition (6.4) that

]{δk} = 1 (6.8)

Example 6.3

In MATLAB, using the Symbolic Math Toolbox, the z transform of the sequence
{xk} is obtained by entering the commands

syms k z
ztrans(xk)

As for Laplace transforms (see Section 11.2.2 of MEM), the answer may be
simplified using the command simple(ans) and reformatted using the pretty
command. Considering the sequence {xk} = {2k} of Example 6.1, the commands

syms k z
ztrans(2^k)

return

ans=1/2*z/(1/2*z-1)

Entering the command

simple(ans)

returns

ans=z/(z-2)

] k{ } = ] 0, 1, 2, 3, . . .{ } = 
k

zk
----

k=0

∞

  = 
z

z 1–( )2
------------------

] 0, 2, 4, 6, 8, . . .{ } = 0
2

z
---

4

z2
----

6

z3
----

8

z4
---- . . .+ + + + +  = 2

k

zk
----

k=0

∞



] 2k{ } = 2] k{ } = 
2z

z 1–( )2
------------------
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6.2.2 Sampling: a first introduction

Sequences are often generated in engineering applications through the sampling of
continuous-time signals, described by functions f(t) of a continuous-time variable t.
Here we shall not discuss the means by which a signal is sampled, but merely suppose
this to be possible in idealized form.

Figure 6.1 illustrates the idealized sampling process in which a continuous-time
signal f (t) is sampled instantaneously and perfectly at uniform intervals T, the sampling
interval. The idealized sampling process generates the sequence

{ f (kT )} = { f (0), f (T ), f (2T ), . . . , f (nT ), . . . } (6.9)

Using the definition (6.1), we can take the z transform of the sequence (6.9) to give

(6.10)

whenever the series converges. This idea is simply demonstrated by an example.

The signal f(t) = e−tH(t) is sampled at intervals T. What is the z transform of the resulting
sequence of samples? 

Solution Sampling the causal function f (t) generates the sequence

{ f (kT )} = { f (0), f (T ), f (2T ), . . . , f (nT ), . . . }

= {1, e−T, e−2T, e−3T, . . . , e−nT, . . . }

z transforms can be performed in MAPLE using the ztrans function; so the
commands:

ztrans(2^k,k,z);
simplify(%);

return
z

z 2–
-----------

Figure 6.1 Sampling 
of a continuous-time 
signal.

] f kT( ){ } = 
f kT( )

zk
--------------

k=0

∞



Example 6.4
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Then, using (6.1),

so that

(6.11)

It is important to note in Example 6.4 that the region of convergence depends on the
sampling interval T.

 

In MATLAB the commands

syms k T z
ztrans(exp(-k*T));
pretty(simple(ans))

return

ans = z/(z-exp(-T))

which confirms (6.11).
In MAPLE the commands:

ztrans(exp(-k*T),k,z);
simplify(%);

return

] f kT( ){ } = 
e kT–

zk
---------

k=0

∞

  = e T–

z
-------
 
 
 

k

k=0

∞



] e kT–{ } = 
z

z e T––
--------------- | z | e T–>( )

zeT

zeT 1–
-----------------

Calculate the z transform of the following sequences, 
stating the region of convergence in each case:

(a) {( )k} (b) {3k} (c) {(−2)k}

(d) {−(2k)} (e) {3k}

The continuous-time signal f (t) = e−2ω t, where ω is a 
real constant, is sampled when t > 0 at intervals T. 
Write down the general term of the sequence 
of samples, and calculate the z transform of the 
sequence.

6.2.3 Exercises

1

1
4
---

2

Properties of the z transform
In this section we establish the basic properties of the z transform that will enable us to
develop further z-transform pairs, without having to compute them directly using the
definition.

6.3
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6.3.1 The linearity property

As for Laplace transforms, a fundamental property of the z transform is its linearity,
which may be stated as follows.

As a consequence of this property, we say that the z-transform operator ] is a linear
operator. A proof of the property follows readily from the definition (6.4), since

+

= αX(z) + βY(z)

The region of existence of the z transform, in the z plane, of the linear sum will be the
intersection of the regions of existence (that is, the region common to both) of the
individual z transforms X(z) and Y(z).

The continuous-time function f (t) = cos ω t H(t), ω a constant, is sampled in the
idealized sense at intervals T to generate the sequence {cos kωT}. Determine the z
transform of the sequence.

Solution Using the result cos kωT = (e jkωT + e−jkωT) and the linearity property, we have

]{cos kωT} = ]{ e jkωT + e−jkωT} = ]{e jkωT} + ]{e−jkωT}

Using (6.7) and noting that |e jkωT | = |e−jkωT | = 1 gives

leading to the z-transform pair

(6.13)

In a similar manner to Example 6.5, we can verify the z-transform pair

(6.14)

and this is left as an exercise for the reader (see Exercise 3).

If {xk} and {yk} are sequences having z transforms X(z) and Y(z) respectively and if
α and β are any constants, real or complex, then

]{αxk + βyk} = α]{xk} + β]{yk} = αX(z) + βY(z) (6.12)

] αxk βyk+{ } = 
αxk βyk+

zk
-----------------------

k=0

∞

  = α xk

zk
----

k=0

∞

  β yk

zk
----

k=0

∞



Example 6.5

1
2
---

1
2
---

1
2
---

1
2
---

1
2
---

] kωTcos{ } = 1
2
---

z

z ejωT–
---------------- 1

2
---

z

z e−jωT–
------------------- | z | 1>( )+

= 1
2
---
z z e−jωT–( ) z z ejωT–( )+
z2 ejωT e−jωT+( )z– 1+

----------------------------------------------------------

] cos kωT{ } = 
z z ωTcos–( )

z2 2z ωTcos– 1+
-------------------------------------------- | z | 1>( )

] sin kωT{ } = 
z sin ωT

z2 2z ωTcos– 1+
-------------------------------------------- | z | 1>( )
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6.3.2 The first shift property (delaying)

In this and the next section we introduce two properties relating the z transform of a
sequence to the z transform of a shifted version of the same sequence. In this section
we consider a delayed version of the sequence {xk}, denoted by {yk}, with

yk = 

Here k0 is the number of steps in the delay; for example, if k0 = 2 then yk = xk−2,
so that

y0 = x−2, y1 = x−1, y2 = x0, y3 = x1

and so on. Thus the sequence {yk} is simply the sequence {xk} moved backward, or
delayed, by two steps. From the definition (6.1),

where we have written p = k − k0. If {xk} is a causal sequence, so that xp = 0 ( p , 0), then

where X(z) is the z transform of {xk}.
We therefore have the result 

which is referred to as the first shift property of z transforms.
If {xk} represents the sampled form, with uniform sampling interval T, of the con-

tinuous signal x(t) then represents the sampled form of the continuous signal
x(t − k0T ) which, as illustrated in Figure 6.2, is the signal x(t) delayed by a multiple
k0 of the sampling interval T. The reader will find it of interest to compare this result
with the results for the Laplace transforms of integrals [see Section 11.3.2 of MEM, in
particular (11.15)].

Check that in MATLAB the commands

syms k z ω T
ztrans(cos(k*ω*T));
pretty(simple(ans))

return the transform given in (6.13) and that the MAPLE commands:

ztrans(cos(k*ω*T),k,z);
simplify(%);

do likewise.

(6.15)

xk−k0

] yk{ } = 
yk

zk
----

k=0

∞

  = 
xk−k0

zk
----------

k=0

∞

  = 
xp

zp+k0
----------

p=−k0

∞



] yk{ } = 
xp

zp+k0
----------

p=0

∞

  = 
1
zk0
-----

xp

z p---- = 
1
zk0
-----X z( )

p=0

∞



] xk−k0
{ } = 

1
zk0
----- ] xk{ }

xk−k0
{ }
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The causal sequence {xk} is generated by

xk = ( )k (k > 0)

Determine the z transform of the shifted sequence {xk−2}.

Solution By the first shift property,

which, on using (6.4), gives

We can confirm this result by direct use of the definition (6.1). From this, and the fact
that {xk} is a causal sequence,

{xk−2} = {x−2, x−1, x0, x1, . . . } = {0, 0, 1, , , . . . }

Thus,

 

6.3.3 The second shift property (advancing)

In this section we seek a relationship between the z transform of an advanced version
of a sequence and that of the original sequence. First we consider a single-step
advance. If {yk} is the single-step advanced version of the sequence {xk} then {yk} is
generated by

yk = xk+1 (k > 0)

Example 6.6

Figure 6.2
Sequence and its 
shifted form.

1
2
---

] xk−2{ } = 
1

z2
---- ] 1

2
---( )k{ }

] xk−2{ } = 
1

z2
----

z

z 1
2
---–

---------- | z |  >  1
2
---( ) = 

1

z2
----

2z

2z 1–
--------------- = 

2

z 2z 1–( )
---------------------- | z |  >  1

2
---( )

1
2
---

1
4
---

] xk−2{ } = 0 0
1

z2
----

1

2z3
-------

1

4z4
------- . . . = 

1

z2
---- 1

1

2z
------

1

4z2
------- . . . + + +

 
 
 + + + + +

= 
1

z2
----

z

z 1
2
---–

---------- | z |  >  1
2
---( ) = 

z

z 2z 1–( )
---------------------- | z |  >  1

2
---( )
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Then

and putting p = k + 1 gives

where X(z) is the z transform of {xk}.
We therefore have the result

In a similar manner it is readily shown that for a two-step advanced sequence {xk+2}

Note the similarity in structure between (6.16) and (6.17) on the one hand and those for
the Laplace transforms of first and second derivatives (Section 11.3.1 of MEM). In
general, it is readily proved by induction that for a k0-step advanced sequence 

In Section 6.5.2 we shall use these results to solve difference equations.

6.3.4 Some further properties

In this section we shall state some further useful properties of the z transform, leaving
their verification to the reader as Exercises 9 and 10.

]{xk+1} = zX(z) − zx0 (6.16)

]{xk+2} = z 2X(z) − z 2x0 − zx1 (6.17)

(6.18)

] yk{ } = 
yk

zk
----

k=0

∞

  = 
xk+1

zk
--------

k=0

∞

  = z
xk+1

zk+1
--------

k=0

∞



] yk{ } = z
xp

z p---- = z
xp

z p---- x0–
p=0

∞

 
 
 

 = zX z( ) zx0–
p=1

∞



xk+k0
{ }

] xk+k0
{ } = zk0X z( ) xnzk0−n

n=0

k0−1

–

(i) Multiplication by ak

If Z{xk} = X(z) then for a constant a

]{akxk} = X (a−1z) (6.19)

(ii) Multiplication by k n

If ]{xk} = X (z) then for a positive integer n

(6.20)] knxk{ } = z
d

dz
-----– 

 
n

X z( )
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6.3.5 Table of z transforms

It is appropriate at this stage to draw together the results proved so far for easy access.
This is done in the form of a table in Figure 6.3.

 

Note that in (6.20) the operator −z d/dz means ‘first differentiate with respect
to z and then multiply by −z’. Raising to the power of n means ‘repeat the
operation n times’.

(iii) Initial-value theorem

If {xk} is a sequence with z transform X (z) then the initial-value theorem states
that

(6.21)

(iv) Final-value theorem

If {xk} is a sequence with z transform X(z) then the final-value theorem states
that

(6.22)

provided that the poles of (1 − z−1)X(z) are inside the unit circle.

X z( )
z ∞→
lim  = x0

xk
k ∞→
lim  = 1 z 1––( )X z( )

z 1→
lim

Figure 6.3 A short 
table of z transforms. {xk} (k > 0) ]{xk} Region of existence

(unit pulse sequence)

xk = 1 (unit step sequence)

xk = ak (a constant)

xk = k

xk = kak−1 (a constant)

xk = e−kT (T constant)

xk = cos kωT (ω, T constants)

xk = sin kωT (ω, T constants)

1 All z

| z | > 1

| z | > | a |

| z | > 1

| z | > a

| z | > e− T

|z | > 1

|z | > 1

xk  = 
1 k = 0( )
0  k 0>( )




z
z 1–
-----------

z
z a–-----------

z

z 1–( )2
------------------

z

z a–( )2
------------------

z

z e T––
---------------

z z ωTcos–( )
z2 2z ωTcos– 1+
-------------------------------------------

z ωTsin

z2 2z ωTcos– 1+
--------------------------------------------
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The inverse z transform
In this section we consider the problem of recovering a causal sequence {xk} from
knowledge of its z transform X(z). As we shall see, the work on the inversion of Laplace
transforms in Section 11.2.7 of MEM will prove a valuable asset for this task.

This correspondence between X(z) and {xk} is called the inverse z transformation,
{xk} being the inverse transform of X(z), and ] −1 being referred to as the inverse
z-transform operator.

As for the Laplace transforms in Section 11.2.8 of MEM, the most obvious way of
finding the inverse transform of X(z) is to make use of a table of transforms such as that
given in Figure 6.3. Sometimes it is possible to write down the inverse transform
directly from the table, but more often than not it is first necessary to carry out some
algebraic manipulation on X(z). In particular, we frequently need to determine the
inverse transform of a rational expression of the form P(z)/Q(z), where P(z) and Q(z)
are polynomials in z. In such cases the procedure, as for Laplace transforms, is first to
resolve the expression, or a revised form of the expression, into partial fractions and
then to use the table of transforms. We shall now illustrate the approach through some
examples.

6.4

Formally the symbol ] −1[X(z)] denotes a causal sequence {xk} whose z transform is
X(z); that is,

if ]{xk} = X(z) then {xk} = ]−1[X(z)]

Check your answers using MATLAB or MAPLE whenever possible.

Use the method of Example 6.5 to confirm (6.14), 
namely

where ω and T are constants.

Use the first shift property to calculate the z 
transform of the sequence {yk}, with 

where {xk} is causal and xk = ( )k. Confirm your 
result by direct evaluation of ]{yk} using the 
definition of the z transform.

Determine the z transforms of the sequences

(a) {( )k} (b) {cos kπ}

Determine ]{( )k}. Using (6.6), obtain the z 
transform of the sequence {k( )k}.

Show that for a constant α

(a) 

(b) 

Sequences are generated by sampling a causal 
continuous-time signal u(t) (t > 0) at uniform 
intervals T. Write down an expression for uk, the 
general term of the sequence, and calculate the 
corresponding z transform when u(t) is

(a) e−4t (b) sin t (c) cos 2t

Prove the initial- and final-value theorems given in 
(6.21) and (6.22).

Prove the multiplication properties given in (6.19) 
and (6.20).

6.3.6 Exercises

3

] kωTsin{ } = 
z ωTsin

z2 2z ωTcos 1+–
--------------------------------------------

4

yk = 
0 k 3<( )
xk 3– k 3( )




>

1
2
---

5
1
5
---–

6 1
2
---

1
2
---

7

] sinh kα{ } = 
z sinh α

z2 2z cosh α 1+–
------------------------------------------

] cosh kα{ } = 
z2 z cosh α–

z2 2z cosh α 1+–
------------------------------------------

8

9

10
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6.4.1 Inverse techniques

Find

Solution From Figure 6.3, we see that z /(z − 2) is a special case of the transform z /(z − a), with
a = 2. Thus

Find

Solution Guided by our work on Laplace transforms, we might attempt to resolve

into partial fractions. This approach does produce the correct result, as we shall show
later. However, we notice that most of the entries in Figure 6.3 contain a factor z in the
numerator of the transform. We therefore resolve

into partial fractions, as

so that

Then using the result ]−1[z /(z − a)] = {ak} together with the linearity property, we have

= {2k} − {1k} (k > 0)

so that

(6.23)

Example 6.7

]
1– z

z 2–-----------

] 1– z
z 2–
-----------  = 2k{ }

Example 6.8

] 1– z
z 1–( ) z 2–( )

--------------------------------

Y z( ) = 
z

z 1–( ) z 2–( )
--------------------------------

Y z( )
z

---------- = 
1

z 1–( ) z 2–( )
--------------------------------

Y z( )
z

---------- = 1
z 2–-----------

1
z 1–-----------–

Y z( ) = z
z 2–-----------

z
z 1–-----------–

] 1– Y z( )[ ] = ] 1– z
z 2–
-----------

z
z 1–-----------– 

   = ] 1– z
z 2–
----------- 

  ] 1– z
z 1–
----------- 

 –

] 1– z
z 1–( ) z 2–( )

--------------------------------  = 2k 1–{ } k 0( )>
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Suppose that in Example 6.8 we had not thought so far ahead and we had simply
resolved Y(z), rather than Y(z) /z, into partial fractions. Would the result be the same?
The answer of course is ‘yes’, as we shall now show. Resolving

into partial fractions gives

which may be written as

Since

it follows from the first shift property (6.15) that

Similarly,

Combining these last two results, we have

which, as expected, is in agreement with the answer obtained in Example 6.8.
We can see that adopting this latter approach, while producing the correct result,

involved extra effort in the use of a shift theorem. When possible, we avoid this by
‘extracting’ the factor z as in Example 6.8, but of course this is not always possible, and
recourse may be made to the shift property, as Example 6.9 illustrates.

The inverse z transform {xk} of X(z) is returned in MATLAB using the command

iztrans(X(z),k)

(Note: The command iztrans(X(z)) by itself returns the inverse transform
expressed in terms of n rather than k.)

For the z transform in Example 6.8 the MATLAB command

iztrans(z/((z-1)*(z-2)),k)

Y z( ) = 
z

z 1–( ) z 2–( )
--------------------------------

Y z( ) = 
2

z 2–
----------- 1

z 1–
-----------–

Y z( ) = 
1
z
---

2z
z 2–-----------

1
z
---

z
z 1–-----------–

] 1– 2z
z 2–-----------  = 2] 1– z

z 2–-----------
 
   = 2 2k{ }

] 1– 1
z
---

2z
z 2–
-----------  = 

2 2k−1⋅{ } k  0>( )
0 k =  0( )




] 1– 1
z
---

z
z 1–-----------  = 

1k−1{ } = 1{ } k  0>( )
0  k =  0( )




] 1– Y z( )[ ] = ] 1– 1
z
---

2z
z 2–
----------- ] 1– 1

z
---

z
z 1–
-----------–

= 
2k 1–{ } k  0>( )
 0  k =  0( )



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Find

Solution In this case there is no factor z available in the numerator, and so we must resolve

into partial fractions, giving

Since

it follows from the first shift property (6.15) that

Then, from the linearity property,

returns

ans=-1+2^k

as required.
The inverse z transform can be performed in MAPLE using the invztrans func-

tion, so that the command

invztrans(z/(z^2-3*z+2)z,k);

also returns the answer

2k − 1

Example 6.9

] 1– 2z 1+
z 1+( ) z 3–( )

---------------------------------

Y z( ) = 
2z 1+

z 1+( ) z 3–( )
---------------------------------

Y z( ) = 1
4
---

1
z 1+
----------- 7

4
---

1
z 3–
----------- = 1

4
---

1
z
---

z
z 1+
----------- 7

4
---

1
z
---

z
z 3–-----------++

] 1– z
z 1+
-----------  = 1–( )k{ } k 0>( )

] 1– z
z 3–
-----------  = 3k{ } k 0>( )

] 1– 1
z
---

z
z 1+
-----------  = 

1–( )k−1{ } k . 0( )
0  k = 0( )




] 1– 1
z
---

z
z 3–-----------  = 

3k−1 k . 0( )
0 k = 0( )




] 1– Y z( )[ ] = 1
4
--- ]

1– 1
z
---

z
z 1+
----------- 7

4
--- ]

1– 1
z
---

z
z 3–-----------+
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giving

 

It is often the case that the rational function P(z) /Q(z) to be inverted has a quadratic
term in the denominator. Unfortunately, in this case there is nothing resembling the
first shift theorem of the Laplace transform which, as we saw in Section 11.2.9 of
MEM, proved so useful in similar circumstances. Looking at Figure 6.3, the only two
transforms with quadratic terms in the denominator are those associated with the
sequences {cos kωT} and {sin kωT}. In practice these prove difficult to apply in
the inverse form, and a ‘first principles’ approach is more appropriate. We illustrate this
with two examples, demonstrating that all that is really required is the ability to handle
complex numbers at the stage of resolution into partial fractions.

Invert the z transform

where a is a real constant.

Solution In view of the factor z in the numerator, we resolve Y(z)/z into partial fractions, giving

That is

In MATLAB the command

iztrans((2*z+1)/((z+1)*(z-3)),k)

returns

ans=-1/3*charfcn[0](k)–1/4*(-1)^k+7/12*3^k

(Note: The charfcn function is the characteristic function of the set A, and is defined
to be

Thus charfcn [0](k) = 1 if k = 0 and 0 otherwise.)
It is left as an exercise to confirm that the answer provided using MATLAB

concurs with the calculated answer.

] 1– 2z 1+
z 1+( ) z 3–( )

---------------------------------  = 
1
4
--- 1–( )k−1 7

4
--- 3

k−1+{ } k . 0( )

0 k = 0( )



charfcn[A](k)
1 if k is in A

0 if k is not in A



=

Example 6.10

Y z( ) = 
z

z2 a2+
---------------

Y z( )
z

---------- = 
1

z2 a2+
--------------- = 

1

z ja+( ) z ja–( )
------------------------------------- = 

1

j2a
--------

1

z ja–( )
------------------

1

j2a
--------

1

z ja+( )
-------------------–

Y z( ) = 
1

j2a
-------- z

z ja–
-------------

z
z ja+
---------------–

 
 
 
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Using the result ] −1[z/(z − a)] = {a k}, we have

From the relation e jθ = cosθ + j sinθ, we have

j = e jπ /2, − j = e−jπ /2

so that

The linearity property then gives

Whilst MATLAB or MAPLE may be used to obtain the inverse z transform when
complex partial fractions are involved, it is difficult to convert results into a simple
form, the difficult step being that of expressing complex exponentials in terms of
trigonometric functions.

Invert

Solution The denominator of the transform may be factorized as

In exponential form we have  so the denominator may be written as

z2 − z + 1 = (z − e jπ /3)(z − e−jπ /3)

We then have

which can be resolved into partial fractions as

] 1– z
z ja–
-------------  = ja( )k{ } = jkak{ }

]
1– z

z ja+
-------------  = ja–( )k{ } = j–( )kak{ }

] 1– z
z ja–
-------------  = ak ejπ/2( )k{ } = akejkπ/2{ } = ak 1

2
---kπcos j sin 1

2
---kπ+( ){ }

]
1– z

z ja+
-------------  = ak 1

2
---kπcos j sin 1

2
---kπ–( ){ }

]
1– Y z( )[ ] = 

ak

j2a
-------- 1

2
---kπcos j sin 1

2
---kπ+  − 1

2
---kπcos j sin 1

2
---kπ+( )

 
 
 

= ak 1– sin 1
2
---kπ{ }

Example 6.11

Y z( ) = 
z

z2 z 1+–
----------------------

z2 z 1+–  = z 1
2
---– j 3

2
----------–

 
 
 

z 1
2
---– j 3

2
----------+

 
 
 

1
2
---   j1

2
--- 3±  = e jπ/3± ,

Y z( )
z

---------- = 
1

z e jπ/3–( ) z e j– π/3–( )
-------------------------------------------------

Y z( )
z

---------- = 
1

e jπ/3 e j– π/3–
----------------------------

1

z e jπ/3–
------------------

1

e j– π/3 e jπ/3–
----------------------------

1  

z e j– π/3–
--------------------+
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Noting that sin θ = (e jθ − e−jθ)/j2, this reduces to

Using the result ] −1[z/(z − a)] = {ak}, this gives

We conclude this section with two further examples, illustrating the inversion tech-
nique applied to frequently occurring transform types.

Find the sequence whose z transform is

Solution F(z) is unlike any z transform treated so far in the examples. However, it is readily
expanded in a power series in z−1 as

Using (6.4), it is then apparent that

] −1[F(z)] = { fk} = {1, 2, 0, 1, 0, 0, . . .}

Find ] −1[G(z)] where

where a and T are positive constants.

Solution Resolving into partial fractions,

Y z( )
z

---------- = 
1

j2 1
3
---πsin

---------------------
z

z e jπ/3–
------------------ − 

1

j2 1
3
---πsin

---------------------
z

z e j– π/3–
--------------------

= 
1

j 3
---------

z

z e jπ/3–
------------------ − 

1

j 3
---------

z

z e j– π/3–
--------------------

] 1– Y z( )[ ] = 
1

j 3
--------- e jkπ/3 e j– kπ/3–( ) = 2 1

3
---

1
3
---kπsin{ }

Example 6.12

F z( ) = 
z3 2z2 1+ +

z3
---------------------------

The MATLAB command

iztrans((z^3+2*z^2+1)/z^3,k)

returns

charfcn[0](k)+2*charfcn[1](k)+charfcn[3](k)

which corresponds to the sequence

{1, 2, 0, 1, 0, 0, . . .}

F z( ) = 1
2
z
---

1

z3
----+ +

Example 6.13

G z( ) = 
z 1 e aT––( )

z 1–( ) z e aT––( )
--------------------------------------

G z( )
z

----------- = 
1

z 1–
----------- 1

z e aT––
-----------------–
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giving

Using the result ]−1[z/(z − a)] = {ak}, we have

] −1[G(z)] = {(1 − e−akT )} (k > 0)

In this particular example G(z) is the z transform of a sequence derived by sampling the
continuous-time signal

f (t) = 1 − e−at

at intervals T.

The MATLAB commands

syms k z a T
iztrans((z*(1-exp(-a*T)))/((z-1)*(z-exp(-a*T))),k);
pretty(simple(ans))

return

ans=1-exp(-aT)k

In MAPLE the command

invztrans((z*(1-exp(-aT)))/((z-1)*(z-exp(-aT))),z,k);

returns

-  + 1

G z( ) = 1

z 1–
-----------

1

z e aT––
-----------------–

1
eaT
------
 
 

k

Confirm your answers using MATLAB or MAPLE whenever possible.

Invert the following z transforms. Give the general 
term of the sequence in each case.

 

By first resolving Y(z)/z into partial fractions, find 
] −1[Y(z)] when Y(z) is given by

Find ] −1[Y(z)] when Y(z) is given by

 

6.4.2 Exercises

11

a( ) z
z 1–
----------- b( ) z

z 1+
----------- c( ) z

z 1
2
---–

----------

d( ) z
3z 1+
-------------- e( ) z

z j–---------- f( ) z

z j 2+
-----------------

g( ) 1
z 1–----------- h( ) z 2+

z 1+
-----------

12

a( ) z
z 1–( ) z 2+( )

--------------------------------- b( ) z
2z 1+( ) z 3–( )

------------------------------------

c( ) z2

2z 1+( ) z 1–( )
------------------------------------ d( ) 2z

2z2 z 1–+
-------------------------

e( ) z

z2 1+
------------- Hint: z2 1 z j+( ) z j–( )=+[ ]

f( ) z

z2 2 3z 4+–
-------------------------------- g( ) 2z2 7z–

z 1–( )2 z 3–( )
----------------------------------

h( ) z2

z 1–( )2 z2 z + 1–( )
----------------------------------------------

13

a( ) 1

z
---

2

z7
----+ b( ) 1

3

z2
---- 2

z9
----–+

c( ) 3z z+ 2 5z5+
z5

------------------------------ d( ) 1 z+
z3

-----------
3z

3z 1+
---------------+

e( ) 2z3 6z2 5z 1+ + +
z2 2z 1+( )

------------------------------------------- f( ) 2z2 7z 7+–
z 1–( )2 z 2–( )

----------------------------------

g( ) z 3–
z2 3z– 2+
-------------------------
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Discrete-time systems and difference equations
In Chapter 11 of MEM and Chapter 5 the Laplace transform technique was
examined, first as a method for solving differential equations, then as a way of
characterizing a continuous-time system. In fact, much could be deduced concerning the
behaviour of the system and its properties by examining its transform-domain
representation, without looking for specific time-domain responses at all. In this section
we shall discuss the idea of a linear  discrete-time system and its model, a difference
equation. Later we shall see that the z transform plays an analogous role to the
Laplace transform for such systems, by providing a transform-domain representation
of the system.

6.5.1 Difference equations

First we illustrate the motivation for studying difference equations by means of an
example.

Suppose that a sequence of observations {xk} is being recorded and we receive
observation xk at (time) step or index k. We might attempt to process (for example,
smooth or filter) this sequence of observations {xk} using the discrete-time feedback
system illustrated in Figure 6.4. At time step k the observation xk enters the system as
an input, and, after combination with the ‘feedback’ signal at the summing junction S,
proceeds to the block labelled D. This block is a unit delay block, and its function is to
hold its input signal until the ‘clock’ advances one step, to step k + 1. At this time the
input signal is passed without alteration to become the signal yk+1, the (k + 1)th member
of the output sequence {yk}. At the same time this signal is fed back through a scaling
block of amplitude α to the summing junction S. This process is instantaneous, and at
S the feedback signal is subtracted from the next input observation xk+1 to provide the
next input to the delay block D. The process then repeats at each ‘clock’ step.

To analyse the system, let {rk} denote the sequence of input signals to D; then, owing
to the delay action of D, we have

yk+1 = rk

Also, owing to the feedback action,

rk = xk − αyk

where α is the feedback gain. Combining the two expressions gives

yk+1 = xk − αyk

or

yk+1 + αyk = xk (6.24)

Equation (6.24) is an example of a first-order difference equation, and it relates adjacent
members of the sequence {yk} to each other and to the input sequence {xk}.

6.5

Figure 6.4 Discrete-
time signal processing 
system.
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A solution of the difference equation (6.24) is a formula for yk, the general term of
the output sequence {yk}, and this will depend on both k and the input sequence {xk} as
well as, in this case, the feedback gain α.

Find a difference equation to represent the system shown in Figure 6.5, having input
and output sequences {xk} and {yk} respectively, where D is the unit delay block and a
and b are constant feedback gains.

Solution Introducing intermediate signal sequences {rk} and {vk} as shown in Figure 6.5, at each
step the outputs of the delay blocks are

yk+1 = vk (6.25)

vk+1 = rk (6.26)

and at the summing junction

rk = xk − avk + byk (6.27)

From (6.25),

yk+2 = vk+1

which on using (6.26) gives

yk+2 = rk

Substituting for rk from (6.27) then gives

yk+2 = xk − avk + byk

which on using (6.25) becomes

yk+2 = xk − ayk+1 + byk

Rearranging this gives

yk+2 + ayk+1 − byk = xk (6.28)

as the difference equation representing the system.

The difference equation (6.28) is an example of a second-order linear constant-
coefficient difference equation, and there are strong similarities between this and a second-
order linear constant-coefficient differential equation. It is of second order because the
term involving the greatest shift of the {yk} sequence is the term in yk+2, implying a shift
of two steps. As demonstrated by Example 6.14, the degree of shift, or the order of the
equation, is closely related to the number of delay blocks in the block diagram.

Example 6.14

Figure 6.5 The system 
for Example 6.14.
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6.5.2 The solution of difference equations

Difference equations arise in a variety of ways, sometimes from the direct modelling of
systems in discrete time or as an approximation to a differential equation describing the
behaviour of a system modelled as a continuous-time system. We do not discuss this
further here; rather we restrict ourselves to the technique of solution but examples of
applications will be apparent from the exercises. The z-transform method is based upon
the second shift property (Section 6.3.3), and it will quickly emerge as a technique
almost identical to the Laplace transform method for ordinary differential equations
introduced in Section 11.3.3 of MEM. We shall introduce the method by means of an
example.

If in Example 6.14, a = 1, b = 2 and the input sequence {xk} is the unit step sequence
{1}, solve the resulting difference equation (6.28).

Solution Substituting for a, b and {xk} in (6.28) leads to the difference equation

yk+2 + yk+1 − 2yk = 1 (k > 0) (6.29)

Taking z transforms throughout in (6.29) gives

]{yk+2 + yk+1 − 2yk} = ]{1, 1, 1, . . . }

which, on using the linearity property and the result ]{1} = z /(z − 1), may be written as

]{yk+2} + ]{yk+1} − 2]{yk} = 

Using (6.16) and (6.17) then gives

[z 2Y(z) − z 2y0 − zy1] + [zY(z) − zy0] − 2Y(z) = 

which on rearranging leads to

(z 2 + z − 2)Y(z) =  + z 2y0 + z( y1 + y0) (6.30)

To proceed, we need some further information, namely the first and second terms y0 and
y1 of the solution sequence {yk}. Without this additional information, we cannot find a
unique solution. As we saw in Section 11.3.3 of MEM, this compares with the use of
the Laplace transform method to solve second-order differential equations, where the
values of the solution and its first derivative at time t = 0 are required.

Suppose that we know (or are given) that

y0 = 0, y1 = 1

Then (6.30) becomes

(z 2 + z − 2)Y(z) = z + 

or

(z + 2)(z − 1)Y(z) = z + 

Example 6.15

z
z 1–-----------

z
z 1–
-----------

z
z 1–
-----------

z
z 1–
-----------

z
z 1–
-----------
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and solving for Y(z) gives

(6.31)

To obtain the solution sequence {yk}, we must take the inverse transform in (6.31).
Proceeding as in Section 6.4, we resolve Y(z)/z into partial fractions as

and so

Using the results ] −1[z/(z − a)] = {ak} and ] −1[z/(z − 1)2] = {k} from Figure 6.3, we
obtain

as the solution sequence for the difference equation satisfying the conditions y0 = 0
and y1 = 1.

The method adopted in Example 6.15 is called the z-transform method for solving
linear constant-coefficient difference equations, and is analogous to the Laplace
transform method for solving linear constant-coefficient differential equations.

To conclude this section, two further examples are given to help consolidate
understanding of the method.

Such difference equations can be solved directly in MAPLE using the rsolve
command. In the current version of the Symbolic Math Toolbox in MATLAB there
appears to be no equivalent command for directly solving a difference equation.
However, as we saw in Section 5.2.5, using the maple command in MATLAB lets
us access MAPLE commands directly. Hence, for the difference equation in Exam-
ple 6.15, using the command

maple(ʻrsolve({y(k+2)+y(k+1)–2*y(k) 
=1,y(0)=0,y(1)=1},y(k))’)

in MATLAB returns the calculated answer

-2/9*(-2)^k+2/9+1/3*k

In MAPLE difference equations can be solved directly using rsolve, so that
the command

rsolve({y(k+2)+y(k+1)−2*y(k)=1,y(0)=0,y(1)=1},y(k));

returns

 -  + 

Y z( ) = 
z

z 2+( ) z 1–( )
---------------------------------

z

z 2+( ) z 1–( )2
----------------------------------- = 

z2

z 2+( ) z 1–( )2
-----------------------------------+

Y z( )
z

---------- = 
z

z 2+( ) z 1–( )2
----------------------------------- = 1

3
---

1

z 1–( )2
------------------ 2

9
---

1

z 1–
----------- 2

9
---

1

z 2+
------------–+

Y z( )  = 1
3
---

z

z 1–( )2
------------------ 2

9
---

z

z 1–
----------- 2

9
---

z

z 2+
------------–+

yk{ } = 1
3
--- k 2

9
---

2
9
--- 2–( )k–+{ } k 0>( )

2
9
--- 2( 2)– k

9
---------------- k

3
---
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Solve the difference equation

8yk+2 − 6yk+1 + yk = 9 (k > 0)

given that y0 = 1 and y1 = .

Solution Taking z transforms

8]{yk+2} − 6]{yk+1} + ]{yk} = 9]{1}

Using (6.16) and (6.17) and the result ]{1} = z /(z − 1) gives

8[z 2Y(z) − z 2y0 − zy1] − 6[zY(z) − zy0] + Y(z) = 

which on rearranging leads to

(8z2 − 6z + 1)Y(z) = 8z 2y0 + 8zy1 − 6zy0 + 

We are given that y0 = 1 and y1 = , so

(8z 2 − 6z + 1)Y(z) = 8z 2 + 6z + 

or

Resolving into partial fractions gives

and so

Using the result ]−1{z/(z − a)} = {ak} from Figure 6.3, we take inverse transforms, to
obtain

as the required solution.

Example 6.16

3
2
---

Check that in MATLAB the command

maple(’rsolve({8*y(k+2)–6*y(k+1)+y(k)=9,y(0)=1,
y(1)=3/2},y(k))’)

returns the calculated answer or alternatively use the command rsolve in MAPLE.

9z
z 1–
-----------

9z
z 1–
-----------

3
2
---

9z
z 1–-----------

Y z( )
z

---------- = 
8z 6+

4z 1–( ) 2z 1–( )
---------------------------------------

9
4z 1–( ) 2z 1–( ) z 1–( )

--------------------------------------------------------+

= 
z 3

4
---+

z 1
4
---–( ) z 1

2
---–( )

------------------------------
9
8
---

z 1
4
---–( ) z 1

2
---–( ) z 1–( )

-----------------------------------------------+

Y z( )
z

---------- = 
5

z 1
2
---–

----------
4

z 1
4
---–

----------
6

z 1
4
---–

----------
9

z 1
2
---–

----------
3

z 1–
-----------+–+–

= 
2

z 1
4
---–

----------
4

z 1
2
---–

----------
3

z 1–-----------+–

Y z( ) = 2z
z 1

4
---–

----------
4z

z 1
2
---–

----------
3z

z 1–-----------+–

yk{ } 2 1
4
---( )k

4 1
2
---( )k

3+–{ } k 0>( )=
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Solve the difference equation

yk+2 + 2yk = 0 (k > 0)

given that y0 = 1 and y1 = .

Solution Taking z transforms, we have

[z 2Y(z) − z 2y0 − zy1] + 2Y(z) = 0

and substituting the given values of y0 and y1 gives

z 2Y(z) − z 2 − z + 2Y(z) = 0

or

(z 2 + 2)Y(z) = z 2 + z

Resolving Y(z)/z into partial fractions gives

Following the approach adopted in Example 6.13, we write

j  = e jπ /2, − j  = e−jπ /2

Thus

which on taking inverse transforms gives

as the required solution.

The solution in Example 6.17 was found to be a real-valued sequence, and this
comes as no surprise because the given difference equation and the ‘starting’ values y0

and y1 involved only real numbers. This observation provides a useful check on the
algebra when complex partial fractions are involved.

Example 6.17

2

2

2

Y z( )
z

---------- = 
z 2+
z2 2+
--------------- = 

z 2+
z j 2+( ) z j 2–( )

----------------------------------------------

2 2 2 2

Y z( )
z

---------- = 
z 2+

z 2 ejπ/2–( ) z 2 e j– π/2–( )
----------------------------------------------------------------- = 1 j+( )/j2

z 2 ejπ/2–
--------------------------

1 j–( )/j2
z 2 e j– π/2–
----------------------------–

Y z( ) = 
1
j2
----- 1 j+( ) z

z 2 ejπ/2–
-------------------------- 1 j–( ) z

z 2 e j– π/2–
----------------------------–

yk{ } = 
2k/2

j2
-------- 1 j+( ) e jkπ/2 1 j–( ) e j– kπ/2–

 
 
 

= 2k/2 1
2
---kπcos sin 1

2
---kπ+( ){ } k 0>( )
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Check your answers using MATLAB or MAPLE whenever possible.

Find difference equations representing the discrete-
time systems shown in Figure 6.6.

Using z-transform methods, solve the following 
difference equations:

(a) yk+2 − 2yk+1 + yk = 0 subject to y0 = 0, y1 = 1

(b) yn+2 − 8yn+1 − 9yn = 0 subject to y0 = 2, y1 = 1

(c) yk+2 + 4yk = 0 subject to y0 = 0, y1 = 1

(d) 2yk+2 − 5yk+1 − 3yk = 0 subject to y0 = 3, y1 = 2

Using z-transform methods, solve the following 
difference equations:

(a) 6yk+2 + yk+1 − yk = 3 subject to y0 = y1 = 0

(b) yk+2 − 5yk+1 + 6yk = 5 subject to y0 = 0, y1 = 1

(c) yn+2 − 5yn+1 + 6yn = ( )n subject to y0 = y1 = 0

(d) yn+2 − 3yn+1 + 3yn = 1 subject to y0 = 1, y1 = 0

(e) 2yn+2 − 3yn+1 − 2yn = 6n + 1 subject to y0 = 1, 
y1 = 2

(f ) yn+2 − 4yn = 3n − 5 subject to y0 = y1 = 0

6.5.3 Exercises

14

Figure 6.6 The systems for Exercise 14.

15

16

1
2
---

If complex partial fractions are involved then, as was mentioned at the end of
Example 6.10, it is difficult to simplify answers when determining inverse z
transforms using MATLAB. When such partial fractions arise in the solution of
difference equations use of the command evalc alongside rsolve in MAPLE
attempts to express complex exponentials in terms of trigonometric functions,
leading in most cases to simplified answers.

Considering the difference equation of Example 6.17, using the command

maple(’rsolve({y(k+2)+2*y(k)=0,y(0)=1,y(1)
=2^(1/2)},y(k))’)

in MATLAB returns the answer

(1/2+1/2*i)*(-i*2^(1/2))^k+(1/2–1/2*i)*(i*2^(1/2))^k

whilst using the command

maple(’evalc(rsolve({y(k+2)+2*y(k)=0,y(0)=1,y(1)
=2^(1/2)},y(k)))’)

returns the answer

exp(1/2*log(2)*k)*cos(1/2*k*pi)+exp(1/2*log(2)*k)
*sin(1/2*k*pi)

Noting that elog2 = 2 it is readily seen that this corresponds to the calculated
answer

2k/2(cos 1
2
--- kπ + sin 1

2
--- kπ)
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A person’s capital at the beginning of, and expenditure 
during, a given year k are denoted by Ck and Ek 
respectively, and satisfy the difference equations

Ck+1 = 1.5Ck − Ek

Ek+1 = 0.21Ck + 0.5Ek

(a) Show that eventually the person’s capital grows 
at 20% per annum.

(b) If the capital at the beginning of year 1 is £6000 
and the expenditure during year 1 is £3720 then 
find the year in which the expenditure is a 
minimum and the capital at the beginning of 
that year.

The dynamics of a discrete-time system are 
determined by the difference equation

yk+2
 − 5yk+1 + 6yk = uk

Determine the response of the system to the unit 
step input

given that y0 = y1 = 1.

As a first attempt to model the national economy, 
it is assumed that the national income Ik at year k 
is given by

Ik = Ck + Pk + Gk

where Ck is the consumer expenditure, Pk is private 
investment and Gk is government expenditure. 
It is also assumed that the consumer spending is 
proportional to the national income in the previous 
year, so that

Ck = aIk−1 (0 , a , 1)

It is further assumed that private investment is 
proportional to the change in consumer spending 
over the previous year, so that

Pk = b(Ck − Ck−1) (0 , b < 1)

Show that under these assumptions the national 
income Ik is determined by the difference equation

Ik+2 − a(1 + b)Ik+1 + abIk = Gk+2

If a = , b = 1, government spending is at a constant 
level (that is, Gk = G for all k) and I0 = 2G, 
I1 = 3G, show that

Ik = 2[1 + ( )k/2 sin kπ]G

Discuss what happens as k → ∞.

The difference equation for current in a particular 
ladder network of N loops is

R1in+1 + R2(in+1 − in) + R2(in+1 − in+2) = 0

(0 < n < N − 2)

where in is the current in the (n + 1)th loop, and R1 
and R2 are constant resistors.

(a) Show that this may be written as

in+2 − 2 coshα in+1 + in = 0 (0 < n < N − 2)

where

(b) By solving the equation in (a), show that

17

18

uk = 
0 k , 0( )
1 k 0>( )




19

1
2
---

1
2
---

1
4
---

20

α = cosh 1– 1
R1

2R2

---------+ 
 

in = 
i1 nαsinh i0 n 1–( )αsinh–

αsinh
----------------------------------------------------------------- 2 n N< <( )

Discrete linear systems: characterization
In this section we examine the concept of a discrete-time linear system and its difference
equation model. Ideas developed in Chapter 5 for continuous-time system modelling
will be seen to carry over to discrete-time systems, and we shall see that the z transform
is the key to the understanding of such systems.

6.6.1 z transfer functions

In Section 5.3, when considering continuous-time linear systems modelled by differential
equations, we introduced the concept of the system (Laplace) transfer function. This is a
powerful tool in the description of such systems, since it contains all the information

6.6 Discrete linear systems:
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on system stability and also provides a method of calculating the response to an
arbitrary input signal using a convolution integral. In the same way, we can identify a z
transfer function for a discrete-time linear time-invariant system modelled by a difference
equation, and we can arrive at results analogous to those of Chapter 5 and Chapter 11
of MEM.

Let us consider the general linear constant-coefficient difference equation model for
a linear time-invariant system, with input sequence {uk} and output sequence {yk}. Both
{uk} and {yk} are causal sequences throughout. Such a difference equation model takes
the form

anyk+n + an−1yk+n−1 + an−2 yk+n−2 + . . . + a0yk

= bmuk+m + bm−1uk+m−1 + bm−2uk+m−2 + . . . + b0uk (6.32)

where k > 0 and n, m (with n > m) are positive integers and the ai and bj are constants.
The difference equation (6.32) differs in one respect from the examples considered in
Section 6.5 in that the possibility of delayed terms in the input sequence {uk} is also
allowed for. The order of the difference equation is n if an ≠ 0, and for the system
to be physically realizable, n > m.

Assuming the system to be initially in a quiescent state, we take z transforms
throughout in (6.32) to give

(anz n + an−1z
n−1 + . . . + a0)Y(z) = (bmzm + bm−1z

m−1
 + . . . + b0)U(z)

where Y(z) = ]{yk} and U(z) = ]{uk}. The system discrete or z transfer function G(z)
is defined as 

and is normally rearranged (by dividing numerator and denominator by an) so that the
coefficient of z n in the denominator is 1. In deriving G(z) in this form, we have assumed
that the system was initially in a quiescent state. This assumption is certainly valid for
the system (6.32) if

y0 = y1 = . . . = yn−1 = 0

u0 = u1 = . . . = um−1 = 0

This is not the end of the story, however, and we shall use the term ‘quiescent’ to mean
that no non-zero values are stored on the delay elements before the initial time.

On writing

P(z) = bmz m + bm−1z
m−1 + . . . + b0

Q(z) = anz n + an−1z
n−1 + . . . + a0

the discrete transfer function may be expressed as

As for the continuous model in Section 5.3.1, the equation Q(z) = 0 is called the
characteristic equation of the discrete system, its order, n, determines the order of the
system, and its roots are referred to as the poles of the discrete transfer function.
Likewise, the roots of P(z) = 0 are referred to as the zeros of the discrete transfer
function.

(6.33)G z( ) = 
Y z( )
U z( )
----------- = 

bmzm bm−1zm−1 . . . b0+ + +
anzn an−1zn−1 . . . a0+ + +

--------------------------------------------------------------

G z( ) = 
P z( )
Q z( )
-----------
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Draw a block diagram to represent the system modelled by the difference equation

yk+2 + 3yk+1 − yk = uk (6.34)

and find the corresponding z transfer function.

Solution The difference equation may be thought of as a relationship between adjacent members
of the solution sequence {yk}. Thus at each time step k we have from (6.34)

yk+2 = −3yk+1 + yk + uk (6.35)

which provides a formula for yk+2 involving yk, yk+1 and the input uk. The structure shown
in Figure 6.7(a) illustrates the generation of the sequence {yk} from {yk+2} using two
delay blocks.

We now use (6.35) as a prescription for generating the sequence {yk+2} and arrange
for the correct combination of signals to be formed at each step k at the input summing
junction S of Figure 6.7(a). This leads to the structure shown in Figure 6.7(b), which is
the required block diagram.

We can of course produce a block diagram in the z-transform domain, using a similar
process. Taking the z transform throughout in (6.34), under the assumption of a quiescent
initial state, we obtain

z 2Y(z) + 3zY(z) − Y(z) = U(z) (6.36)

or

z 2Y(z) = −3zY(z) + Y(z) + U(z) (6.37)

The representation (6.37) is the transform-domain version of (6.35), and the z-transform
domain basic structure corresponding to the time-domain structure of Figure 6.7(a) is
shown in Figure 6.8(a).

The unit delay blocks, labelled D in Figure 6.7(a), become ‘1/z’ elements in the
z-transform domain diagram, in line with the first shift property (6.15), where a number
k0 of delay steps involves multiplication by .

It is now a simple matter to construct the ‘signal’ transform z 2Y(z) from (6.37) and
arrange for it to be available at the input to the summing junction S in Figure 6.8(a).
The resulting block diagram is shown in Figure 6.8(b).

Example 6.18

Figure 6.7
(a) The basic second-
order block diagram 
substructure; and 
(b) block diagram 
representation of (6.34) 
of Example 6.18.

z
−k0

Figure 6.8 (a) The 
z-transform domain 
basic second-order 
block diagram 
substructure; and
(b) the z-transform 
domain block 
diagram representation 
of (6.34) of 
Example 6.18.
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The z transfer function follows at once from (6.36) as

(6.38)

A system is specified by its z transfer function

What is the order n of the system? Can it be implemented using only n delay elements?
Illustrate this.

Solution If {uk} and {yk} denote respectively the input and output sequences to the system
then

so that

(z 2 + 3z + 2)Y(z) = (z − 1)U(z)

Taking inverse transforms, we obtain the corresponding difference equation model
assuming the system is initially in a quiescent state

yk+2 + 3yk+1 + 2yk = uk+1 − uk (6.39)

The difference equation (6.39) has a more complex right-hand side than the difference
equation (6.34) considered in Example 6.18. This results from the existence of z
terms in the numerator of the transfer function. By definition, the order of the
difference equation (6.39) is still 2. However, realization of the system with two delay
blocks is not immediately apparent, although this can be achieved, as we shall now
illustrate.

Introduce a new signal sequence {rk} such that

(z 2 + 3z + 2)R(z) = U(z) (6.40)

where R(z) = ]{rk}. In other words, {rk} is the output of the system having transfer
function 1/(z 2 + 3z + 2).

Multiplying both sides of (6.40) by z, we obtain

z(z 2 + 3z + 2)R(z) = zU(z)

or

(z 2 + 3z + 2)zR(z) = zU(z) (6.41)

Subtracting (6.40) from (6.41) we have

(z 2 + 3z + 2)zR(z) − (z 2 + 3z + 2)R(z) = zU(z) − U(z)

giving

(z 2 + 3z + 2)[zR(z) − R(z)] = (z − 1)U(z)

G z( ) = 
Y z( )
U z( )
------------ = 

1

z2 3z 1–+
-------------------------

Example 6.19

G z( ) = 
z 1–

z2 3z 2+ +
-------------------------

G z( ) = 
Y z( )
U z( )
------------ = 

z 1–
z2 3z 2+ +
-------------------------
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Finally, choosing

Y(z) = zR(z) − R(z) (6.42)

(z 2 + 3z + 2)Y(z) = (z − 1)U(z)

which is a realization of the given transfer function.
To construct a block diagram realization of the system, we first construct a block

diagram representation of (6.40) as in Figure 6.9(a). We now ‘tap off ’ appropriate
signals to generate Y (z) according to (6.42) to construct a block diagram representation
of the specified system. The resulting block diagram is shown in Figure 6.9(b).

In order to implement the system, we must exhibit a physically realizable time-domain
structure, that is one containing only D elements. Clearly, since Figure 6.9(b) contains
only ‘1/z’ blocks, we can immediately produce a realizable time-domain structure as
shown in Figure 6.9(c), where, as before, D is the unit delay block.

A system is specified by its z transfer function

Draw a block diagram to illustrate a time-domain realization of the system. Find a
second structure that also implements the system.

Solution We know that if ]{uk} = U{z} and ]{ yk} = Y(z) are the z transforms of the input and
output sequences respectively then, by definition,

(6.43)

Figure 6.9 The z-transform block diagrams for (a) the system (6.40), (b) the system (6.39), and (c) the time-domain 
realization of the system in Example 6.19.

Example 6.20

G z( ) = 
z

z2 0.3z 0.02+ +
-------------------------------------

G z( ) = 
Y z( )
U z( )
------------ = 

z

z2 0.3z 0.02+ +
-------------------------------------
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which may be rewritten as

(z 2 + 0.3z + 0.02)Y(z) = zU(z)

Noting the presence of the factor z on the right-hand side, we follow the procedure of
Example 6.19 and consider the system

(z 2 + 0.3z + 0.02)R(z) = U(z) (6.44)

Multiplying both sides by z, we have

(z 2 + 0.3z + 0.02)zR(z) = zU(z)

and so, if the output Y(z) = zR(z) is extracted from the block diagram corresponding to
(6.44), we have the block diagram representation of the given system (6.43). This is
illustrated in Figure 6.10(a), with the corresponding time-domain implementation
shown in Figure 6.10(b).

To discover a second form of time-domain implementation, note that

We may therefore write

so that

Y(z) = R1(z) − R2(z)

where

(6.45a)

(6.45b)

From (6.45a), we have

(z + 0.2)R1(z) = 2U(z)

Figure 6.10 (a) The z-transform block diagram for the system of Example 6.20; and (b) the time-domain 
implementation of (a).

G z( ) = 
z

z2 0.3z 0.02+ +
------------------------------------- = 2

z 0.2+
----------------

1

z 0.1+
----------------–

Y z( ) = G z( )U z( ) = 2
z 0.2+
----------------

1
z 0.1+
----------------– 

 U z( )

R1 z( ) = 
2

z 0.2+
----------------U z( )

R2 z( ) = 
1

z 0.1+
----------------U z( )
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which can be represented by the block diagram shown in Figure 6.11(a). Likewise,
(6.45b) may be represented by the block diagram shown in Figure 6.11(b).

Recalling that Y(z) = R1(z) − R2(z), it is clear that the given system can be represented
and then implemented by an obvious coupling of the two subsystems represented by
(6.45a, b). The resulting z-transform block diagram is shown in Figure 6.11(c). The
time-domain version is readily obtained by replacing the ‘1/z’ blocks by D and the
transforms U(z) and Y(z) by their corresponding sequences {uk} and { yk} respectively. 

6.6.2 The impulse response

In Example 6.20 we saw that two quite different realizations were possible for the
same transfer function G(z), and others are possible. Whichever realization of the
transfer function is chosen, however, when presented with the same input sequence
{uk}, the same output sequence {yk} will be produced. Thus we identify the system as
characterized by its transfer function as the key concept, rather than any particular
implementation. This idea is reinforced when we consider the impulse response sequence
for a discrete-time linear time-invariant system, and its role in convolution sums.

Consider the sequence

{δk} = {1, 0, 0, . . . }

that is, the sequence consisting of a single ‘pulse’ at k = 0, followed by a train of zeros.
As we saw in Section 6.2.1, the z transform of this sequence is easily found from the
definition (6.1) as

]{δk} = 1 (6.46)

The sequence {δk} is called the impulse sequence, by analogy with the continuous-
time counterpart δ (t), the impulse function. The analogy is perhaps clearer on
considering the transformed version (6.46). In continuous-time analysis, using Laplace
transform methods, we observed that ]{δ (t)} = 1, and (6.46) shows that the ‘entity’

Figure 6.11 The block 
diagrams for (a) the 
subsystem (6.45a), 
(b) the subsystem 
(6.45b), and (c) an 
alternative z-transform 
block diagram for 
the system of 
Example 6.20.
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with z transform equal to unity is the sequence {δk}. It is in fact the property that
]{δk} = 1 that makes the impulse sequence of such great importance.

Consider a system with transfer function G(z), so that the z transform Y(z) of the
output sequence { yk} corresponding to an input sequence {uk} with z transform U(z) is

Y(z) = G(z)U(z) (6.47)

If the input sequence {yk} is the impulse sequence {δk} and the system is initially
quiescent, then the output sequence  is called the impulse response of the system.
Hence

= Yδ (z) = G(z) (6.48)

That is, the z transfer function of the system is the z transform of the impulse response.
Alternatively, we can say that the impulse response of a system is the inverse z
transform of the system transfer function. This compares with the definition of the
impulse response for continuous systems given in Section 5.3.3.

Substituting (6.48) into (6.47), we have

Y(z) = Yδ (z)U(z) (6.49)

Thus the z transform of the system output in response to any input sequence {uk} is the
product of the transform of the input sequence with the transform of the system impulse
response. The result (6.49) shows the underlying relationship between the concepts of
impulse response and transfer function, and explains why the impulse response (or the
transfer function) is thought of as characterizing a system. In simple terms, if either of
these is known then we have all the information about the system for any analysis we
may wish to do.

Find the impulse response of the system with z transfer function

Solution Using (6.48),

Resolving Yδ (z)/z into partial fractions gives

which on inversion gives the impulse response sequence

 

 

yδk
{ }

] yδk
{ }

Example 6.21

G z( ) = 
z

z2 3z 2+ +
-------------------------

Yδ z( ) = 
z

z2 3z 2+ +
------------------------- = 

z

z 2+( ) z 1+( )
---------------------------------

Yδ z( )
z

------------ = 
1

z 2+( ) z 1+( )
--------------------------------- 1

z 1+
-----------

1
z 2+
-----------–=

Yδ k
{ } = ] 1– z

z 1+
-----------

z
z 2+
-----------–

= 1–( )k 2–( )k–{ } k > 0( )
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A system has the impulse response sequence

= {ak − 0.5k}

where a . 0 is a real constant. What is the nature of this response when (a) a = 0.4,
(b) a = 1.2? Find the step response of the system in both cases.

Solution When a = 0.4

= {0.4k − 0.5k}

and, since both 0.4k → 0 as k → ∞ and 0.5k → 0 as k → ∞, we see that the terms of the
impulse response sequence go to zero as k → ∞.

On the other hand, when a = 1.2, since (1.2)k → ∞ as k → ∞, we see that in this case
the impulse response sequence terms become unbounded, implying that the system
‘blows up’.

In order to calculate the step response, we first determine the system transfer function
G(z), using (6.48), as

G(z) = Yδ(z) = ]{ak − 0.5k}

giving

The system step response is the system response to the unit step sequence {hk} =
{1, 1, 1, . . . } which, from Figure 6.3, has z transform

Since the impulse response of a system is the inverse z transform of its transfer func-
tion G(z) it can be obtained in MATLAB using the command

syms k z
iztrans(G(z),k)

so for the G(z) of Example 6.21

syms k z
iztrans(z/(z^2+3*z+2),k)

returns

ans=(-1)^k–(-2)^k

A plot of the impulse response is obtained using the commands

z=tf(ʻz’,1);
G=G(z);
impulse(G)

Likewise in MAPLE the command

invztrans(z/(z^2+3*z+2),z,k);

returns the same answer
(−1)k − (−2)k

Example 6.22

yδ k
{ }

yδk
{ }

G z( ) = 
z

z a–
----------- z

z 0.5–
---------------–
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Hence, from (6.46), the step response is determined by

so that

giving

which on taking inverse transforms gives the step response as

(6.50)

Considering the output sequence (6.50), we see that when a = 0.4, since (0.4)k → 0
as k → ∞ (and (0.5)k → 0 as k → ∞), the output sequence terms tend to the constant
value

In the case of a = 1.2, since (1.2)k → ∞ as k → ∞, the output sequence is unbounded,
and again the system ‘blows up’.

6.6.3 Stability

Example 6.22 illustrated the concept of system stability for discrete systems. When a
= 0.4, the impulse response decayed to zero with increasing k, and we observed that
the step response remained bounded (in fact, the terms of the sequence approached
a constant limiting value). However, when a = 1.2, the impulse response became
unbounded, and we observed that the step response also increased without limit. In fact,
as we saw for continuous systems in Section 5.3.3, a linear constant-coefficient
discrete-time system is stable provided that its impulse response goes to zero as t → ∞.
As for the continuous case, we can relate this definition to the poles of the system
transfer function

As we saw in Section 6.6.1, the system poles are determined as the n roots of its
characteristic equation

Q(z) = anzn + an−1z
n−1 + . . . + a0 = 0 (6.51)

] hk{ } = 
z

z 1–
-----------

Y z( ) = G z( )] hk{ } = z
z a–
-----------

z
z 0.5–
---------------– 

  z
z 1–-----------

Y z( )
z

---------- = 
z

z a–( ) z 1–( )
-------------------------------- z

z 0.5–( ) z 1–( )
-------------------------------------–

= 
a

a 1–
------------

1
z a–
-----------

1
z 0.5–
--------------- −2

1
1 a–
------------+ 

  1
z 1–
-----------+–

Y z( ) = 
a

a 1–
------------

z
z a–
-----------

z
z 0.5–
--------------- −2

1
1 a–
------------+ 

  z
z 1–
-----------+–

yk{ } = 
a

a 1–
------------ak 0.5( )k −2

1
1 a–
------------+ 

 +–
 
 
 

−2
1

1 0.4–
----------------+  = 0.3333

G z( ) = 
P z( )
Q z( )
-----------
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For instance, in Example 6.19 we considered a system with transfer function

having poles determined by z 2 + 3z + 2 = 0, that is poles at z = −1 and z = −2. Since the
impulse response is the inverse transform of G(z), we expect this system to ‘blow up’
or, rather, be unstable, because its impulse response sequence would be expected to
contain terms of the form (−1)k and (−2)k, neither of which goes to zero as k → ∞.
(Note that the term in (−1)k neither blows up nor goes to zero, simply alternating
between +1 and −1; however, (−2)k certainly becomes unbounded as k → ∞.) On
the other hand, in Example 6.20 we encountered a system with transfer function

having poles determined by

Q(z) = z 2 + 0.3z + 0.02 = (z + 0.2)(z + 0.1) = 0

that is poles at z = −0.2 and z = −0.1. Clearly, this system is stable, since its impulse
response contains terms in (−0.2)k and (−0.1)k, both of which go to zero as k → ∞.

Both of these illustrative examples gave rise to characteristic polynomials Q(z)
that were quadratic in form and that had real coefficients. More generally, Q(z) = 0
gives rise to a polynomial equation of order n, with real coefficients. From the theory
of polynomial equations, we know that Q(z) = 0 has n roots αi (i = 1, 2, . . . , n), which
may be real or complex (with complex roots occurring in conjugate pairs).

Hence the characteristic equation may be written in the form

Q(z) = an(z − α1)(z − α2) . . . (z − αn) = 0 (6.52)

The system poles αi (i = 1, 2, . . . , n) determined by (6.52) may be expressed in the polar
form

αi = (i = 1, 2, . . . , n)

where θi = 0 or π if αi is real. From the interpretation of the impulse response as the
inverse transform of the transfer function G(z) = P(z)/Q(z), it follows that the impulse
response sequence of the system will contain terms in

r 1
k , r 2

k , . . . , r n
k

Since, for stability, terms in the impulse response sequence must tend to zero as
k → ∞, it follows that a system having characteristic equation Q(z) = 0 will be stable
provided that

ri , 1 for i = 1, 2, . . . , n

G z( ) = 
z 1–

z2 3z 2+ +
-------------------------

G z( ) = 
z

z2 0.3z 0.02+ +
--------------------------------------

ri ejθi

ejkθ1 ejkθ2 ejkθn

Therefore a linear constant-coefficient discrete-time system with transfer function
G(z) is stable if and only if all the poles of G(z) lie within the unit circle |z | , 1 in
the complex z plane, as illustrated in Figure 6.12. If one or more poles lie outside
this unit circle then the system will be unstable. If one or more distinct poles lie on
the unit circle |z | = 1, with all the other poles inside, then the system is said to be
marginally stable.
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Which of the following systems, specified by their transfer function G(z), are stable?

Solution (a) The single pole is at z = −0.25, so r1 = 0.25 , 1, and the system is stable.

(b) The system poles are determined by

z 2 − z + 0.5 = [z − 0.5(1 + j)][z − 0.5(1 − j)] = 0

giving the poles as the conjugate pair z1 = 0.5(1 + j), z2 = 0.5(1 − j). The
amplitudes r1 = r2 = 0.707 , 1, and again the system is stable.

(c) The system poles are determined by

z 3 − 3z 2 + 2.5z − 1 = (z − 2)[z − 0.5(1 + j)][z − 0.5(1 − j)]

giving the poles as z1 = 2, z2 = 0.5(1 + j), z3 = 0.5(1 − j), and so their amplitudes
are r1 = 2, r2 = r3 = 0.707. Since r1 . 1, it follows that the system is unstable.

According to our definition, it follows that to prove stability we must show that all
the roots of the characteristic equation

Q(z) = z n + an−1z
n−1 + . . . + a0 = 0 (6.53)

lie within the unit circle |z | = 1 (note that for convenience we have arranged for the
coefficient of zn to be unity in (6.53) ). Many mathematical criteria have been developed
to test for this property. One such method, widely used in practice, is the Jury stability
criterion introduced by E. I. Jury in 1963. This procedure gives necessary and
sufficient conditions for the polynomial equation (6.53) to have all its roots inside the
unit circle |z | = 1.

The first step in the procedure is to set up a table as in Figure 6.13 using information
from the given polynomial equation (6.53) and where

. . . ,

Example 6.23

Figure 6.12 Region of 
stability in the z plane.

a( ) G z( ) = 
1

z 0.25+
------------------- b( ) G z( ) = 

z

z2 z 0.5+–
-------------------------- c( ) G z( ) = 

z2

z3 3z2 2.5z 1–+–
-------------------------------------------

bk = 
1   ak

a0 an−k

, ck = 
 b0 bn−1−k

bn−1 bk

, dk = 
 c0 cn−2−k

cn−2 ck

,

t0 = 
r0 r2

r2 r0
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Note that the elements of row 2j + 2 consist of the elements of row 2j + 1 written in the
reverse order for j = 0, 1, 2, . . . , n; that is, the elements of the even rows consist of the
elements of the odd rows written in reverse order. Necessary and sufficient conditions
for the polynomial equation (6.53) to have all its roots inside the unit circle | z | = 1 are
then given by

(i) Q(1) . 0, (−1)nQ(−1) . 0
(6.54)

(ii) Δ1 . 0, Δ2 . 0, Δ3 . 0, . . . , Δn−2 . 0, Δn−1 . 0

Show that all the roots of the polynomial equation

F(z) = z 3 + z 2 − z −  = 0

lie within the unit circle |z | = 1.

Solution The corresponding Jury stability table is shown in Figure 6.14. In this case

(i) F(1) = 1 +  −  −  . 0

(−1)nF(−1) = (−1)3(−1 +  +  − ) . 0

(ii) Δ1 = . 0, Δ2 = . 0

Thus, by the criteria (6.54), all the roots lie within the unit circle. In this case this is
readily confirmed, since the polynomial F(z) may be factorized as

F(z) = (z − )(z + )(z + ) = 0

So the roots are z1 = , z2 = −  and z3 = − .

Row zn zn−1 zn−2 . . . zn−k . . . z2 z1 z0

1

2

3

4

5

6

7

8

?
?
2n − 5

2n − 4

2n − 3

2n − 2

2n − 1

1

a0

Δ1 = b0

bn−1

Δ2 = c0

cn−2

Δ3 = d0

dn−3

Δn−3 = s0

s3

Δn−2 = r0

r2

Δn−1 = t0

an−1

a1

b1

bn−2

c1

cn−3

d1

dn−4

s1

s2

r1

r1

an−2

a2

b2

bn−3

c2

cn−4

d2

dn−5

s2

s1

r2

r0

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

s3

s0

an−k

ak

bk

bn−1−k

ck

cn−2−k

dk

dn−3−k

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

a2

an−2

bn−2

b1

cn−2

c0

a1

an−1

bn−1

b0

a0

1

Figure 6.13 Jury 
stability table for the 
polynomial equation 
(6.53).

Example 6.24
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1
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1
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------

1
3
--- 1

4
---

1
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------
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144
--------- 143

144
---------( )2 − 4

81
------

1
2
---

1
2
---

1
3
---

1
2
---

1
2
---

1
3
---
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The Jury stability table may also be used to determine how many roots of the
polynomial equation (6.53) lie outside the unit circle. The number of such roots is
determined by the number of changes in sign in the sequence

1, Δ1, Δ2, . . . , Δn−1

Show that the polynomial equation

F(z) = z 3 − 3z 2 − z + = 0

has roots that lie outside the unit circle |z | = 1. Determine how many such roots there are.
 

Solution The corresponding Jury stability table is shown in Figure 6.15. Hence, in this case

F(z) = 1 − 3 −  + = 

(−1)nF(−1) = (−1)3(−1 − 3 +  + ) = 3

As F(1) , 0, it follows from (6.54) that the polynomial equation has roots outside the
unit circle |z | = 1. From Figure 6.15, the sequence 1, Δ1, Δ2 is 1, , , and since
there is only one sign change in the sequence, it follows that one root lies outside the
unit circle. Again this is readily confirmed, since F(z) may be factorized as

F(z) = (z − )(z + )(z − 3) = 0

showing that there is indeed one root outside the unit circle at z = 3.

Figure 6.14 Jury 
stability table for 
Example 6.24.

Row z3 z2 z1 z0

1

2

3

4

5

1

= 0.936 78

 

11
12
------–

Δ1

1 1
12
------–

1
12
------– 1

=

143
144
---------=

2
9
---–

Δ2

143
144
---------

2
9
---–

2
9
---– 143

144
---------

=

1
3
---

1
4
---–

1 1
4
---–

1
12
------– 1

3
---

5
16
------=
5
16
------

1
4
---–
1
3
---

1 1
3
---

1
12
------– 1

4
---–

2
9
---–=

143
144
---------

1
12
------–

Example 6.25
1
4
---

3
4
---

Figure 6.15 Jury 
stability table for 
Example 6.25.

Row z 3 z 2 z1 z0

1

2

3

4

5

1

2

−3

−3

2

13
4
---

Δ1
7

16
------=

Δ2
5

16
------–=

1
4
---–
45
16
------–
45
16
------–

1
4
---–

7
16
------

3
4
---

1
4
---

3
4
--- 3

2
---–

1
4
---

3
4
---

7
16
------

15
16
------–

1
2
---

1
2
---
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Consider the discrete-time feedback system of Figure 6.16, for which T is the sampling
period and k . 0 is a constant gain:

(a) Determine the z transform G(z) corresponding to the Laplace transform G(s).

(b) Determine the characteristic equation of the system when T = 1 and k = 6 and
show that the discrete-time system is unstable.

(c) For T = 1 show that the system is stable if and only if 0 , k , 4.33.

(d) Removing the sampler show that the corresponding continuous-time feedback
system is stable for all k . 0.

Solution (a) First invert the Laplace transform to give the corresponding time-domain function
f (t) and then determine the z transform of f (t):

f (t) = k − ke−t

Gd(z) = Z{k} − Z{ke−t} = 

(b) With k = 6 and T = 1

Gd(z) = 

The closed-loop transfer function is

giving the characteristic equation

1 + Gd(z) = 0 as (z − 1)(z − e−1) + 6(1 − e−1)z = 0

or

z 2 + z[6(1 − e−1) − (1 + e−1)] + e−1 = 0

which reduces to

z 2 + 2.324z + 0.368 = 0

The roots of this characteristic equation are z1 = −0.171 and z2 = −2.153. Since
one of the roots lies outside the unit circle | z | = 1 the system is unstable.

Example 6.26

Figure 6.16
Discrete-time system 
of Example 6.26.

G s( ) k
s s 1+( )
------------------- k

s
--

k
s 1+
-----------–= =

kz
z 1–-----------

kz

z e T––
---------------– kz 1 e T––( )

z 1–( ) z e T––( )
------------------------------------=

6 1 e 1––( )z

z 1–( ) z e 1––( )
------------------------------------

Gd z( )
1 Gd z( )+
-----------------------
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(c) For T = 1 and general gain k . 0 the characteristic equation of the system is

F(z) = (z − 1)(z − e−1) + k (1 − e−1)z = 0

which reduces to

F(z) = z 2 + (0.632k − 1.368)z + 0.368 = 0

By Jury’s procedure conditions for stability are:

F(1) = 1 + (0.632k − 1.368) + 0.368 . 0 since k . 0

(−1)2F(−1) = 2.736 − 0.632k . 0 provided k , 

Δ1 =  . 0

Thus F(1) . 0, (−1)2F(−1) . 0 and Δ1 . 0 and system stable if and only if k , 4.33.

(d) In the absence of the sampler the characteristic equation of the continuous-time
feedback system is 1 + G(s) = 0, which reduces to

s2 + s + k = 0

All the roots are in the negative half of the s-plane, and the system is stable, for
all k . 0.

6.6.4 Convolution

Here we shall briefly extend the concept of convolution introduced in Section 5.3.6 to
discrete-time systems. From (6.45), for an initially quiescent system with an impulse
response sequence with z transform Yδ(z), the z transform Y(z) of the output
sequence {yk} in response to an input sequence {uk} with z transform U(z) is given by

Y(z) = Yδ(z)U(z) (6.49)

For the purposes of solving a particular problem, the best approach to determining {yk}
for a given {uk} is to invert the right-hand side of (6.49) as an ordinary z transform with
no particular thought as to its structure. However, to understand more of the theory of
linear systems in discrete time, it is worth exploring the general situation a little further.
To do this, we revert to the time domain.

Suppose that a linear discrete-time time-invariant system has impulse response
sequence ,  and suppose that we wish to find the system response {yk} to an input
sequence {uk}, with the system initially in a quiescent state. First we express the
input sequence

{uk} = {u0, u1, u2, . . . un, . . . } (6.55)

as

{uk} = u0{δk} + u1{δk−1} + u2{δk−2} + . . . + un{δk−n} + . . . (6.56)

where

2.736
0.632
------------- 4.33=

  1   0.368

0.568 1

yδk
{ }

yδk
{ }

δk−j = 
0 k j≠( )
1 k  =  j( )



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In other words, {δk−j} is simply an impulse sequence with the pulse shifted to k = j.
Thus, in going from (6.55) to (6.56), we have decomposed the input sequence {uk}
into a weighted sum of shifted impulse sequences. Under the assumption of an ini-
tially quiescent system, linearity allows us to express the response {yk} to the input
sequence {uk} as the appropriately weighted sum of shifted impulse responses. Thus,
since the impulse response is ,  the response to the shifted impulse sequence
{δk−j} will be ,  and the response to the weighted impulse sequence uj{δk−j}
will be simply uj .  Summing the contributions from all the sequences in (6.56),
we obtain

(6.57)

as the response of the system to the input sequence {uk}. Expanding (6.57), we have

{yk} = u0  + u1  + . . . + uj  + . . . 

= u0 ,  ,  , . . . , , . . . }

+ u1{0, , , . . . , , . . . }

+ u2{0, 0, , . . . , , . . . }



+ uh{0, 0, 0, . . . , 0, , , . . . }

↑
+ . . . hth position

From this expansion, we find that the hth term of the output sequence is
determined by

(6.58)

That is,

(6.59)

The expression (6.58) is called the convolution sum, and the result (6.59) is analogous
to (5.45) for continuous systems.

A system has z transfer function

What is the system step response? Verify the result using (6.59).

yδk
{ }

yδk−j
{ }

yδk−j
{ }

yk{ } = uj yδk−j
{ }

j=0

∞



yδk
{ } yδk−1

{ } yδk− j
{ }

{yδ0
yδ1

yδ2
yδh

yδ0
yδ1

yδh−1

yδ0
yδh−2

yδ0
yδ1

yh = ujyδh−j

j=0

h



yk{ } = ujyδk−j

j=0

k


 
 
 

Example 6.27

G z( ) = 
z

z 1
2
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----------
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Solution From (6.46), the system step response is

Y(z) = G(z)]{hk}

where {hk} = {1, 1, 1, . . . }. From Figure 6.3, ]{hk} = z /(z − 1), so

Resolving Y(z)/z into partial fractions gives

so

Taking inverse transforms then gives the step response as

Using (6.59), we first have to find the impulse response, which, from (6.48), is given by

= ] −1[G(z)] = ] −1

so that

Taking {uk} to be the unit step sequence {hk}, where hk = 1 (k > 0), the step response
may then be determined from (6.59) as

Recognizing the sum as the sum to k + 1 terms of a geometric series with common ratio
−2, we have

which concurs with the sequence obtained by direct evaluation.

Example 6.27 reinforces the remark made earlier that the easiest approach to
obtaining the response is by direct inversion of (6.32). However, (6.59), together with
the argument leading to it, provides a great deal of insight into the way in which the
response sequence {yk} is generated. It also serves as a useful ‘closed form’ for the
output of the system, and readers should consult specialist texts on signals and systems

Y z( ) = 
z

z 1
2
---+

----------
z

z 1–
-----------

Y z( )
z

---------- = 
z

z 1
2
---+( ) z 1–( )

------------------------------- 2
3
---

1
z 1–
----------- 1

3
---

1
z 1

2
---+

----------+=

Y z( ) = 2
3
---

z
z 1–
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3
---

z
z 1

2
---+

----------+

yk{ } = 2
3
---

1
3
--- 1

2
---–( )k+{ }

yδk
{ }

z
z 1

2
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yδk
{ } = 1

2
---–( )k{ }

yk{ } = ujyδk−j

j=0

k


 
 
 

 = 1 1
2
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j=0

k


 
 
 
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2
---–( )k 1

2
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k


 
 
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for a full discussion (P. Kraniauskas, Transforms in Signals and Systems, Wokingham,
Addison-Wesley, 1992).

The astute reader will recall that we commenced this section by suggesting that we
were about to study the implications of the input–output relationship (6.49), namely

Y(z) = Yδ(z)U(z)

We have in fact explored the time-domain input–output relationship for a linear system,
and we now proceed to link this approach with our work in the transform domain. By
definition,

so

Yδ(z)U(z) = u0  + (u0  + u1 )  + (u0  + u1  + u2 )  + . . . (6.60)

Considering the kth term of (6.60), we see that the coefficient of z−k is simply

However, by definition, since Y(z) = Yδ(z)U(z), this is also y(k), the kth term of the
output sequence, so that the latter is

as found in (6.59). We have thus shown that the time-domain and transform-domain
approaches are equivalent, and, in passing, we have established the z transform of the
convolution sum as

where

]{uk} = U(z), ]{vk} = V(z)

Putting p = k − j in (6.61) shows that

(6.62)

confirming that the convolution process is commutative.

(6.61)

U z( ) = ukz
k–

k=0

∞

  = u0
u1

z
-----

u2

z2
----- . . . uk

zk
---- . . .+ + + + +

Yδ z( ) = yδk
z k–  = yδ 0

yδ1

z
------

yδ2

z2
------ . . .

yδk

zk
----- . . .+ + + + +

k=0

∞



yδ 0
yδ 1

yδ0

1
z
--- yδ2

yδ 1
yδ 0

1

z2
----

ujyδk−j

j=0

k



yk{ } = ujyδk−j

j=0

k


 
 
 

] ujvk−j

j=0

k


 
 
 

 = U z( )V z( )

ujvk−j

j=0

k

  = uk−pvp

p=0

k


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Check your answers using MATLAB or MAPLE whenever possible.

Find the transfer functions of each of the following 
discrete-time systems, given that the system is 
initially in a quiescent state:

(a) yk+2 − 3yk+1 + 2yk = uk

(b) yk+2 − 3yk+1 + 2yk = uk+1 − uk

(c) yk+3 − yk+2 + 2yk+1 + yk = uk + uk−1

Draw a block diagram representing the discrete-
time system

yk+2 + 0.5yk+1 + 0.25yk = uk

Hence find a block diagram representation of the 
system

yk+2 + 0.5yk+1 + 0.25yk = uk − 0.6uk+1

Find the impulse response for the systems with 
z transfer function

(a) (b)

(c) (d)

Obtain the impulse response for the systems of 
Exercises 21(a, b).

Which of the following systems are stable?

(a) 9yk+2 + 9yk+1 + 2yk = uk

(b) 9yk+2 − 3yk+1 − 2yk = uk

(c) 2yk+2 − 2yk+1 + yk = uk+1 − uk

(d) 2yk+2 + 3yk+1 − yk = uk

(e) 4yk+2 − 3yk+1 − yk = uk+1 − 2uk

Use the method of Example 6.27 to calculate 
the step response of the system with transfer 
function

Verify the result by direct calculation.

Following the same procedure as in Example 6.26 
show that the closed-loop discrete-time system of 
Figure 6.17, in which k . 0 and τ . 0, is stable if 
and only if

0 , k , 2 coth( )

A sampled data system described by the difference 
equation

yn+1 − yn = un

is controlled by making the input un proportional to 
the previous error according to

where K is a positive gain. Determine the range of 
values of K for which the system is stable. Taking 
K = , determine the response of the system given 
y0 = y1 = 0.

Show that the system

yn+2 + 2yn+1 + 2yn = un+1 (n > 0)

has transfer function

Show that the poles of the system are at z = −1 + j 
and z = −1 − j. Hence show that the impulse 
response of the system is given by

hn = ]−1D(z) = 2n /2 sin nπ

6.6.5 Exercises

21

22

23

z

8z2 6z 1+ +
-----------------------------

z2

z2 3z 3+–
-------------------------

z2

z2 0.2z 0.08––
-------------------------------------

5z2 12z–
z2 6z 8+–
-------------------------

24

25

26

z
z 1

2
---–

----------

27

Figure 6.17 Discrete-time system of Exercise 27.

T
2τ------

28

un = K 1

2n
----- yn 1–– 
 

2
9
---

29

D z( ) = 
z

z2 2z 2+ +
-------------------------

3
4
---
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The relationship between Laplace and z transforms
Throughout this chapter we have attempted to highlight similarities, where they occur,
between results in Laplace transform theory and those for z transforms. In this section
we take a closer look at the relationship between the two transforms. In Section 6.2.2
we introduced the idea of sampling a continuous-time signal f (t) instantaneously at
uniform intervals T to produce the sequence

{ f (nT )} = { f (0), f (T ), f (2T ), . . . , f (nT ), . . . } (6.63)

An alternative way of representing the sampled function is to define the continuous-
time sampled version of f (t) as f̂ (t) where

(6.64)

The representation (6.64) may be interpreted as defining a row of impulses located at
the sampling points and weighted by the appropriate sampled values (as illustrated in
Figure 6.18). Taking the Laplace transform of f̂ (t), following the results of Section 5.2.10,
we have

giving

(6.65)

Making the change of variable z = esT in (6.65) leads to the result

(6.66)

6.7

f̂ t( ) = f t( )δ t nT–( )
n=0

∞

 = f nT( )δ t nT–( )
n=0

∞



Figure 6.18 Sampled 
function f(t).
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∞

f kT( )δ t kT–( )
k=0

∞

 e st– td

= f kT( )
k=0

∞

 #
0−

∞

δ t kT–( ) e st– td

] f̂ t( ){ } f kT( ) e ksT–

k=0

∞

=

] f̂ t( ){ } = f kT( ) z k–  = F z( )
k=0

∞


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where, as in (6.10), F(z) denotes the z transform of the sequence { f (kT )}. We can there-
fore view the z transform of a sequence of samples in discrete time as the Laplace
transform of the continuous-time sampled function f ̂(t) with an appropriate change of
variable

z = esT or

In Chapter 4 we saw that under this transformation the left half of the s plane, Re(s) , 0,
is mapped onto the region inside the unit circle in the z plane, | z | , 1. This is
consistent with our stability criteria in the s and z domains.

Solution of discrete-time state-space equations
The state-space approach to the analysis of continuous-time dynamic systems, developed
in Section 5.4, can be extended to the discrete-time case. The discrete form of the state-
space representation is quite analagous to the continuous form.

6.8.1 State-space model

Consider the nth-order linear time-invariant discrete-time system modelled by the
difference equation

yk+n + an−1yk+n−1 + an−2yk+n−2 + . . . + a0yk = b0uk (6.67)

which corresponds to (6.32), with bi = 0 (i . 0). Recall that {yk} is the output sequence,
with general term yk, and {uk} the input sequence, with general term uk. Following the
procedure of Section 1.9.1, we introduce state variables x1(k), x2(k), . . . , xn(k) for the
system, defined by

x1(k) = yk, x2(k) = yk+1, . . . , xn(k) = yk+n−1 (6.68)

Note that we have used the notation xi(k) rather than the suffix notation xi,k for clarity.
When needed, we shall adopt the same convention for the input term and write u(k) for
uk in the interests of consistency. We now define the state vector corresponding to this
choice of state variables as x(k) = [x1(k) x2(k) . . . xn(k)]T. Examining the system
of equations (6.68), we see that

x1(k + 1) = yk+1 = x2(k)

x2(k + 1) = yk+2 = x3(k)



xn−1(k + 1) = yk+n−1 = xn(k)

xn(k + 1) = yk+n

= −an−1yk+n−1 − an−2yk+n−2 − . . . − a0yk + b0uk

= −an−1xn(k) − an−2xn−1(k) − . . . − a0x1(k) + b0u(k)

using the alternative notation for uk.

s = 
1
T
--- zln

6.8
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We can now write the system in the vector–matrix form

(6.69)

which corresponds to (1.57) for a continuous-time system. Again, we can write this
more concisely as

x(k + 1) = Ax(k) + bu(k) (6.70)

where A  and b are defined as in (6.69). The output of the system is the sequence {yk},
and the general term yk = x1(k) can be recovered from the state vector x(k) as

y(k) = x1(k) = [1 0 0 . . . 0]x (k) = cTx(k) (6.71)

As in the continuous-time case, it may be that the output of the system is a combination
of the state and the input sequence {u(k)}, in which case (6.71) becomes

y(k) = cTx(k) + du(k) (6.72)

Equations (6.70) and (6.72) constitute the state-space representation of the system,
and we immediately note the similarity with (1.60a, b) derived for continuous-time
systems. Likewise, for the multi-input–multi-output case the discrete-time state-space
model corresponding to (1.66a, b) is

x(k + 1) = Ax(k) + Bu(k) (6.73a)

y(k) = Cx(k) + Du(k) (6.73b)

Determine the state-space representation of the system modelled by the difference
equation

yk+2 + 0.2yk+1 + 0.3yk = uk (6.74)

Solution We choose as state variables

x1(k) = yk, x2(k) = yk+1

Thus

x1(k + 1) = x2(k)

and from (6.74),

x2(k + 1) = −0.3x1(k) − 0.2x2(k) + u(k)

The state-space representation is then

x(k + 1) = Ax(k) + bu(k), y(k) = cTx(k)

[ k 1+( ) = 

x1 k 1+( )
x2 k 1+( )



xn k 1+( )

 = 

0 1 0 0 … 0

0 0 1 0 …   0

     
0 0 0 0 … 1

−a0 −a1 −a2 −a3 … −an−1

x1 k( )
x2 k( )



xn k( )

0

0



b0

u k( )+
 

Example 6.28
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with

A  = , b = , cT = [1 0]

We notice, from reference to Section 6.6.1, that the procedure used in Example 6.28
for establishing the state-space form of the system corresponds to labelling the output
of each delay block in the system as a state variable. In the absence of any reason for
an alternative choice, this is the logical approach. Section 6.6.1 also gives a clue
towards a method of obtaining the state-space representation for systems described by
the more general form of (6.32) with m . 0. Example 6.19 illustrates such a system,
with z transfer function

The block diagram for this system is shown in Figure 6.9(c) and reproduced for
convenience in Figure 6.19. We choose as state variables the outputs from each delay
block, it being immaterial whether we start from the left- or the right-hand side of the
diagram (obviously, different representations will be obtained depending on the choice
we make, but the different forms will yield identical information on the system).
Choosing to start on the right-hand side (that is, with x1(k) the output of the right-hand
delay block and x2(k) that of the left-hand block), we obtain

x1(k + 1) = x2(k)

x2(k + 1) = −3x2(k) − 2x1(k) + u(k)

with the system output given by

y(k) = −x1(k) + x2(k)

Thus the state-space form corresponding to our choice of state variables is

x(k + 1) = Ax(k) + bu(k), y(k) = cTx(k)

with

A  = , b = , cT = [−1 1]

We notice that, in contrast with the system of Example 6.28, the row vector cT = [−1 1]
now combines contributions from both state variables to form the output y(k).

0 1

−0.3 −0.2

0

1

G z( ) = z 1–
z2 3z 2+ +
-------------------------

Figure 6.19 Block 
diagram of system 
with transfer 
function G(z) = 
(z − 1)/(z 2 + 3z + 2).

0 1

−2 −3

0

1



6.8  SOLUTION OF DISCRETE-TIME STATE-SPACE EQUATIONS 459

6.8.2 Solution of the discrete-time state equation

As in Section 1.10.1 for continuous-time systems, we first consider the unforced or
homogeneous case

x(k + 1) = Ax(k) (6.75)

in which the input u(k) is zero for all time instants k. Taking k = 0 in (6.75) gives

x(1) = Ax(0)

Likewise, taking k = 1 in (6.75) gives

x(2) = Ax(1) = A 2x(0)

and we readily deduce that in general

Equation (6.76) represents the solution of (6.75), and is analogous to (1.77) for the
continuous-time case. We define the transition matrix Φ (k) of the discrete-time sys-
tem (6.75) by

Φ (k) = A k

and it is the unique matrix satisfying

Φ (k + 1) = AΦ (k), Φ (0) = I

where I is the identity matrix.
Since A  is a constant matrix, the methods discussed in Section 1.7 are applicable for

evaluating the transition matrix. From (1.31a),

A k = α 0(k)I + α 1(k)A  + α 2(k)A 2 + . . . + α n−1(k)An−1 (6.77)

where, using (1.31b), the α i(k) (k = 0, . . . , n − 1) are obtained by solving
simultaneously the n equations

λ k
j = α 0(k) + α 1(k)λ j + α 2(k)λ 2

j + . . . + α n−1(k)λ j
n−1 (6.78)

where λ j ( j = 1, 2, . . . , n) are the eigenvalues of A . As in Section 1.7, if A  has repeated
eigenvalues then derivatives of λk with respect to λ will have to be used. The method
for determining A k is thus very similar to that used for evaluating eA t in Section 1.10.3.

Obtain the response of the second-order unforced discrete-time system

x(k + 1) = 

subject to x(0) = [1 1]T.

Solution In this case the system matrix is

x(k) = A kx(0) (k > 0) (6.76)

Example 6.29

x1 k( )

x2 k( )
 = 

1
2
--- 0

−1 1
3
---
[ k( )

A = 
1
2
--- 0

−1 1
3
---
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having eigenvalues λ 1 =  and λ 2 = . Since A  is a 2 × 2 matrix, it follows from (6.77)
that

A k = α 0(k)I + α 1(k)A

with α 0(k) and α 1(k) given from (6.78),

λ k
j = α 0(k) + α 1(k)λ j ( j = 1, 2)

Solving the resulting two equations

( )k = α 0(k) + ( )α 1(k), ( )k = α 0(k) + ( )α 1(k)

for α 0(k) and α 1(k) gives

α 0(k) = 3( )k − 2( )k, α 1(k) = 6[( )k − ( )k]

Thus the transition matrix is

F(k) = A k =

Note that F(0) = I, as required.
Then from (6.76) the solution of the unforced system is

x(k + 1) =

Having determined the solution of the unforced system, it can be shown that the
solution of the state equation (6.73a) for the forced system with input u(k), analogous
to the solution given in (1.78) for the continuous-time system

x
Ǥ

 = Ax + Bu

is

Having obtained the solution of the state equation, the system output or response y (k)
is obtained from (6.73b) as

In Section 5.4.1 we saw how the Laplace transform could be used to solve the state-
space equations in the case of continuous-time systems. In a similar manner, z
transforms can be used to solve the equations for discrete-time systems.
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1
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3
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x(k) = A kx(0) + (6.79)Ak−j−1 BX j( )
j=0

k−1



y(k) = CA kx(0) + (6.80)C Ak−j−1 BX j( ) DX k( )+
j=0

k−1


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Defining ]{x(k)} = X(z) and ]{u(k)} = U(z) and taking z transforms throughout in
the equation

x(k + 1) = Ax(k) + Bu(k)

gives

zX(z) − zx(0) = AX(z) + BU(z)

which, on rearranging, gives

(zI − A )X(z) = zx(0) + BU(z)

where I is the identity matrix. Premultiplying by (zI − A )−1 gives

X(z) = z(zI − A )−1x(0) + (zI − A )−1BU(z) (6.81)

Taking inverse z transforms gives the response as

which corresponds to (5.51) in the continuous-time case.
On comparing the solution (6.82) with that given in (6.79), we see that the transition

matrix F(t) = A k may also be written in the form

This is readily confirmed from (6.81), since on expanding z(zI − A )−1 by the binomial
theorem, we have

z(zI − A )−1 = 

Using the z-transform approach, obtain an expression for the state x(k) of the system
characterized by the state equation

x(k + 1) = (k > 0)

when the input is the unit step function

and subject to the initial condition x(0) = [1 −1]T.

x(k) = ]−1{X(z)} = ]−1{z(zI − A )−1}x(0) + ]−1{(zI − A )−1BU(z)} (6.82)

F(t) = A k = ]−1{z(zI − A )−1}

I + 
A
z
---- + 

A2

z2
------ + . . . + 

Ar

zr
----- + . . .

= Ar

zr
-----

r=0

∞

 ] Ak{ }=

Example 6.30

2 5

−3 −6
[ k( ) + 

1

1
u k( )

u k( ) = 
0 k , 0( )
1 k > 0( )



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Solution In this case

giving

(zI − A )−1 =

=

Then

]−1{z(zI − A)−1} = ]−1 

=

so that, with x(0) = [1 −1]T, the first term in the solution (6.82) becomes

]−1{z(zI − A)−1}x(0) = (6.83)

Since U(z) = ]{u(k)} = z /(z − 1),

(zI − A )−1BU(z) = 

= 

= 

A = 
2 5

−3 −6
so zI A–  = 

z − 2 −5

3 z + 6

1
z + 1( ) z + 3( )

------------------------------------
z + 6  5

−3 z − 2

5
2
---

z + 1
------------- − 

3
2
---

z + 3
-------------

5
2
---

z + 1
------------- − 

5
2
---

z + 3
-------------

−3
2
---

z + 1
------------- + 

3
2
---

z + 3
-------------

−3
2
---

z + 1
------------- + 

5
2
---

z + 3
-------------

5
2
---

z
z + 1
------------- − 3

2
---

z
z + 3
------------- 5

2
---

z
z + 1
------------- − 5

2
---

z
z + 3
-------------

−3
2
---

z
z + 1
------------- + 3

2
---

z
z + 3
------------- −3

2
---

z
z + 1
------------- + 5

2
---

z
z + 3
-------------

5
2
--- −1( )k − 3

2
--- −3( )k 5

2
--- −1( )k − 5

2
--- −3( )k

−3
2
--- −1( )k + 3

2
--- −3( )k −3

2
--- −1( )k + 5

2
--- −3( )k

−3( )k

− −3( )k

1
z + 1( ) z + 3( )

------------------------------------
z + 6 5

−3 z − 2

1

1

z
z − 1
-------------

z
z − 1( ) z + 1( ) z + 3( )

------------------------------------------------------
z + 11

z − 5

3
2
---

z
z − 1
-------------  − 5

2
---

z
z + 1
------------- + 

z
z + 3
-------------

−1
2
---

z
z − 1
------------- + 3

2
---

z
z + 1
-------------  − 

z
z + 3
-------------
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so that the second term in the solution (6.82) becomes

]−1{(zI − A )−1BU(z)} = (6.84)

Combining (6.83) and (6.84), the response x(k) is given by

x(k) =

Having obtained an expression for a system’s state x(t), its output, or response, y(t) may
be obtained from the linear transformation (6.73b).

3
2
---  − 5

2
--- −1( )k + −3( )k

−1
2
---  + 3

2
--- −1( )k − −3( )k

3
2
---  − 5

2
--- −1( )k + 2 −3( )k

−1
2
---  + 3

2
--- −1( )k − 2 −3( )k

Check your answers using MATLAB or MAPLE whenever possible.

Use z transforms to determine A k for the matrices

Solve the discrete-time system specified by

x(k + 1) = −7x(k) + 4y(k)

y(k + 1) = −8x(k) + y(k)

with x(0) = 1 and y(0) = 2, by writing it in the form 
x(k + 1) = Ax(k). Use your answer to calculate x(1) 
and x(2), and check your answers by calculating 
x(1), y(1), x(2), y(2) directly from the given 
difference equations.

Using the z-transform approach, obtain an 
expression for the state x(k) of the system 
characterized by the state equation

u(k)

when the input is the unit step function

and subject to the initial condition x(0) = [1 −1]T.

The difference equation

y(k + 2) = y(k + 1) + y(k)

with y(0) = 0, and y(1) = 1, generates the Fibonacci 
sequence { y(k)}, which occurs in many practical 
situations. Taking x1(k) = y(k) and x2(k) = y(k + 1), 
express the difference equation in state-space form 
and hence obtain a general expression for y(k). 
Show that as k → ∞ the ratio y(k + 1)/y(k) tends 
to the constant (√5 + 1). This is the so-called 
Golden Ratio, which has intrigued mathematicians 
for centuries because of its strong influence on art 
and architecture. The Golden Rectangle, that is one 
whose two sides are in this ratio, is one of the most 
visually satisfying of all geometric forms.

6.8.3 Exercises

30

a( ) 
0 1

4 0
b( ) 

−1 3

3 −1
c( ) 

−1 1

0 −1

31

32

x k + 1( ) = 
0 1

−0.16 −1
x k( ) + 

1

1

u k( ) = 
0 k , 0( )
1 k > 0( )




33

1
2
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Discretization of continuous-time state-space models
In Sections 1.10 and 5.6 we considered the solutions of the continuous-time state-space
model

x
.

(t) = Ax(t) + Bu(t) (6.85a)

y(t) = Cx(t) (6.85b)

If we wish to compute the state x(t) digitally then we must first approximate the continuous
model by a discrete-time state-space model of the form

x[(k + 1)T ] = Gx(kT ) + Hu(kT ) (6.86a)

y(kT ) = Cx(kT ) (6.86b)

Thus we are interested in determining matrices G and H such that the responses to the
discrete-time model (6.86) provide a good approximation to sampled-values of the
continuous-time model (6.85). We assume that sampling occurs at equally spaced
sampling instances t = kT, where T . 0 is the sampling interval. For clarification we use
the notation x(kT ) and x[(k + 1)T ] instead of k and (k + 1) as in (6.73).

6.9.1 Euler’s method

A simple but crude method of determining G and H is based on Euler’s method
considered in Section 10.6 of MEM. Here the derivative of the state is approximated by

x
.
(t) ≅ 

which on substituting in (6.85a) gives

 ≅ Ax(t) + Bu(t)

which reduces to

x(t + T ) ≅ (TA + I )x(t) + TBu(t) (6.87)

Since t is divided into equally spaced sampling intervals of duration T we take t = kT,
where k is the integer index k = 0, 1, 2, . . . , so that (6.87) becomes

x[(k + 1)T ] ≅ (TA + I )x(kT ) + TBu(kT ) (6.88)

Defining

G = G1 = (TA + I ) and H = H1 = TB (6.89)

(6.86) then becomes the approximating discrete-time model to the continuous-time
model (6.85). This approach to discretization is known as Euler’s method and simply
involves a sequential series of calculations.

6.9

x t T+( ) x T( )–
T

-------------------------------------

x t T+( ) x t( )–
T

-----------------------------------
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Consider the system modelled by the second-order differential equation

ÿ(t) + 3y.(t) + 2y = 2u(t)

(a) Choosing the state-vector x = [ y y.]T express this in a state-space form.

(b) Using Euler’s method, determine the approximating discrete-time state-space
model.

(c) Illustrate by plotting the responses y(t), for both the exact continuous response
and the discretized responses, for a step input u(t) = 1 and zero initial conditions,
taking T = 0.2

Solution (a) Since x1 = y, x2 = y. we have that

x.1 = y. = x2

x. 2 = ÿ = −2x1 − 3x2 + 2u

so the state-space model is

(b) From (6.89)

G1 = TA + I = 

H1 = TB = 

so the discretized state-space model is

(c) Using the MATLAB commands:

A = [0,1;-2,-3]; B = [0;2]; C = [1,0];
K = 0;
for T = 0.2
k = k + 1;
G1 = [1,T;-2*T,-3*T+1]; H1 = [0;2*T];

Example 6.31

x
·

1

x
·

2

0 1

2– 3–

x1

x2

0

2
u t( )+=

y 1 0[ ]
x1

x2

=

1 T

2T– 3T– 1+

0

2T

x1 k 1+( )T[ ]
x2 k 1+( )T[ ]

1 T

2T– 3T– 1+

x1 kT( )
x2 kT( )

0

2T
u kT( )+=

y kT( ) 1 0[ ]
x1 kT( )
x2 kT( )

=
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T = T*[0:30];
y = step(A,B,C,0,1,t); yd = dstep(G1,H1,C,0,1,31);
plot(t,y,t,yd,’x’)
end

Step responses for both the continuous model and the Euler discretized model are
displayed in Figure 6.20 with ‘×’ denoting the discretized response.

6.9.2 Step-invariant method

To determine the matrices G and H in the discrete-time model (6.86), use is made of
the explicit solution to the state equation (6.85a). From (1.78) the solution of (6.85a) is
given by

(6.90)

Taking t0 = kT and t = (k + 1)T in (6.90) gives

Making the substitution τ = τ1 − kT in the integral gives

(6.91)

Figure 6.20
The continuous model 
and Euler discretized 
model of Example 6.31.

x t( ) e
A t−t0( )

x t0( ) #
t0

t

e
A t−τ1( )

Bu τ1( ) dτ1+=

x k 1+( )T[ ] eATx kT( ) #
kT

k+1( )T

e
A k+1( )T−τ1[ ]

Bu τ1( ) dτ1+=

x k 1+( )T[ ] eATx kT( ) #
0

T

eA T−τ( )Bu kT τ+( ) dτ+=
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The problem now is: How do we approximate the integral in (6.91)? The simplest
approach is to assume that all components of u(t) are constant over intervals between
two consecutive sampling instances so

u(kT + τ) = u(kT ), 0 < τ < T, k = 0, 1, 2, . . .

The integral in (6.91) then becomes

Defining

G = eAT (6.92a)

and H =  = , using substitution t = (T − τ) (6.92b)

then (6.91) becomes the discretized state equation

x[(k + 1)T ] = Gx(kT ) + Hu(kT ) (6.93)

The discretized form (6.93) is frequently referred to as the step-invariant method.

Comments

1. From Section 5.6.1 we can determine G using the result

eAt = ]−1{(sI − A)−1} (6.94)

2. If the state matrix A is invertible then from (1.34)

H =  = A−1(G − I )B = (G − I )A−1B (6.95)

3. Using the power series expansion of eAt given in (1.24) we can express G and H
as the power series

G = I  + TA  +  + . . . = (6.96)

H = (TI +  + . . .)B = (6.97)

We can approximate G and H by neglecting higher-order terms in T. In the
particular case when we neglect terms of order two or higher in T results (6.97)
give

G = I + TA and H = TB

which corresponds to Euler’s discretization.

#
0

T

eA T−τ( )B dτ u kτ( )

#
0

T

e T−τ( )B dτ #
0

T

eAtB dt

#
0

T

eAtB dτ

T 2A2

2!------------
T rAr

r!
-----------

r=0

∞



T 2A
2!

----------
T rAr−1

r!
---------------

r=1

∞

 
 
 

B
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Using the step-invariant method, obtain the discretized form of the state equation for
the continuous-time system

considered in Example 6.31. Plot the response y(kT) = [1 0]x(kT), for a step input
u(t) = 1 and zero initial conditions, taking T = 0.2.

Solution Using (6.93) G = eAT and H = . From (6.94)

G = ]−1{(sI − A)−1} = ]−1

= ]−1

so that

G = eAT = 

and

H =  = 

= 

Thus, the discrete form of the state equation is

x[(k + 1)T ] = 

In the particular case T = 0.2 the state equation is

x[(k + 1)0 .2] = 

Using MATLAB step responses for both the continuous-time model and the discretized
step-invariant model are displayed in Figure 6.21, with ‘×’ denoting the discretized
response.

Example 6.32

x· x·1

x·2
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 
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1
s + 2
------------–  + 2

s + 1
------------ 1

s + 2
------------–  + 1

s + 1
------------

2
s + 2
------------

2
s + 1
------------– 2

s + 2
------------

1
s + 1
------------–

e 2T––  + 2e T– e 2T––  + e T–

2e 2T– 2e T–– 2e 2T– e T––

#
0

T

eAtB dt
1
2
---e 2t– 2e t–– 1

2
---e 2t– e t––

e 2t–– 2e t–+ e 2t–– e t–+

T

0

0

2

e 2T– 2e T–– 1+
2e 2T–– 2e T–+

e 2T–– 2e T–+ e 2T–– e T–+
2e 2T– 2e T–– 2e 2T– e T––

x kT( ) e 2T– 2e T–– 1+
2e 2T–– e T–+

u kT( )+

0.9671 0.1484

0.2968– 0.5219
x k0.2( )

0.0329

0.2968–
u k0.2( )+
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Figure 6.21
The continuous-time 
model and discretized 
step-invariant model of 
Example 6.32.

For a given value of T the matrices G and H may be determined by the step-invariant
method using the MATLAB function c2d (continuous to discrete). Thus, for the
system of Example 6.32 with T = 0.2, the commands

A = [0,1;-2,-3];
B = [0; 2];
[G,H] = c2d(A,B,0.2)

return

G = 0.9671 0.1484
-0.2968 0.5219

H = 0.0329
-0.2968

which checks with the answers given in Example 6.32.

Using the step-invariant method obtain the discretized 
form of the continuous-time state-equation

Check your answer using MATLAB for the 
particular case when the sampling period is T = 1.

An LCR circuit, with L = C = R = 1, may be 
modelled by the continuous-time state-space model

y = [1 0]x

(a) Determine the Euler form of the discretized 
state-space model.

(b) Determine the discretized state-space model 
using the step-invariant method.
(Hint: Use (6.95) to determine the H matrix.)

6.9.3 Exercises

34
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· x

·
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x·2

0 1

0 2–
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1
u t( )+= =
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x
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·
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x
·

2

0 1
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x1

x2
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1
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Engineering application: design of discrete-time systems
An important development in many areas of modern engineering is the replacement
of analogue devices by digital ones. Perhaps the most widely known example is the
compact disc player, in which mechanical transcription followed by analogue signal
processing has been superseded by optical technology and digital signal processing.
Also, as stated in the introduction, DVD players and digital radios have set new
standards in home entertainment. There are other examples in many fields of engineering,
particularly where automatic control is employed.

6.10 Engineering application:

(c) Using MATLAB plot, for each of the three 
models, responses to a unit step input u(t) = 1 
with zero initial conditions, taking the sampling 
period T = 0.1.

A linear continuous-time system is characterized by 
the state matrix

(a) Show that the system is stable.

(b) Show that the state matrix of the corresponding 
Euler discrete-time system is

(c) Show that stability of the discretized system 
requires T , 1.

A simple continuous-time model of a production 
and inventory control system may be represented by 
the state-space model

where x1(t) represents the actual production rate and 
x2(t) represents the current inventory level; u1(t) 

represents the scheduled production rate, u2(t) 
represents the sales rate and k1 is a constant 
gain factor.

(a) Determine, using the step-invariant method, the 
discretized form of the model. Express the 
model in the particular case when the sampling 
period T = 1.

(b) Suppose the production schedule is determined 
by the feedback policy

u1(kT ) = kc − x2(kT )

where kc is the desired inventory level. The 
system is originally in equilibrium with x1(0) 
equal to the sales rate and x2(0) = kc. At time 
t = 0 the sales rate suddenly increases by 
10%; that is, u2(t) = 1.1x1(0) for t ≥ 0. Find 
the resulting discrete-time state model, with 
sampling rate T = 1 and taking k1 = .

(c) Find the response of the given continuous-time 
model, subject to the same feedback control 
policy

u1(t) = kc − x2(t)

and the same initial conditions.

The exercise may be extended to include simulation 
studies using MATLAB.

(This exercise is adapted from an illustrative 
problem in W. L. Brogan, Modern Control Theory, 
second edition, Prentice-Hall, 1985.)

36

A
1– 1

1– 2–
=

Ad
1 T– T

T– 1 2T–
=

37

x
· t( ) x

·
1 t( )

x
·

2 t( )
=

1– 0

1 0

x1 t( )
x2 t( )

k1 0

0 1–
u1 t( )
u2 t( )

+=

3
16
------



6.10  ENGINEERING A PPLICATION:  DESIGN OF DISCRETE-TIME SYSTEMS 471

6.10.1 Analogue filters

At the centre of most signal processing applications are filters. These have the effect of
changing the spectrum of input signals; that is, attenuating components of signals by
an amount depending on the frequency of the component. For example, an analogue
ideal low-pass filter passes without attenuation all signal components at frequencies
less than a critical frequency ω = ωc say. The amplitude of the frequency response
|G( jω) | (see Section 5.5) of such an ideal filter is shown in Figure 6.22.

One class of analogue filters whose frequency response approximates that of the
ideal low-pass filter comprises those known as Butterworth filters. As well as having
‘good’ characteristics, these can be implemented using a network as illustrated in
Figure 6.23 for the second-order filter.

It can be shown (see M. J. Chapman, D. P. Goodall and N. C. Steele, Signal Processing
in Electronic Communication, Chichester, Horwood Publishing, 1997) that the transfer
function Gn(s) of the nth-order filter is

where

with

Using these relations, it is readily shown that

(6.98)

(6.99)

and so on. On sketching the amplitudes of the frequency responses Gn( jω), it becomes
apparent that increasing n improves the approximation to the response of the ideal low-
pass filter of Figure 6.22.

Figure 6.22
Amplitude response 
for an ideal low-pass 
filter.

Figure 6.23
LCR network for 
implementing a 
second-order 
Butterworth filter.
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∏
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6.10.2 Designing a digital replacement filter

Suppose that we now wish to design a discrete-time system, to operate on samples taken
from an input signal, that will operate in a similar manner to a Butterworth filter. We
shall assume that the input signal u(t) and the output signal y(t) of the analogue filter
are both sampled at the same intervals T to generate the input sequence {u(kT )} and
the output sequence {y(kT )} respectively. Clearly, we need to specify what is meant
by ‘operate in a similar manner’. In this case, we shall select as our design strategy a
method that matches the impulse response sequence of the digital design with a
sequence of samples, drawn at the appropriate instants T from the impulse response of
an analogue ‘prototype’. We shall select the prototype from one of the Butterworth
filters discussed in Section 6.10.1, although there are many other possibilities.

Let us select the first-order filter, with cut-off frequency ωc, as our prototype. Then
the first step is to calculate the impulse response of this filter. The Laplace transfer
function of the filter is

So, from (5.43), the impulse response is readily obtained as

(t > 0) (6.100)

Next, we sample this response at intervals T to generate the sequence

{h(kT )} = 

which on taking the z transform, gives

Finally, we choose H(z) to be the transfer function of our digital system. This means
simply that the input–output relationship for the design of the digital system will be

Y(z) = H(z)U(z)

where Y(z) and U(z) are the z transforms of the output and input sequences {y(kT )}
and {u(kT )} respectively. Thus we have

(6.101)

Our digital system is now defined, and we can easily construct the corresponding
difference equation model of the system as

(z − )Y(z) = ωczU(z)

that is

zY(z) − Y(z) = ωczU(z)

Under the assumption of zero initial conditions, we can take inverse transforms to obtain
the first-order difference equation model

y(k + 1) − y(k) = ωcu(k + 1) (6.102)

G s( ) = 
ωc

s ωc+
--------------

h t( ) = ωc e
ωcT–

ωc e
ωckT–

{ }

] h kT( ){ } = H z( ) = ωc
z

z e
ωcT–

–
-------------------

Y z( ) = ωc
z

z e
ωcT–

–
-------------------U z( )

e
ωcT–

e
ωcT–

e
ωcT–
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A block diagram implementation of (6.102) is shown in Figure 6.24.

6.10.3 Possible developments

The design method we have considered is called the impulse invariant technique,
and is only one of many available. The interested reader may develop this study in
various ways:

(1) Write a computer program to evaluate the sequence generated by (6.102) with
ωc = 1, and compare with values obtained at the sampling instants for the impulse
response (6.100) of the prototype analogue filter.

(2) Repeat the design process for the second-order Butterworth filter.

(3) By setting s = jω in the Laplace transfer function of the prototype, and z = e jωT

in the z transfer function of the digital design, compare the amplitude of the
frequency responses in both cases. For an explanation of the results obtained,
see Chapter 8.

(4) An alternative design strategy is to replace s in the Laplace transfer function
with

(this is a process that makes use of the trapezoidal method of approximate
integration). Design alternative digital filters using this technique, which is
commonly referred to as the Tustin (or bilinear transform) method (see
Section 6.11.3).

(5) Show that filters designed using either of these techniques will be stable provided
that the prototype design is itself stable.

Engineering application: the delta operator and 
the $ transform

6.11.1 Introduction

In recent years, sampling rates for digital systems have increased many-fold, and
traditional model formulations based on the z transform have produced unsatisfactory

Figure 6.24 Block 
diagram for the digital 
replacement filter, 
α = kωc, β = e−ωc t.

2
T
---

z 1–
z 1+
-----------

6.11 Engineering application:
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results in some applications. It is beyond the scope of this text to describe this situation
in detail, but it is possible to give a brief introduction to the problem and to suggest an
approach to the solution. For further details see R. M. Middleton and G. C. Goodwin,
Digital Control and Estimation, A Unified Approach (Englewood Cliffs, NJ, Prentice
Hall, 1990) or W. Forsythe and R. M. Goodall, Digital Control (London, Macmillan,
1991). The contribution of Colin Paterson to the development of this application is
gratefully acknowledged.

6.11.2 The q or shift operator and the δ operator

In the time domain we define the shift operator q in terms of its effect on a sequence
{xk} as

q{xk} = {xk+1}

That is, the effect of the shift operator is to shift the sequence by one position, so that
the k th term of the new sequence is the (k + 1)th term of the original sequence. It is then
possible to write the difference equation

yk+2 + 2yk+1 + 5yk = uk+1
 − uk

as

q2yk + 2q yk + 5yk = quk − uk

or

(q2 + 2q + 5)yk = (q − 1)uk (6.103)

Note that if we had taken the z transform of the difference equation, with an initially
quiescent system, we would have obtained

(z 2 + 2z + 5)Y(z) = (z − 1)U(z)

We see at once the correspondence between the time-domain q operator and the
z-transform operator ] .

The next step is to introduce the δ operator, defined as

where Δ has the dimensions of time and is often chosen as the sampling period T. Note
that

so that if Δ = T then, in the limit of rapid sampling,

Solving for q we see that

q = 1 + Δδ

δ = 
q 1–

Δ
------------

δyk = 
q 1–( )yk

Δ
--------------------- = 

yk+1 yk–
Δ

-------------------

δyk . 
dy
dt
------
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The difference equation (6.103) can thus be written as

((1 + Δδ )2 + 2(1 + Δδ ) + 5)yk = [(1 + Δδ ) − 1]uk

or

[(Δδ )2 + 4Δδ  + 8] yk = Δδuk

or, finally, as

 

6.11.3 Constructing a discrete-time system model

So far, we have simply demonstrated a method of rewriting a difference equation in an
alternative form. We now examine the possible advantages of constructing discrete-time
system models using the δ operator. To do this, we consider a particular example, in
which we obtain two different discrete-time forms of the second-order Butterworth
filter, both based on the bilinear transform method, sometimes known as Tustin’s
method. This method has its origins in the trapezoidal approximation to the integra-
tion process; full details are given in M. J. Chapman, D. P. Goodall and N. C. Steele,
Signal Processing in Electronic Communication (Chichester, Horwood Publishing,
1997).

The continuous-time second-order Butterworth filter with cut-off frequency ωc = 1
is modelled, as indicated by (6.98), by the differential equation

(6.104)

where u(t) is the input and y(t) the filter response. Taking Laplace transforms through-
out on the assumption of quiescent initial conditions, that is y(0) = (dy/dt)(0) = 0, we
obtain the transformed equation

(s2 + 1.414 21s + 1)Y(s) = U(s) (6.105)

This represents a stable system, since the system poles, given by

s2 + 1.414 21s + 1 = 0

are located at s = −0.70710 ± j0.70710 and thus lie in the left half-plane of the complex
s plane.

We now seek a discrete-time version of the differential equation (6.104). To do this,
we first transform (6.105) into the z domain using the bilinear transform method,
which involves replacing s by

Equation (6.105) then becomes

δ2 4δ
Δ
------

8

Δ2
-----+ + 

  yk = 
δ
Δ
---uk

d2y

dt2
-------- 1.414 21

dy
dt
------ y u t( )=+ +

2
T
---

z 1–
z 1+
-----------

4

T 2
------

z 1–
z 1+
----------- 
 

2

1.414 21
2
T
---

z 1–
z 1+
----------- 
  1+ + Y z( ) = U z( )
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or

[( T 2 + 1.414 21 × T + 4)z2 + ( T 2 − 8)z + T 2 − 1.414 21 × T + 4]Y(z)

= T 2(z2 + 2z + 1)U(z) (6.106)

We can now invert this transformed equation to obtain the time-domain model

( T 2 + 1.414 21 × T + 4)yk+2 + ( T 2 − 8)yk+1 + ( T 2 − 1.414 21 × T + 4)yk

= T 2(uk+2 + 2uk+1 + uk) (6.107)

For illustrative purposes we set T = 0.1 s in (6.107) to obtain

4.07321yk+2 − 7.995 00yk+1 + 3.93179yk = 0.025 00(uk+2 + 2uk+1 + uk)

Note that the roots of the characteristic equation have modulus of about 0.9825, and are
thus quite close to the stability boundary.

When T = 0.01 s, (6.107) becomes

4.007 10yk+2 − 7.999 95yk+1 + 3.992 95yk = 0.000 03(uk+2 + 2uk+1 + uk)

In this case the roots have modulus of about 0.9982, and we see that increasing the
sampling rate has moved them even closer to the stability boundary, and that high
accuracy in the coefficients is essential, thus adding to the expense of implementation.

An alternative method of proceeding is to avoid the intermediate stage of obtaining
the z-domain model (6.106) and to proceed directly to a discrete-time representation
from (6.104), using the transformation

leading to the same result as in (6.107). Using the δ operator instead of the shift operator
q, noting that q = 1 + Δδ, we make the transformation

or, if T = Δ, the transformation

in (6.105), which becomes

[δ 2 + 1.414 21 × δ (2 + Δδ ) + (2 + Δδ )2]yk = (2 + Δδ )2uk

Note that in this form it is easy to see that in the limit as Δ → 0 (that is, as sampling
becomes very fast) we regain the original differential equation model. Rearranging this
equation, we have

(6.108)

1
4
---

1
2
---

1
2
---

1
4
---

1
2
---

1
4
---

1
4
---

1
2
---

1
2
---

1
4
---

1
2
---

1
4
---

s
2
T
---

q 1–
q 1+
------------→

s
2
T
---

Δδ
2 Δδ+
----------------→

s
2δ

2 Δδ+
----------------→

1
2
---

1
4
---

1
4
---

δ 2 1.414 21 Δ+( )
1 1.414 21 1

2
---Δ 1

4
---Δ2+×+( )

------------------------------------------------------------- δ +  
1

1 1.414 21 1
2
---Δ 1

4
---Δ2+×+( )

-------------------------------------------------------------+ yk

= 
2 Δδ+( )2

4 1 1.414 21 1
2
---Δ 1

4
---Δ2+×+( )

----------------------------------------------------------------- uk
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In order to assess stability, it is helpful to introduce a transform variable γ  associated
with the δ operator. This is achieved by defining γ in terms of z as

The region of stability in the z plane, |z | , 1, thus becomes

|1 + Δγ | , 1

or

(6.109)

This corresponds to a circle in the γ domain, centre (−1/Δ, 0) and radius 1/Δ. As
Δ → 0, we see that this circle expands in such a way that the stability region is the
entire open left half-plane, and coincides with the stability region for continuous-time
systems.

Let us examine the pole locations for the two cases previously considered, namely
T = 0.1 and T = 0.01. With Δ = T = 0.1, the characteristic equation has the form

γ 2 + 1.410 92γ  + 0.93178 = 0

with roots, corresponding to poles of the system, at −0.705 46 ± j0.658 87. The centre
of the circular stability region is now at −1/0.1 = −10, with radius 10, and these roots
lie at a radial distance of about 9.3178 from this centre. Note that the distance of
the poles from the stability boundary is just less than 0.7. The poles of the original
continuous-time model were also at about this distance from the appropriate boundary,
and we observe the sharp contrast from our first discretized model, when the discretiza-
tion process itself moved the pole locations very close to the stability boundary. In
that approach the situation became exacerbated when the sampling rate was increased,
to T = 0.01, and the poles moved nearer to the boundary. Setting T = 0.01 in the new
formulation, we find that the characteristic equation becomes

γ 2 + 1.414 13γ  + 0.992 95 = 0

with roots at −0.707 06 ± j0.70214. The stability circle is now centred at −100, with
radius 100, and the radial distance of the poles is about 99.2954. Thus the distance from
the boundary remains at about 0.7. Clearly, in the limit as Δ → 0, the pole locations
become those of the continuous-time model, with the stability circle enlarging to
become the entire left half of the complex γ plane.

6.11.4 Implementing the design

The discussion so far serves to demonstrate the utility of the δ operator formulation, but
the problem of implementation of the design remains. It is possible to construct a δ −1

block based on delay or 1/z blocks, as shown in Figure 6.25. Systems can be realized

γ = 
z 1–

Δ
-----------

1
Δ
--- γ+  , 

1
Δ
---

Figure 6.25
The δ−1 block.
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using these structures in cascade or otherwise, and simulation studies have produced
successful results. An alternative approach is to make use of the state-space form of
the system model (see Section 6.18). We demonstrate this approach again for the case
T = 0.01, when, with T = Δ = 0.01, (6.108) becomes

(δ 2 + 1.414 13δ + 0.992 95)yk 

= (0.000 02δ 2 + 0.009 30δ + 0.992 95)uk (6.110a)

Based on (6.110a) we are led to consider the equation

(δ 2 + 1.414 13δ + 0.992 95)pk = uk (6.110b)

Defining the state variables

x1,k = pk, x2,k = δpk

equation (6.110b) can be represented by the pair of equations

δx1,k = x2,k

δx2,k = −0.992 95x1,k − 1.414 13x2,k + uk

Choosing

yk = 0.992 95pk + 0.009 30δpk + 0.000 002δ 2pk (6.110c)

equations (6.110b) and (6.110c) are equivalent to (6.110a). In terms of the state
variables we see that

yk = 0.992 93x1,k + 0.009 72x2,k + 0.000 02uk

Defining the vectors xk = [x1,k x2,k]
T and δxk = [δx1,k δx2,k]

T, equation (6.111a) can be
represented in matrix form as

(6.111a)

with

yk = [0.992 93 0.009 72]xk + 0.000 02uk (6.111b)

We now return to the q form to implement the system. Recalling that δ = (q − 1)/Δ,
(6.111a) becomes

(6.112)

with (6.111b) remaining the same and where Δ = 0.01, in this case. Equations (6.112)
and (6.111b) may be expressed in the vector–matrix form

xk+1 = xk + Δ[A(Δ)xk + buk]

y = cT(Δ)xk + d(Δ)uk

δ xk = 
0 1

0.992 95– 1.414 13–
xk

0

1
uk+

qxk = xk+1 = xk Δ 0 1

0.992 95– 1.414 13–
xk

0

1
uk+

 
 
 
 

+
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This matrix difference equation can now be implemented without difficulty using
standard delay blocks, and has a form similar to the result of applying a simple Euler
discretization of the original continuous-time model expressed in state-space form.

6.11.5 The D transform

In Section 6.11.3 we introduced a transform variable

The purpose of this was to enable us to analyse the stability of systems described in the
δ form. We now define a transform in terms of the z transform using the notation given
by R. M. Middleton and G. C. Goodwin, Digital Control and Estimation, A Unified
Approach (Englewood Cliffs, NJ, Prentice Hall, 1990). Let the sequence { fk} have z
transform F(z); then the new transform is given by

 = F(z) | z=Δγ +1

The D transform is formally defined as a slight modification to this form, as

The purpose of this modification is to permit the construction of a unified theory of
transforms encompassing both continuous- and discrete-time models in the same
structure. These developments are beyond the scope of the text, but may be pursued
by the interested reader in the reference given above. We conclude the discussion with
an example to illustrate the ideas. The ramp sequence {uk} = {kΔ} can be obtained by
sampling the continuous-time function f(t) = t at intervals Δ. This sequence has z trans-
form

and the corresponding D transform is then

Note that on setting Δ = 0 and γ = s one recovers the Laplace transform of f (t).

γ = 
z 1–

Δ
-----------

F ′Δ γ( )

= 
fk

1 Δγ+( )k
----------------------

k=0

∞



$ fk( ) = FΔ γ( ) = Δ FΔ′ γ( ) 

= Δ
k=0

∞


fk

1 Δγ+( )k
----------------------

U z( ) = 
Δz

z 1–( )2
------------------

ΔUΔ′ γ( ) = 
1 Δγ+

γ 2
---------------
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A continuous-time system having input y(t) and 
output y(t) is defined by its transfer function

Use the methods described above to find the q and 
δ form of the discrete-time system model obtained 
using the transformation

where Δ is the sampling interval. Examine the 
stability of the original system and that of the 
discrete-time systems when Δ = 0.1 and when 
Δ = 0.01.

Use the formula in equation (6.99) to obtain the 
transfer function of the third-order Butterworth 
filter with ωc = 1, and obtain the corresponding 
δ form discrete-time system when T = Δ.

Make the substitution

x1(t) = y(t)

in Exercise 38 to obtain the state-space form of the 
system model,

y(t) = cTx(t) + du(t)

The Euler discretization technique replaces  by

Show that this corresponds to the model obtained 
above with A = A(0), c = c(0) and d = d(0).

The discretization procedure used in Section 6.11.3 
has been based on the bilinear transform method, 
derived from the trapezoidal approximation to the 
integration process. An alternative approximation 
is the Adams–Bashforth procedure, and it can be 
shown that this means that we should make the 
transformation

where Δ is the sampling interval (see W. Forsythe 
and R. M. Goodall, Digital Control, London, 
Macmillan, 1991). Use this transformation to 
discretize the system given by

when Δ = 0.1 in

(a) the z form, and
(b) the γ form.

6.11.6 Exercises

38

H s( ) = 
1

s 1+( ) s 2+( )
---------------------------------

s
2
Δ
---

z 1–
z 1+
-----------→

39

40

x2 t( ) = 
dy t( )

dt
------------

x· t( ) = Ax t( ) bu t( )+

x· t( )

x k 1+( )Δ( ) x kΔ( )–
Δ

-------------------------------------------------

41

s
12

Δ
------

z2 z–
5z2 8z 1–+
----------------------------→

H s( ) = 
s

s 1+
-----------

Check your answers using MATLAB or MAPLE whenever possible.

The signal f(t) = t is sampled at intervals T to 
generate the sequence { f(kT )}. Show that

 

Show that

Show that

Find the impulse response for the system with 
transfer function

Calculate the step response for the system with 
transfer function

A process with Laplace transfer function 
H(s) = 1/(s + 1) is in cascade with a zero-order 
hold device with Laplace transfer function 

6.12 Review exercises (1–18)

1

] f kT( ){ } = 
Tz

z 1–( )2
------------------

2

] ak kωsin{ } = 
az ωsin

z2 2az cos ω a2+–
--------------------------------------------- a . 0( )

3

] k2{ } = 
z z 1+( )
z 1–( )3

-------------------

4

H z( ) = 
3z2 z–( )

z2 2z 1+–
-------------------------

5

H z( ) = 
1

z2 3z 2+ +
-------------------------

6
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G(s) = (1 − e−sT )/s. The overallnsfer function 
is then

Write F(s) = 1/s(s + 1), and find f(t) = +−1{F(s)}. 
Sample f (t) at intervals T to produce the 
sequence { f (kT )} and find F

~
(z) = ]{ f(kT )}. 

Deduce that

e−sTF(s) → (z)

and hence show that the overall z transfer function 
for the process and zero-order hold is

A system has Laplace transfer function

Calculate the impulse response, and obtain the 
z transform of this response when sampled at 
intervals T.

It can be established that if X(z) is the z transform 
of the sequence {xn} then the general term of that 
sequence is given by

where C is any closed contour containing all 
the singularities of X(z). If we assume that all the 
singularities of X(z) are poles located within a circle 
of finite radius then it is an easy application of the 
residue theorem to show that

xn =  [residues of X(z)zn−1 at poles of X(z)]

(a) Let X(z) = z/(z − a)(z − b), with a and b real. 
Where are the poles of X(z)? Calculate the 
residues of zn−1X(z), and hence invert the 
transform to obtain {xn}.

(b) Use the residue method to find

The impulse response of a certain discrete-time 
system is {(−1)k − 2k}. What is the step response?

A discrete-time system has transfer function

Find the response to the sequence {1, −1, 0, 0, . . .}.

Show that the response of the second-order 
system with transfer function

to the input (1, −(α + β ), αβ, 0, 0, 0, . . . } is

{δk} = {1, 0, 0, . . . }

Deduce that the response of the system

to the same input will be

{δk−1} = {0, 1, 0, 0, . . . }

A system is specified by its Laplace transfer 
function

Calculate the impulse response yδ(t) = + −1{H(s)}, 
and show that if this response is sampled at intervals 
T to generate the sequence {yδ (nT )} 
(n = 0, 1, 2, . . . ) then

A discrete-time system is now constructed so that

Y(z) = TD(z)X(z)

where X(z) is the z transform of the input 
sequence {xn} and Y(z) that of the output 
sequence {yn}, with xn = x(nT ) and yn = y(nT ). 
Show that if T = 0.5 s then the difference 
equation governing the system is

yn+2 − 0.9744yn+1 + 0.2231yn

= 0.5xn+2 − 0.4226xn+1

Sketch a block diagram for the discrete-time 
system modelled by the difference equation

pn+2 − 0.9744pn+1 + 0.2231pn = xn

and verify that the signal yn, as defined above, is 
generated by taking yn = 0.5pn+2 − 0.4226pn+1 as 
output.

1 e sT––
s s 1+( )
-------------------

1
z
---F̃

1 e T––
z e T––
---------------

7

H s( ) = 
s 1+

s 2+( ) s 3+( )
---------------------------------

8

xn = 
1

j2π
--------$

C

X z( )zn−1 dz

i( ) ] 1– z

z 3–( )2
------------------

 
 
 

ii( ) ] 1– z

z2 z– 1+
----------------------

 
 
 

9

10

H z( ) = 
z2

z 1+( ) z 1–( )
---------------------------------

11

z2

z α–( ) z β–( )
---------------------------------

z
z α–( ) z β–( )

---------------------------------

12

H s( ) = 
s

s 1+( ) s 2+( )
---------------------------------

D z( ) = ] yδ nT( ){ } = 2z

z e 2T––
-----------------

z

z e T––
---------------–
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In a discrete-time position-control system the 
position yn satisfies the difference equation

yn+1 = yn + avn (a constant)

where vn and un satisfy the difference equations

vn+1 = vn + bun (b constant)

un = k1(xn − yn) − k2vn (k1, k2 constants)

(a) Show that if k1 = 1/4ab and k2 = 1/b then the 
z transfer function of the system is

where Y(z) = ]{yn} and X(z) = ]{xn}.

(b) If also xn = A (where A is a constant), 
determine the response sequence {yn} given 
that y0 = y1 = 0.

The step response of a continuous-time system is 
modelled by the differential equation

with y(0) = �Ǥ (0) = 0. Use the backward-difference 
approximation

to show that this differential equation may be 
approximated by

Take the z transform of this difference equation, and 
show that the system poles are at

Deduce that the general solution is thus

Show that γ  =  and, noting that the initial 
conditions y(0) = 0 and �. (0) = 0 imply 
y0 = y−1 = 0, deduce that

Note that the z-transform method could be used to 
obtain this result if we redefine ]{yk} = (yj/
z j), with appropriate modifications to the formulae 
for ]{yk+1} and ]{yk+2}.

Explain why the calculation procedure is 
always stable in theory, but note the pole 
locations for very small T.

Finally, verify that the solution of the differential 
equation is

y(t) = (e−2t − 2e−t + 1)

and plot graphs of the exact and approximate 
solutions with T = 0.1 s and T = 0.05 s.

Again consider the step response of the system 
modelled by the differential equation

with y(0) = �. (0) = 0. Now discretize using the 
bilinear transform method; that is, take the 
Laplace transform and make the transformation

where T is the sampling interval. Show that the 
poles of the resulting z transfer function are at

Deduce that the general solution is then 

 

Deduce that γ  = and, using the conditions 
y0 = y−1 = 0, show that

Plot graphs to illustrate the exact solution and 
the approximate solution when T = 0.1 s and 
T = 0.05 s.

Show that the z transform of the sampled version 
of the signal f(t) = t 2 is

where Δ is the sampling interval. Verify that 
the D transform is then

13

Y z( )
X z( )
----------- = 

1

1 2z–( )2
---------------------

14

d2y

dt2
-------- 3

dy

dt
------ 2y = 1 t > 0( )+ +

dy
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------ . 

yk yk−1–
T

-------------------

d2y

dt2
-------- . 

yk 2yk−1 yk−2+–
T 2

-------------------------------------

yk 2yk−1 yk−2+–
T 2

------------------------------------- 3
yk yk−1–

T
------------------- 2yk = 1+ +
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1

1 T+
------------ , z = 

1
1 2T+
----------------

yk = α 1
1 T+
------------ 
 

k

β 1
1 2T+
---------------- 
 

k

γ+ +

1
2
---

yk = 1
2
---

1
1 2T+
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 

k
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1

1 T+
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 
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∞

1
2
---
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1 T+
------------ 
 
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2 T+
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 
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1
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2
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Show that the eigenvalues of the matrix

are 2, 1 and −1, and find the corresponding 
eigenvectors. Write down the modal matrix M and 
spectral matrix Λ of A, and verify that ML = AM.

Deduce that the system of difference equations

x(k + 1) = Ax(k)

where x(k) = [x1(k) x2(k) x3(k)]T, has a solution

x(k) = My(k)

where y(k) = Lky(0). Find this solution, given 
x(0) = [1 0 0]T.

The system shown in Figure 6.26 is a realization 
of a discrete-time system. Show that, with state 
variables x1(k) and x2(k) as shown, the system may 
be represented as

x(k + 1) = Ax(k) + bu(k)

y(k) = cTx(k)

where

Calculate the z transfer function of the system, 
D(z), where

D(z) = c(zI − A)−1b

Reduce the system to control canonical form by 
the following means:

(i) calculate the controllability matrix Mc, where 
Mc = [b Ab] is the matrix with columns b 
and Ab;

(ii) show that rank (Mc) = 2, and calculate M c
−1;

(iii) write down the vector vT corresponding to 
the last row of M c

−1;

(iv) form the matrix T = [vT vTA]T, the matrix 
with rows vT and vTA ;

(v) calculate T −1 and using this matrix T, 
show that the transformation z(k) = Tx(k) 
produces the system

z(k + 1) = TAT −1z(k) + T bu(k)

= Cz(k) + bcu(k)

where C is of the form

and bc = [0 1]T. Calculate α  and β , and 
comment on the values obtained in relation 
to the transfer function D(z).

1 Δv+( ) 2 Δv+( )
v3

------------------------------------------

17

A = 

1 1 −2

−1 2 1

0 1 −1

18

Figure 6.26 Discrete-time system of Review 
exercise 19.

A = 
−3 −4

−2 −1
, E = 

1

0
, c = 

1

−1

0 1

−α −β
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486 FOURIER SERIES

Introduction
The basics of Fourier series are covered in Chapter 12 of Modern Engineering Mathe-
matics (MEM). The reader is refered there to revise this material if required. Here we
give only the basic definitions before moving on to more advanced topics.

A Fourier series is an expansion of a periodic function f (t) of period T = 2π/ω in
which the base set is the set of sine functions, giving an expanded representation of the
form 

f (t) = A0 + sin(nω t + φn)

7.1.1 Periodic functions

A function f (t) is said to be periodic if its image values are repeated at regular intervals
in its domain. Thus the graph of a periodic function can be divided into ‘vertical strips’
that are replicas of each other, as illustrated in Figure 7.1. The interval between two
successive replicas is called the period of the function. We therefore say that a function
f (t) is periodic with period T if, for all its domain values t,

f (t + mT ) = f (t)

for any integer m.
To provide a measure of the number of repetitions per unit of t, we define the frequency

of a periodic function to be the reciprocal of its period, so that 

frequency =

The term circular frequency is also used in engineering, and is defined by

circular frequency = 2π × frequency = 

and is measured in radians per second. It is common to drop the term ‘circular’ and refer
to this simply as the frequency when the context is clear.

7.1

An

n=1

∞


 

Figure 7.1 A periodic 
function with period T.

1
period
---------------

1
T
---=

2π
T

------



7.1  INTRODUCTION 487

7.1.2 Fourier’s theorem

This theorem states that a periodic function that satisfies certain conditions can be
expressed as the sum of a number of sine functions of different amplitudes, phases and
periods. That is, if f (t) is a periodic function with period T then

f (t) = A0 + A1 sin(ω t + φ1) + A2 sin(2ω t + φ2) + . . .

+ An sin(nω t + φn) + . . . (7.1)

where the As and φs are constants and ω = 2π/T is the frequency of f (t). The term
A1 sin(ω t + φ1) is called the first harmonic or the fundamental mode, and it has the
same frequency ω as the parent function f (t). The term An sin(nω t + φn) is called the
nth harmonic, and it has frequency nω, which is n times that of the fundamental. An

denotes the amplitude of the nth harmonic and φn is its phase angle, measuring the lag
or lead of the nth harmonic with reference to a pure sine wave of the same frequency.

Since

An sin(nω t + φn) ≡ (An cos φn)sin nω t + (An sin φn) cos nω t

≡ bn sin nωt + an cos nω t

where

bn = An cos φn, an = An sin φn (7.2)

the expansion (7.1) may be written as 

where a0 = 2A0 (we shall see later that taking the first term as a0 rather than a0 is a
convenience that enables us to make a0 fit a general result). The expansion (7.3) is called
the Fourier series expansion of the function f (t), and the as and bs are called the Fourier
coefficients. In electrical engineering it is common practice to refer to an and bn

respectively as the in-phase and phase quadrature components of the nth harmonic,
this terminology arising from the use of the phasor notation e jnω t = cos nω t + jsin nωt.
Clearly, (7.1) is an alternative representation of the Fourier series with the amplitude
and phase of the nth harmonic being determined from (7.2) as

An = , φn = tan−1
 

with care being taken over choice of quadrant.
The Fourier coefficients are given by

an =  cos nω t dt (n = 0, 1, 2, . . . ) (7.4)

bn =  sin nω t dt (n = 1, 2, 3, . . . ) (7.5)

which are known as Euler’s formulae.

f (t) = a0 + an cos nω t + bn sin nω t (7.3)1
2
---

n=1

∞


n=1

∞



1
2
---

a2 bn
2+( ) 



 an

bn

-----




2
T
---#

d

d+T

 f t( )

2
T
---#

d

d+T

 f t( )
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Further introductory material is found in MEM and Phil Dyke’s Introduction to
Laplace Transforms and Fourier series (second edition, London, Springer, 2014).
Here we continue with the calculation of Fourier series where the function exhibits
a finite number of finite jumps.

The limits of integration in Euler’s formulae may be specified over any period, so
that the choice of d is arbitrary, and may be made in such a way as to help in the calculation
of an and bn. In practice, it is common to specify f (t) over either the period − T < t < T
or the period 0 < t < T, leading respectively to the limits of integration being − T and

T (that is, d = − T ) or 0 and T (that is, d = 0).
It is also worth noting that an alternative approach may simplify the calculation of

an and bn. Using the formula

e jnω t = cos nωt + j sin nω t

we have

Evaluating this integral and equating real and imaginary parts on each side gives the
values of an and bn. This approach is particularly useful when only the amplitude
|an + jbn | of the nth harmonic is required.

7.1.3 Functions of period 2π

Here are several examples of how to calculate a Fourier series based on material in MEM.
It should be revision, but readers are urged to consult MEM for more details. In Fourier
series, the concepts of even and odd functions are very important. A function f is even if,
for all x, f(x) = f(−x). Examples include cos(x) and x2. A function is odd if, for all x, f(x) =
−f(−x). Examples include sin(x) and x3. The key important point is that the Fourier series
of an even function has to contain only even functions so must comprise only the constant
term and cosine functions, whereas the Fourier series of an odd function can contain only
sine terms. The first worked example involves finding the Fourier series of an odd function.

an + jbn = f (t) e jnω t dt (7.6)

1
2
---

1
2
---

1
2
---

1
2
---

1
2
---

2
T
--- #

d

d+T

If the period T of the periodic function f (t) is taken to be 2π then ω = 1, and the
series (7.3) becomes

f (t) = a0 + an cos nt + bn sin nt (7.7)

with the coefficients given by

an = f (t) cos nt dt (n = 0, 1, 2, . . . ) (7.8)

bn = f (t) sin nt dt (n = 1, 2, . . . ) (7.9)

1
2
---

n=1

∞


n=1

∞



1
π
---#

d

d+2π

1
π
---#

d

d+2π
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A periodic function f (t) with period 2π is defined within the period −π < t < π by

Find its Fourier series expansion.

Solution A sketch of the function f (t) over the interval −4π < t < 4π is shown in Figure 7.2.
Clearly f (t) is an odd function of t, so that its Fourier series expansion consists of sine
terms only. Taking T = 2π, that is ω = 1 in (7.3), remembering that all the an’s are zero,
the Fourier series expansion is given by

f (t) = bn sin nt

with

bn = f (t) sin nt dt (n = 1, 2, 3, . . . )

Thus the Fourier series expansion of f (t) is

f (t) = (7.10)

Here is an example showing how to find the Fourier series of an even function.

Obtain the Fourier series expansion of the rectified sine wave 

f (t) = |sin t |

Example 7.1

f t( )
−1 −π < t < 0( )

1 0 < t < π( )



=

Figure 7.2 Square 
wave of Example 7.1.
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2n 1–( )tsin
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Solution A sketch of the wave over the interval −π < t < 2π is shown in Figure 7.3. Clearly, f (t)
is periodic with period π. Taking T = π, that is, ω = 2, in (7.3)−(7.5) the Fourier series
expansion is given by

f (t) = a0 + 

a0 = sin t dt  = 

an = sin t cos 2nt dt

= [sin(2n + 1)t − sin(2n − 1)t] dt

= 

Thus the Fourier series expansion of f (t) is

f (t) 

or, writing out the first few terms,

 

Finally in this short revision of material from MEM, here is an example of the integra-
tion of a Fourier Series term by term.

Integrate term by term the Fourier series expansion obtained in Example 7.1 for the
square wave

f (t + 2π) = f (t)

illustrated in Figure 7.2.

1
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Figure 7.3 Rectified 
wave f (t) of 
Example 7.2.
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Solution From (7.10), the Fourier series expansion for f (t) is

We now need to integrate between the limits −π and t and, owing to the discontinuity
in f(t) at t = 0, we must consider separately values of t in the intervals −π < t < 0 and
0 < t < π.

Case (i), interval −π < t < 0. Integrating (7.10) term by term, we have

that is,

It can be shown that

(see Exercise 6), so that the above simplifies to

(−π < t < 0) (7.11)

Case (ii ), interval 0 < t < π. Integrating (7.10) term by term, we have

giving

(0 < t < π) (7.12)

Taking (7.11) and (7.12) together, we find that the function

g(t + 2π) = g(t)
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has a Fourier series expansion

 

7.1.4 Functions defined over a finite interval

One of the requirements of Fourier’s theorem is that the function to be expanded be
periodic. Therefore a function f (t) that is not periodic cannot have a Fourier series
representation that converges to it for all values of t. However, we can obtain a Fourier
series expansion that represents a non-periodic function f (t) that is defined only over
a finite time interval 0 < t < τ. This is a facility that is frequently used to solve
problems in practice, particularly boundary-value problems involving partial dif-
ferential equations, such as the consideration of heat flow along a bar or the vibrations
of a string. Various forms of Fourier series representations of f (t), valid only in the
interval 0 < t < τ, are possible, including series consisting of cosine terms only or
series consisting of sine terms only. To obtain these, various periodic extensions of f (t)
are formulated.

Full-range series

Suppose the given function f (t) is defined only over the finite time interval 0 < t < τ.
Then, to obtain a full-range Fourier series representation of f (t) (that is, a series
consisting of both cosine and sine terms), we define the periodic extension φ(t) of
f (t) by 

φ (t) = f (t) (0 < t < τ)

φ (t + τ) = φ (t)

The graphs of a possible f (t) and its periodic extension φ(t) are shown in Figures 7.4(a)
and (b) respectively.

Provided that f (t) satisfies Dirichlet’s conditions in the interval 0 < t < τ, the
new function φ(t), of period τ, will have a convergent Fourier series expansion.
Since, within the particular period 0 < t < τ, φ (t) is identical with f (t), it follows
that this Fourier series expansion of φ (t) will be representative of f (t) within this
interval.

g t( ) | t | 1
2
---π 4

π
---

n=1

∞


2n 1–( )cos t

2n 1–( )2
-------------------------------–= =

Figure 7.4 Graphs of 
a function defined only 
over (a) a finite interval 
0 < t < τ and (b) its 
periodic extension.
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Find a full-range Fourier series expansion of f (t) = t valid in the finite interval 0 < t < 4.
Draw graphs of both f (t) and the periodic function represented by the Fourier series
obtained.

Solution Define the periodic function φ (t) by

φ (t) = f (t) = t (0 < t < 4)

φ (t + 4) = φ(t)

Then the graphs of f(t) and its periodic extension φ (t) are as shown in Figures 7.5(a)
and (b) respectively. Since φ (t) is a periodic function with period 4, it has a convergent
Fourier series expansion. Taking T = 4 in (7.4) and (7.5), the Fourier coefficients are
determined as 

(n = 1, 2, 3, . . . )

and

(n = 1, 2, 3, . . . )

Thus, by (7.3), the Fourier series expansion of φ(t) is

Example 7.4
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The functions f (t) and 
φ(t) of Example 7.4.
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Since φ(t) = f (t) for 0 < t < 4, it follows that this Fourier series is representative of f (t)
within this interval, so that

(7.13)

It is important to appreciate that this series converges to t only within the interval
0 < t < 4. For values of t outside this interval it converges to the periodic extended
function φ (t). Again convergence is to be interpreted in the sense of Theorem 12.2 of
MEM, so that at the end points t = 0 and t = 4 the series does not converge to t but to
the mean of the discontinuity in φ(t), namely the value 2. 

Half-range cosine and sine series

Rather than develop the periodic extension φ(t) of f(t) as above, it is possible to for-
mulate periodic extensions that are either even or odd functions, so that the resulting
Fourier series of the extended periodic functions consist either of cosine terms only
or sine terms only.

For a function f (t) defined only over the finite interval 0 < t < τ its even periodic
extension F(t) is the even periodic function defined by

F(t + 2τ) = f (t)

As an illustration, the even periodic extension F(t) of the function f (t) shown in
Figure 7.4(a) (redrawn in Figure 7.6(a)) is shown in Figure 7.6(b).

Provided that f (t) satisfies Dirichlet’s conditions in the interval 0 < t < τ, since it is
an even function of period 2τ, it follows from the properties of even functions (see
Section 12.2.5 of MEM) that the even periodic extension F(t) will have a convergent
Fourier series representation consisting of cosine terms only and given by

f t( ) t 2
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∞


1
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--- 1

2
---nπtsin–= = 0 < t <4( )

F t( )
f t( ) 0 < t < τ( )

f −t( ) −τ < t < 0( )



=

Figure 7.6
(a) A function f(t); 
(b) its even periodic 
extension F(t).

where

(n = 0, 1, 2, . . . )

(7.14)

(7.15)
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an
2
τ--- #
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Since, within the particular interval 0 < t < τ, F(t) is identical with f (t), it follows that
the series (7.14) also converges to f (t) within this interval.

For a function f (t) defined only over the finite interval 0 < t < τ, its odd periodic
extension G(t) is the odd periodic function defined by

G(t + 2τ) = G(t)

Again, as an illustration, the odd periodic extension G(t) of the function f (t) shown in
Figure 7.4(a) (redrawn in Figure 7.7(a)) is shown in Figure 7.7(b).

Provided that f(t) satisfies Dirichlet’s conditions in the interval 0 < t < τ, since it is
an odd function of period 2τ, it follows from the properties of odd functions (see
Section 12.2.5 of MEM) that the odd periodic extension G(t) will have a convergent
Fourier series representation consisting of sine terms only and given by

Again, since, within the particular interval 0 < t < τ, G(t) is identical with f (t), it follows
that the series (7.16) also converges to f (t) within this interval.

We note that both the even and odd periodic extensions F(t) and G(t) are of period
2τ, which is twice the length of the interval over which f (t) is defined. However, the
resulting Fourier series (7.14) and (7.16) are based only on the function f (t), and for this
reason are called the half-range Fourier series expansions of f (t). In particular, the
even half-range expansion F(t), (7.14), is called the half-range cosine series expansion
of f (t), while the odd half-range expansion G(t), (7.16), is called the half-range sine
series expansion of f (t).

For the function f (t) = t defined only in the interval 0 < t < 4, and considered in
Example 7.4, obtain

(a) a half-range cosine series expansion

(b) a half-range sine series expansion.

G t( )
 f t( ) 0 t < τ<( )

− f −t( ) −τ < t < 0( )



=

Figure 7.7
(a) A function f(t); 
(b) its odd periodic 
extension G (t).

(7.16)

where

(n = 1, 2, 3, . . . ) (7.17)
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Draw graphs of f(t) and of the periodic functions represented by the two series obtained
for −20 < t < 20.

Solution (a) Half-range cosine series. Define the periodic function F(t) by

F(t + 8) = F(t)

Then, since F(t) is an even periodic function with period 8, it has a convergent
Fourier series expansion given by (7.14). Taking τ = 4 in (7.15), we have

(n = 1, 2, 3, . . . )

Then, by (7.14), the Fourier series expansion of F(t) is

or

Since F(t) = f (t) for 0 < t < 4, it follows that this Fourier series is representative
of f (t) within this interval. Thus the half-range cosine series expansion of f (t) is

(0 < t < 4) (7.18)

(b) Half-range sine series. Define the periodic function G(t) by

G(t + 8) = G(t)
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Then, since G(t) is an odd periodic function with period 8, it has a convergent
Fourier series expansion given by (7.16). Taking τ = 4 in (7.17), we have

(n = 1, 2, 3, . . . )

Thus, by (7.16), the Fourier series expansion of G(t) is

or

Since G (t) = f (t) for 0 < t < 4, it follows that this Fourier series is representative
of f (t) within this interval. Thus the half-range sine series expansion of f (t) is

(0 < t < 4) (7.19)

Graphs of the given function f (t) and of the even and odd periodic expansions
F(t) and G(t) are given in Figures 7.8(a), (b) and (c) respectively.
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The functions f (t), 
F(t) and G(t) of 
Example 7.5.
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It is important to realize that the three different Fourier series representations
(7.13), (7.18) and (7.19) are representative of the function f (t) = t only within the
defined interval 0 < t < 4. Outside this interval the three Fourier series converge
to the three different functions φ(t), F(t) and G(t), illustrated in Figures 7.5(b),
7.8(b) and 7.8(c) respectively.

Show that the half-range Fourier sine series 
expansion of the function f (t) = 1, valid for 
0 < t < π, is

(0 < t < π)

Sketch the graphs of both f (t) and the periodic 
function represented by the series expansion 
for −3π < t < 3π.

Determine the half-range cosine series expansion of 
the function f (t) = 2t − 1, valid for 0 < t < 1. Sketch 
the graphs of both f(t) and the periodic function 
represented by the series expansion for 
−2 < t < 2.

The function f (t) = 1 − t2 is to be represented by 
a Fourier series expansion over the finite interval 
0 < t < 1. Obtain a suitable

(a) full-range series expansion,
(b) half-range sine series expansion,
(c) half-range cosine series expansion.

Draw graphs of f (t) and of the periodic functions 
represented by each of the three series for 
−4 < t < 4.

A function f (t) is defined by

f (t) = πt − t 2 (0 < t < π)

and is to be represented by either a half-range 
Fourier sine series or a half-range Fourier cosine 
series. Find both of these series and sketch the 
graphs of the functions represented by them for 
−2π < t < 2π.

A tightly stretched flexible uniform string has its 
ends fixed at the points x = 0 and x = l. The midpoint 
of the string is displaced a distance a, as shown in 
Figure 7.9. If f (x) denotes the displaced profile of 

the string, express f(x) as a Fourier series expansion 
consisting only of sine terms.

Repeat Exercise 5 for the case where the displaced 
profile of the string is as shown in Figure 7.10.

A function f (t) is defined on 0 < t < π by

Find a half-range Fourier series expansion 
of f (t) on this interval. Sketch a graph of 
the function represented by the series for 
−2π < t < 2π.

A function f (t) is defined on the interval 
−l < x < l by

7.1.5 Exercises

1

f t( ) 4
π
---

2n 1–( )tsin
2n 1–

------------------------------

n=1

∞

=
 

2

3

4

5

Figure 7.9 Displaced string of Exercise 5.

6

Figure 7.10 Displaced string of Exercise 6.

7

f t( )
tsin 0 t   1

2
---π( )

0 1
2
---π t   π( )




=  <  <

 < <

8

f x( ) A
l
--- | x | l–( )=
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Fourier series of jumps at discontinuities
For periodic functions that, within a period, are piecewise polynomials and exhibit jump
discontinuities, the Fourier coefficients may be determined in terms of the magnitude of
the jumps and those of derived functions. This method is useful for determining describ-
ing functions (see Section 7.6) for nonlinear characteristics in control engineering,
where only the fundamental component of the Fourier series is important; this applies
particularly to the case of multivalued nonlinearities.

Consider a periodic function f (t), of period T, having within the time interval
− T < t < T a finite number (m + 1) of jump discontinuities d0, d1, . . . , dm

at times t0, t1, . . . tm, with t0 = T and tm = T. Furthermore, within the interval
ts−1 < t < ts (s = 1, 2, . . . , m) let f (t) be represented by polynomial functions Ps(t)
(s = 1, 2, . . . , m), as illustrated in Figure 7.11. If f (t) is to be represented in terms
of the Fourier series

f (t) = a0 + an cos nω t + bn sin nω t

then, from (7.4),

an = Ps(t) cos nω t dt

Defining the magnitude of the jump discontinuities as in Section 5.2.11, namely

di = f (ti + 0) − f (ti − 0)

7.2

1
2
---

1
2
---

1
2
---

1
2
---

1
2
---

n=1

∞


n=1

∞



2
T
--- #

ts−1

ts

s=1

m



Figure 7.11 Piecewise 
polynomial periodic 
function exhibiting 
jump discontinuities.

Obtain a Fourier series expansion of f(x) and sketch 
a graph of the function represented by the series for 
−3l < x < 3l.

The temperature distribution T(x) at a distance x, 
measured from one end, along a bar of length 
L is given by

T (x) = Kx(L − x) (0 < x < L), K = constant

Express T(x) as a Fourier series expansion 
consisting of sine terms only.

Find the Fourier series expansion of the function 
f (t) valid for −1 < t < 1, where

To what value does this series converge when 
t = 1?

9
10

f t( ) 1 −1 t 0< <( )
πtcos 0 t 1< <( )




=
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and noting that t0 = − T and tm = T, integration by parts and summation gives

(7.20)

where P s
(1)(t) denotes the piecewise components of the derivative f (1)(t) ≡ f ′(t) in the

generalized sense of (5.21). In a similar manner the integral terms of (7.20) may be
expressed as 

where d (1)
s  (s = 1, 2, . . . , m) denotes the magnitude of the jump discontinuities in the

derivative f (1)(t).
Continuing in this fashion, integrals involving higher derivatives may be obtained.

However, since all Ps(t) (s = 1, 2, . . . , m) are polynomials, a stage is reached when all
the integrals vanish. If the deg(Ps(t)) < N for s = 1, 2, . . . , m then

an = (−1)r+1(nω)−2r[d s
(2r) sin nω ts + (nω)−1d s

(2r+1) cos nω ts]

(n ≠ 0) (7.21)

where d s
(r) denotes the magnitudes of the jump discontinuities in the r th derivative of

f (t) according to (5.21). Similarly, it may be shown that

bn = (−1)r (nω)−2r [d s
(2r) cos nω ts − (nω)−1d s

(2r+1) sin nω ts] (7.22)

and the coefficient a0 is found by direct integration of the corresponding Euler formula

a0 = f (t) dt (7.23)

Using (7.21)–(7.23), obtain the Fourier series expansion of the periodic function f (t)
defined by

f (t + 2π) = f (t)

Solution In this case N = 2, and the graphs of f (t) together with those of its first two derivatives
are shown in Figure 7.12.

1
2
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1
2
---

an − 1
nπ
------

s=1

m

 ds nωtssin #
ts−1

ts

Ps
1( ) t( ) nωt dtsin+=

s=1

m

 #
ts−1

ts

Ps
1( ) nωt dtsin

1
nω-------

s=1

m

 d s
1( ) cos nω t #

ts−1

ts

Ps
2( ) t( ) nωt dtcos+=

1
nπ
------

s=1

m


r=0

N


 

1
nπ
------

s=1

m


r=0

N



2
T
--- #

−T/2

T/2

Example 7.6

f t( ) t2 −π <t < 0( )
−2 0 <t < π( )




=
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Jump discontinuities occur at t = −π, 0 and π, and so m = 2. The piecewise
polynomials involved and the corresponding jump discontinuities are 

(a) P1(t) = t 2, P2(t) = −2
d1 = −2, d2 = π 2 + 2

(b) P 1
(1)(t) = 2t P (1)

2 (t) = 0
d 1

(1) = 0 d (1)
2 = −2π

(c) P 1
(2)(t) = 2, P (2)

2 (t) = 0
d (2)

1  = −2 d (2)
2 = 2

with d 1
(r) = d 2

(r) = 0 for r > 2. Taking ω = 1 (since T = 2π) in (7.21) gives

sin nts

Since t1 = 0, t2 = π, sin 0 = sin nπ = 0, cos 0 = 1 and cos nπ = (−1)n, we have

an = (−1)n (n = 1, 2, 3, . . . )

Likewise, from (7.22),

cos nts

(by writing out each series)

(n = 1, 2, 3, . . . )

and, from (7.23),

Figure 7.12 The functions f (t), f (1)(t), f (2)(t) of Example 7.6.
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Thus the Fourier expansion for f (t) is

 
.

f t( ) 1
6
---π2 1–( )

n=1

∞


2

n2
----- −1( )n ntcos+=

n=1

∞


1

nπ
------ 2

n2
------ 2–
 
 
 

1 −1( )n–[ ] π2 −1( )n+
 
 
 

ntsin+

Consider the periodic function

f(t + 2π) = f (t)

(a) Sketch a graph of the function for −4π < t < 4π.
(b) Use (7.21)–(7.23) to obtain the Fourier series 

expansion

and write out the first 10 terms of this series.
(Note: Although the function f (t) itself has no 
jump discontinuities, the method may be used 
since the derivative does have jump 
discontinuities.)

Use the method of Section 7.2 to obtain the Fourier 
series expansions for the following periodic functions:

(a)

f(t + 2π) = f (t)

(b)

f(t + 2π) = f (t)

(c)

f(t + 2) = f(t)

(d)

f(t + 1) = f(t)

7.2.1 Exercises

11

f t( )

0 −π t −1
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π 2t– 0 t 1
2
---π< <( )

0 1
2
---π t π< <( )








=

f t( ) 1
4
---π − 

4
π
---

n=1

∞

 1

n2
----- cos 1

2
---nπ 1–( ) ntcos=

12

f t( )
0 −π <t < 0(
t2 0 t π< <( )




=

f t( )

2 −π  t −1
2
---π< <( )

t3 −1
2
---π < t < 1

2
---π( )

−2 1
2
---π t π< <( )






=

f t( ) t 0 <t 1<( )
1 t– 1 t 2< <( )




=

f t( )
1
2
--- t+ −1

2
---  t 0< <( )

1
2
---  − t 0 t 1

2
---< <( )




=

Engineering application: frequency response and 
oscillating systems

7.3.1 Response to periodic input

In Section 5.5 we showed that the frequency response, defined as the steady-state
response to a sinusoidal input A sin ω t, of a stable linear system having a transfer func-
tion G(s) is given by (5.63) as

7.3 Engineering application:

xss(t) = A |G( jω) | sin [ω t + arg G( jω)] (7.24)
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By employing a Fourier series expansion, we can use this result to determine the steady-
state response of a stable linear system to a non-sinusoidal periodic input. For a stable
linear system having a transfer function G(s), let the input be a periodic function P(t)
of period 2T (that is, one having frequency ω = π/T in rad s−1). P(t) may be expressed
in the form of the Fourier series expansion

P(t) = a0 + An sin(nω t + φn) (7.25)

where An and φn are defined as in Section 7.1.1. The steady-state response to each term
in the series expansion (7.25) may be obtained using (7.24). Since the system is linear,
the principle of superposition holds, so that the steady-state response to the periodic
input P(t) may be obtained as the sum of the steady-state responses to the individual
sinusoids comprising the sum in (7.25). Thus the steady-state response to the input P(t) is

There are two issues related to this steady-state response that are worthy of note.

(a) For practical systems |G( jω) | → 0 as ω → ∞, so that |G( jnω ) | → 0 as n → ∞ in
(7.26). As a consequence, the Fourier series representation of the steady-state
response xss(t) converges more rapidly than the Fourier series representation of
the periodic input P(t). From a practical point of view, this is not surprising, since
it is a consequence of the smoothing action of the system (that is, integration is a
‘smoothing’ operation).

(b) There is a significant difference between the steady-state response (7.26) to a
non-sinusoidal periodic input of frequency ω and the steady-state response (7.23)
to a pure sinusoid at the same frequency. As indicated in (7.24), in the case of a
sinusoidal input at frequency ω the steady-state response is also a sinusoid at the
same frequency ω. However, for a non-sinusoidal periodic input P(t) at frequency
ω the steady-state response (7.26) is no longer at the same frequency; rather it
comprises an infinite sum of sinusoids having frequencies nω that are integer
multiples of the input frequency ω. This clearly has important practical implica-
tions, particularly when considering the responses of oscillating or vibrating sys-
tems. If the frequency nω of one of the harmonics in (7.26) is close to the natural
oscillating frequency of an underdamped system then the phenomenon of reson-
ance will arise.

To someone unfamiliar with the theory, it may seem surprising that a practical
system may resonate at a frequency much higher than that of the input. The phenom-
enon of resonance is important in practice, and it is therefore important that engineers

xss(t) = a0G(0) + An |G( jnω) | sin [nω t + φn + arg G( jnω)] (7.26)

1
2
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n=1

∞



1
2
---

n=1

∞
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have some knowledge of the theory associated with Fourier series, so that the possible
dominance of a system response by one of the higher harmonics, rather than the funda-
mental, may be properly interpreted.

The mass–spring–damper system of Figure 7.13(a) is initially at rest in a position of
equilibrium. Determine the steady-state response of the system when the mass is sub-
jected to an externally applied periodic force P(t) having the form of the square wave
shown in Figure 7.13(b).

Solution From Newton’s law, the displacement x(t) of the mass at time t is given by

(7.27)

so that the system may be represented by the block diagram of Figure 7.14. Thus the
system transfer function is

(7.28)

From Example 7.1, the Fourier series expansion for the square wave P(t) is

that is,

P(t) = u1(t) + u2(t) + u3(t) + . . . + un(t) + . . . (7.29)

Example 7.7

Figure 7.13 (a) System 
and (b) input for 
Example 7.7.

M
d2x

dt2
-------- B

dx

dt
------ Kx+ + P t( )=

Figure 7.14 Block 
diagram for the system 
of Figure 7.13.

G s( ) 1

Ms2 Bs K+ +
--------------------------------=

P t( ) 40
π
------ tsin

3tsin
3

-------------
5tsin

5
------------- . . . 2n 1–( )tsin

2n 1–------------------------------ . . . + + + + +=
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where

(7.30)

Substituting the given values for M, B and K, the transfer function (7.18) becomes

Thus

where D = (250 − 10ω 2)2 + 0.25ω 2, so that

 (7.31)

arg G( jω) = −tan−1 (7.32)

Using (7.24), the steady-state response of the system to the nth harmonic un(t) given by
(7.30) is

xssn(t) = |G( j(2n − 1)) | sin[(2n − 1)t + arg G( j(2n − 1))] (7.33)

where |G( jω) | and arg G( jω) are given by (7.31) and (7.32) respectively. The steady-
state response xss(t) of the system to the square-wave input P(t) is then determined as
the sum of the steady-state responses due to the individual harmonics in (7.29); that is,

xss(t) = xssn(t) (7.34)

where xssn(t) is given by (7.33).
Evaluating the first few terms of the response (7.34), we have 
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-----------–= =
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---------------------------------------------------------=

1
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1
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π
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----------------------------------------------------- t

0.5
240
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 
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Thus a good approximation to the steady-state response (7.34) is

xss(t) . 0.053 sin(t − 0.003) + 0.027 sin(3t − 0.54) + 1.02 sin(5t − π) 

+ 0.0076 sin(7t − 3.127) (7.35)

The graph of this displacement is shown in Figure 7.15, and it appears from this that
the response has a frequency about five times that of the input. This is because the term
1.02 sin(5t − π) dominates in the response (7.35); this is a consequence of the fact that
the natural frequency of oscillation of the system is  = 5 rad s−1, so that it is in
resonance with this particular harmonic.

In conclusion, it should be noted that it was not essential to introduce transfer func-
tions to solve this problem. Alternatively, by determining the particular integral of the
differential equation (7.27), the steady-state response to an input A sin ωt is determined as

giving xssn(t) as in (7.34). The solution then proceeds as before.
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Figure 7.15
Steady-state response 
of system of 
Figure 7.13.
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Determine the steady-state current in the circuit of 
Figure 7.16(a) as a result of the applied periodic 
voltage shown in Figure 7.16(b).

Determine the steady-state response of the mass–
spring–damper system of Figure 7.17(a) when the 
mass is subjected to the externally applied periodic 
force f(t) shown in Figure 7.17(b).

What frequency dominates the response, and 
why?

Determine the steady-state motion of the mass of 
Figure 7.18(a) when it is subjected to the externally 
applied force of Figure 7.18(b).

Determine the steady-state current in the circuit 
shown in Figure 7.19(a) when the applied voltage is 
of the form shown in Figure 7.19(b).

7.3.2 Exercises

13

Figure 7.16 (a) Circuit of Exercise 13; 
(b) applied voltage.

14

Figure 7.17 (a) Mass–spring–damper system of 
Exercise 14; (b) applied force.

15

Figure 7.18 (a) Mass–spring–damper system of 
Exercise 15; (b) applied force.

16

Figure 7.19 (a) Circuit of Exercise 16; (b) applied 
voltage.
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Complex form of Fourier series
An alternative to the trigonometric form of the Fourier series considered so far is the
complex or exponential form. As a result of the properties of the exponential function,
this form is easily manipulated mathematically. It is widely used by engineers in
practice, particularly in work involving signal analysis, and provides a smoother
transition from the consideration of Fourier series for dealing with periodic signals to
the consideration of Fourier transforms for dealing with aperiodic signals, which will
be dealt with in Chapter 8.

7.4.1 Complex representation

To develop the complex form of the Fourier series

f (t) = a0 + an cos nω t + bn sin nω t (7.36)

representing a periodic function f (t) of period T, we proceed as follows. Substituting the
results

sin nω t = (e jnω t − e−jnω t)

cos nω t = (e jnω t + e−jnω t)

into (7.36) gives

(7.37)

Writing

c0 = a0, cn = (an − jbn), c−n = cn* = (an + jbn) (7.38)

(7.37) becomes

f (t) = c0 + cn e jnω t + c−n e−jnω t = c0 + cn e jnω t + cn e jnω t

= cn e jnω t, since c0 e0 = c0

7.4
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Thus the Fourier series (7.36) becomes simply

f (t) = cn e jnω t (7.39)

which is referred to as the complex or exponential form of the Fourier series expansion
of the function f (t).

In order that we can apply this result directly, it is necessary to obtain a formula for
calculating the complex coefficients cn. To do this, we incorporate the definitions of the
Fourier coefficients into the definitions given in (7.38), leading to

(7.40)

= f (t)(cos nω t − j sin nω t) dt

= f (t) e − jnω t dt (7.41)

c−n = (an + jbn) = f (t)(cos nω t + j sin nω t) dt

= f (t) e jnω t dt (7.42)

From (7.40)–(7.42), it is readily seen that for all values of n

cn = f (t) e − jnω t dt (7.43)

Summary

In general the coefficients cn (n = 0, ±1, ±2, . . . ) are complex, and may be expressed in
the form

cn = |cn | e jφn
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d

d+T

1
T
--- #

d
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1
T
--- #

d
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In summary, the complex form of the Fourier series expansion of a periodic function
f (t), of period T, is

f (t) = c ne jnω t (7.39)

where

cn = f (t) e − jnω t dt (n = 0, ±1, ±2, . . . ) (7.40)

n=−∞

∞



1
T
--- #

d

d+T
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where |cn|, the magnitude of cn, is given from the definitions (7.38) by

|cn | = 

so that 2|cn | is the amplitude of the nth harmonic. The argument φn of cn is related to the
phase of the nth harmonic.

Find the complex form of the Fourier series expansion of the periodic function f (t)
defined by

f (t) = cos t (−π , t , π), f (t + 2π) = f (t)

Solution A graph of the function f (t) over the interval −3π < t < 3π is shown in Figure 7.20.
Here the period T is 2π, so from (7.43) the complex coefficients cn are given by

Now e jπ/2 = cos π + j sin π = j, e−jπ/2 = −j and e jnπ = e−jnπ = cos nπ = (−1)n, so that

Note that in this case cn is real, which is as expected, since the function f (t) is an even
function of t.

From (7.39), the complex Fourier series expansion for f (t) is

This may readily be converted back to the trigonometric form, as by definitions (7.38),
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a0 = 2c0, an = cn + c*n, bn = j(cn − c*n)

so that in this particular case

Thus the trigonometric form of the Fourier series is

Obtain the complex form of the Fourier series of the sawtooth function f (t) defined by

f (t) = (0 , t , 2T ), f (t + 2T ) = f (t)

Solution A graph of the function f (t) over the interval −6T , t , 6T is shown in Figure 7.21.
Here the period is 2T, that is ω = π/T, so from (7.43) the complex coefficients cn are
given by

(n ≠ 0)

Now e−jn2π = e−j0 = 1, so

(n ≠ 0)

In the particular case n = 0

Thus from (7.39) the complex form of the Fourier series expansion of f (t) is
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Noting that j = e jπ/2, this result may also be written in the form

f (t) = 2 + e j(nπt/T+π/2)

As in Example 7.8, the Euler coefficients in the corresponding trigonometric series are

a0 = 2c0 = 4, an = cn + c*n = 0, bn = j(cn + c*n) = 

so that the corresponding trigonometric Fourier series expansion of f (t) is

7.4.2 The multiplication theorem and Parseval’s theorem

Two useful results, particularly in the application of Fourier series to signal analysis,
are the multiplication theorem and Parseval’s theorem. The multiplication theorem
enables us to write down the mean value of the product of two periodic functions over
a period in terms of the coefficients of their Fourier series expansions, while Parseval’s
theorem enables us to write down the mean square value of a periodic function, which,
as we will see in Section 7.4.4, determines the power spectrum of the function.

The multiplication theorem

Proof Let f (t) and g(t) have complex Fourier series given by

f (t) = cn e jn2πt/T (7.45a)

with

cn = f (t) e− jn2πt/T dT (7.45b)
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Theorem 7.1

If f (t) and g(t) are two periodic functions having the same period T then

f (t)g(t) dt = c nd*n (7.44)

where the cn and dn are the coefficients in the complex Fourier series expansions of
f (t) and g(t) respectively.
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and

g(t) = dn e jn2πt/T (7.46a)

with

dn = g(t) e − jn2πt/T dt (7.46b)

Then

Since d−n = d*n, the complex conjugate of dn, this reduces to the required result:

f ( t )g(t) dt = c nd*n

In terms of the real coefficients an, bn and αn, βn of the corresponding trigonometric
Fourier series expansions of f (t) and g(t),

and using the definitions (7.38), the multiplication theorem result (7.44) reduces to

f ( t )g(t) dt = c−ndn + c0d0 + cnd−n

= α0a0 + [(an − jbn)(αn + jβn) + (an + jbn)(αn − jβn)]

giving
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
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using (7.45a)

assuming term-by-term 
integration is possible 
using (7.45b)
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Parseval’s theorem

Proof This result follows from the multiplication theorem, since, taking g(t) = f (t) in (7.44),
we obtain

[ f (t)]2 dt = c n c*n = |cn |2

Using (7.46), Parseval’s theorem may be written in terms of the real coefficients an

and bn of the trigonometric Fourier series expansion of the function f (t) as

The root mean square (RMS) value fRMS of a periodic function f (t) of period T, defined
by 

f 2
RMS = [ f (t)]2 dt

may therefore be expressed in terms of the Fourier coefficients using (7.47) or (7.48).

By applying Parseval’s theorem to the function

f (t) = (0 < t < T ), f (t + 2T ) = f (t)

considered in Example 7.9, show that

Solution From Example 7.9, the coefficients of the complex Fourier series expansion of f (t) are

c0 = 2, cn = (n ≠ 0)

Theorem 7.2

If f (t) is a periodic function with period T then

[ f (t)]2 dt = c n c*n = |cn |2 (7.47)

where the cn are the coefficients in the complex Fourier series expansion of f (t).
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Thus, applying the Parseval’s theorem result (7.47), noting that the period in this case
is 2T, we obtain

[ f (t)]2 dt = c2
0 + |cn |2 + |cn |2

giving

which reduces to

and leads to the required result

7.4.3 Discrete frequency spectra

In expressing a periodic function f (t) by its Fourier series expansion, we are
decomposing the function into its harmonic or frequency components. We have seen
that if f (t) is of period T then it has frequency components at frequencies

ω n =  = nω 0 (n = 1, 2, 3, . . . ) (7.49)

where ω 0 is the frequency of the parent function f (t). (All frequencies here are meas-
ured in rad s−1.)

A Fourier series may therefore be interpreted as constituting a frequency spectrum
of the periodic function f (t), and provides an alternative representation of the function
to its time-domain waveform. This frequency spectrum is often displayed by plotting
graphs of both the amplitudes and phases of the various harmonic components against
angular frequency ωn. A plot of amplitude against angular frequency is called the
amplitude spectrum, while that of phase against angular frequency is called the phase
spectrum. For a periodic function f (t), of period T, harmonic components only occur at
discrete frequencies ωn, given by (7.45), so that these spectra are referred to as discrete
frequency spectra or line spectra. In Chapter 8 Fourier transforms will be used to
define continuous spectra for aperiodic functions. With the growing ability to process
signals digitally, the representation of signals by their corresponding spectra is an
approach widely used in almost all branches of engineering, especially electrical
engineering, when considering topics such as filtering and modulation. An example of
the use of a discrete spectral representation of a periodic function is in distortion
measurements on amplifiers, where the harmonic content of the output, measured
digitally, to a sinusoidal input provides a measure of the distortion.
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If the Fourier series expansion of a periodic function f (t), with period T, has been
obtained in the trigonometric form

then this may be expressed in terms of the various harmonic components as

(7.50)

where

A0 = a0, An = 

and the φn are determined by

sin φn = , cos φn = 

In this case a plot of An against angular frequency ωn will constitute the amplitude spec-
trum and that of φn against ωn the phase spectrum. These may be incorporated in the
same graph by indicating the various phases on the amplitude spectrum as illustrated
in Figure 7.22. It can be seen that the amplitude spectrum consists of a series of
equally spaced vertical lines whose lengths are proportional to the amplitudes of the
various harmonic components making up the function f (t). Clearly the trigonometric
form of the Fourier series does not in general lend itself to the plotting of the discrete
frequency spectrum, and the amplitudes An and phases φn must first be determined from
the values of an and bn previously determined.

In work on signal analysis it is much more common to use the complex form of the
Fourier series. For a periodic function f (t), of period T, this is given by (7.39), with the
complex coefficients being given by

cn = |cn | e jφn (n = 0, ±1, ±2, . . . )

in which |cn | and φn denote the magnitude and argument of cn respectively. Since in
general cn is a complex quantity, we need two line spectra to determine the discrete
frequency spectrum; the amplitude spectrum being a plot of |cn | against ωn and the
phase spectrum that of φn against ωn. In cases where cn is real a single spectrum may be
used to represent the function f (t). Since |c−n | = |c*n | = |cn |, the amplitude spectrum will
be symmetrical about the vertical axis, as illustrated in Figure 7.23.
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Note that in the complex form of the discrete frequency spectrum we have
components at the discrete frequencies 0, ±ω0, ±2ω0, ±3ω0, . . . ; that is, both positive
and negative discrete frequencies are involved. Clearly signals having negative
frequencies are not physically realizable, and have been introduced for mathematical
convenience. At frequency nω 0 we have the component e jnω0t, which in itself is not a
physical signal; to obtain a physical signal, we must consider this alongside the
corresponding component e−jnω0t at the frequency −nω 0, since then we have

e jnω0t + e−jnω0t = 2 cos nω 0t (7.51)

Plot the discrete amplitude and phase spectra for the periodic function

f (t) = (0 < t < 2T ), f (t + 2T ) = f (t)

of Example 7.9. Consider both complex and real forms.

Solution In Example 7.9 the complex coefficients were determined as

c0 = 2, cn = (n = ±1, ±2, ±3, . . . )

Thus

The corresponding amplitude and phase spectra are shown in Figures 7.24(a) and (b)
respectively.

In Example 7.9 we saw that the coefficients in the trigonometric form of the Fourier
series expansion of f (t) are

a0 = 4, an = 0, bn = −

Figure 7.23 Complex 
form of the amplitude 
spectrum.
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so that the amplitude coefficients in (7.49) are

A0 = 2, An = (n = 1, 2, 3, . . . )

leading to the real discrete frequency spectrum of Figure 7.25.

Since |cn | =  = An, the amplitude spectrum lines in the complex form
(Figure 7.24) are, as expected, halved in amplitude relative to those in the real
representation (Figure 7.25), the other half-value being allocated to the
corresponding negative frequency. In the complex representation the phases at negative
frequencies (Figure 7.24b) are the negatives of those at the corresponding positive
frequencies. In our particular representation (7.50) of the real form the phases at
positive frequencies differ by π between the real and complex form. Again this is not
surprising, since from (7.51) we see that combining positive and negative frequencies
in the complex form leads to a cosinusoid at that frequency rather than a sinusoid. In
order to maintain equality of the phases at positive frequencies between the complex
and real representations, a cosinusoidal expansion

(7.52)

4
nπ
------

Figure 7.24 Complex discrete frequency spectra for Example 7.11, with ω0 = π /T: (a) amplitude spectrum; 
(b) phase spectrum.

Figure 7.25 Real 
discrete frequency 
spectrum for 
Example 7.11 
(corresponding to 
sinusoidal expansion).
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of the real Fourier series is frequently adopted as an alternative to the sinusoidal series
expansion (7.50). Taking (7.52), the phase spectrum will be determined by 

sin φn = − , cos φn = 

showing a phase shift of π from that of (7.50). Adopting the real representation (7.52),
the corresponding real discrete frequency spectrum for the function f (t) of
Example 7.11 is as illustrated in Figure 7.26.

Determine the complex form of the Fourier series expansion of the periodic (period 2T )
infinite train of identical rectangular pulses of magnitude A and duration 2d illustrated
in Figure 7.27. Draw the discrete frequency spectrum in the particular case when d = 
and T = .

Solution Over one period −T < t < T the function f (t) representing the train is expressed as

From (7.43), the complex coefficients cn are given by

 (n ≠ 0)

(n = ±1, ±2, . . . )
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Figure 7.26 Real 
discrete frequency 
spectrum for 
Example 7.11 
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to cosinusoidal 
expansion).
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In the particular case when n = 0

so that

(n = 0, ±1, ±2, . . . )

where the sinc function is defined by

Thus from (7.39) the complex Fourier series expansion for the infinite train of pulses
f (t) is

As expected, since f (t) is an even function, cn is real, so we need only plot the discrete
amplitude spectrum to represent f (t). Since the amplitude spectrum is a plot of |cn |
against frequency nω 0, with ω 0 = π /T, it will only take values at the discrete frequency
values

In the particular case d = , T = , ω0 = 2π the amplitude spectrum will only exist at
frequency values

0, ±2π, ±4π, . . . 

Since in this case

cn = A sinc nπ (n = 0, ±1, ±2, . . . )

noting that sinc nπ = 0 when nπ = mπ or n = 5m (m = ±1, ±2, . . . ), the spectrum is
as shown in Figure 7.28.
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As we will see in Chapter 8, the sinc function sinc t = (sin t)/t plays an important role
in signal analysis, and it is sometimes referred to as the sampling function. A graph of
sinc t is shown in Figure 7.29, and it is clear that the function oscillates over intervals
of length 2π and decreases in amplitude with increasing t. Note also that the function
has zeros at t = ±nπ (n = 1, 2, 3, . . . ).

7.4.4 Power spectrum

The average power P associated with a periodic signal f (t), of period T, is defined as
the mean square value; that is,

P = [ f (t)]2 dt (7.53)

For example, if f(t) represents a voltage waveform applied to a resistor then P represents
the average power, measured in watts, dissipated by a 1 Ω resistor.

By Parseval’s theorem (Theorem 7.2),

(7.54)

Since

the power in the nth harmonic is

Pn = (a 2
n + b 2

n) (7.55)

and it follows from (7.54) that the power of the periodic function f (t) is the sum of the
power of the individual harmonic components contained in f (t).

In terms of the complex Fourier coefficients, Parseval’s theorem gives

P = |cn |2 (7.56)

As discussed in Section 7.4.3, the component e jnω0t at frequency ωn = nω 0, ω0 = 2π/T,
must be considered alongside the component e−jnω0t at the corresponding negative
frequency −ωn in order to form the actual nth harmonic component of the function f (t).
Since |c−n |2 = |c*n |2 = |cn |2, it follows that the power associated with the nth harmonic is
the sum of the power associated with ejnω0t and e−jnω0t; that is,

Figure 7.29
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Pn = 2|cn |2 (7.57)

which, since |cn | = , corresponds to (7.55). Thus in the complex form half
the power of the nth harmonic is associated with the positive frequency and half with
the negative frequency.

Since the total power of a periodic signal is the sum of the power associated with
each of the harmonics of which the signal is composed, it is again useful to consider a
spectral representation, and a plot of |cn |2 against angular frequency ωn is called the
power spectrum of the function f (t ). Clearly such a spectrum is readily deduced from
the discrete amplitude spectrum of |cn | against angular frequency ωn.

For the spectrum of the infinite train of rectangular pulses shown in Figure 7.27, deter-
mine the percentage of the total power contained within the frequency band up to the
first zero value (called the zero crossing of the spectrum) at 10π rad s−1.

Solution From (7.53), the total power associated with the infinite train of rectangular pulses f(t) is

which in the particular case when d =  and T =  becomes

P = A2 dt = A2

The power contained in the frequency band up to the first zero crossing at 10π rad s−1 is

P1 = c2
0 + 2(c2

1 + c2
2 + c2

3 + c2
4)

where

cn = 

That is,

= A2 [1 + 2(0.875 + 0.756 + 0.255 + 0.055)] = A2(0.976)

Thus P1 = 0.976P, so that approximately 97.6% of the total power associated with f (t)
is contained in the frequency band up to the first zero crossing at 10π rad s−1.

Suppose that a periodic voltage v(t), of period T, applied to a linear circuit, results in
a corresponding current i(t), having the same period T. Then, given the Fourier series
representation of both the voltage and current at a pair of terminals, we can use the
multiplication theorem (Theorem 7.1) to obtain an expression for the average power P
at the terminals. Thus, given

v(t ) = cne j2nπt/T, i(t) = dne j2nπt/T

1
2
--- an

2
1bn

2( )

Example 7.13

P
1

2T
------ #

−T

T

f t( )[ ]2 dt
1

2T
------ #

−d

d

A2 dt= =

1
10
------

1
2
---

#
−1/10

1/10
1
5
---

1
5
--- A sinc 1

5
---nπ

P1
1
25
------A2 2

25
------A2 sinc2 1

5
---π sinc2 2

5
---π sinc2 3

5
---π sinc2 4

5
---π+ + +( )+=

1
25
------

1
5
---

n=−∞

∞


n=−∞

∞


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the instantaneous power at the terminals is vi and the average power is

P = vi dt = cnd n*

or, in terms of the corresponding trigonometric Fourier series coefficients an, bn and
αn, βn,

P = α0β0 + (anαn + bnβn)

1
T
--- #

d

d+T

n=−∞

∞



1
4
--- 1

2
---

n51

∞



Show that the complex form of the Fourier series 
expansion of the periodic function

f (t) = t 2 (−π < t < π)

f (t + 2π) = f(t)

is

Using (7.28), obtain the corresponding 
trigonometric series.

Obtain the complex form of the Fourier series 
expansion of the square wave

f (t + 4) = f(t )

Using (7.28), obtain the corresponding 
trigonometric series.

Obtain the complex form of the Fourier 
series expansion of the following periodic 
functions.

(a)

f (t + 2π) = f (t)

(b)

f (t + T) = f(t), T = 2π/ω

(c)

f (t + 2π) = f(t)

(d) f (t) = |sin t | (−π < t < π)

f (t + 2π) = f(t)

A periodic function f (t), of period 2π, is defined 
within the period −π < t < π by

Using the Fourier coefficients of f (t), together with 
Parseval’s theorem, show that

(Note: The Fourier coefficients may be deduced 
from Exercise 18.)

(a) Show that the Fourier series expansion of the 
periodic function

f (t) = 500πt (0 < t < )

f (t + ) = f (t)

may be expressed as 

(b) Using (7.40), estimate the RMS value of f (t) by
(i)  using the first four terms of the Fourier 

series;
(ii) using the first eight terms of the Fourier 

series.

7.4.5 Exercises

17

f t( ) π2

6
-----

n50

∞

 2

n2
----- −1( )nejnt+=

18

f t( )
0 −2 , t , 0( )
1 0 , t , 2( )




=

19

f t( )
π −π , t , 0( )
t 0 , t , π( )




=

f t( )
a ωtsin 0 , t , 1

2
---T( )

0 1
2
---T , t , T( )




=

f t( )
2 −π , t , 0( )
1 0 , t , π( )




=

20

f t( )
0 −π , t , 0( )
1 0 , t , π( )




=

1

2n 1–( )2
----------------------

n=1

∞

 1
8
---π2=

21

1
50
------

1
50
------

f t( ) 5π 10
1
n
--- 100nπtsin

n=1

∞
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Orthogonal functions
As was noted in the introduction, the fact that the set of functions {1, cos ωt, sin ωt, . . . ,
cos nωt, sin nωt, . . . } is an orthogonal set of functions on the interval d < t < d + T
was crucial in the evaluation of the coefficients in the Fourier series expansion of a
function f(t). It is natural to ask whether it is possible to express the function f(t) as a
series expansion in other sets of functions. In the case of periodic functions f (t) there
is no natural alternative, but if we are concerned with representing a function f (t) only
in a finite interval t1 < t < t2 then a variety of other possibilities exist. These possibil-
ities are drawn from a class of functions called orthogonal functions, of which the
trigonometric set {1, cos ω t, sin ω t, . . . , cos nω t, sin nω t} is a particular example.

7.5.1 Definitions

Two real functions f (t) and g(t) that are piecewise-continuous in the interval t1 < t < t2

are said to be orthogonal in this interval if

f (t)g(t) dt = 0

A set of real functions φ1(t), φ2(t), . . . ≡ {φn(t)}, each of which is piecewise-continuous
on t1 < t < t2, is said to be an orthogonal set on this interval if φn(t) and φm(t) are
orthogonal for each pair of distinct indices n, m; that is, if

φn(t)φm(t) dt = 0 (n ≠ m) (7.58)

We shall also assume that no member of the set {φn(t)} is identically zero except at a
finite number of points, so that

φ 2
m(t) dt = γm (m = 1, 2, 3, . . . ) (7.59)

where γm (m = 1, 2, . . . ) are all non-zero constants.

7.5

#
t1

t2

#
t1

t2

#
t1

t2

(c) Obtain the true RMS value of f(t), and hence 
determine the percentage errors in the 
estimated values obtained in (b).

A periodic voltage v(t) (in V) of period 5 ms and 
specified by 

v(t + 5 ms) = v(t)

is applied across the terminals of a 15 Ω resistor.

(a) Obtain expressions for the coefficients cn of the 
complex Fourier series representation of v(t), 
and write down the values of the first five 
non-zero terms.

(b) Calculate the power associated with each of 
the first five non-zero terms of the Fourier 
expansion.

(c) Calculate the total power delivered to the 
15 Ω resistor.

(d) What is the percentage of the total power 
delivered to the resistor by the first five 
non-zero terms of the Fourier series?

22

v t( )
60 0 , t , 1.25 ms( )

0 1.25 ms , t , 5 ms( )



=
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An orthogonal set {φn(t)} is said to be orthonormal if each of its components is also
normalized; that is, γm = 1 (m = 1, 2, 3, . . . ). We note that any orthogonal set {φn(t)}
can be converted into an orthonormal set by dividing each member φm(t) of the set by .

We know already that

{1, cos t, sin t, cos 2t, sin 2t, . . . , cos nt, sin nt}

is an orthogonal set on the interval d < t < d + 2π, and so the set

forms an orthonormal set on the same interval. The latter follows since

(n = 1, 2, 3, . . . )

The definition of orthogonality considered so far applies to real functions, and has to
be amended if members of the set {φn(t)} are complex functions of the real variable t.
In such a case the set {φn(t)} is said to be an orthogonal set on the interval t1 < t < t2 if

φn(t)φ*m(t) dt = (7.60)

where φ*m(t) denotes the complex conjugate of φm(t).

Verify that the set of complex exponential functions

{e jnπt/T} (n = 0, ±1, ±2, ±3, . . . )

used in the complex representation of the Fourier series is an orthogonal set on the
interval 0 < t < 2T.

Solution First,

e jnπt/T 1 dt =  = 0 (n ≠ 0)

since e j2nπ = e0 = 1. Secondly,

e jnπt/T (e jmπt/T)* dt =  e
j(n−m)πt/T dt =  = 0 (n ≠ m)

γm

Example 7.14

1

2π( )
---------------, 

tcos

π
-----------, 

tsin

π
----------, . . . , 

ntcos

π
--------------, 

ntsin

π
-------------

 
 
 

#
d

d+2π
1

2π( )
---------------

2

dt 1=

#
d

d+2π
ntcos

π
--------------
 
 
 

2

dt #
d

d+2π
sin nt

π
-------------
 
 
 

2

dt 1= =

#
t1

t2 0 n m≠( )
γ n = m( )




Example 7.15

#
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0
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#
0

2T

#
0

2T
T

j n m–( )π
-----------------------ej n−m( )πt/T

0

2T
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and, when n = m,

e jnπt/T (e jnπt/T)*dt = 1 dt = 2T

Thus

 e
jnπt/T 1 dt = 0 (n ≠ 0)

e jnπt/T (e jmπt/T )* dt = 

and, from (7.60), the set is an orthogonal set on the interval 0 < t < 2T.

The trigonometric and exponential sets are examples of orthogonal sets that we have
already used in developing the work on Fourier series. Examples of other sets of
orthogonal functions that are widely used in practice are Legendre polynomials, Bessel
functions, Hermite polynomials, Laguerre polynomials, Jacobi polynomials,
Chebyshev polynomials, Zernike polynomials and Walsh functions. Over recent years
wavelets are another set of orthogonal functions that have been widely used, particularly
in applications such as signal processing and data compression.

7.5.2 Generalized Fourier series

Let {φn(t)} be an orthogonal set on the interval t1 < t < t2 and suppose that we wish to
represent the piecewise-continuous function f (t) in terms of this set within this interval.
Following the Fourier series development, suppose that it is possible to express f (t) as
a series expansion of the form

f (t) = cnφn(t) (7.61)

We now wish to determine the coefficients cn, and to do so we again follow the Fourier
series development. Multiplying (7.61) throughout by φm(t) and integrating term by
term, we obtain

f (t)φm(t) dt = φm(t)φn(t) dt

which, on using (7.58) and (7.59), reduces to

f (t)φn(t) dt = cnγn

giving

cn = f (t)φn(t) dt (n = 1, 2, 3, . . . ) (7.62)

#
0

2T

#
0

2T

#
0

2T

#
0

2T
0 n m≠( )
2T n = m( )




n=1

∞



#
t1

t2

n=1

∞

 cn #
t1

t2

#
t1

t2

1
γn

---- #
t1

t2
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Summary

A parallel can be drawn between a generalized Fourier series expansion of a function
f (t) with respect to an orthogonal basis set of functions {φn(t)} and the representation
of a vector f in terms of an orthogonal basis set of vectors v1, v2, . . . , vn as 

f = α1v1 + . . . + αnvn

where

There is clearly a similarity between this pair of results and the pair (7.61)–(7.62).

7.5.3 Convergence of generalized Fourier series

As in the case of a Fourier series expansion, partial sums of the form

FN(t) = cnφn(t) (7.63)

can be considered, and we wish this representation to be, in some sense, a ‘close
approximation’ to the parent function f (t). The question arises when considering such
a partial sum as to whether choosing the coefficients cn as the generalized Fourier
coefficients (7.62) leads to the ‘best’ approximation. Defining the mean square error
EN between the actual value of f (t) and the approximation FN(t ) as 

EN = [ f (t) − FN(t)]2 dt

it can be shown that EN is minimized, for all N, when the coefficients cn are chosen
according to (7.62). Thus in this sense the finite generalized Fourier series gives the best
approximation. To verify this result, assume, for convenience, that the set {φn(t)} is
orthonormal, and consider the Nth partial sum

FN(t) = φn(t)

Summarizing, if f (t) is a piecewise-continuous function on the interval t1 < t < t2

and {φn(t)} is an orthogonal set on this interval then the series

f (t) = cnφn(t)

is called the generalized Fourier series of f (t) with respect to the basis set {φn(t)},
and the coefficients cn, given by (7.62), are called the generalized Fourier
coefficients with respect to the same basis set.

n=1

∞



αi

f vi⋅
vi vi⋅
------------

f vi⋅
| vi |2
----------= =

n=1

N



1
t2 t1–
------------- #

t1

t2

cn˜
n=1

N


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where the  are to be chosen in order to minimize the mean square error EN. Now

as {φn(t)} is an orthonormal set. That is,

(7.64)

which is clearly minimized when  = cn.
Taking  = cn in (7.64), the mean square error EN in approximating f (t) by FN(t) of

(7.59) is given by

if the set {φn(t)} is orthonormal, and is given by

(7.65)

if the set {φn(t)} is orthogonal. Since EN is non-negative, it follows from (7.65) that

(7.66)

a result known as Bessel’s inequality. The question that arises in practice is whether or
not EN → 0 as N → ∞, indicating that the sum

cnφn(t)

converges to the function f(t). If this were the case then, from (7.63),

(7.67)

which is the generalized form of Parseval’s theorem, and the set {φn(t)} is said to
be complete. Strictly speaking, the fact that Parseval’s theorem holds ensures that the
partial sum FN (t) converges in the mean to the parent function f (t) as N → ∞, and
this does not necessarily guarantee convergence at any particular point. In engineering
applications, however, this distinction may be overlooked, since for the functions
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met in practice convergence in the mean also ensures pointwise convergence at points
where f (t) is convergent, and convergence to the mean of the discontinuity at points
where f (t) is discontinuous.

The set {1, cos t, sin t, . . . , cos nt, sin nt} is a complete orthogonal set in the interval
d < t < d + 2π. Following the same argument as above, it is readily shown that for a
function f (t) that is piecewise-continuous on d < t < d + 2π the mean square error
between f (t) and the finite Fourier series

is minimized when ,  and  (n = 1, 2, 3, . . . ) are equal to the corresponding Fourier
coefficients a0, an and bn (n = 1, 2, 3, . . . ) determined using (7.4) and (7.5). In this case
the mean square error EN is given by

Bessel’s inequality (7.66) becomes

and Parseval’s theorem (7.67) reduces to

which conforms with (7.48). Since, in this case, the basis set is complete, Parseval’s
theorem holds, and the Fourier series converges to f(t) in the sense discussed above.

Example 7.16
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#
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f 2 t( ) dt > π 1
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n=1

N

 an
2 bn
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1
2π
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d

d+2π

f 2 t( ) 1
4
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2 1
2
---

n=1

∞

 an
2 bn

2+( )+=

The Fourier series expansion for the periodic square 
wave

f (t) = 

f (t + 2π) = f(t)

is

Determine the mean square error corresponding to 
approximations to f (t) based on the use of one term, 
two terms and three terms respectively in the series 
expansion.

The Legendre polynomials Pn(t) are generated by 
the formula 

Pn(t) = (t 2 − 1)n (n = 0, 1, 2, . . . )

and satisfy the recurrence relationship

nPn(t) = (2n − 1)tPn−1(t) − (n − 1)Pn−2(t)

7.5.4 Exercises

23

−1 −π , t , 0( )
1 0 , t , π( )




f t( )
n=1

∞

 4
π 2n 1–( )
----------------------- 2n 1–( )tsin=

24

1

2nn!
----------

dn

dtn
-------
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(a) Deduce that

P0(t) = 1, P1(t) = t

P2(t) = (3t 2 − 1), P3(t) = (5t3 − 3t )

(b) Show that the polynomials form an orthogonal 
set on the interval (−1, 1) and, in particular, that

Pm(t)Pn(t) dt

(c) Given that the function

f (t) = 

is expressed as a Fourier–Legendre series 
expansion

f (t) = crPr(t)

determine the values of c0, c1, c2 and c3.

(d) Plot graphs to illustrate convergence of the 
series obtained in (c), and compare the mean 
square error with that of the corresponding 
Fourier series expansion.

Repeat parts (c) and (d) of Exercise 24 for the 
function

f (x) = 

Laguerre polynomials Ln(t) are generated by the 
formula

Ln(t) = et (t ne−t) (n = 0, 1, 2, . . . )

and satisfy the recurrence relation

Ln(t ) = (2n − 1 − t)Ln−1(t) − (n − 1)2Ln−2(t)

(n = 2, 3, . . . )

These polynomials are orthogonal on the 
interval 0 < t < ∞ with respect to the weighting 
function e−t, so that

e−tLn(t)Lm(t) dt = 

(a) Deduce that

L0(t) = 1, L1(t) = 1 − t

L2(t) = 2 − 4t + t 2

L3(t) = 6 − 18t + 9t 2 − t 3

(b) Confirm the above orthogonality result in the 
case of L0, L1, L2 and L3.

(c) Given that the function f(t) is to be 
approximated over the interval 0 < t < ∞ by 

f(t) = crLr(t )

show that

cr = f(t ) e−tLr(t) dt

(r = 0, 1, 2, . . . )

(Note: Laguerre polynomials are of particular 
importance to engineers, since they can 
be generated as the impulse responses of 
relatively simple networks.)

Hermite polynomials Hn(t) are generated by the 
formula

(n = 0, 1, 2, . . . )

and satisfy the recurrence relationship

Hn(t) = tHn−1(t) − (n − 1)Hn−2(t)

(n = 2, 3, . . . )

The polynomials are orthogonal on the interval 
−∞ < t < ∞ with respect to the weighting 
function e−t2/2, so that

(a) Deduce that

H0(t) = 1, H1(t) = t

H2(t) = t 2 − 1, H3(t) = t 3 − 3t

H4(t) = t 4 − 6t 2 + 3

(b) Confirm the above orthogonality result for 
H0, H1, H2 and H3.
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(c) Given that the function f (t) is to be 
approximated over the interval −∞ < t < ∞ by

f (t) = crHr(t)

show that

(r = 0, 1, . . . )

Chebyshev polynomials Tn(t) are generated by the 
formula

Tn(t) = cos (n cos−1 t) (n = 0, 1, 2, . . . )

or

Tn(t) = (1 − t 2)rt n−2r

(n = 0, 1, 2, . . . )

where

[n/2] = 

They also satisfy the recurrence relationship

Tn(t) = 2tTn−1(t) − Tn−2(t) (n = 2, 3, . . . )

and are orthogonal on the interval −1 < t < 1 

with respect to the weighting function , 
so that

(a) Deduce that

T0(t) = 1, T1(t) = t

T2(t) = 2t 2 − 1, T3(t) = 4t 3 − 3t

T4(t) = 8t 4 − 8t 2 + 1

T5(t) = 16t 5 − 20t 3 + 5t

(b) Confirm the above orthogonality result for 
T0, T1, T2 and T3.

(c) Given that the function f (t) is to be 
approximated over the interval −1 < t < 1 by

f (t ) = crTr(t)

show that

(r = 1, 2, . . . )

With developments in digital techniques, Walsh 
functions Wn(t) have become of considerable 
importance in practice, since they are so easily 
generated by digital logic circuitry. The first four 
Walsh functions may be defined on the interval 
0 < t < T by

W0(t ) = (0 < t < T )

W1(t ) = 

W2(t ) = 

W3(t ) = 

(a) Plot graphs of the functions W0(t ), W1(t ), W2(t ) 
and W3(t), and show that they are orthonormal 
on the interval 0 < t < T. Write down an 
expression for Wn(t ).

(b) The Walsh functions may be used to obtain 
a Fourier–Walsh series expansion for a 
function f(t), over the interval 0 < t < T, 
in the form

f (t ) = crWr(t)

Illustrate this for the square wave of 
Exercise 23. What is the corresponding mean 
square error? Comment on your answer.
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Engineering application: describing functions
Many control systems containing a nonlinear element may be represented by the block
diagram of Figure 7.30. In practice, describing function techniques are used to analyse
and design such control systems. Essentially the method involves replacing the
nonlinearity by an equivalent gain N and then using the techniques developed for linear
systems, such as the frequency response methods of Section 5.5. If the nonlinear
element is subjected to a sinusoidal input e(t) = X sin ω t then its output z(t) may be
represented by the Fourier series expansion

with An =  and φn = tan−1(an/bn).
The describing function N(X ) of the nonlinear element is then defined to be the

complex ratio of the fundamental component of the output to the input; that is,

with N(X ) being independent of the input frequency ω if the nonlinear element is
memory-free.

Having determined the describing function, the behaviour of the closed-loop system
is then determined by the characteristic equation

1 + N(X )G( jω) = 0

If a combination of X and ω can be found to satisfy this equation then the system is
capable of sustained oscillations at that frequency and magnitude; that is, the system
exhibits limit-cycle behaviour. In general, more than one combination can be found,
and the resulting oscillations can be a stable or unstable limit cycle.

Normally the characteristic equation is investigated graphically by plotting G (jω)
and −1/N(X ), for all values of X, on the same polar diagram. Limit cycles then occur at
frequencies and amplitudes corresponding to points of intersection of the curves.
Sometimes plotting can be avoided by calculating the maximum value of N(X ) and
hence the value of the gain associated with G(s) that will just cause limit cycling to
occur.

Using this background information, the following investigation is left as an exercise
for the reader to develop.

7.6 Engineering application:

Figure 7.30 Nonlinear 
control system.
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(a) Show that the describing functions N1(X ) and N2(X ) corresponding respectively
to the relay (on–off nonlinearity) of Figure 7.31(a) and the relay with dead zone
of Figure 7.31(b) are

(b) For the system of Figure 7.32 show that a limit cycle exists when the nonlinearity
is the relay of Figure 7.31(a) with L = 1. Determine the amplitude and frequency
of this limit cycle.

In an attempt to eliminate the limit-cycle oscillation, the relay is replaced by
the relay with dead zone illustrated in Figure 7.31(b), again with L = 1. Show that
this allows our objective to be achieved provided that h > 10/3π.

N1 X( ) 4L
πX
------- , N2 X( ) 4L

πX
------- 1

h
X
--- 
 

2

–= =

Figure 7.32 Nonlinear 
system of exercise.

Figure 7.31 (a) Relay; 
(b) relay with dead 
zone.

A periodic function f (t) is defined by

f (t) = 

f (t + 2π) = f(t)

Obtain a Fourier series expansion of f(t) and 
deduce that

Determine the full-range Fourier series expansion 
of the even function f (t) of period 2π defined by

To what value does the series converge at t = π?

A function f (t) is defined for 0 < t < T by

f (t ) = 

7.7 Review exercises (1–20)
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Sketch odd and even functions that have a period 
T and are equal to f (t ) for 0 < t < T.

(a) Find the half-range Fourier sine series of f(t ).
(b) To what value will the series converge for 

t = − T ?
(c) What is the sum of the following series?

Prove that if g(x) is an odd function and f (x) an even 
function of x, the product g(x)[c + f(x)] is an odd 
function if c is a constant.

A periodic function with period 2π is defined by

F(θ ) = θ(π2 − θ 2)

in the interval −π < θ < π. Show that the Fourier 
series representation of the function is

A repeating waveform of period 2π is described by

Sketch the waveform over the range t = −2π to 
t = 2π and find the Fourier series representation 
of f (t), making use of any properties of the 
waveform that you can identify before any 
integration is performed.

A function f (x) is defined in the interval 
−1 < x < 1 by

Sketch a graph of f (x) and show that a Fourier 
series expansion of f(x) valid in the interval 
−1 < x < 1 is given by

Show that the half-range Fourier sine series for the 
function

(0 < t < π)

is

Find a half-range Fourier sine and Fourier cosine 
series for f(x) valid in the interval 0 , x , π 
when f (x) is defined by

Sketch the graph of the Fourier series obtained 
for −2π , x < 2π.

A function f (x) is periodic of period 2π and is 
defined by f(x) = ex (−π , x , π). Sketch the 
graph of f(x) from x = −2π to x = 2π and prove 
that

A function f (t) is defined on 0 , t ,π by

f(t) = π − t

Find

(a) a half-range Fourier sine series, and
(b) a half-range Fourier cosine series for f(t) 

valid for 0 , t , π.

Sketch the graphs of the functions represented 
by each series for −2π < t < 2π.

Show that the Fourier series

represents the function f(t), of period 2π, 
given by

Deduce that, apart from a transient component 
(that is, a complementary function that dies away 
as t → ∞), the differential equation
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has the solution

Show that if f(t) is a periodic function of period 
2π and

then

Show also that, when ω is not an integer,

satisfies the differential equation

subject to the initial conditions y = dy/dt = 0 at 
t = 0.

(a) A periodic function f (t), of period 2π, is 
defined in −π < t < π by

Obtain a Fourier series expansion for f (t), and 
from it, using Parseval’s theorem, deduce that 

(b) By formally differentiating the series obtained 
in (a), obtain the Fourier series expansion of the 
periodic square wave

g(t + 2π) = g(t)

Check the validity of your result by 
determining directly the Fourier series 
expansion of g(t).

A periodic function f (t), of period 2π, is defined 
in the range −π , t , π by

Show that the complex form of the Fourier series 
expansion for f(t) is

(a) Find the Fourier series expansion of the 
voltage v(t) represented by the half-wave 
rectified sine wave

v(t + T ) = v(t)

(b) If the voltage v(t) in (a) is applied to a 
10 Ω resistor, what is the total average power 
delivered to the resistor? What percentage 
of the total power is carried by the second-
harmonic component of the voltage?

The periodic waveform f (t) shown in Figure 7.33 
may be written as

f (t) = 1 + g(t)

where g(t) represents an odd function.

(a) Sketch the graph of g(t).
(b) Obtain the Fourier series expansion for g(t), 

and hence write down the Fourier series 
expansion for f(t).

Show that the complex Fourier series expansion 
for the periodic function

f (t) = t (0 , t , 2π)

f (t + 2π) = f (t)
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Figure 7.33 Waveform f(t) of Review 
exercise 16.
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is

(a) A square-wave voltage v(t) of period T is 
defined by 

v(t + T ) = v(t)

Show that its Fourier series expansion is 
given by

(b) Find the steady-state response of the circuit 
shown in Figure 7.34 to the sinusoidal input 
voltage 

vω(t) = sin ω t

and hence write down the Fourier series 
expansion of the circuit’s steady-state response 
to the square-wave voltage v(t) in (a).

(a) Defining the nth Chebyshev polynomial by

Tn(t) = cos(n cos−1 t)

use Euler’s formula cos θ = (e jθ + e− jθ )  
to obtain the expansions of t 2k and t 2k+1 
in Chebyshev polynomials, where k is a 
positive integer.

(b) Establish the recurrence relation

Tn(t) = 2tTn−1(t) − Tn−2(t)

(c) Write down the values of T0(t) and T1(t) from 
the definition, and then use (b) to find T2(t) and 
T3(t).

(d) Express t 5 − 5t 4 + 7t 3 + 6t − 8 in Chebyshev 
polynomials.

(e) Find the cubic polynomial that approximates 
to

t5 − 5t 4 + 7t 3 + 6t − 8

over the interval (−1, 1) with the smallest 
maximum error. Give an upper bound for 
this error. Is there a value of t for which this 
upper bound is attained?

The relationship between the input and output of 
a relay with a dead zone Δ and no hysteresis is 
shown in Figure 7.35. Show that the describing 
function is

for an input amplitude xi.

If this relay is used in the forward path of 
the on–off positional control system shown in 
Figure 7.36, where the transfer function

characterizes the time constant of the servo-motor, 
and the inertia and viscous damping of the load, 
show that a limit-cycle oscillation will not occur 
provided that the dead zone in the relay is such 
that
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Introduction
In Chapter 7 [and Chapter 12 of Modern Engineering Mathematics (MEM)] we saw how
Fourier series provided an ideal framework for analysing the steady-state response of
systems to a periodic input signal. In this chapter we extend the ideas of Fourier
analysis to deal with non-periodic functions. We do this via the introduction of the
Fourier transform. As the theory develops, we shall see how the complex exponential
form of the Fourier series representation of a periodic function emerges as a special case
of the Fourier transform. Similarities between the transform and the Laplace transform,
discussed in Chapter 11 of MEM and Chapter 5 in this text, will also be highlighted.

While Fourier transforms first found most application in the solution of partial
differential equations, it is probably true to say that today Fourier transform methods
are most heavily used in the analysis of signals and systems. This chapter is therefore
developed with such applications in mind, and its main aim is to develop an
understanding of the underlying mathematics as a preparation for a specialist study of
application areas in various branches of engineering.

While much early work on signal analysis was implemented using analogue devices,
the bulk of modern equipment exploits digital technology. In Chapter 11 of MEM and
Chapter 5 in this text we developed the Laplace transform as an aid to the analysis and
design of continuous-time systems while in Chapter 6 we introduced the z and $
transforms to assist with the analysis and design of discrete-time systems. In this
chapter the frequency-domain analysis introduced in Chapter 11 of MEM and Chapter
5 in this text for continuous-time systems is consolidated and then extended to provide
a framework for the frequency-domain description of discrete-time systems through the
introduction of discrete Fourier transforms. These discrete transforms provide one of
the most advanced methods for discrete signal analysis, and are widely used in such
fields as communications theory and speech and image processing. In practice, the
computational aspects of the work assume great importance, and the use of appropriate
computational algorithms for the calculation of the discrete Fourier transform is
essential. For this reason we have included an introduction to the fast Fourier transform
algorithm, based on the pioneering work of J. W. Cooley and J. W. Tukey published
in 1965, which it is hoped will serve the reader with the necessary understanding for
progression to the understanding of specialist engineering applications.

In the engineering application (Section 8.8) we discuss the discrete-time Fourier
transform to provide the means of describing the so-called direct design method for
digital filters which is based on the use of the desired frequency response, without using
an analogue prototype design. This naturally leads to considering ‘windowing’ and a
brief introduction to this topic is included.

Wavelets were developed in the 1980s and 1990s and they provide a technique for
analysing pulses. Their application to medical signals has grown since 2010 but, as yet,
they have found little use in mainstream engineering. This will change. However, for
now, the study of wavelets and the introduction of the wavelet transform is postponed.
For a brief introduction see Phil Dyke’s An Introduction to Laplace Transforms and
Fourier Series (second edition, London, Springer, 2014).

8.1
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The Fourier transform

8.2.1 The Fourier integral

In Chapter 7 (and Chapter 12 of MEM) we saw how Fourier series methods pro-
vided a technique for the frequency-domain representation of periodic functions. As
indicated in Section 7.4.3, in expressing a function as its Fourier series expansion we are
decomposing the function into its harmonic or frequency components. Thus a periodic
function f (t), of period T ′, has frequency components at discrete frequencies

ωn =  = nω 0 (n = 0, 1, 2, 3, . . . )

where ω0 is the fundamental frequency, that is the frequency of the parent function f (t).
Consequently, we were able to interpret a Fourier series as constituting a discrete
frequency spectrum of the periodic function f (t), thus providing an alternative
frequency-domain representation of the function to its time-domain waveform.
However, not all functions are periodic and so we need to develop an approach that will
give a similar representation for non-periodic functions, defined on −∞ , t , ∞. One
way of achieving this is to look at a portion of a non-periodic function f (t) over an
interval T, by imagining that we are looking at a graph of f (t) through a ‘window’ of
length T, and then to consider what happens as T gets larger.

Figure 8.1 depicts this situation, with the window placed symmetrically about the
origin. We could now concentrate only on the ‘view through the window’ and carry out
a Fourier series development based on that portion of f (t) alone. Whatever the beha-
viour of f (t) outside the window, the Fourier series thus generated would represent the
periodic function defined by

( |t | , T )

(2n − 1)T , | t | , (2n + 1)T

Figure 8.2 illustrates g(t), and we can see that the graphs of f(t) and g(t) agree on the

interval − T, T .

Using the complex or exponential form of the Fourier series expansion, we have
from (7.39) that

(8.1)

8.2

2πn
T ′

----------

Figure 8.1 The view of f (t) through a window of 
length T.

Figure 8.2 The periodic function g(t) based on the
‘windowed’ view of f (t).
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with

(8.2)

and where

ω0 = 2π/T (8.3)

Equation (8.2) in effect transforms the time-domain function g(t) into the associated
frequency-domain components Gn, where n is any integer. Equation (8.1) can also be
viewed as transforming the discrete components Gn in the frequency-domain
representation to the time-domain form g(t). Substituting for Gn in (8.1), using (8.2), we
obtain

(8.4)

The frequency of the general term in the expansion (8.4) is 

and so the difference in frequency between successive terms is 

Since Δω = ω0, we can express (8.4) as

(8.5)
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(8.6)

we have

(8.7)
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also have

it follows from (8.7) and (8.6) that
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The result (8.8) is known as the Fourier integral representation of f (t). A set of
conditions that are sufficient for the existence of the Fourier integral is a revised form
of Dirichlet’s conditions for Fourier series convergence (see Theorem 12.2 of MEM for
further details). These conditions may be stated in the form of Theorem 8.1.

Dirichlet’s conditions for the Fourier integral

If the function f(t) is such that

(a) it is absolutely integrable, so that

(that is, the integral is finite), and

(b) it has at most a finite number of maxima and minima and a finite number of
discontinuities in any finite interval

then the Fourier integral representation of f (t), given in (8.8), converges to f (t) at all
points where f (t) is continuous and to the average of the right- and left-hand limits of
f (t) where f (t) is discontinuous (that is, to the mean of the discontinuity).

As was indicated in the introduction in Chapter 7, the use of the equality sign in (8.8)
must be interpreted carefully because of the non-convergence to f (t) at points of
discontinuity. Again the symbol ~ (read as ‘behaves as’ or ‘represented by’) rather than
= is frequently used.

Condition (a) of Theorem 8.1 implies that the absolute area under the graph of y =
f (t) is finite. Clearly this is so if f (t) decays sufficiently fast with time. However, in
general the condition seems to imply a very tight constraint on the nature of f (t),
since clearly functions of the form f (t) = constant, f (t) = eat, f (t) = e−at, f (t) = sin ω t, and
so on, defined for −∞ , t , ∞, do not meet the requirement. In practice, however,
signals are usually causal and only exist for a finite time. Also, in practice no signal
amplitude goes to infinity, so consequently no practical signal f(t) can have an infinite
area under its graph y = f (t). Thus for practical signals the integral in (8.8) exists.

To obtain the trigonometric (or real) form of the Fourier integral, we substitute

e−jω (τ−t) = cos ω (τ − t) − j sin ω (τ − t)

in (8.8) to give

Since sin ω (τ − t) is an odd function of ω, this reduces to

which, on noting that the integrand is an even function of ω, reduces further to

(8.9)
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The representation (8.9) is then the required trigonometric form of the Fourier
integral.

If f (t) is either an odd function or an even function then further simplifications of (8.9)
are possible. Detailed calculations are left as an exercise for the reader, and we shall
simply quote the results.

In the case of the Fourier series representation of a periodic function it was a matter
of some interest to determine how well the first few terms of the expansion represented
the function. The corresponding problem in the non-periodic case is to investigate how
well the Fourier integral represents a function when only the components in the lower
part of the (continuous) frequency range are taken into account. To illustrate, consider
the rectangular pulse of Figure 8.3 given by 

This is clearly an even function, so from (8.10) its Fourier integral is

An elementary evaluation of this integral is not possible, so we consider frequencies
ω , ω0, when

 

(a) If f (t) is an even function then (8.9) reduces to

(8.10)

which is referred to as the Fourier cosine integral.

(b) If f (t) is an odd function then (8.9) reduces to

(8.11)

which is referred to as the Fourier sine integral.

f t( ) = 
2
π
---#

0

∞

#
0

∞

f τ( ) ωτ ω t dτ dωcoscos

f t( ) = 
2
π
---#

0

∞

#
0

∞

f τ( ) sin ωτ sin ω t dτ dω

Figure 8.3 Rectangular 
pulse

.
f t( )

1 t  <  1( )
0 t  .  1( )




=

f t( ) = 
1 | t | < 1( )
0 | t | . 1( )




f t( ) = 
2
π
---#

0

∞

#
0

1

1 ωτ ω t dτ dω  = 
2
π
---#

0

∞
cos ωt sin ω

ω---------------------------- dωcoscos

f t( ) . 
2
π
---#

0

ω0
cos ωt sin ω

ω---------------------------- dω = 
1
π
---#

0

ω0
sin ω t + 1( )

ω------------------------------ dω  − 
1
π
---#

0

ω0
sin ω t − 1( )

ω------------------------------ dω

= 
1
π
---#

0

ω0 t+1( )
sin u

u
----------- du − 

1
π
---#

0

ω0 t−1( )
sin u

u
----------- du
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Its values have been tabulated and are freely available on the world wide web (for example,
search for ‘values of the Si(x) function’). Thus

f (t) . Si(ω0(t + 1)) − Si(ω0(t − 1)) (8.12)

This has been plotted for ω0 = 4, 8 and 16, and the responses are shown in Figures 8.4(a),
(b) and (c) respectively. Physically, these responses describe the output of an ideal
low-pass filter, cutting out all frequencies ω . ω0, when the input signal is the
rectangular pulse of Figure 8.3.

The integral

occurs frequently, and it can be shown that

Si x( ) = #
0

x

sin u
u

----------- du x > 0( )

Si x( ) = 
−1( )nx2n+1

2n + 1( ) 2n + 1( )!
----------------------------------------------

n=0

∞



Figure 8.4
Plot of (8.12): 
(a) ω0 = 4; (b) ω0 = 8; 
(c) ω0 = 16.
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8.2.2 The Fourier transform pair

We note from (8.6) and (8.7) that the Fourier integral (8.8) may be written in the form
of the pair of equations

F( jω) as defined by (8.13) is called the Fourier transform of f (t), and it provides
a frequency-domain representation of the non-periodic function f (t), whenever the
integral in (8.13) exists. Note that we have used the notation F( jω) for the Fourier
transform of f (t) rather than the alternative F(ω), which is also in common use. The
reason for this choice is a consequence of the relationship between the Fourier and
Laplace transforms, which will emerge later in Section 8.4.1. We stress that this is a
choice that we have made, but the reader should have no difficulty in using either form,
provided that once the choice has been made it is then adhered to. Equation (8.14) then
provides us with a way of reconstructing f (t) if we know its Fourier transform F( jω).

A word of caution is in order here regarding the scaling factor 1/2π in (8.14).
Although the convention that we have adopted here is fairly standard, some authors
associate the factor 1/2π with (8.13) rather than (8.14), while others associate a factor
of (2π)−1/2 with each of (8.13) and (8.14). In all cases the pair combine to give the
Fourier integral (8.8). We could overcome this possible confusion by measuring the
frequency in cycles per second or hertz rather than in radians per second, this being
achieved using the substitution f = ω /2π, where f is in hertz and ω is in radians per
second. We have not adopted this approach, since ω is so widely used by engineers.

In line with our notation for Laplace transforms in Chapter 5, we introduce the
symbol ̂  to denote the Fourier transform operator. Then from (8.13) the Fourier transform
^{ f (t)} of a function f (t) is defined by

whenever the integral exists. Similarly, using (8.14), we define the inverse Fourier trans-
form of G( jω) as

whenever the integral exists. The relations (8.15) and (8.16) together constitute the
Fourier transform pair, and they provide a pathway between the time- and frequency-
domain representations of a function. Equation (8.15) expresses f (t) in the frequency
domain, and is analogous to resolving it into harmonic components with a continuously
varying frequencyω.  This contrasts with a Fourier series representation of a periodic
function, where the resolved frequencies take discrete values.

(8.13)

(8.14)

(8.15)

(8.16)

F jω( ) = #
−∞

∞

f t( ) e−jωt dt

f t( ) = 
1

2π
------#

−∞

∞

F jω( ) ejωt dω

^ f t( ){ } = F jω( ) = #
−∞

∞

f t( ) e−jωt dt

^ −1 G jω( ){ } = g t( ) = 
1

2π
------#

−∞

∞

G jω( ) ejω t dω
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The conditions for the existence of the Fourier transform F( jω) of the function f (t)
are Dirichlet’s conditions (Theorem 8.1). Corresponding trigonometric forms of the
Fourier transform pair may be readily written down from (8.9), (8.10) and (8.11).

Does the function

f (t) = 1 (−∞ , t , ∞)

have a Fourier transform representation?

Solution Since the area under the curve of y = f (t) (−∞ , t , ∞) is infinite, it follows that
| f (t) |dt is unbounded, so the conditions of Theorem 8.1 are not satisfied. We can

confirm that the Fourier transform does not exist from the definition (8.15). We have

Since this last limit does not exist, we conclude that f (t) = 1 (−∞ , t , ∞) does not
have a Fourier transform representation.

It is clear, using integration by parts, that f (t) = t (−∞ , t , ∞) does not have a
Fourier transform, nor indeed does f (t) = t n (n . 1, an integer; −∞ , t , ∞). While
neither eat nor e−at (a . 0) has a Fourier transform, when we consider the causal signal
f (t) = H(t) e−at (a . 0), we do obtain a transform.

Find the Fourier transform of the one-sided exponential function

f (t) = H(t) e−at (a . 0)

where f (t) is the Heaviside unit step function.

Solution The graph of f (t) is shown in Figure 8.5, and we can show that the area under the graph
is bounded. Hence, by Theorem 8.1, a Fourier transform exists. Using the definition
(8.15), we have

Example 8.1

e−∞
∞

#
−∞

∞

1 e−jω t dt = #
−α

α

α ∞→
lim e−jωt dt

= − 1
jω------ e−jωα − ejωα( )

α ∞→
lim

= 2 sin ωα
ω--------------------α ∞→

lim

Example 8.2

^ f t( ){ } = #
−∞

∞

H t( ) e−at e−jω t dt a . 0( )

= #
0

∞

e− a+ jω( ) t dt = − e− a+ jω( )t

a + jω-----------------
0

∞
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so that

(8.17)

Calculate the Fourier transform of the rectangular pulse

Solution The graph of f (t) is shown in Figure 8.6, and since the area under it is finite, a Fourier
transform exists. From the definition (8.15), we have

= 2AT sinc ωT

where sinc x is defined, as in Example 7.12, by

 

Figure 8.5
The ‘one-sided’ 
exponential function 
of  Example 8.2.

^ H t( ) e−at{ } = 
1

a + jω----------------

Example 8.3

f t( ) = 
A | t | < T( )
0 | t | . T( )




f (t)

e−atH(t) (a > 0)

t e−atH(t) (a > 0)

e−a|t | (a > 0)

2AT sinc ωT

^ f t( ){ } = #
−T

T

A e−jωt dt = 
− A

jω------ e−jω t

−T

T

ω 0≠

2A ω = 0 
 
 
 
 

Figure 8.6 The 
rectangular pulse of 
Example 8.3.

sinc x = 
sin x

x
---------- x 0≠( )

1 x = 0( )





^ f t( ){ }  = #
−∞

∞

f t( ) e−jω t dt

A | t |  <  T( )
0 | t |  .  T( )




1
a  +  jω-----------------

1

a  +  jω( )2
-----------------------

2a

a2 + ω2
-------------------

Figure 8.7
A brief table of 
Fourier transforms.



8.2  THE FOURIER TRANSFOR M 547

By direct use of the definition (8.15), we can, as in Examples 8.2 and 8.3, determine
the Fourier transforms of some standard functions. A brief table of transforms is given
in Figure 8.7.

In MATLAB, incorporating the Symbolic Math Toolbox, the Fourier transform F( jω)
of f (t) is obtained using the commands

syms w t
F=fourier(f(t),t,w)

whilst the inverse Fourier transform f (t) of F( jω) is obtained using the command

f=ifourier(F(jw),w,t)

Returning to Example 8.2, and considering the particular case of a = 2, the
commands

syms w t
H=sym(’heaviside(t)’);
F=fourier(H*exp(-2*t))

in MATLAB return

F=1/(2+w*1i)

as expected. In MATLAB there is an assume command (as in MAPLE) to enable us
to specify that a > 0. However, since abs(a) = a for a > 0, the following commands
in MATLAB can be used to deal with the general case

syms w t a
H=sym(’heaviside(t)’);
F=fourier(H*exp(-abs(a)*t),t,w)

As another illustration, consider the function f (t) = e−a|t | , a > 0, given in the
table of Figure 8.7. Considering the particular case a = 2 then the MATLAB
commands

syms w t
F=fourier(exp(-2*abs(t)),t,w)

return

F=4/(4+w^2)

as specified in the table. It is left as an exercise to consider the general case of a. To
illustrate the use, in MATLAB, of the ifourier command this transform can be
inverted using the commands

syms w t
f=ifourier(4/(w^2+4),w,t)

which return
f= exp(−2*abs(t))
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8.2.3 The continuous Fourier spectra

From Figure 8.7, it is clear that Fourier transforms are generally complex-valued
functions of the real frequency variable ω. If ^{ f (t)} = F( jω) is the Fourier transform
of the signal f (t) then F (jω) is also known as the (complex) frequency spectrum of
f (t). Writing F ( jω) in the exponential form

plots of |F ( jω) | and arg F( jω), which are both real-valued functions of ω, are called the
amplitude and phase spectra respectively of the signal f (t). These two spectra
represent the frequency-domain portrait of the signal f (t). In contrast to the situation
when f (t) was periodic, where (as shown in Section 7.4.3) the amplitude and phase
spectra were defined only at discrete values of ω , we now see that both spectra are
defined for all values of the continuous variable ω .

Determine the amplitude and phase spectra of the causal signal

f (t) = e−at H(t) (a . 0)

and plot their graphs.

Solution From (8.17),

^{ f (t)} = F( jω) = 

As another illustration consider the Fourier transform F(ω) = 1/(a + jω)2 given in
the second entry of the table in Figure 8.7. The MATLAB commands

syms w t a
f=ifourier(1/(a+i*w)^2,w,t)

f=simplify(f)

return

f=(t*exp(-a*t)*(sign(real(a))+sign(t)))/2

corresponding to the table.
Considering the rectangular pulse f (t) of Example 8.3, we first express the pulse

in terms of Heaviside functions as

f (t) = A(H(t + T ) − H(t − T ))

and then use the MATLAB commands

syms w t T A
H=sym(’heaviside(t+T)-heaviside(t-T)’);

F=fourier(A*H,t,w);
F=simplify(F)

which return

F=2*A*sin(T*w)/w

F( jω) = |F ( jω) | e j arg F( jω)

Example 8.4

1
a + jω----------------
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Thus the amplitude and argument of F ( jω) are

| F( jω) | = (8.18)

arg F( jω) = tan−1(1) − tan−1 = − tan−1 (8.19)

These are the amplitude and phase spectra of f (t), and are plotted in Figure 8.8.

Generally, as we have observed, the Fourier transform and thus the frequency
spectrum are complex-valued quantities. In some cases, as for instance in
Example 8.3, the spectrum is purely real. In Example 8.3 we found that the
transform of the pulse illustrated in Figure 8.6 was

F( jω) = 2AT sinc ωT

where

is an even function of ω, taking both positive and negative values. In this case the
amplitude and phase spectra are given by

|F( jω) | = 2AT |sinc ωT | (8.20)

(8.21)

with corresponding graphs shown in Figure 8.9.

1

a2 + ω2( )
---------------------------

ω
a
---- 
  ω

a
---- 
 

sinc ωT = 
sin ωT

ωT
---------------- ω   0≠( )

1 ω  = 0( )





arg F jω( ) = 
0 sinc ωT > 0( )
π sinc ωT , 0( )




Figure 8.8 (a) Amplitude and (b) phase spectra of the one-sided exponential function f(t) of Example 8.4.
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In fact, when the Fourier transform is a purely real-valued function, we can plot all
the information on a single frequency spectrum of F( jω) versus ω . For the rectangular
pulse of Figure 8.6 the resulting graph is shown in Figure 8.10.

From Figure 8.7, we can see that the Fourier transforms discussed so far have
two properties in common. First, the amplitude spectra are even functions of the
frequency variable ω. This is always the case when the time signal f (t) is real; that
is, loosely speaking, a consequence of the fact that we have decomposed, or analysed
f (t), relative to complex exponentials rather than real-valued sines and cosines. The
second common feature is that all the amplitude spectra decrease rapidly as ω increases.
This means that most of the information concerning the ‘shape’ of the signal f (t)
is contained in a fairly small interval of the frequency axis around ω = 0. From another
point of view, we see that a device capable of passing signals of frequencies up to
about ω = 3π /T would pass a reasonably accurate version of the rectangular pulse of
Example 8.3.

Figure 8.9
(a) Amplitude and 
(b) spectra of the pulse

.
f t( )

A t  <  T( )

0 t  .  T( )



=

Figure 8.10
Frequency spectrum 
(real-valued) of the pulse

.
f t( )

A t  <  T( )

0 t  .  T( )



=
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Whenever possible check your answers using MATLAB or MAPLE.

Calculate the Fourier transform of the two-sided 
exponential pulse given by

(a > 0)

Determine the Fourier transform of the ‘on–off ’ 
pulse shown in Figure 8.11.

A triangular pulse is defined by

Sketch f(t) and determine its Fourier transform. 
What is the relationship between this pulse and 
that of Exercise 2?

Determine the Fourier transforms of

Sketch the function h(t) = f (t) − g(t) and determine 
its Fourier transform.

Calculate the Fourier transform of the ‘off–on–off ’ 
pulse f(t) defined by

f (t) = 

Show that the Fourier transform of

is

Calculate the Fourier transform of

f (t) = e−at sin ω0t H(t)

Based on (8.10) and (8.11), define the Fourier sine 
transform as

and the Fourier cosine transform as

Show that

has Fourier cosine transform

 

Show that the Fourier sine and cosine transforms of

are

respectively.

Find the sine and cosine transforms of 
f (t) = e−at H(t) (a > 0).

8.2.4 Exercises

1

f t( ) = 
eat  t < 0( )
e−at t . 0( )




2

Figure 8.11 The ‘on–off ’ pulse of Exercise 2.

3

f t( ) = 
A/T( )t + A −T < t < 0( )
−A/T( )t + A 0 t < T,( )




4

f t( ) = 
2K | t | < 2( )
0  | t | . 2( )




g t( ) = 
K | t | < 1( )
0 | t | . 1( )




5

0 t , −2( )
−1 −2 < t , −1( )

1 −1 < t < 1( )
−1 1 , t < 2( )

0 t . 2( )








6

f t( ) = 
sin at | t | < π/a( )
0  | t | . π/a( )




j2a sin πω /a( )
ω2 − a2

-----------------------------------

7

8

Fs x( ) = #
0

∞

f t( ) sin xt dt

Fc x( ) = #
0

∞

f t( ) cos xt dt

f t( ) = 

0 t , 0( )
cos at 0 < t < a( )
0 t . a( )






1
2
---

sin 1 + x( )a
1 + x

----------------------------- + 
sin 1 − x( )a

1 − x
-----------------------------

9

f t( ) = 

0 t , 0( )
1 0 < t < a( )
0 t . a( )






1 − cos xa
x

--------------------------,
sin xa

x
--------------

10
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Properties of the Fourier transform

In this section we establish some of the properties of the Fourier transform that allow
its use as a practical tool in system analysis and design.

8.3.1 The linearity property

Linearity, as with the Laplace transform, is a fundamental property of the Fourier
transform, and may be stated as follows.

As a consequence of this, we say that the Fourier transform operator ^ is a linear
operator. The proof of this property follows readily from the definition (8.15), since

= αF( jω) + βG( jω)

Clearly the linearity property also applies to the inverse transform operator ̂ −1.

8.3.2 Time-differentiation property

If the function f (t) has a Fourier transform F( jω) then, by (8.16), 

Differentiating with respect to t gives

implying that the time signal d f /dt is the inverse Fourier transform of ( jω)F( jω). In
other words

 = ( jω)F ( jω)

Repeating the argument n times, it follows that

8.3

If f (t) and g(t) are functions having Fourier transforms F( jω) and G( jω) respectively,
and if α and β are constants, then

^{α f (t) + βg(t)} = α^{ f (t)} + β^{g(t)} = αF( jω) + βG( jω) (8.22)

^ α f t( ) + βg t( ){ } = #
−∞

∞

α f t( ) + βg t( )[ ] e−jω t dt

= α#
−∞

∞

f t( ) e−jω t dt + β#
−∞

∞

g t( ) e−jω t dt

f t( ) = 
1

2π
------#

−∞

∞

F jω( ) ejω t dω

df
dt
----- = 

1
2π
------#

−∞

∞
∂
∂ t
---- F jω( ) ejω t[ ] dω = 

1
2π
------#

−∞

∞

jω( )F jω( ) ejω t dω

^
df
dt
-----

 
 
 
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The result (8.23) is referred to as the time-differentiation property, and may be used
to obtain frequency-domain representations of differential equations.

Show that if the time signals y(t) and u(t) have Fourier transforms Y( jω) and U( jω)
respectively, and if

(8.24)

then Y( jω) = G( jω)U( jω) for some function G( jω).

Solution Taking Fourier transforms throughout in (8.24), we have

which, on using the linearity property (8.22), reduces to

Then, from (8.23),

( jω)2Y( jω) + 3( jω)Y( jω) + 7Y( jω) = 3( jω)U( jω) + 2U( jω)

that is,

(−ω 2 + j3ω + 7)Y ( jω) = ( j3ω + 2)U( jω)

giving

Y ( jω) = G( jω)U( jω)

where

G( jω) = 

The reader may at this stage be fearing that we are about to propose yet another
method for solving differential equations. This is not the idea! Rather, we shall show
that the Fourier transform provides an essential tool for the analysis (and synthesis) of
linear systems from the viewpoint of the frequency domain.

8.3.3 Time-shift property

If a function f (t) has Fourier transform F( jω) then what is the Fourier transform of the
shifted version g(t) = f (t − τ ), where τ  is a constant? From the definition (8.15),

 = ( jω)nF( jω) (8.23)^
dnf

dtn
-------

 
 
 

Example 8.5

d2y t( )
dt2

-------------- + 3
dy t( )

dt
------------ + 7y t( ) = 3

du t( )
dt

------------- + 2u t( )

^
d2y t( )

dt2
-------------- + 3

dy t( )
dt

------------ + 7y t( )
 
 
 

 = ^ 3
du t( )

dt
------------- + 2u t( )

 
 
 

^
d2y t( )

dt2
--------------

 
 
 

 + 3^
dy t( )

dt
------------

 
 
 

 + 7^ y t( ){ } = 3^
du t( )

dt
-------------

 
 
 

 + 2^ u t( ){ }

2 + j3ω
7 − ω2 + j3ω
----------------------------------
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Making the substitution x = t − τ , we have

that is,

The result (8.25) is known as the time-shift property, and implies that delaying a signal
by a time τ  causes its Fourier transform to be multiplied by e− jωτ. Note the similarity
between this and the first-shift theorem in Laplace transforms, Theorem 5.1.

Since

| e−jω τ | = | cos ωτ − j sin ωτ | = | | = 1

we have

| e−jωτ F ( jω) | = | F ( jω) |

indicating that the amplitude spectrum of f (t − τ ) is identical with that of f (t). However,

arg[e− jω t F ( jω)] = arg F ( jω) − arg e jωτ = arg F ( jω) − ωτ

indicating that each frequency component is shifted by an amount proportional to its
frequency ω.

Determine the Fourier transform of the rectangular pulse f (t) shown in Figure 8.12.

Solution This is just the pulse of Example 8.3 (shown in Figure 8.6), delayed by T. The pulse of
Example 8.3 had a Fourier transform 2AT sinc ωT, and so, using the shift property
(8.25) with τ = T, we have

^{ f (t)} = F ( jω) = e−jωT 2AT sinc ωT = 2AT e−jωT sinc ωT 

8.3.4 Frequency-shift property

Suppose that a function f (t) has Fourier transform F ( jω). Then, from the definition
(8.15), the Fourier transform of the related function g(t) = f (t) is

^{ f (t − τ)} = e−jωτ F ( jω) (8.25)

^ g t( ){ } = #
−∞

∞

g t( ) e−jω t dt = #
−∞

∞

f t − τ( ) e−jω t dt

^ g t( ){ } = #
−∞

∞

f x( ) e−jω x+τ( ) dx = e−jωτ#
−∞

∞

f x( ) e−jω xdx = e−jωτ F jω( )

(cos2ωτ sin2ωτ)+

Example 8.6

Figure 8.12
Rectangular pulse 
of Example 8.6.

ejω0 t
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= F ( jω∼), by definition

Thus

The result (8.26) is known as the frequency-shift property, and indicates that multiplication
by simply shifts the spectrum of f(t) so that it is centred on the point ω = ω0 in the
frequency domain. This phenomenon is the mathematical foundation for the process
of modulation in communication theory, illustrated in Example 8.7.

Determine the frequency spectrum of the signal g(t ) = f (t ) cos ωct.

Solution Since cos ωct = , it follows, using the linearity property (8.22), that

^{g(t)} = 

= 

If ^{ f (t)} = F ( jω) then, using (8.26),

^{ f (t) cos ω ct} = ^{g(t)} = F ( j(ω − ωc)) + F ( j(ω + ωc))

The effect of multiplying the signal f (t) by the carrier signal cos ωct is thus to produce
a signal whose spectrum consists of two (scaled) versions of F ( jω), the spectrum of
f (t): one centred on ω = ωc and the other on ω = −ωc. The carrier signal cos ωct is said
to be modulated by the signal f (t).

Demodulation is considered in Review exercise 5 (Section 8.9).

8.3.5 The symmetry property

From the definition of the transform pair (8.15) and (8.16) it is apparent that there is
some symmetry of structure in relation to the variables t and ω. We can establish the
exact form of this symmetry as follows. From (8.16),

or, equivalently, by changing the ‘dummy’ variable in the integration,

^ { f (t)} = F ( j(ω − ω 0)) (8.26)

^ g t( ){ } = #
−∞

∞

e
jω0t

f t( ) e−jω t dt = #
−∞

∞

f t( ) e
−j ω −ω0( )t

dt

= #
−∞

∞

f t( ) e−jω̃t dt,  where ω̃ = ω − ω0

e
jω0t

ejω 0t

Example 8.7

1
2
--- ejωct 1 e−jωct( )

^ 1
2
--- f t( ) ejωct 1 e−jωct( ){ }

1
2
---^ f t( ) ejωct{ } 1 1

2
---^ f t( ) e−jωct{ }

1
2
---

1
2
---

f t( ) = 
1

2π
------#

−∞

∞

F jω( ) ejω t dω

2π f t( ) = #
−∞

∞

F jy( ) e jyt dy
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so that

or, on replacing t by ω,

(8.27)

The right-hand side of (8.27) is simply the definition (8.15) of the Fourier transform
of F ( jt), with the integration variable t replaced by y. We therefore conclude that

^{F ( jt)} = 2π f (−ω) (8.28a)

given that

^{ f (t)} = F ( jω) (8.28b)

Determine the Fourier transform of the signal

(8.29)

Solution From Example 8.3, we know that if

(8.30)

then

^{ f (t)} = F ( jω) = 2AT sinc ωT

Thus, by the symmetry property (8.28), F ( jt) and 2π f ( −ω) are also a Fourier transform
pair. In this case

F ( jt) = 2AT sinc tT

and so, choosing T = a and A = C/2a to correspond to (8.29), we see that

F ( jt) = C sinc at = g(t)

has Fourier transform 2π f (−ω). Rewriting (8.30), we find that, since |ω | = |−ω |,

^{C sinc at} = 

2π f −t( ) = #
−∞

∞

F jy( ) e−jyt dy

2π f −ω( ) = #
−∞

∞

F jy( ) e−jyω dy

This (8.28) tells us that if f (t) and F ( jω) form a Fourier transform pair then F ( jt)
and 2π f (−ω) also form a Fourier transform pair. This property is referred to as the
symmetry property of Fourier transforms or duality property.

Example 8.8

g t( )  = C sinc at = 
C sin at

at
------------------ t 0≠( )

 C t = 0( )





f t( ) = 
A | t | T<( )
0 | t | . T( )




2πC/2a |ω | a<( )
 0  |ω | . a( )


 πC/a |ω | a<( )

 0 |ω | . a( )



=
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A graph of g(t) and its Fourier transform G( jω) = 2πf(−ω) is shown in Figure 8.13.

Figure 8.13
The Fourier 
transform pair 
g(t) and G( jω) of 
Example 8.8.

Using the MATLAB commands

syms w t a C
F=fourier(C*sin(a*t)/(a*t),t,w);
F=simplify(F)

returns

F=(C*pi*(heaviside(a+w)+heaviside(a-w)-1))/a

which is the answer given in the solution expressed in terms of Heaviside functions.

Whenever possible check your answers using MATLAB or MAPLE.

Use the linearity property to verify the result in 
Exercise 4.

If y(t) and u(t) are signals with Fourier transforms 
Y( jω) and U( jω) respectively, and 

show that Y( jω) = H( jω)U( jω) for some function 
H( jω). What is H( jω)?

Use the time-shift property to calculate the Fourier 
transform of the double pulse defined by

Calculate the Fourier transform of the windowed 
cosine function

f (t) = cosω 0t [H t + T  − H t − T ]

Find the Fourier transform of the shifted form of 
the windowed cosine function

g(t) = cosω 0t [H(t) − H(t − T )]

Calculate the Fourier transform of the windowed 
sine function

f (t) = sin 2t[H(t + 1) − H(t − 1)]

8.3.6 Exercises

11

12

d2y t( )
dt2

-------------- + 3
dy t( )

dt
------------ + y t( ) = u t( )

13

f t( ) = 
1 1 | t | 2< <( )
0 otherwise( )




14

-

 1

2
--- 
 -


 1

2
--- 


15

16
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The frequency response
In this section we first consider the relationship between the Fourier and Laplace transforms,
and then proceed to consider the frequency response in terms of the Fourier transform.

8.4.1 Relationship between Fourier and Laplace transforms

The differences between the Fourier and Laplace transforms are quite subtle. At first
glance it appears that to obtain the Fourier transform from the Laplace transform we
merely write jω for s, and that the difference ends there. This is true in some cases, but
not in all. Strictly, the Fourier and Laplace transforms are distinct, and neither is a
generalization of the other.

Writing down the defining integrals, we have

The Fourier transform

(8.31)

The bilateral Laplace transform

(8.32)

The unilateral Laplace transform

(8.33)

There is an obvious structural similarity between (8.31) and (8.32), while the connection
with (8.33) is not so clear in view of the lower limit of integration. In the Laplace transform
definitions recall that s is a complex variable, and may be written as

s = σ + jω (8.34)

where σ and ω are real variables. We can then interpret (8.31), the Fourier transform of
f (t), as a special case of (8.32), when σ = 0, provided that the Laplace transform exists
when σ = 0, or equivalently when s = jω (that is, s describes the imaginary axis in the
s plane). If we restrict our attention to causal functions, that is functions (or signals) that
are zero whenever t , 0, the bilateral Laplace transform (8.32) is identical with the
unilateral Laplace transform (8.33). The Fourier transform can thus be regarded as a
special case of the unilateral Laplace transform for causal functions, provided again that
the unilateral Laplace transform exists on the imaginary axis s = jω.

The next part of the story is concerned with a class of time signals f(t) whose
Laplace transforms do exist on the imaginary axis s = jω. Recall from (5.43) that a
causal linear time-invariant system with Laplace transfer function G(s) has an impulse
response h(t) given by

8.4

^ f t( ){ } = #
−∞

∞

f t( ) e−jω t dt

+B f t( ){ } = #
−∞

∞

f t( ) e−st dt

+ f t( ){ } = #
0−

∞

f t( ) e−st dt
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h(t) = + −1{G(s)} = g(t)H(t), say (8.35)

Furthermore, if the system is stable then all the poles of G(s) are in the left half-plane,
implying that g(t)H(t) → 0 as t → ∞. Let the pole locations of G(s) be

p1, p2, . . . , pn

where

pk = −  + jbk

in which ak, bk are real and ak ≠ 0 for k = 1, 2, . . . , n. Examples of such poles are
illustrated in Figure 8.14, where we have assumed that G(s) is the transfer function of
a real system so that poles that do not lie on the real axis occur in conjugate pairs. The
Laplace transfer function G(s) will exist in the shaded region of Figure 8.14 defined by

Re(s) .−c 2

where −c 2 is the abscissa of convergence and is such that

0 , c 2 , min a2
k

The important conclusion is that for such systems G(s) always exists on the imaginary
axis s = jω, and so h(t) = g(t)H(t) always has a Fourier transform. In other words, we
have demonstrated that the impulse response function h(t) of a stable causal, linear
time-invariant system always has a Fourier transform. Moreover, we have shown that
this can be found by evaluating the Laplace transform on the imaginary axis; that is,
by putting s = jω in the Laplace transform. We have thus established that Fourier
transforms exist for a significant class of useful signals; this knowledge will be used
in Section 8.4.2.

Which of the following causal time-invariant systems have impulse responses that
possess Fourier transforms? Find the latter when they exist.

(a)

(b)

(c)

ak
2

Figure 8.14
Pole locations for 
G(s) and the region 
of existence of 
G(s).

Example 8.9

d2y t( )
dt2

-------------- + 3
dy t( )

dt
------------ + 2y t( ) = u t( )

d2y t( )
dt2

-------------- + ω2y t( ) = u t( )

d2y t( )
dt2

-------------- + 
dy t( )

dt
------------ + y t( ) = 2u t( ) + 

du t( )
dt

-------------
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Solution Assuming that the systems are initially in a quiescent state when t , 0, taking Laplace
transforms gives

(a)

(b)

(c)

In case (a) the poles of G1(s) are at s = −1 and s = −2, so the system is stable and the
impulse response has a Fourier transform given by

In case (b) we find that the poles of G2(s) are at s = jω and s = − jω ; that is, on the
imaginary axis. The system is not stable (notice that the impulse response does not
decay to zero), and the impulse response does not possess a Fourier transform.

In case (c) the poles of G3(s) are at s =  and s = . Since these
are in the left half-plane, Re(s) , 0, we conclude that the system is stable. The Fourier
transform of the impulse response is then

 

8.4.2 The frequency response

For a linear time-invariant system, initially in a quiescent state, having a Laplace transfer
function G(s), the response y(t) to an input u(t) is given in (5.28) as

Y (s) = G(s)U(s) (8.36)

where Y(s) and U(s) are the Laplace transforms of y(t) and u(t) respectively. In
Section 5.5 we saw that, subject to the system being stable, the steady-state response
yss(t) to a sinusoidal input u(t) = A sin ω t is given by (5.63) as

yss(t) = A |G( jω) | sin[ω t + arg G( jω)] (8.37)

That is, the steady-state response is also sinusoidal, with the same frequency as the
input signal but having an amplitude gain |G( jω) | and a phase shift argG( jω).

More generally, we could have taken the input to be the complex sinusoidal signal

u(t) = A e jω t

and, subject to the stability requirement, showed that the steady-state response is

yss(t) = AG( jω) e jω t (8.38)

or

yss(t) = A |G( jω) | e j[ω t+arg G( jω)] (8.39)

Y s( ) = 1

s2 + 3s + 2
----------------------------U s( ) = G1 s( )U s( )

Y s( ) = 1

s2 + ω2
------------------U s( ) = G2 s( )U s( )

Y s( ) = s + 2

s2 + s + 1
------------------------U s( ) = G3 s( )U s( )

G1 jω( ) = 1

s2 + 3s + 2
----------------------------

s=jω

 = 
1

2 − ω2 + j3ω
---------------------------------

= 2 − ω2 − j3ω
2 − ω2( )2 + 9ω2

---------------------------------------- = 
2 − ω2( ) − j3ω
ω4 + 5ω2  + 4

--------------------------------------

−1
2
---  + j1

2
--- 3 −1

2
---  − j1

2
--- 3

G3 jω( ) = 
2 + jω

1 − ω2 + jω
------------------------------
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As before, |G( jω) | and argG( jω) are called the amplitude gain and phase shift
respectively. Both are functions of the real frequency variable ω, and their plots versus
ω constitute the system frequency response, which, as we saw in Section 5.5,
characterizes the behaviour of the system. Note that taking imaginary parts throughout in
(8.39) leads to the sinusoidal response (8.37).

We note that the steady-state response (8.38) is simply the input signal Ae jω t

multiplied by the Fourier transform G( jω) of the system’s impulse response.
Consequently G( jω) is called the frequency transfer function of the system.
Therefore if the system represented in (8.36) is stable, so that G( jω) exists as the
Fourier transform of its impulse response, and the input u(t) = + −1{U(s)} has a Fourier
transform U( jω), then we may represent the system in terms of the frequency transfer
function as 

Equation (8.40) thus determines the Fourier transform of the system output, and can
be used to determine the frequency spectrum of the output from that of the input. This
means that both the amplitude and phase spectra of the output are available, since

We shall now consider an example that will draw together both these and some earlier ideas
which serve to illustrate the relevance of this material in the communications industry.

A signal f(t) consists of two components:

(a) a symmetric rectangular pulse of duration 2π (see Example 8.3) and

(b) a second pulse, also of duration 2π (that is, a copy of (a)), modulating a signal with
carrier frequency ω 0 = 3 (the process of modulation was introduced in Section 8.3.4).

Write down an expression for f (t) and illustrate its amplitude spectrum. Describe the
amplitude spectrum of the output signal if f (t) is applied to a stable causal system with
a Laplace transfer function

Solution Denoting the pulse of Example 8.3, with T = π, by Pπ(t), and noting the use of the term
‘carrier signal’ in Example 8.7, we have

f (t) = Pπ(t) + (cos 3t )Pπ(t)

From Example 8.3,

^{Pπ(t)} = 2π sinc ωπ

so, using the result of Example 8.7, we have

^{ f (t)} = F ( jω) = 2π sinc ωπ + [2π sinc(ω − 3)π + 2π sinc(ω + 3)π]

The corresponding amplitude spectrum obtained by plotting |F(jω) | versus ω is illustrated
in Figure 8.15.

Y ( jω) = G( jω)U( jω) (8.40)

|Y ( jω) | = |G( jω) | |U( jω) |

arg Y ( jω) = arg G( jω) + arg U( jω)

(8.41a)

(8.41b)

Example 8.10

G s( ) = 
1

s2 +  2s+ 1
--------------------------------

1
2
---



562 THE FOURIER TRANSFOR M

Since the system with transfer function

is stable and causal, it has a frequency transfer function

so that its amplitude gain is

The amplitude spectrum of the output signal |Y( jω) | when the input is f (t) is then
obtained from (8.41a) as the product of |F( jω) | and |G( jω) |. Plots of both the
amplitude gain spectrum |G( jω) | and the output amplitude spectrum |Y( jω) | are
shown in Figures 8.16(a) and (b) respectively. Note from Figure 8.16(b) that we have
a reasonably good copy of the amplitude spectrum of Pπ(t) (see Figure 8.9 with A =
π, T = 1). However, the second element of f (t) has effectively vanished. Our system
has ‘filtered out’ this latter component while ‘passing’ an almost intact version of the
first. Examination of the time-domain response would show that the first component
does in fact experience some ‘smoothing’, which, roughly speaking, consists of
rounding of the sharp edges. The system considered here is a second-order ‘low-pass’
Butterworth filter (introduced in Section 6.10.1).

Figure 8.15
Amplitude spectrum 
of the signal of 
Example 8.10.

G s( ) = 
1

s2 +  2s+ 1 1
------------------------------------

G jω( ) = 
1

1 − ω2 +  j 2ω
---------------------------------------

|G jω( ) | = 
1

ω4 + 1( )
-------------------------

Figure 8.16 (a) Amplitude gain spectrum of the system with G(s) = 1/(s2 + s + 1);  (b) amplitude spectrum of the output 
signal | Y( jω) | of Example 8.10.

2
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8.4.3 Exercises

Find the impulse response of systems (a) and (c) 
of Example 8.9. Calculate the Fourier transform 
of each using the definition (8.15), and verify the 
results given in Example 8.9.

Use the time-shift property to calculate the Fourier 
transform of the double rectangular pulse f (t) 
illustrated in Figure 8.17.

The system with transfer function

was discussed in Example 8.10. Make a 
transformation

and write down G(s′ ). Examine the frequency 
response of a system with transfer function G(s′ ) 
and in particular find the amplitude response 
when ω = 0 and as ω → ∞. How would you 
describe such a system?

Use the symmetry property, and the result of 
Exercise 1, to calculate the Fourier transform of

Sketch f (t) and its transform (which is real).

Using the results of Examples 8.3 and 8.7, calculate 
the Fourier transform of the pulse-modulated signal

f (t) = PT (t) cos ω 0t

where

is the pulse of duration 2T.

17

18

Figure 8.17 The double rectangular pulse of 
Exercise 18.

19

G s( ) = 
1

s2 +  2s+ 1 
----------------------------------

s 
1
s′
----→

20

f t( ) = 
1

a2 + t2
----------------

21

PT t( ) = 
1 | t | < T( )
0 | t | . T( )




Transforms of the step and impulse functions
In this section we consider the application of Fourier transforms to the concepts of
energy, power and convolution. In so doing, we shall introduce the Fourier transform of
the Heaviside unit step function H(t) and the impulse function δ (t).

8.5.1 Energy and power

In Section 7.4.4 we introduced the concept of the power spectrum of a periodic signal
and found that it enabled us to deduce useful information relating to the latter. In this
section we define two quantities associated with time signals f (t), defined for −∞ , t , ∞,
namely signal energy and signal power. Not only are these important quantities in them-
selves, but, as we shall see, they play an important role in characterizing signal types.

The total energy associated with the signal f (t) is defined as

(8.42)

8.5

E = #
−∞

∞

f t( )[ ]2 dt
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If f (t) has a Fourier transform F ( jω), so that, from (8.16),

then (8.42) may be expressed as

On changing the order of integration, this becomes

(8.43)

From the defining integral (8.15) for F ( jω), we recognize the part of the integrand
within the square brackets as F(−jω), which, if f (t) is real, is such that F (−jω) =
F*( jω), where F*( jω) is the complex conjugate of F ( jω). Thus (8.43) becomes

so that

Equation (8.44) relates the total energy of the signal f(t) to the integral over all frequencies
of |F(jω)|2. For this reason, |F(jω)|2 is called the energy spectral density, and a plot of
|F(jω)|2 versus ω is called the energy spectrum of the signal f(t). The result (8.44) is called
Parseval’s theorem, and is an extension of the result contained in Theorem 7.2 for periodic
signals.

Determine the energy spectral densities of

(a) the one-sided exponential function f (t) = e−atH(t) (a > 0),

(b) the rectangular pulse of Figure 8.6.

Solution (a) From (8.17), the Fourier transform of f (t) is

The energy spectral density of the function is therefore

that is,

(8.44)

f t( ) = 
1

2π
------#

−∞

∞

F jω( ) ejω t dω

E = #
−∞

∞

f t( ) f t( ) dt = #
−∞

∞

f t( ) 1
2π
------#

−∞

∞

F jω( ) e jω t dω dt

E = 
1

2π
------#

−∞

∞

F jω( ) #
−∞

∞

f t( ) ejω t dt dω

E = 
1

2π
------#

−∞

∞

F jω( )F* jω( ) dω

E = #
−∞

∞

f t( )[ ]2 dt = 
1

2π
------#

−∞

∞

| F jω( ) |2 dω

Example 8.11

F jω( ) = 
a − jω
a2 + ω2
------------------

| F jω( ) |2 = F jω( )F* jω( ) = 
a − jω
a2 + ω2
------------------

a + jω
a2 + ω2
------------------
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(b) From Example 8.3, the Fourier transform F ( jω) of the rectangular pulse is

F ( jω) = 2AT sinc ωT

Thus the energy spectral density of the pulse is

|F ( jω) |2 = 4A2T 2 sinc2ωT

There are important signals f (t), defined in general for −∞ , t , ∞, for which the
integral [ f (t)]2dt in (8.42) either is unbounded (that is, it becomes infinite) or does
not converge to a finite limit; for example, sin t. For such signals, instead of considering
energy, we consider the average power P, frequently referred to as the power of the
signal. This is defined by

Note that for signals that satisfy the Dirichlet conditions (Theorem 8.1) the integral
in (8.42) exists and, since in (8.45) we divide by the signal duration, it follows that
such signals have zero power associated with them.

We now pose the question: ‘Are there other signals which possess Fourier transforms?’
As you may expect, the answer is ‘Yes’, although the manner of obtaining the transforms
will be different from our procedure so far. We shall see that the transforms so obtained,
on using the inversion integral (8.16), yield some very ‘ordinary’ signals so far excluded
from our discussion. We begin by considering the Fourier transform of the generalized
function δ (t), the Dirac delta function introduced in Section 5.2.8. Recall from (5.10)
that δ (t) satisfies the sifting property; that is, for a continuous function g(t),

Using the defining integral (8.15), we readily obtain the following two Fourier
transforms:

These two transforms are, by now, unremarkable, and, noting that , we illustrate
the signals and their spectra in Figure 8.18.

(8.45)

(8.46)

(8.47)

| F jω( ) |2 = 
1

a2 + ω2
------------------

e−∞
∞

P = 
1
T
---#

−T/2

T /2

f t( )[ ]2 dt
T ∞→
lim

#
a

b

g t( )δ t − c( ) dt = 
g c( ) a , c , b( )

0 otherwise



^ δ t( ){ } = #
−∞

∞

δ t( ) e−jω t dt = 1

^ δ t − t0( ){ } = #
−∞

∞

δ t − t0( ) e−jω t dt = e
−jω t0

| e
−jωt0 | = 1
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We now depart from the definition of the Fourier transform given in (8.15) and seek
new transform pairs based on (8.46) and (8.47). Using the symmetry (duality) property
of Section 8.3.5, we deduce from (8.46) that

1 and 2πδ (−ω) = 2πδ (ω ) (8.48)

is another Fourier transform pair. Likewise, from (8.47), we deduce that

and 2πδ (−ω − t0)

is also a Fourier transform pair. Substituting t0 = −ω 0 into the latter, we have

and 2πδ (ω 0 − ω) = 2πδ (ω − ω 0) (8.49)

as another Fourier transform pair.
We are thus claiming that in (8.48) and (8.49) that f1(t) = 1 and f2(t) = , which

do not have ‘ordinary’ Fourier transforms as defined by (8.15), actually do have
‘generalized’ Fourier transforms given by

F1( jω) = 2πδ (ω) (8.50)

These results may be confirmed in MATLAB. Using the commands

syms w t
D=sym(’dirac(t)’);
F=fourier(D,t,w)

returns

F=1

in agreement with (8.46); whilst the commands

syms w t T
D1=sym(’dirac(t-T)’);
F1=fourier(D1,t,w)

return

F1=exp(-T*w*1i)

which confirms (8.47), with T replacing t0.
Likewise in MAPLE the commands

with(inttrans):
fourier(Dirac(t),t,w);

return the answer 1.

Figure 8.18
(a) δ(t) and its 
amplitude spectrum; 
(b) δ(t − t0) and its 
amplitude spectrum.

e
−jt0t

e
jω0 t

e
jω0t
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F2( jω) = 2πδ (ω − ω 0) (8.51)

respectively. These are the ones given in MATLAB in these cases.
The term ‘generalized’ has been used because the two transforms contain the

generalized functions δ (ω) and δ (ω  − ω 0). Let us now test our conjecture that (8.50) and
(8.51) are Fourier transforms of f1(t) and f2(t) respectively. If (8.50) and (8.51) really are
Fourier transforms then their time-domain images f1(t) and f2(t) respectively should
reappear via the inverse transform (8.16). Substituting F1( jω) from (8.50) into (8.16),
we have

so f1(t) = 1 is recovered.
Similarly, using (8.51), we have

so that f2(t) =  is also recovered.
Our approach has therefore been successful, and we do indeed have a way of

generating new pairs of transforms. We shall therefore use the approach to find
generalized Fourier transforms for the signals

f3(t) = cos ω 0t, f4(t) = sin ω 0t

Since

f3(t) = cos ω 0t = 

the linearity property (8.22) gives

^{ f3(t)} = 

which, on using (8.49), leads to the generalized Fourier transform pair

Likewise, we deduce the generalized Fourier transform pair

The development of (8.53) and the verification that both (8.52) and (8.53) invert
correctly using the inverse transform (8.16) is left as an exercise for the reader.

It is worth noting at this stage that defining the Fourier transform ^{ f (t)} of f (t)
in (8.15) as

whenever the integral exists does not preclude the existence of other Fourier transforms,
such as the generalized one just introduced, defined by other means.

It is clear that the total energy

^{cos ω 0t} = π [δ (ω − ω 0) + δ (ω + ω 0)] (8.52)

^{sin ω 0t} = jπ[δ (ω + ω 0) − δ (ω − ω 0)] (8.53)

^ −1 F1 jω( ){ } = 
1

2π
------#

−∞

∞

F1 jω( ) e jω t dω = 
1

2π
------#

−∞

∞

2πδ ω( ) ejω t dω = 1

^ −1 F2 jω( ){ } = 
1

2π
------#

−∞

∞

2πδ ω − ω 0( ) e jω t dω = e
jω0 t

e
jω 0t

1
2
--- e

jω0t
 + e

−jω0t( )

1
2
---^ e

jω0t{ } + 1
2
---^ e

−jω0 t{ }

^ f t( ){ } = #
−∞

∞

f t( ) e−jω t dt

E = #
−∞

∞

cos2ω 0t dt
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associated with the signal f3(t) = cos ω 0t is unbounded. However, from (8.45), we can
calculate the power associated with the signal as

Thus, while the signal f3(t) = cosω0t has unbounded energy associated with it, its
power content is . Signals whose associated energy is finite, for example f (t) = e−atH(t)
(a > 0), are sometimes called energy signals, while those whose associated energy is
unbounded but whose total power is finite are known as power signals. The concepts
of power signals and power spectral density are important in the analysis of random
signals, and the interested reader should consult specialized texts.

Suppose that a periodic function f (t), defined on −∞ , t , ∞, may be expanded in a
Fourier series having exponential form

What is the (generalized) Fourier transform of f (t)?

Solution From the definition,

which, on using (8.49), gives

That is,

where Fn (−∞ , n , ∞) are the coefficients of the exponential form of the Fourier series
representation of f (t).

Use the result of Example 8.12 to verify the Fourier transform of f (t) = cos ω 0t given in (8.52).

Solution Since

f (t) = cos ω 0t = 

the Fn of Example 8.12 are

F−1 = F1 = 

Fn = 0 (n ≠ ±1)

P = 
1
T
---#

−T /2

T/2

cos2ω0t dt = 
1
T
--- t + 

1
2ω 0
--------- sin 2ω 0t

−T /2

T/2

 = 1
2
---

T ∞→
lim

T ∞→
lim

1
2
---

Example 8.12

f t( ) = Fn e
jnω0t

n=−∞

∞



^ f t( ){ } = ^ Fn e
jnω0t

n=−∞

∞


 
 
 

 = Fn^ e
jnω0 t{ }

n=−∞

∞



^ f t( ){ } = Fn2πδ ω − nω0( )
n=−∞

∞



^ f t( ){ } = 2π Fnδ ω − nω0( )
n=−∞

∞



Example 8.13

1
2
--- e

jω0t
 + 1

2
--- e

−jω0t

1
2
---
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Thus, using the result

we have

^{cos ω 0t} = 2πF−1δ (ω + ω0) + 2πF1δ (ω − ω0)

= π[δ (ω + ω0) + δ (ω − ω0)]

in agreement with (8.52).

Determine the (generalized) Fourier transform of the periodic ‘sawtooth’ function,
defined by

f (t) = (0 , t , 2T )

f (t + 2T ) = f (t)

Solution In Example 7.9 we saw that the exponential form of the Fourier series representation of
f (t) is

with

, F0 = 2, Fn = (n ≠ 0)

It follows from Example 8.12 that the Fourier transform ^{ f (t)} is

Thus we see that the amplitude spectrum simply consists of pulses located at integer
multiples of the fundamental frequency ω 0 = π/T. The discrete line spectra obtained via
the exponential form of the Fourier series for this periodic function is thus reproduced,
now with a scaling factor of 2π.

Confirm this answer using the MATLAB commands

syms w t a
F=fourier(cos(a*t),t,w)

where a has been used to represent ω 0.

^ f t( ){ } = 2π Fnδ ω − ω0( )
n=−∞

∞



Example 8.14

2t
T
-----

f t( ) = Fn e
jnω0t

n=−∞

∞



ω 0 = 
2π
2T
------ = 

π
T
---  

j2
nπ
------

^ f t( ){ } = F jω( ) = 4πδ ω( ) + j
4
n
---δ ω − nω0( )

n=−∞
n 0≠

∞



= 4πδ ω( ) + j4
1
n
---δ ω − 

nπ
T

------ 
 

n=−∞
n 0≠

∞


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Determine the (generalized) Fourier transform of the unit impulse train f(t) =  δ(t − nT),
sometimes called the Shah function, shown symbolically in Figure 8.19.

Solution Although f (t) is a generalized function, and not a function in the ordinary sense, it
follows that since

= f (t)

it is periodic, with period T. Moreover, we can formally expand f (t) as a Fourier series

with

It follows from Example 8.12 that

Thus we have shown that

(8.54)

where ω 0 = 2π /T. That is, the time-domain impulse train has another impulse train as
its transform. We shall see in Section 8.6.4 that this result is of particular importance in
dealing with sampled time signals.

Following our successful hunt for generalized Fourier transforms, we are led to con-
sider the possibility that the Heaviside unit step function H(t) defined in Section 5.2.1
may have a transform in this sense. Recall from (5.18) that if

f (t) = H(t)

then

Example 8.15 Σn=−∞
∞

Figure 8.19
Unit impulse train 
f (t) of Example 8.15.

f t + kT( ) = δ t + k − n( )T( ) k an integer( )
n=−∞

∞



= δ t − mT( ) m = n − k( )
m=−∞

∞



f t( ) = Fn e
jnω0t ω 0 = 

2π
T

------ 
 

n=−∞

∞



Fn = 
1
T
---#

−T/2

T/2

f t( ) e
−jnω0t

dt = 
1
T
---#

−T/2

T /2

δ t( ) e
−jnω0t

dt = 
1
T
--- for all n

^ f t( ){ } = 2π 1
T
--- δ ω − nω 0( ) = ω 0 δ ω − nω 0( )

n=−∞

∞


n=−∞

∞



^ δ t − nT( )
n=−∞

∞


 
 
  = ω 0 δ ω − nω 0( ) 

n=−∞

∞



d f t( )
dt

------------- = δ t( )
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From the time-differentiation property (8.23), we might expect that if

^{H(t)} = �⎯ (jω)

then

( jω) �⎯ ( jω) =  ̂{δ (t)} = 1 (8.55)

Equation (8.55) suggests that a candidate for �⎯ ( jω) might be 1/jω, but this is not the
case, since inversion using (8.16) does not give H(t) back. Using (8.16) and complex
variable techniques, it can be shown that

where sgn(t) is the signum (or sign) function, defined by

However, we note that (8.55) is also satisfied by

(8.56)

where c is a constant. This follows from the equivalence property (see Definition 5.2,
Section 5.2.11) f (ω)δ(ω) = f (0)δ (ω) with f (ω) = jω, which gives

( jω)�⎯ ( jω) = 1 + ( jω)cδ (ω) = 1

Inverting (8.56) using (8.16), we have

and, choosing c = π, we have

Note: This last result may be obtained in terms of Heaviside functions using the
MATLAB commands

syms w t
f=ifourier(1/(i*w))

or using the MAPLE commands 

with(inttrans): 
invfourier(1(I*w),w,t);

^
−1 1

jω----- 
 
 

 = 
1

2π
------#

−∞

∞
ejωt

jω-------- dω = 

1
2
--- t . 0( )

0 t = 0( )

− 1
2
--- t , 0( ) 

 
 
 
 

= 1
2
--- sgn t( )

sgn t( ) = 

1 t . 0( )
0 t = 0( )

−1 t , 0( )





H jω( ) = 
1
jω----- + cδ ω( )

g t( ) = ^ −1 1
jω----- + cδ ω( )

 
 
 

 = 
1

2π
------#

−∞

∞
1

jω----- + cδ ω( ) ejωt dω

= 

c/2π  + 1
2
--- t . 0( )

c/2π t = 0( )
c/2π −  1

2
--- t , 0( )






g t( )  = 

1 t . 0( )
1
2
--- t = 0( )
0 t , 0( )





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Thus we have (almost) recovered the step function H(t). Here g(t) takes the value  at
t = 0, but this is not surprising in view of the convergence of the Fourier integral at
points of discontinuity as given in Theorem 8.1. With this proviso, we have shown that

We must confess to having made an informed guess as to what additional term to add in
(8.56) to produce the Fourier transform (8.57). We could instead have chosen cδ (kω)
with k a constant as an additional term. While it is possible to show that this would not lead
to a different result, proving uniqueness is not trivial and is beyond the scope of this book.

8.5.2 Convolution

In Section 5.3.6 we saw that the convolution integral, in conjunction with the Laplace
transform, provided a useful tool for discussing the nature of the solution of a
differential equation, although it was not perhaps the most efficient way of evaluating
the solution to a particular problem. As the reader may now have come to expect, in
view of the duality between time and frequency domains, there are two convolution
results involving the Fourier transform.

Convolution in time

Suppose that

(8.57)

Using the MATLAB commands

syms w t
H=sym(’heaviside(t)’);
F=fourier(H,t,w)

returns

F=pi*dirac(w)-1i/w

which, noting that –i = 1/ i, confirms result (8.57).
Likewise the MATLAB commands

syms w t T
H=sym(’heaviside(t-T)’);
F=fourier(H,t,w)

return

F=exp(-T*w*1i)*(pi*dirac(w)-1i/w)

which gives us another Fourier transform

^{H(t − T )} = e− jωT(πδ(ω) + 1/jω)

1
2
---

H jω( ) = ^ H t( ){ } = 
1
jω----- + πδ ω( )

^ u t( ){ } = U jω( ) = #
−∞

∞

u t( ) e−jω t dt

^ v t( ){ } = V jω( ) = #
−∞

∞

v t( ) e−jω t dt



8 .5  TRANSFOR MS OF THE STEP AND IMPULSE FUNCTIONS 573

then the Fourier transform of the convolution

(8.58)

is

Introducing the change of variables z → t − τ, τ → τ and following the procedure for
change of variable from Section 5.3.6, the transform can be expressed as

so that

Y( jω) = U( jω)V( jω) (8.59)

That is,

indicating that a convolution in the time domain is transformed into a product in the
frequency domain.

Convolution in frequency

If

^{u(t)} = U( jω), with  

^{v(t)} = V( jω), with  

then the inverse transform of the convolution

^{u(t) * v(t)} = ^{v(t) * u(t)} = U( jω)V( jω) (8.60)

y t( ) = #
−∞

∞

u τ( )v t − τ( ) dτ = u t( ) * v t( )

^ y t( ){ } = Y jω( ) = #
−∞

∞

e−jω t #
−∞

∞

u τ( )v t − τ( ) dτ dt

= #
−∞

∞

u τ( ) #
−∞

∞

e−jω tv t − τ( ) dt dτ

Y jω( ) = #
−∞

∞

u τ( ) #
−∞

∞

v z( ) e−jω z+τ( ) dz dτ

= #
−∞

∞

u τ( ) e−jωτ dτ #
−∞

∞

v z( ) e−jω z dz

u t( ) = 
1

2π
------#

−∞

∞

U jω( ) ejω t dω

v t( ) = 
1

2π
------#

−∞

∞

V jω( ) ejω t dω

U jω( ) * V jω( ) = #
−∞

∞

U jy( )V j ω − y( )( ) dy
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is given by

A change of variable z → ω − y, ω → ω leads to

= 2π u(t)v(t)
That is,

and thus multiplication in the time domain corresponds to convolution in the frequency
domain (subject to the scaling factor 1/(2π)).

^{u(t)v(t)} = U( jω) * V( jω) (8.61)

^ −1 U jω( ) * V jω( ){ } = 
1

2π
------#

−∞

∞

ejω t #
−∞

∞

U jy( )V j ω − y( )( ) dy dω

= 
1

2π
------#

−∞

∞

U jy( ) #
−∞

∞

V j ω − y( )( ) ejω t dω dy

^ −1 U jω( ) * V jω( ){ } = 
1

2π
------#

−∞

∞

U jy( ) #
−∞

∞

V jz( ) ej z+y( )t dz dy

= 
1

2π
------#

−∞

∞

U jy( ) ejyt dy#
−∞

∞

V jz( ) ejzt dz

1
2π
------

8.5.3 Exercises

Verify that ^−1{π[δ(ω − ω 0) + δ(ω + ω 0)]} 
= cos ω 0t.

Show that ^{sin ω 0t} = jπ[δ(ω + ω 0) − δ(ω − ω 0)]. 
Use (8.16) to verify that

^−1{jπ[δ(ω + ω 0) − δ(ω − ω 0)]} = sin ω 0t

Suppose that f(t) and g(t) have Fourier transforms 
F( jω) and G( jω) respectively, defined in the 
‘ordinary’ sense (that is, using (8.15)), and 
show that

 

This result is known as Parseval’s formula.

Use the results of Exercise 24 and the symmetry 
property to show that

Use the convolution result in the frequency domain 
to obtain ^{H(t) sinω 0t}.

Calculate the exponential form of the Fourier series 
for the periodic pulse train shown in Figure 8.20. 
Hence show that

(ω 0 = 2π /T ), and A is the height of the pulse.

22

23

24

#
−∞

∞

f t( )G jt( ) dt = #
−∞

∞

F jt( )g t( ) dt

25

#
−∞

∞

f t( )g t( ) dt = 
1

2π
------#

−∞

∞

F jω( )G −jω( ) dω

26

27

^ f t( ){ } = 
2πAd

T
-------------- sinc

nπd
T

---------- 
  δ ω − nω 0( )

n=−∞

∞



Figure 8.20 Periodic pulse train of Exercise 27.
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The Fourier transform in discrete time

8.6.1 Introduction

The earlier sections of this chapter have discussed the Fourier transform of signals
defined as functions of the continuous-time variable t. We have seen that a major area
of application is in the analysis of signals in the frequency domain, leading to the con-
cept of the frequency response of a linear system. In Chapter 7 we considered signals
defined at discrete-time instants, together with linear systems modelled by difference
equations. There we found that in system analysis the z transform plays a role similar
to that of the Laplace transform for continuous-time systems. We now attempt to
develop a theory of Fourier analysis to complement that for continuous-time systems,
and then consider the problem of estimating the continuous-time Fourier transform in
a form suitable for computer execution.

8.6.2 A Fourier transform for sequences

First we return to our work on Fourier series and write down the exponential form of
the Fourier series representation for the periodic function F(e jθ) of period 2π. Writing
θ = ω t, we infer from (7.39) that

(8.62)

where

(8.63)

Thus the operation has generated a sequence of numbers { fn} from the periodic func-
tion F(e jθ) of the continuous variable θ. Let us reverse the process and imagine that we
start with a sequence {gk} and use (8.62) to define a periodic function ′(e jθ) such that

(8.64)

We have thus defined a transformation from the sequence {gk} to ′(ejθ). This
transformation can be inverted, since, from (8.63),

(8.65)

and we recover the terms of the sequence {gk} from ′(e jθ).
It is convenient for our later work if we modify the definition slightly, defining the

Fourier transform of the sequence {gk} as

8.6

^{gk} = G(e jθ) = (8.66)

F e jθ( ) = fn e jnθ

n=−∞

∞



fn = 
1

2π
------#

−π

π

F ejθ( ) e−jnθ dθ

G̃

G̃′ ejθ( ) = gn e jnθ

n=−∞

∞



G̃

gk = 
1

2π
------#

−π

π

G̃′ ejθ( ) e−jkθ dθ

G̃

gn e−jnθ

n=−∞

∞


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whenever the series converges. The inverse transform is then given from (8.65), by

The results (8.66) and (8.67) thus constitute the Fourier transform pair for the sequence
{gk}. Note that G(ejθ) is a function of the continuous variable θ, and since it is a function
of ejθ it is periodic (with a period of at most 2π), irrespective of whether or not the
sequence {gk} is periodic.

Note that we have adopted the notation G(e jθ) rather than G(θ ) for the Fourier transform,
similar to our use of F( jω) rather than F(ω) in the case of continuous-time signals. In
the present case we shall be concerned with the relationship with the z transform of
Chapter 6, where z = r e jθ, and the significance of our choice will soon emerge.

Find the transform of the sequence , where g0 = 2, g2 = g−2 = 1 and gk = g−k = 0
for k ≠ 0 or 2.

Solution From the definition (8.66),

^{gk} = G(e jθ) = 

= g−2 e j2θ + g01 + g2 e − j2θ = e j2θ + 2 + e− j2θ

= 2(1 + cos 2θ) = 4 cos2θ

In this particular case the transform is periodic of period π, rather than 2π. This is
because g1 = g−1 = 0, so that cos θ does not appear in the transform. Since G(e jθ) is
purely real, we may plot the transform as in Figure 8.21.

Having defined a Fourier transform for sequences, we now wish to link it to the
frequency response of discrete-time systems. In Section 8.4.2 the link between
frequency responses and the Fourier transforms of continuous-time systems was
established using the Laplace transform. We suspect therefore that the z transform
should yield the necessary link for discrete-time systems. Indeed, the argument
follows closely that of Section 8.4.2.

(8.67)gk = 
1

2π
------#

−π

π

G e jθ( ) e jkθ dθ

Example 8.16 gk{ }−∞
∞

gn e−jnθ

n=−∞

∞



Figure 8.21
Transform of 
the sequence of 
Example 8.16.
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For a causal linear time-invariant discrete-time system with z transfer function G(z) the
relationship between the input sequence {uk} and output sequence {yk} in the transform
domain is given from Section 6.6.1 by

Y(z) = G(z)U(z) (8.68)

where U(z) = ]{uk} and Y(z) = ]{yk}.
To investigate the system frequency response, we seek the output sequence corre-

sponding to an input sequence

{uk} = {Ae jωkT} = {Ae jkθ}, θ = ωT (8.69)

which represents samples drawn, at equal intervals T, from the continuous-time com-
plex sinusoidal signal e jω t.

The frequency response of the discrete-time system is then its steady-state response
to the sequence {uk} given in (8.69). As for the continuous-time case (Section 8.4.2),
the complex form e jω t is used in order to simplify the algebra, and the steady-state
sinusoidal response is easily recovered by taking imaginary parts, if necessary.

From Figure 6.3, we saw that

]{Ae jkθ} = ]{A(e jθ)k} = 

so, from (8.68), the response of the system to the input sequence (8.69) is determined by

Y(z) = G(z) (8.70)

Taking the system to be of order n, and under the assumption that the n poles pr

(r = 1, 2, . . . , n) of G (z) are distinct and none is equal to e jθ, we can expand Y(z)/z in
terms of partial fractions to give

(8.71)

where, in general, the constants cr (r = 1, 2, . . . , n) are complex. Taking inverse z
transforms throughout in (8.71) then gives the response sequence as

{y k} = ] −1{Y (z)} = ] −1

that is,

{y k} = c{e jkθ} + (8.72)

If the transfer function G(z) corresponds to a stable discrete-time system then all its
poles pr (r = 1, 2, . . . , n) lie within the unit circle |z | , 1, so that all the terms under the
summation sign in (8.72) tend to zero as k → ∞. This is clearly seen by expressing
pr in the form pr = | pr |  and noting that if | pr | , 1 then | pr |k → 0 as k → ∞.
Consequently, for stable systems the steady-state response corresponding to (8.72) is

= c{e jkθ}

Using the ‘cover-up’ rule for partial fractions, the constant c is readily determined from
(8.70) as

Az

z − e jθ----------------

Az

z − e jθ----------------

Y z( )
z

---------- = 
c

z − ejθ--------------- + 
cr

z − pr

--------------
r=1

n



zc

z − ejθ---------------
 
 
 

 + ] −1 zcr

z − pr

--------------
 
 
 

r=1

n



cr pr
k{ }

r=1

n



e
jφr

ykss
{ }
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c = AG(e jθ )

so that the steady-state response becomes

= AG(e jθ){e jkθ} (8.73)

We have assumed that the poles of G(z) are distinct in order to simplify the algebra.
Extending the development to accommodate multiple poles is readily accomplished,
leading to the same steady-state response as given in (8.73).

The result (8.73) corresponds to (8.38) for continuous-time systems, and indicates
that the steady-state response sequence is simply the input sequence with each term
multiplied by G(e jθ). Consequently G(e jθ) is called the frequency transfer function of
the discrete-time system and, as for the continuous case, it characterizes the system’s
frequency response. Clearly G(e jθ) is simply G(z), the z transfer function, with z = e jθ,
and so we are simply evaluating the z transfer function around the unit circle | z | = 1.
The z transfer function G(z) will exist on |z | = 1 if and only if the system is stable,
and thus the result is the exact analogue of the result for continuous-time systems in
Section 8.4.2, where the Laplace transfer function was evaluated along the imaginary
axis to yield the frequency response of a stable linear continuous-time system.

To complete the analogy with continuous-time systems, we need one further result.
From Section 6.6.2, the impulse response of the linear causal discrete-time system with
z transfer function G(z) is

= ] −1{G(z)} = , say

Taking inverse transforms then gives

since gk = 0 (k , 0) for a causal system. Thus

G (e jθ) = 

and we conclude from (8.66) that G(e jθ) is simply the Fourier transform of the sequence
{gk}. Therefore the discrete-time frequency transfer function G(ejθ) is the Fourier
transform of the impulse response sequence.

Determine the frequency transfer function of the causal discrete-time system shown in
Figure 8.22 and plot its amplitude spectrum.

ykss
{ }

ykδ
{ } gk{ }k=0

∞

G z( ) = gk z−k = gk z−k

k=−∞

∞


k=0

∞



gk e−jkθ

k=−∞

∞



Example 8.17

Figure 8.22
Discrete-time system 
of Example 8.17.
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Solution Using the methods of Section 6.6.1, we readily obtain the z transfer function as

Next we check for system stability. Since z 2 + 0.75z + 0.125 = (z + 0.5)(z + 0.25), the
poles of G(z) are at p1 = −0.5 and p2 = −0.25, and since both are inside the unit circle
|z | = 1, the system is stable. The frequency transfer function may then be obtained as
G(e jθ), where

To determine the amplitude spectrum, we evaluate |G(e jθ) | as

A plot of |G(e jθ) | versus θ then leads to the amplitude spectrum of Figure 8.23.

In Example 8.17 we note the periodic behaviour of the amplitude spectrum, which
is inescapable when discrete-time signals and systems are concerned. Note, however,
that the periodicity is in the variable θ = ωT and that we may have control over the
choice of T, the time between samples of our input signal.

8.6.3 The discrete Fourier transform

The Fourier transform of sequences discussed in Section 8.6.2 transforms a sequence
{gk} into a continuous function G(ejθ) of a frequency variable θ, where θ = ωT and T is
the time between signal samples. In this section, with an eye to computer requirements,
we look at the implications of sampling G(ejθ). The overall operation will have com-
menced with samples of a time signal {gk} and proceeded via a Fourier transformation
process, finally producing a sequence {Gk} of samples drawn from the frequency-domain
image G(ejθ) of {gk}.

Suppose that we have a sequence {gk} of N samples drawn from a continuous-time
signal g(t), at equal intervals T; that is,

{gk} = 

G z( ) = 
2z + 1

z2 + 0.75z + 0.125
---------------------------------------------

G e jθ( ) = 
2 e jθ + 1

ej2θ + 0.75 e jθ + 0.125
-----------------------------------------------------

G e jθ( )  = 
2 e jθ + 1

ej2θ + 0.75 e jθ + 0.125
----------------------------------------------------------

= 
5 + 4 cos θ( )

1.578 + 1.688 cos θ + 0.25 cos 2θ( )
-------------------------------------------------------------------------------------------

Figure 8.23
Amplitude spectrum 
of the system of 
Example 8.17.

g kT( ){ }k=0
N−1
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Using (8.66), the Fourier transform of this sequence is

^{gk} = G (e jθ) = (8.74)

where gk = 0 (k ∉ [0, N − 1]). Then, with θ = ωT, we may write (8.74) as

G(e jωT) = (8.75)

We now sample this transform G(e jωT ) at intervals Δω in such a way as to create
N samples spread equally over the interval 0 < θ < 2π ; that is, over one period of the
essentially periodic function G(e jθ). We then have

N Δθ = 2π

where Δθ is the normalized frequency spacing. Since θ = ωT and T is a constant such
that Δθ = T Δω, we deduce that

(8.76)

Sampling (8.75) at intervals Δω produces the sequence

, where Gk =  (8.77)

Since

it follows that the sequence  is periodic, with period N. We have therefore
generated a sequence of samples in the frequency domain that in some sense represents
the spectrum of the underlying continuous-time signal. We shall postpone the question
of the exact nature of this representation for the moment, but as the reader will have
guessed, it is crucial to the purpose of this section. First, we consider the question of
whether, from knowledge of the sequence of (8.77), we can recover the
original sequence . To see how this can be achieved, consider a sum of the form

, (N − 1) < r < 0 (8.78)

Substituting for Gk from (8.77), we have

gn e−jnθ

n=−∞

∞



gn e−jnωT

n=0

N−1



ω = 
2π
NT
-------Δ

Gk{ }k=0
N−1 gn e−jnk ω TΔ

n=0

N−1



Gk+N = gn e−jn k+N( ) ωTΔ

n=0

N−1



= gn e−jnk ωTΔ e−jn2π, using (8.76)
n=0

N−1



= gn e−jnk ωTΔ = Gk

n=0

N−1



Gk{ }−∞
∞

Gk{ }k=0
N−1

gn{ }n=0
N−1

Sr = Gk e−jkr ω TΔ

k =0

N−1



Sr = gm e−jmk ωTΔ

m=0

N−1


 
 
  e−jkr ωTΔ  = gm e−jk ω m+r( )TΔ

m=0

N−1


k=0

N−1


k=0

N−1


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That is, on interchanging the order of integration,

(8.79)

Now

is a geometric progression with first term e0 = 1 and common ratio e−jΔω (m+r)T, and so the
sum to N terms is thus

When m = −r

Thus

(8.80)

where δij is the Kronecker delta defined by

Substituting (8.80) into (8.79), we have

Returning to (8.78) and substituting for Sr we see that

which on taking n = −r gives

(8.81)

Thus (8.81) allows us to determine the members of the sequence

that is, it enables us to recover the time-domain samples from the frequency-domain
samples exactly.

Sr = gm e−jk ω m+r( )TΔ

k =0

N−1


m=0

N−1



e−jk ω m+r( )TΔ

k =0

N−1



e−jk ω m+r( )TΔ  = 
1 − e−j ω m+r( )NTΔ

1 − e−j ω m+r( )TΔ------------------------------------ = 
1 − e−j m+r( )2π

1 − e−j ω m+r( )TΔ---------------------------------- = 0 m −r≠ nN+( )
k=0

N−1



e−jk ω m+r( )TΔ  = 1 = N
k=0

N−1


k=0

N−1



e−jk ω m+r( )TΔ  = Nδ m,−r

k=0

N−1



δ ij = 
1 i = j( )
0 i  j≠( )




Sr = N gmδ m ,−r = Ng−r

m=0

N−1



g−r = 
1
N
---- Gk e−jkr ωTΔ

k =0

N−1



gn = 
1
N
---- Gk e jkn ωTΔ

k=0

N−1



gn{ }n=0
N−1
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The relations

with Δω = 2π /NT, between the time- and frequency-domain sequences  and
define the discrete Fourier transform (DFT) pair. The pair provide pathways

between time and frequency domains for discrete-time signals in exactly the same sense
that (8.15) and (8.16) defined similar pathways for continuous-time signals. It should
be stressed again that, whatever the properties of the sequences {gn} and {Gk} on the
right-hand sides of (8.77) and (8.81), the sequences generated on the left-hand sides
will be periodic, with period N.

The sequence = {1, 2, 1} is generated by sampling a time signal g(t) at intervals
with T = 1. Determine the discrete Fourier transform of the sequence, and verify that
the sequence can be recovered exactly from its transform.

Solution From (8.77), the discrete Fourier transform sequence is generated by

In this case T = 1 and, with N = 3, (8.76) gives

Thus

= g0 + g1 + g2 = 1 + 2 + 1 = 4

= g0 e0 + g1 e−j2π /3 + g2 e−j4π /3 = 1 + 2 e−j2π /3 + 1 e−j4π /3 

= e−j2π/3 (e j2π /3 + 2 + e−j2π /3) = 2 e−j2π /3 (1 + cos π) = e−j2π /3

= g0 e0 + g1 e−j4π /3 + g2 e−j8π /3

= e−j4π /3 [e j4π /3 + 2 + e−j4π /3] = 2 e−j4π /3 (1 + cos π) = e−j4π /3

Thus

= {4, e−j2π /3, e−j4π /3}

(8.77)

(8.81)

Gk = gn e−jnk ωTΔ

n=0

N−1



gn = 
1
N
---- Gk ejnk ωTΔ

k=0

N−1



gn{ }n=0
N−1

Gk{ }k=0
N−1

Example 8.18 gk{ }k=0
2

Gk{ }k =0
2

Gk = gn e−jkn ωTΔ k = 0, 1, 2( )
n=0

2



ω = 
2π

3 1×
------------ = 2

3
---πΔ

G0 = gn e−jn3032π /3 = gn

n=0

2


n=0

2



G1 = gn e−jn3132π /3

n=0

2


2
3
---

G2 = gn e−jn3232π /3 = gn e−jn4π/3

n=0

2


n=0

2


4
3
---

Gk{ }k =0
2
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We must now show that use of (8.81) will recover the original sequence . From
(8.81), the inverse transform of is given by

again with T = 1, Δω = π and N = 3. Thus

= (4 + e−j2π /3 + e−j4π /3)

= [4 + e−jπ(e jπ /3 + e−jπ /3)] = (4 − 2 cos π) = 1

= (G0 + G1 e j2π /3 + G2 e j4π /3)

= (4 + 1 + 1) = 2

= (G0 + G1 e j4π /3 + G2 e j8π /3)

= [4 + e jπ(e jπ /3 + e−jπ /3)] = (4 − 2 cos π) = 1

That is

= {1, 2, 1} = 

and thus the original sequence has been recovered exactly from its transform.

We see from Example 8.18 that the operation of calculating N terms of the transformed
sequence involved N × N = N 2 multiplications and N(N − 1) summations, all of which
are operations involving complex numbers in general. The computation of the discrete
Fourier transform in this direct manner is thus said to be a computation of complexity
N 2. Such computations rapidly become impossible as N increases, owing to the time
required for this execution.

8.6.4 Estimation of the continuous Fourier transform

We saw in Section 8.4.2 that the continuous Fourier transform provides a means of
examining the frequency response of a stable linear time-invariant continuous-time
system. Similarly, we saw in Section 8.6.2 how a discrete-time Fourier transform could
be developed that allows examination of the frequency response of a stable linear time-
invariant discrete-time system. By sampling this latter transform, we developed the
discrete Fourier transform itself. Why did we do this? First we have found a way (at
least in theory) of involving the computer in our efforts. Secondly, as we shall now
show, we can use the discrete Fourier transform to estimate the continuous Fourier
transform of a continuous-time signal. To see how this is done, let us first examine
what happens when we sample a continuous-time signal.

Suppose that f (t) is a non-periodic continuous-time signal, a portion of which is
shown in Figure 8.24(a). Let us sample the signal at equal intervals T, to generate the
sequence

gk{ }k =0
2

Gk{ }k =0
2

g̃n = 
1
N
---- Gk ejkn ω TΔ

k=0

N−1


2
3
---

g̃0 = 1
3
--- Gk e jk3032π /3 = 1

3
--- Gk

k=0

2


k=0

2

 1
3
---

1
3
---

1
3
---

1
3
---

g̃1 = 1
3
--- Gk e jk3132π /3

k=0

2

 1
3
---

1
3
---

g̃2 = 1
3
--- Gk e jk3232π /3

k=0

2

 1
3
---

1
3
---

1
3
---

1
3
---

g̃n{ }n=0
2

gk{ }k=0
2
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{ f (0), f (T ), . . . , f (nT ), . . . }

as shown in Figure 8.24(b). Imagine now that each of these samples is presented in turn,
at the appropriate instant, as the input to a continuous linear time-invariant system with
impulse response h(t). The output would then be, from Section 5.3.6,

Thus

(8.82)

where

(8.83)

which we identify as a ‘continuous-time’ representation of the sampled version of f (t).
We are thus led to picture fs(t) as in Figure 8.25.

Figure 8.24
(a) Continuous-
time signal f(t); 
(b) samples drawn 
from f (t).

y t( ) = #
−∞

∞

h t − τ( ) f 0( )δ τ( ) dτ + #
−∞

∞

h t − τ( ) f τ( )δ τ − T( ) dτ

+ … + #
−∞

∞

h t − τ( ) f nT( )δ τ − nT( ) dτ + …

= #
−∞

∞

h t − τ( ) f kT( )δ τ − kT( ) dτ
k =0

∞



y t( ) = #
−∞

∞

h t − τ( ) fs τ( ) dτ

fs t( ) = f kT( )δ t − kT( ) =  f t( ) δ t − kT( )
k=0

∞


k=0

∞


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In order to admit the possibility of signals that are non-zero for t , 0, we can
generalize (8.83) slightly by allowing in general that

(8.84)

We can now use convolution to find the Fourier transform Fs( jω) of fs(t). Using the
representation (8.84) for fs(t), we have

Fs( jω) = ^{ fs(t)} =

which, on using (8.61), leads to

(8.85)

where

^{ f (t)} = F ( jω)

From (8.54),

so that, assuming the interchange of the order of integration and summation to be
possible, (8.85) becomes

Figure 8.25
Visualization of fs(t) 
defined in (8.83).

fs t( ) = f t( ) δ t − kT( )
k=−∞

∞



^ f t( ) δ t − kT( )
k=−∞

∞


 
 
 

Fs jω( ) = 
1

2π
------ F jω( ) * ^ δ t − kT( )

k=−∞

∞


 
 
 

^ δ t − kT( )
k=−∞

∞


 
 
 

 = 
2π
T

------ δ ω − 
2πk

T
--------- 

 

k=−∞

∞


 

Fs jω( ) = 
1

2π
------ F jω( ) *

2π
T

------ δ ω − 
2πk

T
--------- 

 

k =−∞

∞



= 
1
T
---#

−∞

∞

F j ω − ω′[ ]( ) δ ω′ − 
2πk

T
--------- 

 

k =−∞

∞

 dω′

= 
1
T
---

k =−∞

∞

 #
−∞

∞

F j ω − ω′[ ]( )δ ω′ − 
2πk

T
--------- 

  dω′

= 
1
T
---

k =−∞

∞

 F j ω − 
2πk

T
--------- 

 
 
 
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Thus

(8.86)

Examining (8.86), we see that the spectrum Fs( jω) of the sampled version fs(t) of
f (t) consists of repeats of the spectrum F( jω) of f (t) scaled by a factor 1/T, these repeats
being spaced at intervals ω0 = 2π /T apart. Figure 8.26(a) shows the amplitude spectrum

Fs jω( ) = 
1
T
--- F j ω − kω0[ ]( ), ω 0 = 

2π
T

------
k=−∞

∞



Figure 8.26
(a) Amplitude 
spectrum of a band-
limited signal f(t); 
(b)–(e) amplitude 
spectrum | Fs ( jω) | 
of fs(t), showing 
periodic repetition 
of | Fs ( jω) | and 
interaction effects 
as T increases.
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|F( jω) | of a band-limited signal f (t); that is, a signal whose spectrum is zero for |ω | . ωm.
Figures 8.26(b−e) show the amplitude spectrum |Fs( jω) | of the sampled version for
increasing values of the sampling interval T. Clearly, as T increases, the spectrum of
F( jω), as observed using |Fs( jω) | in −ωm,ω ,ωm, becomes more and more misleading
because of ‘interaction’ from neighbouring copies.

As we saw in Section 8.6.2, the periodicity in the amplitude spectrum |Fs( jω) | of fs(t)
is inevitable as a consequence of the sampling process, and ways have to be found to
minimize the problems it causes. The interaction observed in Figure 8.26 between the
periodic repeats is known as aliasing error, and it is clearly essential to minimize this
effect. This can be achieved in an obvious way if the original unsampled signal f (t) is
band-limited as in Figure 8.26(a). It is apparent that we must arrange that the periodic
repeats of |F( jω) | be far enough apart to prevent interaction between the copies. This
implies that we have

ω 0 > 2ω m

at an absolute (and impractical!) minimum. Since ω 0 = 2π /T, the constraint implies that

T < π /ω m

where T is the interval between samples. The minimum time interval allowed is

Tmin = π /ω m

which is known as the Nyquist interval and we have in fact deduced a form of the
Nyquist–Shannon sampling theorem. If T , Tmin then the ‘copies’ of F( jω) are
isolated from each other, and we can focus on just one copy, either for the purpose of
signal reconstruction, or for the purposes of the estimation of F( jω) itself. Here we are
concerned only with the latter problem. Basically, we have established a condition
under which the spectrum of the samples of the band-limited signal f (t), that is the
spectrum of fs(t), can be used to estimate F( jω).

Suppose we have drawn N samples from a continuous signal f (t) at intervals T, in
accordance with the Nyquist criterion, as in Figure 8.27. We then consider

Figure 8.27
Sampling of a 
continuous-time signal.

fs t( ) = f kT( )δ t − kT( )
k=0

N−1


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or equivalently, the sequence

, where fk = f (kT )

Note that

fs(t) = 0 (t . (N − 1)T )

so that

fk = 0 (k . N − 1)

The Fourier transform of fs(t) is 

 

 

(8.87)

The transform in (8.87) is a function of the continuous variable ω, so, as in (8.77), we
must now sample the continuous spectrum Fs( jω) to permit computer evaluation.

We chose N samples to represent f (t) in the time domain, and for this reason we also
choose N samples in the frequency domain to represent F( jω). Thus we sample (8.87)
at intervals Δω, to generate the sequence

(8.88a)

where

(8.88b)

We must now choose the frequency-domain sampling interval Δω. To see how to do
this, recall that the sampled spectrum Fs( jω) consisted of repeats of F( jω), spaced at
intervals 2π /T apart. Thus to sample just one copy in its entirety, we should choose

NΔω = 2π /T

or

Δω = 2π /NT (8.89)

Note that the resulting sequence, defined outside 0 < n < N − 1, is periodic, as
we should expect. However, note also that, following our discussion in Section 8.6,
the process of recovering a time signal from samples of its spectrum will result in
a periodic waveform, whatever the nature of the original time signal. We should not be
surprised by this, since it is exactly in accordance with our introductory discussion in
Section 8.1. In view of the scaling factor 1/T in (8.86), our estimate of the Fourier
transform F( jω) of f (t) over the interval

0 < t < (N − 1)T

fk{ }k =0
N−1

Fs jω( ) = #
−∞

∞

fs t( ) e−jω t dt = #
−∞

∞

f kT( )δ t − kT( ) e−jω t

k=0

N−1

 dt

= 
k=0

N−1

 #
−∞

∞

f kT( )δ t − kT( ) e−jω t dt

= f kT( ) e−jω kT = f k e−jω kT

k=0

N−1


k=0

N−1



Fs jn ωΔ( ){ }n=0
N−1

Fs jn ωΔ( ) = f k e−jkn ω TΔ

k=0

N−1


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will, from (8.88), be the sequence of samples

where

which, from the definition of the discrete Fourier transform in (8.77), gives

TFs ( jnΔω) = T × DFT { fk}

where DFT { fk} is the discrete Fourier transform of the sequence { fk}. We illustrate the
use of this estimate in Example 8.19.

The delayed triangular pulse f (t) is as illustrated in Figure 8.28. Estimate its Fourier
transform using 10 samples and compare with the exact values.

Solution Using N = 10 samples at intervals T = 0.2 s, we generate the sequence

 = { f (0), f (0.2), f (0.4), f (0.6), f (0.8), f (1.0), f (1.2), f (1.4), f (1.6), f (1.8)}

Clearly, from Figure 8.28, we can express the continuous function f (t) as

and so

= {0, 0.2, 0.4, 0.4, 0.2, 0, 0, 0, 0, 0}

Using (8.77), the discrete Fourier transform of the sequence is
generated by

TFs jn ωΔ( ){ }n=0
N−1

TFs jn ωΔ( ) = T f k e−jkn ωTΔ

k=0

N−1



Example 8.19

Figure 8.28
The delayed 
triangular pulse.

fk{ }k =0
9

f t( ) = 

 t  0  t  0.5< <( )
1 − t 0.5 , t , 1( )
 0 t 1>( )






fk{ }k=0
9

Fn{ }n=0
9 fk{ }k=0

9

Fn = f k e−jkn ω TΔ , where ω = 
2π
NT
------- = 

2π
10 0.2×
------------------- = πΔ

k=0

9


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That is,

or, since f0 = f5 = f6 = f7 = f8 = f9 = 0,

The estimate of the Fourier transform, also based on N = 10 samples, is then the
sequence

We thus have 10 values representing the Fourier transform at

ω = n Δω (n = 0, 1, 2, . . . , 9)

or since Δω = 2π/NT

ω = 0, π, 2π, . . . , 9π

At ω = π, corresponding to n = 1, our estimate is

= 0.2[0.2 e−j(0.2π) + 0.4(e−j(0.4π) + e−j(0.6π)) + 0.2 e−j(0.8π)]

= −0.1992j

At ω = 2π, corresponding to n = 2, our estimate is

= 0.2[0.2 e−j(0.4π) + 0.4(e−j(0.8π) + e−j(1.2π)) + 0.2 e−j(1.6π)]

= −0.1047

Continuing in this manner, we compute the sequence

{0.2F0, 0.2F1, . . . , 0.2Fn}

as

{0.2400, −0.1992j, −0.1047, 0.0180j, −0.0153, 0, −0.0153, −0.0180j,
−0.1047, 0.1992j}

This then represents the estimate of the Fourier transform of the continuous function
f (t). The exact value of the Fourier transform of f (t) is easily computed by direct use of
the definition (8.15) as

F( jω) = ^{ f (t)} = e−jω /2sinc2 ω

which we can use to examine the validity of our result. The comparison is shown in
Figure 8.29 and illustrated graphically in Figure 8.30.

Fn = f k e−jkn 0.2π( )

k=0

9



Fn = f k e−jnk 0.2π( )

k=1

4



TFn{ }n=0
9  = 0.2Fn{ }n=0

9

0.2F1 = 0.2 f k e−jk 0.2π( )

k=1

4



0.2F2 = 0.2 f k e−jk 0.4π( )

k=1

4



1
4
---

1
4
---
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From the Nyquist–Shannon sampling theorem, with T = 0.2 s, we deduce that our
results will be completely accurate if the original signal f (t) is band-limited with a zero
spectrum for |ω | . |ωm| = 5π. Our signal is not strictly band-limited in this way, and
we thus expect to observe some error in our results, particularly near ω = 5π, because
of the effects of aliasing. The estimate obtained is satisfactory at ω = 0, π, 2π, but begins
to lose accuracy at ω = 3π. Results obtained above ω = 5π are seen to be images of those
obtained for values below ω = 5π, and this is to be expected owing to the periodicity of
the DFT. In our calculation the DFT sequence will be periodic, with period N = 10; thus,
for example,

|TF7| = |TF7−10 | = |TF−3 | = T |F−3 |

As we have seen many times, for a real signal the amplitude spectrum is symmetric about
ω = 0. Thus |F−3 | = |F3 |, |F−5 | = |F5 |, and so on, and the effects of the symmetry are
apparent in Figure 8.29. It is perhaps worth observing that if we had calculated (say)
{TF−4, TF−3, . . . , TF0, TF1, . . . , TF5}, we should have obtained a ‘conventional’ plot, with
the right-hand portion, beyond ω = 5π, translated to the left of the origin. However,
using the plot of the amplitude spectrum in the chosen form does highlight the source
of error due to aliasing.

In this section we have discussed a method by which Fourier transforms can be esti-
mated numerically, at least in theory. It is apparent, though, that the amount of labour
involved is significant, and as we observed in Section 8.6.3 an algorithm based on this
approach is in general prohibitive in view of the amount of computing time required.
The next section gives a brief introduction to a method of overcoming this problem.

ω Exact F( jω) DFT estimate |F( jω) | |DFT estimate | % error

0 0.2500 0.2400 0.2500 0.2400 4%
π −0.2026j −0.1992j 0.2026 0.1992 1.7%
2π −0.1013 −0.1047 0.1013 0.1047 3.2%
3π 0.0225j 0.0180j 0.0225 0.0180 20%
4π 0 −0.0153 0 0.0153 –
5π −0.0081j 0 0.0081 0 –
6π −0.0113 −0.0153 0.0113 0.0153 –
7π 0.0041 −0.0180j 0.0041 0.0180 –
8π 0 −0.1047 0 0.1047 –
9π −0.0025j 0.1992j 0.0025 0.1992 –

Figure 8.30
Exact result | F( jω) | 
(*) and DFT 
estimate TFn 
of the Fourier 
transform in 
Example 8.19.

Figure 8.29
Comparison of 
exact results and 
DFT estimate for the 
amplitude spectrum 
of the signal of 
Example 8.19.
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8.6.5 The fast Fourier transform

The calculation of a discrete Fourier transform based on N sample values requires, as
we have seen, N 2 complex multiplications and N(N − 1) summations. For real signals,
symmetry can be exploited, but for large N, N 2 does not represent a significant improve-
ment over N 2 for the purposes of computation. In fact, a totally new approach to the
problem was required before the discrete Fourier transform could become a practical
engineering tool. In 1965 Cooley and Tukey introduced the fast Fourier transform
to compute the DFT and its inverse, and to compute the FFT in order to reduce the
computational complexity (J. W. Cooley and J. W. Tukey, An algorithm for the machine
computation of complex Fourier series, Mathematics of Computation 19 (1965) 297–301).
We shall briefly introduce their approach in this section: for a full discussion see
E. E. Brigham, The Fast Fourier Transform (Englewood Cliffs, NJ, Prentice Hall, 1974),
whose treatment is similar to that adopted here.

Note that FFTs are routinely performed in electrical engineering since processing a
signal in the frequency space is sometimes more advantageous than in its natural set-
ting. There is also a large commonality between statistics, FFTs and Laplace transforms
in industries involving signal processing that often now results in machine learning
approaches. Such approaches are used to make market forecasts and predictions wher-
ever there is a time series, e.g. nonlinear ‘Wave’ patterns over some time interval. See,
for example, F. Camastra and A. Vinciarelli, Machine Learning for Audio Usage and
Video Analysis (second edition, London, Springer, 2015).

We shall restrict ourselves to the situation where N = 2γ for some integer γ, and,
rather than examine the general case, we shall focus on a particular value of γ. In
proceeding in this way, the idea should be clear and the extension to other values of
γ appear credible. We can summarize the approach as being in three stages:

(1) matrix formulation;
(2) matrix factorization; and, finally,
(3) rearranging.

Stage 1: We first consider a matrix formulation of the DFT. From (8.77), the Fourier
transform sequence of the sequence is generated by

(k = 0, 1, . . . , N − 1) (8.90)

We shall consider the particular case when γ = 2 (that is, N = 22 = 4), and define

W = e−j2π /N = e−jπ /2

so that (8.90) becomes

(k = 0, 1, 2, 3)

Writing out the terms of the transformed sequence, we have

G0 = g0W
0 + g1W

0 + g2W
0 + g3W

0

G1 = g0W
0 + g1W

1 + g2W
2 + g3W

3

G2 = g0W
0 + g1W

2 + g2W
4 + g3W

6

G3 = g0W
0 + g1W

3 + g2W
6 + g3W

9

1
2
---

Gk{ }k=0
N−1 gn{ }n=0

N−1

Gk = gn e−j2πnk/N

n=0

N−1



Gk = gnW nk = gnW nk

n=0

3


n=0

N−1


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which may be expressed in the vector–matrix form

(8.91)

or, more generally, as

Gk = W nkgn

where the vectors Gk and gn and the square matrix W nk are defined as in (8.91). The
next step relates to the special properties of the entries in the matrix W nk. Note that
W nk = W nk+pN, where p is an integer, and so

W 4 = W 0 = 1

W 6 = W 2

W 9 = W 1

Thus (8.91) becomes

(8.92)

Equation (8.92) is the end of the first stage of the development. In fact, we have so far
only made use of the properties of the N th roots of unity. Stage two involves the
factorization of a matrix, the details of which will be explained later.
Stage 2: We begin by noting that

(8.93)

where we have used W 5 = W 1 and W 0 = 1 (in the top row). The matrix on the right-hand
side of (8.93) is the coefficient matrix of (8.92), but with rows 2 and 3 interchanged.
Thus we can write (8.92) as

(8.94)

G0

G1

G2

G3

 = 

W 0 W 0 W 0 W 0

W 0 W 1 W 2 W 3

W 0 W 2 W 4 W 6

W 0 W 3 W 6 W 9

g0

g1

g2

g3

G0

G1

G2

G3

= 

1  1  1  1

1 W 1 W 2 W 3

1 W 2 W 0 W 2

1 W 3 W 2 W 1

g0

g1

g2

g3

1 W 0 0  0

1 W 2 0  0

0  0  1 W 1

0  0  1 W 3

1 0 W 0 0

0 1  0  W 0

1 0 W 2 0

0 1  0  W 2

 = 

1  1 1 1

1 W 2 W 0 W 2

1 W 1 W 2 W 3

1 W 3 W 2 W 1

G0

G2

G1

G3

 = 

1 W 0 0  0

1 W 2 0  0

0  0  1 W 1

0  0  1 W 3

1 0 W 0 0

0 1  0  W 0

1 0 W 2 0

0 1  0  W 2

g0

g1

g2

g3
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We now define a vector g′ as

(8.95)

It then follows from (8.95) that

g′0 = g0 + W 0g2

g′1 = g1 + W 0g3

so that g′0 and g′1 are each calculated by one complex multiplication and one addition. Of
course, in this special case, since W 0 = 1, the multiplication is unnecessary, but we are
attempting to infer the general situation. For this reason, W 0 has not been replaced by 1.

Also, it follows from (8.95) that

g′2 = g0 + W 2g2

g′3 = g1 + W 2g3

and, since W 2 = −W 0, the computation of the pair g′2 and g′3 can make use of the com-
putations of W 0g2 and W 0g3, with one further addition in each case. Thus the vector g′
is determined by a total of four complex additions and two complex multiplications.
Stage 3: To complete the calculation of the transform, we return to (8.94), and rewrite
it in the form

(8.96)

It then follows from (8.96) that

G0 = g′0 + W 0g′1
G2 = g′0 + W 2g′1

and we see that G0 is determined by one complex multiplication and one complex addition.
Furthermore, because W 2 = −W 0, G2 follows after one further complex addition.

Similarly, it follows from (8.96) that

G1 = g′2 + W 1g′3
G3 = g′2 + W 3g′3

and, since W 3 = −W 1, a total of one further complex multiplication and two further
additions are required to produce the re-ordered transform vector

[G0 G2 G1 G3]
T

Thus the total number of operations required to generate the (re-ordered) transform is four
complex multiplications and eight complex additions. Direct calculation would have
required N 2 = 16 complex multiplications and N(N − 1) = 12 complex additions. Even
with a small value of N, these savings are significant, and, interpreting computing time

g′ = 

g′0
g′1
g′2
g′3

 = 

1 0 W 0 0

0 1  0  W 0

1 0 W 2 0

0 1  0  W 2

g0

g1

g2

g3

G0

G2

G1

G3

 =  

1 W 0 0  0

1 W 2 0  0

0  0  1 W 1

0  0  1 W 3

g′0
g′1
g′2
g′3
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requirements as being proportional to the number of complex multiplications involved,
it is easy to see why the FFT algorithm has become an essential tool for computational
Fourier analysis. When N = 2γ, the FFT algorithm is effectively a procedure for producing
γ N × N matrices of the form (8.93). Extending our ideas, it is possible to see that generally
the FFT algorithm, when N = 2γ, will require Nγ (four, when N = 22 = 4) complex
multiplications and Nγ (eight, when N = 4) complex additions. Since

γ  = log2N

the demands of the FFT algorithm in terms of computing time, estimated on the basis
of the number of complex multiplications, are often given as about N log2 N, as opposed
to N 2 for the direct evaluation of the transform. This completes the second stage of our
task, and we are only left with the problem of rearrangement of our transform vector
into ‘natural’ order.

The means by which this is achieved is most elegant. Instead of indexing G0, G1, G2,
G3 in decimal form, an alternative binary notation is used, and [G0 G1 G2 G3]

T

becomes

[G00 G01 G10 G11]
T

The process of ‘bit reversal’ means rewriting a binary number with its bits or digits in
reverse order. Applying this process to [G00 G01 G10 G11]

T yields

[G00 G10 G01 G11]
T = [G0 G2 G1 G3]

T

with decimal labelling. This latter form is exactly the one obtained at the end of the FFT
calculation, and we see that the natural order can easily be recovered by rearranging the
output on the basis of bit reversal of the binary indexed version.

We have now completed our introduction to the fast Fourier transform. We shall now
consider an example to illustrate the ideas discussed here. We shall then conclude by
considering in greater detail the matrix factorization process used in the second stage.

Use the method of the FFT algorithm to compute the Fourier transform of the sequence

= {1, 2, 1, 0}

Solution In this case N = 4 = 22, and we begin by computing the vector g′n = [g ′0 g′1 g ′2 g′3]T,
which, from (8.95), is given by

For N = 4

W n = (e−j2π /4)n = e−jnπ /2

and so

1
2
---

Example 8.20

gn{ }n=0
3

g′n =  

1 0 W 0 0

0 1  0  W 0

1 0 W 2 0

0 1  0  W 2

g0

g1

g2

g3

g′n = 

1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

1

2

1

0

 = 

2

2

0

2
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Next, we compute the ‘bit-reversed’ order transform vector G ′, say, which from (8.96)
is given by

or, in this particular case,

(8.97)

Finally, we recover the transform vector G = [G0 G1 G2 G3]
T as

and we have thus established the Fourier transform of the sequence {1, 2, 1, 0} as the
sequence

{4, −2j, 0, 2j}

It is interesting to compare the labour involved in this calculation with that in
Example 8.18.

To conclude this section, we fill in the details for the matrix factorization operation,
which is at the core of the process of calculating the fast Fourier transform. In a
book of this nature it is not appropriate to reproduce a proof of the validity of the
algorithm for any N of the form N = 2γ. Rather, we shall illustrate how the factorization
we introduced in (8.93) was obtained. The factored form of the matrix will not be
generated in any calculation: what actually happens is that the various summations are
performed using their structural properties. From (8.90), with W = e−j2π/N, we wish to
calculate the sums

k = 0, 1, . . . , N − 1 (8.98)

In the case N = 4, γ = 2 we see that k and n take only the values 0, 1, 2 and 3, so we
can represent both k and n using two-digit binary numbers; in general γ -digit binary
numbers will be required.

We write k = k1k0 and n = n1n0, where k0, k1, n0 and n1 are digits that may take the
values 0 or 1 only. For example, k = 3 becomes k = 11 and n = 2 becomes n = 10. The
decimal form can always be recovered easily as k = 2k1 + k0 and n = 2n1 + n0. This is
simply a binary repetition for n and k.

G′=  

1 W 0 0  0

1 W 2 0  0

0  0  1 W 1

0  0  1 W 3

g′0
g′1
g′2
g′3

G ′ = 

G00

G10

G01

G11

1 1 0  0

1 −1 0  0

0 0 1 −j

0 0 1  j

2

2

0

2

 = 

 4

 0

−2j

2j

G = 

 4

−2j

 0

2j

Gk = gnW nk

n=0

N−1


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Using binary notation, we can write (8.98) as

(8.99)

The single summation of (8.98) is now replaced, when γ = 2, by two summations. Again
we see that for the more general case with N = 2γ a total of γ summations replaces the
single sum of (8.98).

The matrix factorization operation with which we are concerned is now achieved by
considering the term in (8.99).

 = 

= (8.100)

Since W = e−j2π/N, and N = 4 in this case, the leading term in (8.100) becomes

= = 

= = 1

Again we observe that in the more general case such a factor will always emerge.
Thus (8.100) can be written as

= 

so that (8.99) becomes

(8.101)

which is the required matrix factorization. This can be seen by writing

(8.102)

so that the sum in the square brackets in (8.101) defines the four relations

(8.103)

which, in matrix form, becomes

(8.104)

Gk1k0
 = gn1n0

W
2n1+n0( ) 2k1+k0( )

n1= 0

1


n0=0

1



W
2n1+n0( ) 2k1+k0( )

W
2k1+k0( )2n1W

2k1+k0( )n0

W
4n1k1W

2n1k0W
2k1+k0( )n0

W
4n1k1 e

j2π/4–
( )

4n1k1 e
j2π–

( )
n1k1

1
n1k1

W
2n1+n0( ) 2k1+k0( )

W
2n1k0W

2k1+k0( )n0

Gk1k0
 = gn1n0

W
2n1k0

n1=0

1

 W
2k1+k0( )n0

n0=0

1



g ′k0n0
 = gn1n0

W
2n1k0

n1=0

1



g ′00 = g00W 2.0.0 + g10W 2.1.0 = g00 + g10W 0

g ′01 = g01W 2.0.0 + g11W 2.1.0 = g01 + g11W 0

g ′10 = g00W 2.0.1 + g10W 2.1.1 = g00 + g10W 2

g ′11 = g01W 2.0.1 + g11W 2.1.1 = g01 + g11W 2









g ′00

g ′01

g ′10

g ′11

 =  

1 0 W 0 0

0 1  0  W 0

1 0 W 2 0

0 1  0  W 2

g00

g01

g10

g11
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and we see that we have re-established the system of equations (8.95), this time with
binary indexing. Note that in (8.103) and (8.104) we distinguished between terms in W 0

depending on how the zero is generated. When the zero is generated through the value
of the summation index (that is, when n1 = 0 and thus a zero will always be generated
whatever the value of γ ) we replace W 0 by 1. When the index is zero because of the
value of k0, we maintain W 0 as an aid to generalization.

The final stage of the factorization appears when we write the outer summation of
(8.101) as

(8.105)

which, on writing out in full, gives

G′00 = g′00W
0.0 + g′01W

0.1 = g′00 + g′01W
0

G′01 = g′00W
2.0 + g′01W

2.1 = g′00 + g′01W
2

G′10 = g′10W
1.0 + g′11W

1.1 = g′10 + g′11W
1

G′11 = g′10W
3.0 + g′11W

3.1 = g′10 + g′11W
3

or, in matrix form,

(8.106)

The matrix in (8.106) is exactly that of (8.98), and we have completed the factorization
process as we intended. Finally, to obtain the transform in a natural order, we must carry
out the bit-reversal operation. From (8.101) and (8.104), we achieve this by simply
writing

(8.107)

The evaluation of these three relationships is equivalent to the matrix factorization pro-
cess together with the bit-reversal procedure discussed above.

The fast Fourier transform is essentially a computer-orientated algorithm and highly
efficient codes are available in MATLAB and other software libraries, usually requiring
a simple subroutine call for their implementation. The interested reader who would
prefer to produce ‘home-made’ code may find listings in the textbook by Brigham
quoted at the beginning of this section, as well as elsewhere.

G′k0k1
 = g ′k0n0

W
2k1+k0( )n0

n0=0

1



G′00

G′01

G′10

G′11

 =  

1 W 0 0  0

1 W 2 0  0

0  0  1 W 1

0  0  1 W 3

g ′00

g ′01

g ′10

g ′11

Gk1k0
 = G′k0k1

We can therefore summarize the Cooley–Tukey algorithm for the fast Fourier transform
for the case N = 4 by the three relations (8.102), (8.105) and (8.107), that is

g ′k0n0
 = gn1n0

W
2n1k0

n1=0

1



G′k0k1
 = g ′k0n0

W
2k1+k0( )n0

n0=0

1



Gk1k0
 = G′k0k1
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Engineering application:  the design of analogue filters

In this section we explore the ideas of mathematical design or synthesis. We shall
express in mathematical form the desired performance of a system, and, utilizing the
ideas we have developed, produce a system design.

This chapter has been concerned with the frequency-domain representation of
signals and systems, and the system we shall design will operate on input signals
to produce output signals with specific frequency-domain properties. In Figure 8.31 we
illustrate the amplitude response of an ideal low-pass filter. This filter passes perfectly
signals, or components of signals, at frequencies less than the cut-off frequency ωc.
Above ωc, attenuation is perfect, meaning that signals above this frequency are not
passed by this filter.

The amplitude response of this ideal device is given by

Such an ideal response cannot be attained by a real analogue device, and our design
problem is to approximate this response to an acceptable degree using a system that
can be constructed. A class of functions whose graphs resemble that of Figure 8.31 is
the set

and we see from Figure 8.32, which corresponds to ωc = 1, that, as n increases, the
graph approaches the ideal response. This particular approximation is known as the
Butterworth approximation, and is only one of a number of possibilities.

8.7 Engineering application:

Figure 8.31 Amplitude 
response of an ideal
low-pass filter. H′ jω( )  = 

1 ω  < ωc( )
0 ω  . ωc( )




HB jω( )  = 
1

1 + ω /ω c( )2n[ ]
-----------------------------------------

8.6.6 Exercises

Calculate directly the discrete Fourier transform of 
the sequence 

{1, 0, 1, 0}

using the methods of Section 8.6.3 (see Example 8.18).

Use the fast Fourier transform method to calculate 
the transform of the sequence of Exercise 28 
(follow Example 8.20).

Use the FFT algorithm in MATLAB (or an 
alternative) to improve the experiment with 
the estimation of the spectrum of the signal of 
Example 8.19.

Derive an FFT algorithm for N = 23 = 8 points. 
Work from (8.98), writing

k = 4k2 + 2k1 + k0, ki = 0 or 1 for all i

n = 4n2 + 2n1 + n0, ni = 0 or 1 for all i

to show that

 

28

29

30

31

g ′k0n1n0
 = gn2n1n0

W
4k0n2

n2=0

1



g″k0k1n0
 = g ′k0n1n0

W
2k1+k0( )2n1

n1=0

1



G′k0k1k2
 = g″k0k1n0

W
4k2+2k1+k0( )n0

n0=0

1



Gk2k1k0
 = G′k0k1k2
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To explore this approach further, we must ask the question whether such a response
could be obtained as the frequency response of a realizable, stable linear system. We
assume that it can, although if our investigation leads to the opposite conclusion then
we shall have to abandon this approach and seek another. If HB( jω) is the frequency
response of such a system then it will have been obtained by replacing s with jω in the
system Laplace transfer function. This is at least possible since, by assumption, we are
dealing with a stable system. Now

where |HB( jω) |2 = HB( jω) . If HB(s) is to have real coefficients, and thus be
realizable, then we must have = H(− jω). Thus

and we see that the response could be obtained by setting s = jω in

Our task is now to attempt to separate HB(s) from HB(−s) in such a way that HB(s)
represents the transfer function of a stable system. To do this, we solve the equation

1 + (s/jωc )2n = 0

to give the poles of HB(s)HB(−s) as

s = ωc e j[(2k+1)π /2n+π /2] (k = 0, 1, 2, 3, . . . ) (8.108)

Figure 8.33 shows the pole locations for the cases n = 1, 2, 3 and 5. The important
observations that we can make from this figure are that in each case there are 2n poles
equally spaced around the circle of radius ωc in the Argand diagram, and that there are
no poles on the imaginary axis. If s = s1 is a pole of HB(s)HB(−s) then so is s = −s1, and
we can thus select as poles for the transfer function HB(s) those lying in the left half-plane.
The remaining poles are then those of HB(−s). By this procedure, we have generated a
stable transfer function HB(s) for our filter design.

The transfer function that we have generated from the frequency-domain specification
of system behaviour must now be related to a real system, and this is the next step

Figure 8.32
Amplitude responses 
of the Butterworth 
filters.

HB jω( ) 2 = 
1

1 + jω /jω c( )2n
-------------------------------------

H*B jω( )
H*B jω( )

HB jω( )HB j– ω( ) = 
1

1 + ω /ω c( )2n
-------------------------------- = 

1

1 + jω /jω c( )2n
-------------------------------------

HB s( )HB s–( ) = 
1

1 + s / jωc( )2n
--------------------------------
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in the design process. The form of the transfer function for the filter of order n can be
shown to be

where s1, s2, . . . , sn are the stable poles generated by (8.108). The reader is invited to
show that the second-order Butterworth filter has transfer function

Writing Y(s) = HB(s)U(s), with HB(s) as above, we obtain

or

(s 2 + ωcs + )Y(s) = U(s) (8.109)

If we assume that all initial conditions are zero then (8.109) represents the Laplace
transform of the differential equation

(8.110)

This step completes the mathematical aspect of the design exercise. It is possible to
show that a system whose behaviour is modelled by this differential equation can be
constructed using elementary circuit components, and the specification of such a circuit
would complete the design. For a fuller treatment of the subject the interested reader
could consult M. J. Chapman, D. P. Goodall and N. C. Steele, Signal Processing in
Electronic Communications (Chichester, Horwood Publishing, 1997).

To appreciate the operation of this filter, the use of the Signal Processing Toolbox in
MATLAB is recommended. After setting the cut-off frequency ωc, at 4 for example, the
output of the system y(t) corresponding to an input signal u(t) = sin t + sin 10t will demon-
strate the almost-perfect transmission of the low-frequency (ω = 1) term, with nearly total
attenuation of the high-frequency (ω = 10) signal. As an extension to this exercise, the
differential equation to represent the third- and fourth-order filters should be obtained,
and the responses compared. Using a simulation package and an FFT coding, it is possible
to investigate the operation of such devices from the viewpoint of the frequency domain
by examining the spectrum of samples drawn from both input and output signals.

HB s( ) = 
ω c

n

s − s1( ) s − s2( ) . . . s − sn( )
---------------------------------------------------------------------

Figure 8.33
Pole locations for the 
Butterworth filters: 
(s) n = 1; (+) n = 2; 
(×) n = 3; 
(*) n = 8.

HB s( ) = 
ω c

2

s2 + 2ω cs + ω c
2

-------------------------------------------

Y s( ) = 
ω c

2

s2 + 2ω cs + ω c
2

-------------------------------------------U s( )

2 ω c
2 ω c

2

d2y t( )
dt2

-------------- + 2ωc
dy t( )

dt
------------ + ω c

2 y t( ) = ω c
2u t( )
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Engineering application: direct design of digital filters 
and windows

This application section provides a brief introduction to some methods of digital filter
design. In particular we introduce a transform based on the Fourier transform itself, rather
than going via the exponential form of Fourier series and the underlying periodicity
implications. The material contained in this section first appeared in Signal Processing
in Electronic Communication by M. J. Chapman, D. P. Goodall and N. C. Steele, originally
published in the Horwood Series in Engineering Science in 1997 and is reproduced by
courtesy of the current publishers Woodhead Publishing Limited.

8.8.1 Digital filters

Suppose f (t) is a signal with Fourier transform F( jω) so that

f (t) = F( jω)ejω tdω (8.111)

If we now sample f(t) at times t = kT, k ∈ Z, we obtain the sequence {fk} = { f (kT )} and
(8.111) gives

f k = F( jω)ejωkTdω (8.112)

Splitting this infinite interval of integration into intervals of length 2π/T, we obtain

f k = 

= 

= 

since  = ejωkTejnk2π = ejωkT. As usual, we do not attempt to give conditions under
which the above interchange between an integral and an infinite sum is valid. In any
case, the above is only intended as a formal procedure leading to a definition for the
discrete-time Fourier transform.

If we now let θ be the normalized frequency θ = ωT and set

(8.113)

8.8 Engineering application:
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where we note that the right-hand side has period 2π in θ, we obtain

fk = F( ejθ)ejkθdθ (8.114)

The periodic function, F(e jθ ), is referred to as the discrete-time Fourier transform
(DTFT) of the sequence {fk}. Equation (8.113) is unsuitable for calculation of the
DTFT and so we instead use (8.114) to define the inverse DTFT and invert this in order
to define the direct transform. We claim that the DTFT is, in fact, given by

F(e jθ ) = fne
−jnθ =  fn(e

jθ)−n (8.115)

Note that this is the same as the transform defined in (6.1), which is known as the
bilateral z transform of { f} reflecting the fact that it is defined for both positive and
negative values of the time index k, evaluated at z = e jθ. This fact also explains the use
of the notation, F(e jθ). To show that (8.115) is valid, we substitute into the right-hand
side of (8.114) to give

F(ejθ)ejkθdθ =  fne
−jnθe jkθdθ

=  fn ej(k−n)θdθ

assuming the interchange of summation and integration is permissible. However, it is
easy to see that

ej(k−n)θdθ = = δk−n

and so the right-hand side of (8.114) reduces to

fnδk−n = fk,

as desired. To summarize, we have the two equations

DTFT F(ejθ) = fke
−jkθ (8.116a)

IDTFT fk = F(ejθ )ejkθdθ (8.116b)

Calculate the discrete-time Fourier transform of the finite sequence

{u} = {1, 2, 2, 1}

1
2π
------#

0

2π

n=−∞

∞


n=−∞

∞
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1
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0

2π
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∞


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∞


1

2π
------#

0

2π

1
2π
------#

0

2π
0 for k … n,
1 for k = n,




n=−∞

∞



k=−∞

∞



1
2π------#

0

2π

Example 8.21
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Solution We adopt the convention that the above sequence is ‘padded-out’ with zeros, that is
we have {u} = {uk} where u0 = u3 = 1, u1 = u2 = 2 and uk = 0 otherwise. It follows from
(8.116a) that

U(e jθ) = 1 + 2e− jθ + 2e−2 jθ + e−3 jθ

= 

= 

A sketch of |U(ejθ)| =  is given in Figure 8.34. |U(ejθ)| is called

the amplitude spectrum of the sequence {u}. Figure 8.34 clearly shows the periodicity
of |U(e jθ )|, which by now is not surprising. In a similar fashion, we refer to arg U(e jθ )
as the phase spectrum of {u}.

We are now in a position to develop a direct approach to the design of digital filters
based on a Fourier series approach. Suppose that D(z) is the transfer function of a stable
discrete-time system, then, we can write as usual,

Y(z) = D(z)U(z)

If the input sequence is {uk} = {δ k} = {1, 0, 0, 0, . . .}, the unit impulse sequence with
z transform U(z) = 1, then the transform of the output sequence, namely the impulse
response sequence, is 

Yδ(z) = D(z) = dnz−n

Since the system is stable, by assumption, there is a frequency response which is
obtained by taking the DTFT of the impulse response sequence. This is achieved by
replacing z by ejω t in D(z) to obtain

D(e jωT) = D(e jθ ) = dne
−jnθ (8.117)

where θ = ωT.
Now (8.117) can be interpreted as the Fourier expansion of D(e jθ ), using as basis

functions the orthogonal set {e−jnθ}. It is then easy to show that the Fourier coefficients
relative to this base are given by

dn = D(e jθ )e jnθ dθ

e
3
2
--- jθ–

e
3
2
--- jθ

e
3
2
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  2
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1
2
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e
1
2
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+ 
 +

e
3
2
--- jθ–

2 cos 3θ
2

------ 
  4 cos θ

2
--- 
 +

2 cos 3θ
2
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 
  4 cos θ

2
---
 
 +

Figure 8.34
Amplitude spectrum
|U(ejθ)| for Example 8.21.
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We now set D(e jθ ) to the desired ideal frequency response function and calculate the
resulting Fourier coefficients, {hd(n)} say. It should be noted that, at this stage, we can
no longer restrict to n > 0, i.e. hd(n), as defined above, is not causal and hence does not
correspond with the impulse response of any realizable system. If a filter is to be realized
using a finite number of delay elements, some form of truncation must take place. It is
helpful to think of this truncation being performed by the application of a window,
defined by a window weighting function w(n). The simplest window is the rectangular
window, with weighting function w(n) defined by 

Using this window, we actually form

w(n)hd(n)e−jnθ = hd(n)e−jnθ = (e jθ )

where, if n1 and n2 are sufficiently large, (e jθ ) will be an adequate approximation to
D(e jθ), the desired frequency response. It is important to note that the filter length,
that is the number of delay elements or terms in the difference equation, depends on the
choice of n1 and n2. This means that some accuracy will always have to be sacrificed in
order to produce an acceptable design.

We explore this technique by designing a low-pass filter in Example 8.22.

Use the Fourier series, or direct design method, to produce a low-pass digital filter with
cut-off frequency fc = 1 kHz, when the sampling frequency is fs = 5 kHz.

Solution We wish to make use of the non-dimensional frequency variable θ and, since T = 1/fs =
1/5000, we have

θ = ωT = 2πfT = 

The cut-off frequency is then θc = 2πfc /5000 = 2π/5 and the ideal frequency response
D(ejθ ) is now defined by

D(e jθ ) = 

We now calculate the coefficients hd(n) as

hd(n) = D(ejθ)ejnθdθ

= ejnθdθ

= 

= 

w n( ) = 
1 n1 < n < n2–,
0,  otherwise




n=−∞

∞


n= n1–

n2

 D̃

D̃

Example 8.22
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At this stage, we have to choose the length of the filter. By now, we know that a ‘long’
filter is likely to produce superior results in terms of frequency domain performance.
However, experience again tells us that there will be penalties in some form or other. Let
us choose a filter of length 9, with the coefficients selected for simplicity as symmetric
about n = 0. As already discussed, this choice leads to a non-causal system, but we deal
with this problem when it arises. This scheme is equivalent to specifying the use of a
rectangular window defined by

We now calculate the coefficients hd(−4), hd(−3), . . . hd(0), . . . hd(4), which are tabulated
in Figure 8.35.

The transfer function of the digital filter is then , where

(z) = hd(n)z−n

= −0.07568z−4 − 0.06237z−3 + 0.09355z−2 + 0.30273z−1 + 0.40000 
+ 0.30273z + 0.09355z 2 − 0.06237z 3 − 0.07568z4

Although this system is indeed non-causal, since its impulse response sequence contains
terms in positive powers of z, we can calculate the frequency response as

(e jθ) = −0.15137 cos(4θ ) − 0.12473 cos(3θ) + 0.18710 cos(2θ) 
+ 0.60546 cos(θ ) + 0.40000

Figure 8.36 illustrates the corresponding amplitude response.

Figure 8.36, of Example 8.22, shows us that the amplitude response of our filter is a
reasonable approximation to the design specification. We do, however, notice that there
are some oscillations in both pass- and stop-bands. These are due to the abrupt cut-off
of the rectangular window function and the effect is known as Gibbs’ phenomenon.
Thus, the window function generates additional spectral components, which are referred
to as spectral leakage. A way of improving the performance in this respect is discussed
in Section 8.8.2. The immediate problem is the realization of this non-causal design. To
see how we can circumvent the difficulty, we proceed as follows.

hd(±4) hd(±3) hd(±2) hd(±1) hd(0)
−0.07568 −0.06237 0.09355 0.30273 0.40000

w n( ) = 
1 4 < n < 4–
0   otherwise




D̃

D̃
n=−4

4



D̃

Figure 8.36 Amplitude 
response of the 
non-causal filter of 
Example 8.22.

Figure 8.35 
Coefficients hd(k), 
for k = −4, −3, . . . , 4.
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The transfer function we have derived is of the general form

(z) = hd(k)z−k

= zN [hd(−N) + hd(−N + 1)z−1 + . . . + hd(0)z−N + . . . + hd(N)z−2N]

Suppose that we implement the system with transfer function

(z) = z−N (z)

which is a causal system. First we notice that, on setting z = e jωT, the amplitude response
| (e jωT )| is given by

| (e jωT )| = |e−jωNT | | (e jωT )| = | (e jωT )|

that is, it is identical with that of the desired design. Furthermore,

arg{ (e jωT )} = arg{ (e jωT )} − NωT

indicating a pure delay of amount NT in the response of the second system. This means
that, assuming we are prepared to accept this delay, our design objective can be met by
the system with transfer function Q(z) given by

(z) = [−0.07568 − 0.06237z−1 + 0.09355z−2 + 0.30273z−3 + 0.40000z−4 
+ 0.30273z−5 + 0.09355z−6 − 0.06237z−7 − 0.07568z−8]

It is evident from Figure 8.37 that the filter designed in Example 8.22 differs from the
previous designs. The nature of this difference is the absence of feedback paths in the
block diagram realization of Figure 8.37. One effect of this is that the impulse response
sequence is finite, a fact which we already know, since the design method involved
truncating the impulse response sequence. Filters of this type are known as finite
impulse response (FIR) designs and may always be implemented using structures not
involving feedback loops. Another name used for such structures is non-recursive, but
it is not correct to assume that the only possible realization of an FIR filter is by use of
a non-recursive structure; for details see M. T. Jong, Methods of Discrete Signals and
Systems Analysis (New York, McGraw-Hill, 1982).

8.8.2 Windows

In this section, we consider the problem identified in Example 8.22 in connection with
the sharp cut-off of the rectangular window function.

D̃
k= N–

N



D̃ D̃

D̃

D̃ D̃ D̃

D̃ D̃

D̃

Figure 8.37 A 
realization of the 
final system of 
Example 8.22.

a = −0.07568, b = −0.06237, c = 0.09355, d = 0.30273, f = 0.40000.
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The rectangular window sequence, illustrated in Figure 8.38, is defined by 

which can be expressed in the form

w(k) = ζ (k + N) − ζ (k − (N + 1))

where ζ (k) = {h(k)}, defined in Example 6.22.
Since

W(z) = (zN − z−(N+1))

the DTFT of the sequence {w(k)} is

W(e jθ ) = 

= 

It is easy to see that W(ej0) = W(1) =  w(n) = 2N + 1 and so the above formula, using the

since, function, is valid for all θ, including θ = 0. The graph of this function is illustrated
in Figure 8.39. The first positive (negative) zero in its spectrum is the positive (negative)
value of θ closest to zero such that W(e jθ ) = 0. The main lobe of the window function
is that part of the graph of W(e jθ ) that lies between the first positive and first negative
zero in W(e jθ ). The main lobe width is the distance between the first positive and
negative zeros in W(e jθ ). As the length of the window increases, the main lobe narrows
and its peak value rises and, in some sense, W(e jθ ) approaches an impulse, which is
desirable. However, the main disadvantage is that the amplitudes of the side lobes also
increase.

The use of any window leads to distortion of the spectrum of the original signal caused
by the size of the side lobes in the window spectrum and the width of the window’s

Figure 8.38
Rectangular window 
sequence.
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the rectangular window 
sequence.
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main spectral lobe, producing oscillations in the filter response. The window function
can be selected so that the amplitudes of the sides lobes are relatively small, with the
result that the size of the oscillations is reduced; however, in general, the main lobe
width does not decrease. Thus, in choosing a window, it is important to know the trade-
off between having narrow main lobe and low side lobes in the window spectrum.

A considerable amount of research has been carried out, aimed at determining suitable
alternative window functions which smooth out straight truncation and thus reduce
the Gibbs’ phenomena effects observed in the amplitude response of Figure 8.36.
To minimize the effect of spectral leakage, windows which approach zero smoothly at
either end of the sampled signal are used. We do not discuss the derivation of the various
window functions, rather we tabulate, in Figure 8.40, some of the more popular
examples in a form suitable for symmetric filters of length 2N + 1. For a more detailed
discussion on windows and their properties, see, for example: E. C. Ifeachor and
B. W. Jervis, Digital Signal Processing: A Practical Approach (Addison-Wesley,
Wokingham, UK, 1993); A. V. Oppenheim and R. W. Schafer, Discrete-time Signal
Processing (Prentice-Hall, Englewood Cliffs, NJ, 1989); S. J. Stearns and D. R.
Hush, Digital Signal Analysis (Prentice-Hall, Englewood Cliffs, NJ, 1990).

Note: Slight variations on the above definitions may be found in various texts. These
tend to involve switching between ‘division by N’, ‘division by N + ’ and ‘division
by N + 1’. For example, the von Hann or Hanning window is variously defined by
w(k) = 0.5(1 + cos(πk/N )) or w(k) = 0.5(1 + cos(2πk/(2N + 1))) or w(k) = 0.5(1 + cos(πk/
(N + 1))) for |k| < N with w(k) = 0 for |k| . N. The Bartlett window, or one of its
variations, is sometimes referred to as a triangular window. It should also be noted
that both the Bartlett window and the Blackman window, as defined in Figure 8.40,
satisfy w(−N) = w(N) = 0 and hence give rise to difference equations of order 2N − 2
rather than 2N.

Formulations for other configurations can easily be deduced, or may be found in,
for example, L. B. Jackson, Digital Filters and Signal Processing (Kluwer Academic
Publishers, Boston, MA, 1986); R. E. Ziemer, W. H. Tranter and D. R. Fannin, Signals
and Systems (Macmillan, New York, 1983). The section closes with an example of the
application to the design of Example 8.22.

Plot the amplitude response for the filter design of Example 8.22, using (a) the
Hamming window and (b) the Blackman window.

Window name w(k)

Bartlett
w(k) =

 (k + N )/N
(N − k )/N

−N < k , 0
0 < k < N

von Hann or Hanning w(k) = 0.5 + 0.5 cos(πk/(N + 1)) −N < k < N
Hamming w(k) = 0.54 + 0.46 cos(πk/N ) −N < k < N
Blackman w(k) = 0.42 + 0.5 cos(πk/N ) + 0.08 cos(2πk/N ) −N < k < N

In each case, w(k) = 0 for k outside the range [−N, N].

 

 



1
2
---

Example 8.23

Figure 8.40 Some 
popular window 
functions.
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Solution (a) The transfer function coefficients are now given by hd(k) wH(k), where wH(k) are
the Hamming window coefficients, calculated with N = 4 and −4 < k < 4. The
Hamming window coefficients are tabulated in Figure 8.41.

The transfer function then becomes

H(z) = [−0.00605 − 0.01339z−1 + 0.05052z−2 + 0.26194z−3 + 0.40000z−4
 

+ 0.26194z−5 + 0.05052z−6 − 0.01339z−7
 
− 0.00605z−8]

The frequency response is then obtained by writing z = e jθ , as

H(e jθ ) = e−j4θ (−0.01211 cos(4θ ) − 0.02678 cos(3θ ) + 0.10103 cos(2θ ) 
+ 0.52389 cos(θ ) + 0.40000)

Figure 8.42 illustrates the magnitude of this response and the reduction of
oscillations in both the pass- and stop-band is striking. The penalty is the lack
of sharpness near the cut-off frequency, although the stop-band characteristics
close to θ = π are quite good.

(b) Proceeding as in case (a), we calculate the Blackman window coefficients as
shown in Figure 8.43. The Blackman windowed transfer function is thus

B(z) = −0.00414 + 0.03181z−1
 
+ 0.23418z−2

 
+ 0.40000z−3 + 0.23418z−4

+ 0.03181z−5
 
− 0.00414z−6

and the frequency response is found as

(e jθ ) = e−j3θ (−0.00829 cos(3θ ) + 0.06361cos(2θ ) 
+ 0.46836 cos(θ ) + 0.40000)

The amplitude response is shown in Figure 8.44 and this design again suffers
from a relatively poor performance in terms of sharpness of cut-off. The ripples
observed in the pass- and stop-bands with the rectangular window have been

N = 4 ±4 ±3 ±2 ±1 0
0.08000 0.21473 0.54000 0.86527 1.00000

Figure 8.42
Amplitude response of 
the filter of Example 
8.22, with Hamming 
window.

N = 4 ±4 ±3 ±2 ±1 0
0.00000 0.06645 0.34000 0.77355 1.00000

D̂

D̂

D̂

D̂

Figure 8.41 Hamming 
window coefficients 
for −4 < k < 4.

Figure 8.43
Blackman window 
coefficients for 
−4 < k < 4.
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removed as before. However, the ‘flat’ characteristic of the Hamming design close
to θ = π is not evident when using the Blackman window for this particular filter .

Figure 8.44
Amplitude response 
of the filter of 
Example 8.22, with 
Blackman window.

8.8.3 Exercises

Use the direct design method with a rectangular 
window of length 11 to produce a causal 
low-pass filter with non-dimensional cut-off 
frequency

Plot the frequency response.

Repeat Exercise 32 but use a Hamming window.

32 θc
π
2
---=

33

Calculate the Fourier sine transform of the causal 
function f(t) defined by

Show that if ^{ f(t)} = F( jω) then ^{ f (−t)} = 
F(−jω). Show also that

^{ f (−t − a)} = e jaωF(−jω)

where a is real and positive.
Find ^{ f(t)} when

Use the result

^[H(t + ) − H(t − )] = T sinc ωT

and the frequency convolution result to verify that 
the Fourier transform of the windowed cosine 
function

f (t) = cos ω 0t [H(t + ) − H(t − )]

is 

[sinc (ω − ω 0)T + sinc (ω + ω 0)T ]

Show that

δ(t − t1) *δ(t − t2) = δ(t − (t1 + t2))

and hence show that

^{cos ω0t H(t)} = π[δ(ω + ω0) + δ(ω − ω0)]

1

f t( ) = 
t 0 t 1< <( )
1 1 t, 2<( )
0 t . 2( )



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2
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1
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1
2
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2
---T 1

2
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1
2
---T 1

2
---T

1
2
---T 1

2
---

1
2
---

4

1
2
---

+ 
jω

ω0
2 ω2–

------------------

8.9 Review exercises (1–25)
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Establish the demodulation property,

^{ f(t)cos ω0t cos ω0t}

= F( jω) + [F( jω + 2jω 0) + F( jω + 2jω 0)]

Use the result ̂ {H(t + T ) − H(t − T )} = 2T sinc ωT 
and the symmetry property to show that

^{sinc t} = π[H(ω + 1) − H(ω − 1)]

Check your result by use of the inversion integral.

For a wide class of frequently occurring Laplace 
transforms it is possible to deduce an inversion 
integral based on the Fourier inversion integral. 
If X(s) = +{x(t)} is such a transform, we have

where Re (s) = γ, with γ real, defines a line in the s 
plane to the right of all the poles of X(s). Usually 
the integral can be evaluated using the residue 
theorem, and we then have

x(t) =  residues of X(s) e st at all 
poles of X(s)

(a) Write down the poles for the transform

where a and b are real. Calculate the residues of
X(s) e st at these poles and invert the transform.

(b) Calculate

(c) Show that

A linear system has impulse response h(t), so that 
the output corresponding to an input u(t) is

When u(t) = cos ω 0t, y(t) = −sin ω 0t (ω 0 > 0).
Find the output when u(t) is given by

(a) cos ω0(t + π) (b) sin ω 0t

(c) (d)

This system is known as a Hilbert transformer.

In Section 8.5.1 we established that

where sgn(t) is the signum function. Deduce that

 

and use the symmetry result to demonstrate that

The Hilbert transform of a signal f (t) is 
defined by

Show that the operation of taking the Hilbert 
transform is equivalent to the convolution

and hence deduce that the Hilbert-transformed 
signal has an amplitude spectrum FHi( jω) 
identical with f(t). Show also that the phase of 
the transformed signal is changed by ± π, 
depending on the sign of ω.

Show that

Hence show that the Hilbert transform of

is

5

1
2
---

1
4
---

6

7

x t( ) 1
j2π
--------#

γ −j∞

γ + j∞

X s( ) est ds=

X s( ) 1
s a–( ) s b–( )

--------------------------------=

i( ) +
1– 1

s 2–( )2
------------------

 
 
 

ii( ) +
1– 1

s2 s 1+( )
---------------------

 
 
 

+
1– 2s

s2 1+( )2
--------------------

 
 
 

t tsin=

8

y t( ) #
∞–

∞

h t τ–( ) u τ( ) dτ=

1
4
---

ejω 0t e j– ω 0t

9

^
1– 1

jω------ 
 
  1

2
--- sgn t( )=

^{sgn t( )}
2
jω------=

^
1
πt
-----–

 
 
 

j sgn ω( )=

10

FHi x( ) * f t( ){ } 1
π
--- #

∞–

∞

f τ( )
τ x–----------- dτ= =

1
πt
-----– * f t( )

1
2
---

11

t

t2 a2+( ) t x–( )
-----------------------------------

1

x2 a2+
----------------

a2

t2 a2+
---------------

x

t x–
---------- xt

t2 a2+
---------------–+ 

 =

f t( ) t

t2 a2+
--------------- a . 0( )=

a

x2 a2+
----------------
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If FHi(x) = *{ f (t )} is the Hilbert transform 
of f (t), establish the following properties: 

(a) *{ f (a + t)} = FHi(x + a)

(b) *{ f (at)} = FHi(ax) (a . 0)

(c) *{ f (−at)} = −FHi(−ax) (a . 0)

(d)

(e) *{tf (t )} = xFHi(x) +

Use Exercises 9 and 10 to deduce the inversion 
formula

Define the analytic signal associated with the real 
signal f (t) as

fa(t) = f(t) − jFHi(t)

where FHi(t) is the Hilbert transform of f(t ). Use 
the method of Review exercise 13 to show that

Use the result ^{H(t)} = 1/jω + πδ(ω) and the 
symmetry property to show that

(Hint: H(−ω) = 1 − H(ω).)
Hence show that if φ(t) is defined by ^{φ(t )} = 

2H(ω)F( jω) then φ(t ) = f(t ) − jFHi(t), the analytic 
signal associated with f(t), where F( jω) = ^{ f (t)} 
and FHi(t) = *{ f (t)}.

If f(t) = cos ω 0t (ω 0 . 0), find ^{ f (t)} and 
hence (t). Deduce that

*{cos ω 0t} = −sin ω 0t

By considering the signal g(t) = sin ω 0t (ω 0 . 0), 
show that

*{sin ω 0t} = cos ω 0t

A causal system has impulse response (t), 
where (t) = 0 (t , 0). Define the even part 

e(t) of (t) as

e(t) = [ (t) + (−t)]

and the odd part o(t) as

o(t) = [ (t) − (−t)]

Since (t) = 0 (t , 0) deduce that 

o(t) = sgn(t) e(t)

and that

(t ) = e(t) + sgn (t) e(t) for all t

Verify this result for λ(t) = sin t H(t). Take the 
Fourier transform of this result to establish that

( jω) = e( jω) + j*{ e( jω)}

Let (t) = e−atH(t) be such a causal impulse 
response. By taking the Fourier transform, deduce 
the Hilbert transform pair

Use the result

to show that

The Hartley transform is defined as

FH(s) = H{ f(t )} =

where cas t = cos t + sin t. Find the Hartley 
transform of the functions

(a) f (t) = e−atH(t) (a . 0)

(b)

An alternative form of the Fourier transform pair is 
given by

12

*
df
dt
-----

 
 
  d

dx
------ FHi x( )=

1
π
---#

∞–

∞

f t( ) dt

13

f t( ) 1
π
---– #

∞–

∞
FHi x( )
x t–--------------- dx=

14

^ fa t( ){ } Fa jω( )
2F jω( ) ω . 0( )
0 ω , 0( )




= =

15

^ 1– H ω( ){ } 1
2
---δ t( ) j

2πt
--------+=

f̂

16 h
h

h h

h 1
2
--- h h

h

h 1
2
--- h h

h

h h

h h h

H H H

h

*
a

a2 t2+
---------------

 
 
  x

a2 x2+
----------------–=

* t f t( ){ } x* f t( ){ } 1
π
---#

∞–

∞

f t( ) dt+=

*
t

a2 t2+
---------------

 
 
  a

x2 a2+
----------------=

17

#
∞–

∞

f t( ) cas 2πst dt

f t( )
0 t . T( )
1 t T<( )




=

18

F jp( ) #
∞–

∞

f t( ) e j– 2π pt dt=

g t( ) #
∞–

∞

G j p( ) e j2πpt dt=
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where the frequency p is now measured in hertz. 
Define the even part of the Hartley transform as

E(s) = [FH(s) + FH(−s)]

and the odd part as

O(s) = [FH(s) − FH(−s)]

Show that the Fourier transform of f (t) is given by

F( jp) = E( p) − jO( p)

and confirm your result for f(t ) = e−2tH(t).

Prove the time-shift result for the Hartley 
transform in the form

^{ f (t − T )} = sin(2πTs) FH(−s) 
+ cos(2πTs) FH(s)

Using the alternative form of the Fourier transform 
given in Review exercise 18, it can be shown that 
the Fourier transform of the Heaviside step 
function is

 

Show that the Hartley transform of H(t) is then

and deduce that the Hartley transform of 
H(t − ) is

Show that H{δ(t)} = 1 and deduce that 
H{1} = δ(s). Show also that H{δ(t − t0)} = 
cas 2πst0 and that

H{cas 2πs0t} = H{cos 2πs0t} + H{sin 2πs0t} 
= δ(s − s0)

Prove the Hartley transform modulation theorem 
in the form

H{ f(t) cos 2πs0t} = FH(s − s0) + FH(s + s0)

Hence show that

H{cos 2πs0t} = [δ(s − s0) + δ(s + s0)]

H{sin 2πs0t} = [δ(s − s0) − δ(s + s0)]

Show that

Show that

x(t) = (1 + cos ω0t)[H(t + ) − H(t − )]

has Fourier transform

T [sinc ω + sinc(ω − ω0) + sinc(ω + ω0)]

The discrete Hartley transform of the sequence 
is defined by

(v = 0, 1, . . . , N − 1)

where the function ‘cas’ is defined as in Exercise 17.

The inverse transform is

Show that in the case N = 4,

H = Tf

H = [H(0) H(1) H(2) H(3)]T

f = [ f (0) f (1) f (2) f (3)]T

Hence compute the discrete Hartley transform of 
the sequence {1, 2, 3, 4}. Show that T 2 = I and 
hence that T −1 = 4T, and verify that applying the 
T −1 operator regains the original sequence.

1
2
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1
2
---

19
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1
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2πvr
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2πvr
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Introduction
Many physical processes fundamental to science and engineering are governed by partial
differential equations, that is equations involving partial derivatives. The most familiar
of these processes are heat conduction and wave propagation. To describe such phe-
nomena, we make assumptions about gradients (for instance, the Fourier law that heat
flow is proportional to temperature gradient) and we write down balance  equations;
partial differential equations are thus produced in a natural way. Unless the situation is
very simple, there will be many independent variables, for example a time variable t and
a space variable x, and the differential equations must involve partial derivatives. Most
engineering applications involve the use of two or three spatial dimensions and this
means using partial derivatives. Hence solving engineering problems means solving
partial differential equations as well as the use of some vector calculus (Chapter 3),
particularly the use of the gradient operator.

The application of partial differential equations is much wider than the simple
situations already mentioned. Maxwell’s equations (see Example 3.16) comprise a set
of partial differential equations that form the basis of electromagnetic theory, and are
fundamental to electrical engineers and physicists. The equations of fluid flow are partial
differential equations and are widely used in aeronautical engineering, acoustics, the
study of groundwater flows in civil engineering, the development of most fluid handling
devices used in mechanical engineering and in investigating flame and combustion pro-
cesses in chemical engineering. Quantum mechanics is yet another theory governed by
a partial differential equation, the Schrödinger equation, which forms the basis of much
of physics, chemistry and electronic engineering. Stress analysis is important in large
areas of civil and mechanical engineering, and again requires a complicated set of par-
tial differential equations. This is by no means an exhaustive list, but it does illustrate
the importance of partial differential equations and their solution.

One of the major difficulties with partial differential equations is that it is extremely
difficult to illustrate their solutions geometrically, in contrast to single-variable problems,
where a simple curve can be used. For instance, the temperature in a room, particularly if it
is time-varying, is not at all easy to draw or visualize, but such information is of crucial
importance to a heating engineer. Modern graphics packages have improved the situation
considerably in two and three dimensions and the displays can often give a good qualitative
understanding. A second basic problem with partial differential equations is that it is intrin-
sically more difficult to solve them or even to decide whether a solution exists. The driving
force of most physical systems that can be modelled by partial differential equations is deter-
mined by either what happens on the boundary of the region under consideration or how the
system is started at zero time. Boundaries, therefore, play a very significant role, and we
shall see that a problem can have a solution for one set of boundary conditions but not for
another. Finding a solution to a partial differential equation is often quite straightforward but
finding the solution that fits the boundary conditions is very difficult.

The solution of partial differential equations has been greatly eased by the use of com-
puters, which have allowed the rapid numerical solution of problems that would otherwise
have been intractable. Such methods have generally been integrated into this chapter,
since they are now one of the standard techniques available. However, the finite-element
method is considered separately, since it is more complicated, and requires a lot of careful
thought and work (the section dealing with it can be omitted on a first reading). The finite-
element method originated in stress analysis in civil engineering work, but has now spread
into most areas where complicated boundaries are encountered.

9.1
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There are three basic types of equation that appear in most areas of science and
engineering, and it is essential to understand their solutions before any progress can be
made on more complicated sets of equations, nonlinear equations or equations with
variable coefficients.

General discussion
The three basic types of equation are referred to as the wave equation, the heat-
conduction or diffusion equation, and the Laplace equation. In this section we briefly
discuss the formulation of these three basic forms, and then consider each in more detail
in later sections. The various sections will concentrate on finding and understanding
solutions of the three types of equations in simple regions. The treatment of advanced
methods, more complicated equations and other regions will be left to more compre-
hensive books on partial differential equations (see, for example, R. Haberman, Applied
Partial Differential Equations, Upper Saddle River, NJ, Prentice Hall, 2003).

9.2.1 Wave equation

where the notation ∇ 2 for Laplacian was introduced in Chapter 3, equation (3.20)
Many phenomena that involve propagation of a signal require the wave equation (9.1)

to be solved in the appropriate number of space dimensions. Perhaps the simplest, in one
space dimension, is the vibration of a taut string stretched to a uniform tension T between
two fixed points as illustrated in Figure 9.1(a), where u is the displacement, x is measured
along the equilibrium position of the string and t is time. Applying Newton’s law of motion
to an element Δs of the string (Figure 9.1b), for motion in the u direction, we have

net force in u direction = mass element × acceleration in u direction

that is,

T sin(ψ + Δψ) − T sin ψ = ρΔs (9.2)

9.2

(9.1)
1

c2
---- ∂ 2u

∂t2
---------  = ∂

2u

∂x2
--------- ∂ 2u

∂y2
--------- ∂ 2u

∂z2
---------+ +  = ∇2u

Figure 9.1 Displacement of an element of a taut string.

∂ 2u

∂t2
---------
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where ρ is the mass per unit length of the string. Neglecting terms quadratic in small
quantities and using the Taylor series expansions

cos Δψ  = 1 + O(Δψ 2) . 1, sin Δψ = Δψ + O(Δψ 3) . Δψ

and the expression

for the arclength, (9.2) becomes

T sin ψ + T cos ψ Δψ − T sin ψ = ρΔx

or

which in the limit as Δx → 0 becomes

(9.3)

Again assuming that ψ itself is small for small oscillations of the string, we have
cos ψ . 1, and the gradient of the string

= tan ψ . ψ

and hence from (9.3) we obtain

 

By considering the theory of small displacements of a compressible fluid, sound
waves can likewise be shown to propagate according to (9.1). The one-dimensional
form (9.4) will model the propagation of sound in an organ pipe, while the spherically
symmetric version of (9.1) will give a solution for waves emanating from an explosion.
Because it is known that most wave phenomena satisfy the wave equation, it is reason-
able, from a physical standpoint, that the propagation of electromagnetic waves will
also satisfy (9.1). A careful analysis of Maxwell’s equations in free space is required
to show this result (see Example 3.16). We could give further examples of physical

Δs  = 1
∂u
∂x
------ 
 

2

+ Δx . Δx

∂ 2u

∂t2
---------

T cos ψ Δψ
Δx
--------  = ρΔx

∂ 2u

∂t2
---------

T cos ψ ∂ψ
∂x
-------  = ρ ∂ 2u

∂t2
---------

∂u
∂x
------

T
∂ 2u

∂x2
---------  = ρ ∂ 2u

∂t2
---------

Thus the displacement of the string satisfies the one-dimensional wave equation

(9.4)

and the propagation of the disturbance in the string is given by a solution of this
equation where c2 = T/ρ.

1

c2
---- ∂2u

∂t2
-------- = ∂

2u

∂x2
--------
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phenomena that have (9.1) as a basic equation, but we have described enough here to
establish its importance and the need to look at methods of solution. An aspect of the
wave equation that is not often discussed is its bad behaviour. Any discontinuities in a
variable or its derivatives will, according to the wave equation, propagate with time. An
obvious physical manifestation of this is a shock wave. When an aircraft breaks the
sound barrier, a shock is produced and the sonic boom can be heard many miles away.
How the shock is produced is a complicated nonlinear effect, but once it has been
produced it propagates according to the wave equation.

Show that

satisfies the one-dimensional wave equation and the conditions

(a) a given initial displacement u(x, 0) = u0 sin(πx/L), and

(b) zero initial velocity, ∂u(x, 0)/∂t = 0.

Solution Clearly the condition (a) is satisfied by inspection. If we now partially differentiate u
with respect to t,

so that at t = 0 we have ∂u/∂t = 0 and (b) is satisfied.
It remains to show that (9.4) is also satisfied. Using the standard subscript notation

for partial derivatives,

so that the equation is indeed satisfied.
This solution corresponds physically to the fundamental mode of vibration of a taut

string plucked at its centre.

Verify that the function

satisfies the wave equation (9.4). Sketch the graphs of the solution u against x at t = 0,
t = 2h /c and t = 4h /c.

Example 9.1

u = u0 sin
πx
L
------ 
  cos

πct
L

-------- 
 

∂u
∂t
------  = −u0πc

L
----------- sin

πx
L
------ 
  sin

πct
L

-------- 
 

uxx = ∂
2u

∂x2
---------  = −u0π2

L2
---------- sin πx

L
------ 
  cos

πct
L

-------- 
 

utt = ∂
2u

∂t2
---------  = −

u0π2c2

L2
--------------- sin

πx
L

------ 
  cos

πct
L

-------- 
 

Example 9.2

u = a exp − x
h
--- ct

h
----– 

 
2
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Solution Evaluate the partial derivatives as

and

Clearly (9.4) is satisfied by these second derivatives.
The curves of u against x are plotted in Figure 9.2, and show a wave initially centred

at the origin moving with a constant speed c to the right. That is, the solution represents
a wave travelling to the right.

9.2.2 Heat-conduction or diffusion equation

(9.5)

This equation arises most commonly when heat is transferred from a hot area to a cold
one by conduction, when the temperature satisfies (9.5), where ∇ 2 = ∇ ⋅∇ is the
Laplacian of the scalar point function u(x, t), (see Chapter 3, equation (3.20)).

In Section 3.6 a full derivation of the equation (9.5) is made. Here we shall invest-
igate the one-dimensional version in the context of the heat flow along a thin bar. The
bar is assumed to have a uniform cross-sectional area and an insulated outer surface
through which no heat is lost. It is also assumed that, at any cross-section x = constant,
the temperature T(x, t) is uniform. Consider an element of the bar from x to x + Δx,
where x is measured along the length of the bar, as illustrated in Figure 9.3. An
amount of heat Q(x, t) per unit time per unit area enters the left-hand face and an

ux = −2a x ct–( )
h2

---------------------------- exp − x
h
--- ct

h
----–

 
 
 

2

ut = 2ac x ct–( )
h2

--------------------------- exp − x
h
--- ct

h
----–

 
 
 

2

uxx = −2a

h2
---------- exp − x

h
--- ct

h
----–

 
 
 

2
4a x ct–( )2

h4
-------------------------- exp − x

h
--- ct

h
----–

 
 
 

2

+

utt = −2ac2

h2
--------------- exp − x

h
--- ct

h
----–

 
 
 

2
4a x ct–( )2c2

h4
-------------------------------- exp − x

h
--- ct

h
----–

 
 
 

2

+

Figure 9.2
Propagating wave
in Example 9.2.

1
κ
--- ∂u

∂t
------  = ∇2u
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amount Q(x + Δx, t) leaves the right-hand face of the element. The net increase per unit
cross-sectional area in unit time is

Q(x, t) − Q(x + Δx, t)

If c is the specific heat of the bar and ρ is its density then the amount of heat in the
element is cρTΔx. The net increase in heat in the element in unit time is

and is equated to the net amount entering. Thus

= Q(x, t) − Q(x + Δx, t)

which in the limit as Δx → 0 gives

(9.6)

The Fourier law for the conduction of heat states that the heat transferred across unit
area is proportional to the temperature gradient. Thus

where k is the thermal conductivity and the minus sign takes into account the fact
that heat flows from hot to cold. Substitution for Q in (9.6) gives the one-dimensional
heat equation

(9.7)

where κ = k /cρ is called the thermal diffusivity.
An entirely similar derivation for the diffusion equation can be made. The only

difference is that the Fourier law is replaced by Fick’s law that the diffusional flow of
a material is proportional to the concentration gradient.

The equations describing more complicated phenomena, such as the time-dependent
electromagnetic equations or the equations of fluid mechanics, have the same basic
structure as (9.5), but with additional terms or with coupling to other equations of the
same type. We certainly need to know how to solve (9.5) before even contemplating
solving these more complex versions.

An essential feature of the heat-conduction equation is that, given a long enough
time and assuming that there are no time-varying inputs, the temperature will eventually
settle down to a steady state. Thus the final solution is independent of time, and hence

Figure 9.3 Heat flow 
in an element.

cρ ∂T
∂t
------ Δx

cρ ∂T
∂t
------ Δx

cρ ∂T
∂t
------  = −∂Q

∂x
-------

Q = −k
∂T
∂x
------

∂T

∂t
------  = κ∂ 2T

∂x2
---------
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will satisfy ∂u/∂t = 0 or ∇2u = 0. The transient behaviour tells how this solution is
approached from its given starting value. Physically it is reasonable that any initial
temperature, however complicated, will move to a smooth final solution, and we should
not expect the severe difficulties with discontinuities that occur with the wave equation.
Exactly how initial discontinuities are treated in a numerical solution, however, can
affect the accuracy in the early development of the solution.

Show that

T = T∞ + (Tm − T∞) e−U(x−Ut)/κ (x > Ut)

satisfies the one-dimensional heat-conduction equation (9.7), together with the bound-
ary conditions T → T∞ as x → ∞ and T = Tm at x = Ut.

Solution The second term vanishes as x → ∞, for any fixed t, and hence T → T∞. When x = Ut,
the exponential term is unity, so the T∞s cancel and T = Tm. Hence the two boundary
conditions are satisfied. Checking both sides of the heat-conduction equation (9.7),

which are obviously equal, so that the equation is satisfied.
The example models a block of material being melted at a temperature Tm, with the

melting boundary having constant speed U, and with a steady temperature T∞ at great
distances. An application of this model would be a heat shield on a re-entry capsule
ablated by frictional heating.

Show that the function

satisfies the one-dimensional heat-conduction equation (9.7). Plot T against x for various
times t, and comment.

Solution We first calculate the partial derivatives

and

Example 9.3

1
κ
--- ∂T

∂t
------  = 1κ

--- Tm T∞–( )U 2

κ
------ e−U x−Ut( ) /κ

∂2T

∂x2
--------  = Tm T∞–( ) U 2

κ 2
------ e−U x−Ut( )/κ

Example 9.4

T = 1

t
----- exp − x2

4κ t
-------- 

 

∂T

∂t
------  = − 1

2
--- 1

t3/2
------- exp

−x2

4κ t
--------- 
  1

t
------ −x2

4κ
-------- −1

t2
------ exp

−x2

4κ t
--------- 
 +

∂T

∂x
------  = 1

t
------ −2x

4κ t
--------- exp

−x2

4κ t
--------- 
 

∂ 2T

∂x2
---------  = −1

2κ t3/2
-------------- exp

−x2

4κ t
--------- 
  −x

2κ t3/2
-------------- −2x

4κ t
--------- exp

−x2

4κ t
--------- 
 +
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It is easily checked that (9.7) is satisfied except at the time t = 0, where T is not properly
defined. The graph of reduced temperature T/  against distance x at various times
t = L2/4κ can be seen in Figure 9.4. Physically, the problem corresponds to a very hot
weld being applied instantaneously to the bar. The initial temperature ‘spike’ at x = 0 is
seen to spread out as time progresses, and, as expected from the physical interpretation,
T tends to zero for all x as the time becomes large. Alternatively the problem describes
the diffusion of a large pulse of contaminant into a thin tube of fluid.

9.2.3 Laplace equation 

Heat transfer is well understood intuitively, and good guesses at steady-state solutions
can usually be made. Perhaps less commonly understood is the case of the electrostatic
potential in a uniform dielectric, which also satisfies the Laplace equation. Working out
the electrical behaviour of a capacitor that is charged in a certain manner simply implies
solving (9.8) subject to appropriate boundary conditions. Possibly the least obvious,
but extremely important, application of the Laplace equation is in inviscid, irrotational
fluid mechanics. To a large extent, subsonic aerodynamics is based on (9.8) as an
approximate model. The lift and drag on an aerofoil in a fluid stream can be evaluated
accurately from suitable solutions of this equation. It is only close to the aerofoil that
viscous and rotational effects become important. Example 9.6 shows an application of
the Laplace equation to inviscid fluid flow. Further details about fluid dynamics can be
found in specialist texts, for example D. Acheson, Elementary Fluid Dynamics (Oxford,
Oxford University Press, 2002).

4κ( )

Figure 9.4 Solution 
of the heat-conduction 
equation starting from 
an initial spike in
Example 9.4.

∇2u = 0 (9.8)

The simplest physical interpretation of this equation has already been mentioned,
namely as the steady-state heat equation. So, for example, the two-dimensional Lap-
lace equation

could represent the steady-state distribution of temperature over a thin rectangular
plate in the (x, y) plane.

∂ 2T

∂x2
--------- ∂ 2T

∂y2
---------+  = 0
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The Laplace equation is a ‘smoother’ in the sense that it irons out peaks and troughs.
Physically, the steady-state heat-conduction context tells us that if a particular point has
a higher temperature than neighbouring points then heat will flow from hot to cold until
the ‘hot spot’ is eliminated. Thus there are no interior points at which the solution u of
(9.8) is smaller or larger than all of its neighbours. This result can be confirmed math-
ematically, and establishes that smooth solutions are obtained, see Section 9.7.1.

Show that

u = x4 − 2x3y − 6x2y 2 + 2xy3 + y4

satisfies the Laplace equation.

Solution Differentiating

ux = 4x3 − 6x2y − 12xy 2 + 2y 3, uy = −2x3 − 12x2y + 6xy 2 + 4y 3

uxx = 12x2 − 12xy − 12y 2, uyy = −12x2 + 12xy + 12y 2

so clearly

uxx + uyy = 0

and the two-dimensional Laplace equation is satisfied.

Show that the function

satisfies the Laplace equation, and sketch the curves ψ = constant.

Solution First calculate the partial derivatives:

Substituting into (9.8) gives

and hence the Laplace equation is satisfied.

Example 9.5

Example 9.6

ψ = Uy 1 a2

x2 y2+
---------------–

 
 
 

ψx = 2xyUa2

x2 y2+( )2
----------------------

ψy = U Ua2

x2 y2+
---------------– 2y2Ua2

x2 y2+( )2
----------------------+

ψxx = 2yUa2

x2 y2+( )2
---------------------- 8x2yUa2

x2 y2+( )3
----------------------–

ψyy = 2yUa2

x2 y2+( )2
---------------------- 4yUa2

x2 y2+( )2
---------------------- 8y3Ua2

x2 y2+( )3
----------------------–+

∇2ψ = 8yUa2

x2 y2+( )2
---------------------- 8y x2 y2+( )Ua2

x2 y2+( )3
-------------------------------------  = 0–
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Secondly, to sketch the contours, we note that ψ = 0 on y = 0 and on the circle
x2 + y2 = a2. On keeping y = y0 and letting x → ±∞, the second term vanishes, so the
curves tend to ψ = Uy0. Figure 9.5 shows the solution, which corresponds physically to
the flow of an inviscid, irrotational fluid past a cylinder placed in a uniform stream.

 

9.2.4 Other and related equations

We discussed in Section 9.1 applications in science and engineering. Many such applica-
tions are governed by equations that are closely related to the three basic equations
discussed above. For example, consider the equations of slow, steady, viscous flow in
two dimensions, which take the form

(9.9)

where u, v and p are the non-dimensional velocities and pressure, and ℜ is the Reynolds num-
ber (see the book by Acheson mentioned above). The system has a familiar look about it, and
indeed a little simple manipulation gives ∇2p = 0, so that the pressure satisfies the Laplace equa-
tion. If p can be calculated then ∂p/∂x and ∂p/∂y are known, so we have equations of the form

Computer packages can verify the differentiations and the plotting in any of the
examples in this section. For instance, the MAPLE instructions

psi:=U*y*(1-a^2/(x^2+y^2));
diff(psi,x,x); diff(psi,y,y); simplify(%+%%);

verify the Laplace equation in Example 9.6. The plotting in Figure 9.5 can be
achieved from the instructions

with(plots):
g:=y*(1-1/(x^2+y^2));
aa:=[g=0.001,g=0.1,g=1,g=1.5];
implicitplot({seq(aa[i],i=1..4)},x=-2..4,y=0..2, 
scaling=constrained);

Figure 9.5
Streamlines for flow 
past a cylinder of 
radius 1, from the 
Laplace equation in 
Example 9.6.

∂p
∂x
------ 1

ℜ
----∇2u,

∂p
∂y
------ 1

ℜ
----∇2v==

∂u
∂x
------ ∂v

∂y
------ 0,=+ 





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∇2u = f (x, y) (9.10)

This equation is called the Poisson equation, and is clearly closely related to the Laplace
equation. It can be interpreted physically as steady heat conduction with heat sources
in the region. A careful study of the solution of the Laplace equation is required before
either (9.10) or (9.9) can be attacked. In Sections 9.5 and 9.7 some discussions of the
Poisson equation take place.

If there is good knowledge about the time behaviour of the wave or diffusion equa-
tion then we can often obtain important information from them without solving the full
equations. For instance, if we put a periodic time dependence u = e jα tv(x, y, z) into (9.1),
or if we put an exponentially decaying solution u = e−βtv(x, y, z) into (9.5), then the
variable v, in both cases, satisfies an equation of the form

∇2v + λv = 0 (9.11)

Equation (9.11) is called the Helmholtz equation, and plays an important role in the
solution of eigenvalue problems. It is perhaps of relevance that the best studied eigen-
value equation, the Schrödinger equation, is almost the same, namely

∇2u − V(x, y, z)u + Eu = 0

It is a bit more complicated than (9.11), but it forms the basis of quantum mechanics,
on which whole industries are built.

So far, all of the equations that we have considered are linear, since they have not included
any quadratic (or higher) terms in u or its derivatives. As soon as we move from linear to
nonlinear problems, a whole new crop of theoretical and computational difficulties arises.
Very few such equations can be solved analytically, and devising computational schemes is
not easy. Even worse, mathematicians cannot always tell whether or not a solution even
exists. An act of faith is usually made by scientists and engineers that their problem is mod-
elled correctly and therefore there must be a mathematical solution reflecting the physics.
Often the faith is well founded, but modelling is an imperfect art and there are many things
that can go wrong. It may be thought that nonlinear problems do not occur in practice, but
this is certainly not the case. For some phenomena, like the behaviour of thermionic valves
or avalanche semiconductors or pulsed lasers, it is the nonlinearity that produces the desired
effects. Other situations arise where the nonlinearity of the system may or may not be impor-
tant. For instance, the full two-dimensional fluid equations are the Navier−stokes equations

(9.12)

Using the vector notation of Chapter 3, equations (9.12) can be written 

where u, v, p and ℜ are defined as for (9.9). These equations are nonlinear because of
the presence of quadratic convection terms such as u ∂u /∂x. It can be seen that (9.12)
reduce to (9.9) for slow flow when quadratic terms are neglected. While (9.9) would be
applicable to the flow of molten glass, we would need the full equations (9.12) to look

h2

8π2m
-------------

∂u
∂ t
------ u

∂u
∂x
------+ v

∂u
∂y
------+ −∂p

∂x
------ 1

ℜ
----∇2u+=

∂v
∂ t
----- u+ ∂v

∂x
------ v

∂v
∂y
------+ −∂p

∂y
------ 1

ℜ
----∇2v+=

∂u
∂x
------ ∂v

∂y
------+ 0=











∂u
∂ t
------ u ∇⋅( )u+ ∇p– 1

ℜ
----∇2u+=
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at flow close to an aerofoil. Indeed, as ℜ becomes large, the flow becomes turbulent,
that is unstable, and the applicability of these equations comes into question.

9.2.5 Arbitrary functions and first-order equations

In each of the examples in this section, a solution has been given; it has been checked
that the solution satisfies the appropriate partial differential equation. In no case has the
boundary condition been part of the specification of the problem, although in several
cases boundary conditions were checked. In the next sections the boundary conditions
are given as part of the set-up of the example. This is the natural way that a physical
problem is specified and it proves to be a much tougher proposition.

The most significant difference between ordinary and partial differential equations is
the treatment of the ‘arbitrary constants’. Consider the examples:

Extending this idea it can be seen that each partial integration introduces an arbitrary
function into the solution. Sufficient conditions must be given to determine these
arbitrary functions. It is not always easy to decide exactly what conditions are
required, but in subsequent sections an idea will be given for the three classic equa-
tions, the wave equation, the heat-conduction equation and the Laplace equation. An
extended discussion can be found in Section 9.8.

Consider for the moment a first-order equation. Such equations are of less interest in
applications to engineering and science, but there is a comprehensive theory for their
solution which will illustrate the use of arbitrary functions.

Find the general solution, u(x, t), of the partial differential equation

and find the particular solution when u(x, 0) = x2.

Solution Change the variables z = x − t and T = t and use the chain rule to evaluate the terms in
the equation

ODE
Solve the ordinary differential equation

Integrating gives

y(t) = t3 + K

where K is an arbitrary constant, since 
differentiating y(t) with respect to t 
produces 3t2 whatever the value of the 
constant K.

PDE
Solve the partial differential equation

Integrating gives

z(x, t) = t3 + f (x)

where f (x) is an arbitrary function. 
Differentiating with respect to t produces 
3t2 for any function f (x) because x is kept 
constant in the partial differentiation.

dy t( )
dt

------------  = 3t2 ∂z x t,( )
∂t

------------------  = 3t2

Example 9.7

∂u
∂t
------ ∂u

∂x
------+  = 0

∂u
∂t
------  = 

∂u
∂z
------ ∂z

∂t
----- ∂u

∂T
------ ∂T

∂t
------  = 

∂u
∂z
------ ∂u

∂T
------+–+

∂u
∂x
------  = 

∂u
∂z
------ ∂z

∂x
----- ∂u

∂T
------ ∂T

∂x
------  = 

∂u
∂z
------+
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Putting these differentials into the equation

Thus u(z, T ) can be deduced as

u(z, T ) = f (z), where f is an arbitrary function

Reverting to the original variables

u(x, t) = f(x − t)

and a general solution of the partial differential equation has been obtained.
For the particular solution with initial conditions written in parametric form, x = s,

t = 0, u = s2, it is easily deduced that s2 = f (s) and hence

u(x, t) = (x − t)2

The solution of quasi-linear first-order equations with two variables, x and y, is compar-
atively straightforward

(9.13)

Provided P, Q and R are ‘well behaved’ a method of solution can be deduced, although
the resulting integrals cannot always be obtained explicitly. Extension to many variable
problems is similar, but the geometrical interpretation is more difficult.

In Section 3.2.1 it was seen that the function z = f (x, y), illustrated in Figure 9.6, has a
normal (∂z/∂x, ∂z/∂y, −1) at a typical point M, having coordinates (x, y, z). Equation (9.13)
says that the normal to the surface is perpendicular to the vector (P, Q, R) at the point
M and thus (P, Q, R) must lie in the tangent plane. Now examine the curve C in the surface
starting at the point A and moving along C in a direction that is always parallel to (P,
Q, R) at the current point. The direction therefore remains perpendicular to the normal
(∂z/∂x, ∂z/∂y, −1) at all points and must move in a tangential direction to the surface;
such curves are called characteristic curves. The point must remain in the surface and
this tangential direction (dx, dy, dz) must therefore be parallel to (P, Q, R) so that

(9.14)

0 = 
∂u
∂t
------ ∂u

∂x
------  = 

∂u
∂T
------+

P x y z, ,( )∂z
∂x
----- Q x y z, ,( )∂z

∂y
-----+ R x y z, ,( )=

Figure 9.6 Surface 
z = f (x, y) showing the 
tangent, normal and 
characteristic curve C.

dx
P
------  = dy

Q
------  = dz

R
-----
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Starting from (9.13) we have shown that z(x, y) can be obtained from the two ordinary
differential equations (9.14). If we start from (9.14) we know that the normal direc-
tion (∂z/∂x, ∂z/∂y, −1) is perpendicular to the tangent vector (dx, dy, dz) and hence
perpendicular to (P, Q, R) so

and (9.13) is satisfied.
From a particular starting point, x = a, y = b, z = c, the solution of (9.13) is obtained as

the characteristic curve obtained from the solution of the ordinary differential equations
(9.14). Usually there is a starting curve; then essentially the process calculates the charac-
teristic curve from each point of the starting curve and the solution surface is generated.

To illustrate the method return to Example 9.7 when the equations (9.14) become

using the variables given. The two ordinary differential equations are

with solution x − t = A

with solution u = B

The constants A and B are arbitrary and are determined from a given initial data point.
Usually the initial data is given on a curve t = 0, x = f(s), y = g(s), so for each s there are
arbitrary constants A and B; in this case, the constants depend on s, that is A(s) and B(s).
In the current example (9.7) the initial data is t = 0, x = s, u = s2 giving

s = A so x − t = s

s2 = B so u = s2

Eliminating s gives u = (x − t)2 as deduced earlier. A further example shows how the
method is applied.

Solve the equation

for z(x, y) given that z = f(s) when x = s and y = 1 − s.

Solution The two ordinary equations obtained from (9.14) are

and (9.15a,b)

Solving (9.15a) gives ln x = ln y + C which reduces to x = Ay. Putting this result into
(9.15b) gives

xdx = Adz

which on solving gives

P x y z, ,( )∂z
∂x
----- Q x y z, ,( )∂z

∂y
-----+  − R x y z, ,( ) = 0

dt
1
-----  = dx

1
------  = du

0
------

dx
dt
------  = 1

du
dt
------  = 0

Example 9.8

x
∂z
∂x
----- y

∂z
∂y
-----  = xy+

dx
x

------  = dy
y

------ dx
x

------  = dz
xy
-----
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x2 = Az + B

To obtain the arbitrary constants A and B we insert the initial conditions

(9.16a)

(9.16b)

Thus A and B have been obtained in terms of s. From (9.16a) we get

and hence

So that (9.16b) becomes

Rearranging, z is then calculated as

The solution can be checked by substitution into the original differential equation.

A practical example of first-order equations involves the draining of liquid from a vessel,
a procedure common to many industrial processes. The thickness of the liquid layer is
required as time progresses.

A thin layer of liquid drains down the side of a vessel, as illustrated in Figure 9.7. From
the theory of thin layers, the equation for the fluid motion is given by

where h(x, t) is the thickness of the layer and a is a constant that depends on the viscosity,
density and the gravity constant. Find the solution for h(x, t) given the initial condition
h(x, 0) = α  where α is a constant.

Solution The ordinary differential equations (9.14) are

Because there is a comprehensive theory of the solution of some classes of first-order
partial differential equations computer packages can be used to solve these equations
with comparative ease. The MAPLE instructions

with(PDEtools):
PDE:=x*diff(z(x,y),x) + y*diff(z(x,y),y) - x*y;
pdsolve(PDE);

produce the general solution in Example 9.8.

1
2
---

A = x
y
----  = s

1 s–
-----------

B = 1
2
---x2 x

y
----z–  = 1

2
---s2 s

1 s–
-----------  f s( )–

x
y
----  = s

1 s–
----------- s = x

x y+
-----------

1
2
---x2 x

y
--z– 1

2
--- x

x y+----------- 
 

2 x
y
-- f

x
x y+----------- 
 –=

z = 1
2
---xy

1
2
--- xy

x y+( )2
------------------– f

x
x y+----------- 
 +

Example 9.9

Figure 9.7 Draining 
of liquid down the side 
of the vessel of 
Example 9.9.

∂h
∂t
------ ah2∂h

∂x
------+  = 0

x

dt
1
-----  = dx

ah2
--------  = dh

0
------
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Clearly h = C, a constant, solves one of the equations and the other is

with solution x = atC2 + K

where C and K are arbitrary constants. Thus the solution of the equation is

Note that the package has combined the arbitrary constants C and K into one arbitrary
function f, determined by the initial data.

Clearly the package can go no further without the specification of the initial condi-
tion. Putting in the conditions x = s, t = 0, h = α  gives f as

f (α ) = s or f (p) =

The function h can now be calculated as

h(x, t) = α

and shows that, for large t, the layer thins at a rate proportional to . The solution can
be checked by direct substitution into the original equations. A plot of h against x at
successive times or a three-dimensional plot of h(x, t) using PDEplot in MAPLE can
be used to illustrate the solution.

Further applications of first-order equations occur in the study of the time evolution of
the probability distribution of the position of a particle, for instance in Brownian motion.
The equation is

where Dr and Df are drift and diffusion coefficients. If diffusion can be neglected then
the equation is just a first-order partial differential equation.

Using MAPLE to try for a solution, the instructions

with(PDEtools):
drain:=diff(h(x,t),t)+a*h(x,t)^2*diff(h(x,t),x);
pdsolve(drain);

give h as a solution of the equation

f (h) = x − ath2

The MATLAB instructions that produce the surface shape, h/α, at successive times
aα 2t = 0,2,4,8 are

y=0:0.1:4;
X=[sqrt(y)’,sqrt(y/3)’,sqrt(y/5)’,sqrt(y/9)’];
plot(X,y)

dx
dt
------  = ah2 = aC2

C = h

K = x ath2–



s

s
p
α
--- 
 

2

x

1 aα2t+
-------------------

t
−1

2
---

∂f x t,( )
∂t

----------------- ∂
∂x
----- Dr x t,( )f x t,( )[ ]+  = ∂2

∂x2
-------- Df x t,( )f x t,( )[ ]
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In gas dynamics and also in traffic flow problems a similar equation, the Burgers’
equation, can be shown to apply

In the two situations u is the gas velocity or the traffic density and ν is a viscosity
coefficient. For the inviscid case, again the equation reduces to a first-order partial
differential equation. The derivation of these equations is lengthy and beyond the scope
of this text but can be found in specialist books.

The solution of inviscid Burgers’ equation is obtained from

The two equations give one obvious solution u = A and the second is

and hence x = At + B

Taking initial conditions t = 0, u = V(s) and x = s we obtain

A = u = V(s)

B = x − ut = s

Eliminating s gives the solution for u(x, t) in implicit form

V(x − ut) = u

∂u
∂t
------ u

∂u
∂x
------+  = ν∂2u

∂x2
--------

dt
1
-----  = dx

u
------  = du

0
------

dx
dt
------  = u = A

Find the possible values of a and b in the 
expression 

u = cos at sin bx

such that it satisfies the wave equation

Taking

u = f (x + αt)

where f is any function, find the values of α that 
will ensure that u satisfies the wave equation

Verify that the function

u(x, y) = x4 − 6x2y2 + y4

satisfies the Laplace equation.

The function z(r, t) depends only on the radial 
distance in spherical polar coordinates and on 
the time. The wave equation in this coordinate 
system is

Show that z(r, t) = r−1 cos (r − ct) satisfies the 
equation (r ≠ 0).

Find all the possible solutions of the heat-
conduction equation 

of the form

u(x, t) = eαtV(x)

Find the values of the constant n for which 

V = rn(3 cos2θ − 1)

satisfies the Laplace equation (in spherical polar 
coordinates and independent of φ)

for all values of the variables r and θ.

Show that u = e−kt cos mx cos nt is a solution of the 
equation

9.2.6 Exercises

1

1

c2
---- ∂ 2u

∂t2
--------- ∂ 2u

∂x2
---------=

2

1

c2
---- ∂ 2u

∂t2
--------- ∂ 2u

∂x2
---------=

3

4

∂ 2z

∂r2
-------- 2

r
--- ∂ z

∂r
------+ 1

c2
----∂ 2z

∂t2
--------=

5

1

κ
--- ∂u

∂t
------ ∂ 2u

∂x2
---------=

6

∂
∂r
----- r2 ∂V

∂r
------ 

  1
sin θ
---------- ∂

∂θ
------ sin θ ∂V

∂θ
------ 

 + 0=

7
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provided that the constants k, m, n and c are related 
by the equation n2 + k 2 = c2m2.

If V = x3 + axy2, where a is a constant, show that

Find the value of a if V is to satisfy the equation

Taking this value of a, show that if u = r3V, where 
r2 = x2 + y2, then

The telegraph equation has the form

where c2 is the speed of light and k is usually 
small. Given that Φ(x, t) is a solution of the wave 
equation

show that φ(x, t) = Φ(x, t) e−kt/2 is a solution of the 
telegraph equation, if terms of order k 2 can be 
neglected.

The transmission-line equations represent the flow 
of current along a long, leaky wire such as a 
transatlantic cable. The equations take the form

where g, c, r and L are constants and I and v are the 
current and voltage respectively.

(a) Show that when r = g = 0, the equations reduce 
to the wave equation.

(b) Show that when L = 0, the equations reduce 
to a heat-conduction equation with a 
forcing term. Write W = v egt/c to reduce 
to the normal form of the equation.

(c) Put a = (r/L + g/c) and then w = v eat. Show 
that when rc = gL, w satisfies the wave 
equation.

Show that if f is a function of x only then 

u = f (x) sin(ay + b)

where a and b are constants, is a solution of the 
partial differential equation

provided that f(x) satisfies the ordinary differential 
equation

Hence show that

u = (A + Bx) eax sin (ay + b)

where A and B are arbitrary constants, is a solution 
of the partial differential equation.

Show that f(x, y) = x2y2 + g(x /y) satisfies the partial 
differential equation

for any arbitrary function g. It is given that f = t2 on 
the line with parametric equation x = 1 − t, y = t; 
find the function g.

Show that the partial differential equation

has the general solution

u(x, y) = e−y[ f (x) + g( y)]

where f and g are arbitrary functions.

Find the general solution for u(x, y) in the equation 
(check using MAPLE)

Show that the solution that satisfies the conditions 
u = s2, x = s, y = 1 takes the form

c2 ∂ 2u

∂x2
--------- ∂ 2u

∂t2
--------- 2k

∂ u

∂t
------+=

8

x
∂V
∂x
------ y

∂V
∂ y
------+ 3V=

∂ 2V

∂x2
--------- ∂ 2V

∂ y2
---------+ 0=

∂ 2u

∂x2
--------- ∂ 2u

∂ y2
---------+ 27rV=

9

∂ 2φ
∂x2
--------- 1

c2
---- ∂ 2φ

∂t2
--------- k

∂φ
∂t
------+

 
 
 =

∂ 2Φ
∂x2
---------- 1

c2
---- ∂ 2Φ

∂t2
----------=

10

− ∂I
∂x
----- gv c

∂ v
∂t
------+=

−∂ v
∂x
------ rI L

∂I
∂t
-----+=

1
2
---

11

∂ 2u

∂ y2
--------- ∂ 2u

∂x2
--------- 2a

∂ u

∂x
------–=

d2f

dx2
-------- − 2a

df

dx
------ a2f 0=+

12

x
∂f
∂x
----- y

∂f
∂ y
------+ 4x2y2=

13

∂ 2u
∂x∂y
------------ ∂ u

∂ x
------+ 0=

14

x2∂u
∂x
------ y2 ∂u

∂ y
------+ x y+( )u=

u = 
x2y2

xy x– y+
-----------------------
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Solution of the wave equation
In this section we consider methods of solving the wave equation introduced in
Section 9.2.1.

9.3.1 D’Alembert solution and characteristics

A classical solution of the one-dimensional wave equation

(9.4)

is obtained by changing the axes to reduce the equation to a particularly simple form.
Let

r = x + ct, s = x − ct

Then, using the chain rule procedure for transformation of coordinates (see Section
3.1.1),

uxx = urr + 2urs + uss 

utt = c2(urr − 2urs + uss)

so that the wave equation (9.4) becomes

4c2urs = 0

This equation can now be integrated once with respect to s to give

where θ is an arbitrary function of r. Now, integrating with respect to r, we obtain 

u = f (r) + g(s)

which, on substituting for r and s, gives the solution of the wave equation (9.4) as

u = f (x + ct) + g(x − ct) (9.17)

where f and g are arbitrary functions and f is just the integral of the arbitrary function θ.
The solution (9.17) is one of the few cases where the general solution of a partial

differential equation can be found. However, finding the precise form of the arbitrary
functions f and g that satisfy given initial data is not always easy. The initial conditions
must give just enough information to evaluate f and g, which are functions of the single
variables r = x + ct and s = x − ct respectively.

In Example 9.2 we have already seen a simple example of a wave of this type. We
first deduced that a function of x − ct satisfied the wave equation, and then showed in
Figure 9.2 that it represented a wave travelling in the x direction with velocity c.

The next example is similar.

9.3

1

c2
---- ∂2u

∂t2
-------- ∂2u

∂x2
--------=

ur
∂u
∂r
------ θ r( )= =
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Check that u = 1/[1 + (x + ct)2] satisfies the wave equation (9.4) and show that it
represents a travelling wave in the −x direction.

Solution Differentiating partially with respect to x and t

ux = , uxx =

ut = , utt =

and the wave equation is satisfied. Plots of the function u against x for various values
of ct are shown in Figure 9.8. The same curve can be seen to be just translated to the left,
i.e. a travelling wave.

In Example 9.11 we attempt the more difficult task of fitting initial conditions to the
solution.

Solve the wave equation (9.4) subject to the conditions

(a) zero initial velocity, ∂u(x, 0)/∂ t = 0 for all x, and

(b) an initial displacement given by

u(x, 0) = F(x) =  

Example 9.10

−2 x ct+( )
1 x ct+( )2+[ ]2

------------------------------------ 2 −1 3 x ct+( )2+[ ]
1 x ct+( )2+[ ]3

---------------------------------------------

−2c x ct+( )
1 x ct+( )2+[ ]2

------------------------------------ 2c2 −1 3 x ct+( )2+[ ]
1 x ct+( )2+[ ]3

--------------------------------------------------
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0.5

0.75

ct = 1 ct = 0 ct = –11

x
0.5 1 1.5 2 2.5 3–1–2

, ct = 1; , ct = 0; , ct = –1.

Figure 9.8 Solution to 
Example 9.10 showing 
u against x for various 
values of ct.

Example 9.11
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

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Solution This example corresponds physically to an infinite string initially at rest, and displaced
as in Figure 9.9, which is then released.

From (9.17) we have a solution of the wave equation as

u = f (x + ct) + g(x − ct)

We now fit the given boundary data. Condition (a) gives

0 = cf ′(x) − cg ′(x) for all x

so that

f (x) − g(x) = K = an arbitrary constant

and thus

u = f (x + ct) + f (x − ct) − K

Similarly, condition (b) gives

F(x) = 2f (x) − K

so that

(9.18)

We now have the solution to the equation in terms of the function F defined in condition
(b). (Note that the same is true for any function F.)

The solution is plotted in Figure 9.10 as u against x for given times. It may be
observed from this example that we have two travelling waves, one propagating to the
right and one to the left. The initial shape is propagated exactly, except for a factor of
two, and the shape discontinuities are not smoothed out, as noted in Section 9.2.1.

The analysis in Example 9.11 can be extended to solve the wave equation subject to
the general conditions 

(a) an initial velocity, ∂u(x, 0)/∂ t = G(x), and

(b) an initial displacement, u(x, 0) = F(x) for all x.

Condition (a) gives, from (9.17),

G(x) = c[ f ′(x) − g′(x)]

so that

Condition (b) gives

f (x) + g(x) = F(x)

Figure 9.9 Initial 
displacement in 
Example 9.11.

u 1
2
--- F x ct+( ) 1

2
--- F x ct–( )+=

Figure 9.10 Solution 
to Example 9.11 
showing two waves 
propagating in the 
+x and −x directions 
with velocity c.

c f x( ) g x( )–[ ] #
0

x

G x( ) d x Kc+=
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and we can solve for f (x) and g(x) as

The solution thus becomes

(9.19)

which is commonly called the d’Alembert solution. As in Examples 9.2, 9.10 and
9.11, it gives rise to waves propagating in the +x and −x directions.

As mentioned in Section 9.1, a difficulty is to illustrate the solution of a partial differential
equation in a simple way. Figure 9.10 is a ‘snapshot’ at a particular time t, and if we wish to
look at the solution over all (x, t) then we have to draw u as a function of the two variables
x and t. We can draw the solution to Example 9.11 in a three-dimensional diagram as in
Figure 9.11, but for any higher-dimensional problem such a diagram is clearly impossible.
The ‘snapshot’ in Figure 9.10 corresponds to a plane slice parallel to the (u, x) plane.

The d’Alembert solution, which reduces to an integral along the boundary, does not
have any simple extension other than for the x axis. In Section 9.7.2 the Green’s function
is introduced and it can be interpreted as an extension since it involves integrals round
the boundary of a general region. However, the calculation of the Green’s function is a
tough proposition for any but the simplest regions. Following from the idea of the
d’Alembert solution, characteristics (which will be studied in the next few paragraphs)
can be used to extend the range of boundaries that can be dealt with.

The idea of using an (x, t) plane is a very useful one for the wave equation, since the
solution

u = f (x + ct) + g(x − ct)

gives a representation by characteristics. If we plot the lines x + ct = constant and
x − ct = constant as in Figure 9.12 then we see that the line AP has equation x − ct = x0

and the line BP has equation x + ct = x1. Thus

on the whole of AP g(x − ct) = g(x0)

on the whole of BP f (x + ct) = f (x1)

f x( ) 1
2
--- F x( ) 1

2c
------#

0

x

G x( ) d x 1
2
--- K+ +=

g x( ) 1
2
---F x( ) 1

2c
------#

0

x

G x( ) d x– 1
2
--- K–=

u 1
2
--- F x ct+( ) F x ct–( )+[ ] 1

2c
------#

x−ct

x+ct

G z( ) dz+=

Figure 9.11 Solution 
to Example 9.11 in 
(x, t, u) space.
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Thus g takes a constant value on AP and f takes a constant value on BP. If we can
calculate f and g on the initial line t = 0 then we know the value of u at P, namely

u(P) = f (x1) + g(x0) (9.20)

Since P is an arbitrary point, the solution at any point would be known. The essential
problem is to calculate f (x) and g(x) on the line t = 0.

Typical conditions on t = 0 are

(a) u(x, 0) = F(x), and

(b) ∂u(x, 0) /∂ t = G(x),

which specify the initial position and velocity of the system. Now 

= cf ′(x + ct) + cg′(x − ct) + cf ′(x + ct) − cg′(x − ct) = 2cf ′(x + ct)

and similarly

= 2cg′(x − ct)

On t = 0 we know that ∂u /∂x = F ′(x) and ∂u /∂ t = G(x), so we can deduce that

cF ′(x) + G(x) = 2cf ′(x)

cF ′(x) − G(x) = 2cg′(x)

Since F and G are given, we can compute

f ′(x) = [F ′(x) + G(x) /c]

g′(x) = [F ′(x) − G(x) /c]

and hence f (x) and g(x) can be computed by straightforward integration.
This method is essentially the same as the d’Alembert method, but it concentrates

on calculating f(x) and g(x) on the initial line and then constructing the solution at P by
the characteristics AP and BP. The method gives great insight into the behaviour of the
solution of such equations, but it is not an easy technique to use in practice. Perhaps
the best that can be obtained from characteristics is an idea of how the solution depends
on the initial data. In Figure 9.13 the characteristics emanating from the initial line are
drawn. To evaluate the solution at P, we must have information on the section of the
initial line AB, and the rest of the initial line is irrelevant to the solution at P. This is
called the domain of dependence. The section of the initial line AB has a domain of
influence determined by the characteristics through the points A and B. The data on
AB cannot influence the solution outside the shaded region in Figure 9.13(b).

Figure 9.12
Characteristics 
x + ct = constant and 
x − ct = constant.

c
∂u
∂x
------ ∂u

∂t
------+

c
∂u
∂x
------ ∂u

∂t
------–

1
2
---

1
2
---
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Use characteristics to compute the solution of the one-dimensional wave equation (9.4),
with speed c = 1, given (a) the initial conditions that u = V(x) and ∂u/∂t = 0, for x > 0
and t = 0, and (b) the boundary condition that u = 0 at x = 0 and t > 0. Describe the
solutions in the particular cases

(i) V(x) = 1 and (ii) V(x) = .

Solution The characteristics are plotted in Figure 9.14. It can be seen that for x > t, at a typical
point P two characteristics emanating from the initial line, t = 0, meet and the solution
can be computed at P from data on the initial line. However, for x < t, at a typical point
Q the characteristics emanating from the boundary, x = 0, are required. These observa-
tions will be borne out in the mathematical computations.

For the region x > t the characteristic analysis described in the previous analysis can
be followed. It was shown that f and g in the solution

u = f (x − t) + g(x + t) (9.21)

Example 9.12

Figure 9.13
Characteristics 
showing (a) the domain 
of dependence and (b) 
the domain of 
influence.

x

x3 1+
--------------

Figure 9.14
Characteristics for 
Example 9.12.
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can be calculated, taking G(x) = 0, as

f ′(x) = V ′(x) and g ′(x) = V ′(x)

Integrating, and putting the arbitrary constant to be zero, gives

f (x) = V(x) and g(x) = V(x) for x > 0

and hence the solution

u(x, t) = [V(x + t) + V(x − t)] for x > t (9.22)

For the region x < t, (9.21) requires f (z) at negative values of z. The function is not yet
known for negative values and must be determined by the other condition (b) on x = 0.
The condition u = 0 at x = 0 and t > 0 implies in (9.21)

0 = f (− t) + g(t)

and hence for a general variable z

f (−z) = −g(z) = − V(z) for z > 0

Using this result, (9.21) gives the required solution

u(x, t) = [V(x + t) − V(t − x)] for x > t (9.23)

The complete solution for all x > 0 and t > 0 is now known from (9.22) and (9.23).

Case (i)

In this case V(x) = 1 so (9.22) gives u = 1, in the shaded region of Figure 9.14, and (9.23)
gives u = 0, in the unshaded region of Figure 9.14. Thus

Note that the discontinuity in the boundary data at x = 0, t = 0 is propagated along the
characteristic x = t.

Case (ii)

Putting the function V(x) = x /(x3 + 1) into (9.22) and (9.23) gives the solution

The boundary data are now smooth so the function u(x, t) remains smooth as illustrated
for three cases in Figure 9.15.

The basic physical problem described in this example is a very long string held at
one end and initially at rest. The string is then displaced at t = 0 in the shape of the
function V(x) and released.

1
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
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In more complicated problems, the evaluation of the arbitrary functions f and g in
equation (9.17) and the use of characteristics is no longer straightforward. We do not
have a d’Alembert type of solution; a great deal of thought and care is needed.

The idea of characteristics can be applied to more general classes of second-order
partial differential equations. Example 9.13 illustrates a case of a constant-coefficient
equation.

Find the characteristics of the equation

0 = uxx + 2uxt + 2αutt

Study the case when α = and the solution satisfies the boundary conditions

(a) ∂u (x, 0)/∂ t = 0 for x > 0

(b) u (x, 0) = F(x) = 

(c) u (0, t) = 0 for all t

(d) ∂u (0, t)/∂x = 0 for all t

Solution Since the coefficients of the equation are constants, we know that the characteristics are
straight lines, so we look for solutions of the form

u = u(x + at)

Putting z = x + at and writing u′ = du /dz and so on, we obtain

0 = uxx + 2uxt + 2αutt
 = (1 + 2a + 2a2α)u″

Hence for a solution we require

1 + 2a + 2a2α = 0

or

Figure 9.15
Smooth solutions 
for Example 9.12, 
Case (ii); string 
displacements at 
various times.

Example 9.13

3
8
---
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a
−1 1 2α–( )±
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-------------------------------------=
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If α > then the two values of a (a1 and a2 say) are complex, and the characteristics
x + a1t = constant and x + a2t = constant do not make sense in the real plane.

If α = then both roots give a = 1, and we only have a single characteristic x + t =
constant, which is not useful for further computation.

For the case α < , we find two real values for a and two sets of characteristics.
It is precisely for this reason that characteristics serve no useful purpose for the heat-

conduction or Laplace equations. A further discussion can be found in Section 9.8 after
the formal classification of equations has been completed.

Take the case α = ; then we obtain a1 = −2 and a2 = , so the solution has the form

u = f (x − 2t) + g(x − t)

where f and g are arbitrary functions and the characteristics are the straight lines x − 2t
= constant and x − t = constant.

The boundary conditions given in the problem are a little more complicated than in
the d’Alembert solution. Conditions (a) and (b) give

(x > 0)

Taking f (0) = g(0) = 0, we can integrate the first of these expressions and then solve for
f (x) and g(x) on the line t = 0 as

f (x) = − F(x), g(x) = F(x) (x > 0)

Conditions (c) and (d) say that u(0, t) = 0, and ∂u(0, t) /∂x = 0. Thus on the line x = 0
we deduce

f (z) = g(z) = 0 (z < 0)

We can now construct the solution by characteristics. Figure 9.16 illustrates this
solution. Because f (x) and g(x) are constant along the respective characteristics, we
deduce u(A) = 0, u(B) = , u(C) = 1, u(D) = 0, u(E) = , u(F) = 0 at typical points in
the six regions that divide up the first quadrant of the (x, t ) plane.
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Figure 9.16
Characteristic solution 
of Example 9.13. 
The solution u takes 
the constant values 
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For non-constant-coefficient equations the characteristics are not usually straight lines,
which causes computational difficulties. In particular, there are some fundamental
problems when characteristics of the same family intersect. The solution loses its
uniqueness, and ‘shocks’ can be generated. The classical wave equation (9.4) will
propagate these shocks, but it requires ‘curved characteristics’ to generate them.

9.3.2 Separation of variables

A method of considerable importance is the method of separation of variables. The
basis of the method is to attempt to look for solutions u(x, y) of a partial differential
equation as a product of functions of single variables 

u(x, y) = X(x)Y(y)

The advantage of this approach is that it is sometimes possible to find X and Y as
solutions of ordinary differential equations. These are very much easier to solve than
partial differential equations, and it may be possible to build up solutions of the full
equation in terms of the solutions for X and Y. A simple example illustrates the general
strategy. Suppose that we wish to solve

Then we should write u = X(x)Y( y) and substitute into the above equation to obtain

, or

Note that the partial differentials become ordinary differentials, since the functions are
just functions of a single variable. Now

LHS = = a function of x only

RHS = = a function of y only

Since LHS = RHS for all x and y, the only way that this can be achieved is for each side
to be a constant. We thus have two ordinary differential equations

= λ, = λ

These equations can be solved easily as

X = B eλx, Y = C e−λy

and thus the solution of the original partial differential equation is

u(x, y) = X(x)Y(y) = A eλ (x−y)

where A = BC. The constants A and λ are arbitrary. The crucial question is whether the
boundary conditions imposed by the problem can be satisfied by a sum of solutions of
this type.

The method of separation of variables can be a very powerful technique, and we
shall see it used on all three of the basic partial differential equations. It should be noted,
however, that not all equations have separable solutions, see Example 9.2, and even

∂u
∂x
------ ∂u

∂y
------+ 0=

Y
d X
dx
------- X

dY
dy
------+ 0= 1

X
--- d X

dx
------- −1

Y
--- dY

dy
------=

1
X
--- dX

dx
-------

−1
Y
--- dY

dy
------

1
X
--- dX

dx
------ −1

Y
--- dY

dy
------
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when they have it is not always possible to satisfy the boundary conditions with such
solutions.

In the case of the heat-conduction equation and the wave equation, the form of one
of the functions in the separated solution is dictated by the physics of the problem. We
shall see that the separation technique becomes a little simpler when such physical
arguments are used. However, for the Laplace equation there is no help from the
physics, so the method just described needs to be applied.

In most wave equation problems we are looking for either a travelling-wave solution
as in Section 9.3.1 or for periodic solutions, as a result of plucking a violin string for
instance. It therefore seems natural to look for specific solutions that have periodicity
built into them. These will not be general solutions, but they will be seen to be useful
for a whole class of problems. The essential mathematical simplicity of the method
comes from only having to solve ordinary differential equations.

The above argument suggests that we seek solutions of the wave equation

(9.4)

of the form either

u = sin (cλ t)v(x) (9.24a)

or

u = cos (cλ t)v(x) (9.24b)

both of which when substituted into (9.4) give the ordinary differential equation 

This is a simple harmonic equation with solutions v = sin λx or v = cos λx. We can thus
build up a general solution of (9.4) from linear multiples of the four basic solutions

u1 = cos λct sin λx (9.25a)

u2 = cos λct cos λx (9.25b)

u3 = sin λct sin λx (9.25c)

u4 = sin λct cos λx (9.25d)

and try to satisfy the boundary conditions using appropriate linear combinations of
solutions of this type. We saw an example of such a solution in Example 9.1.

Solve the wave equation (9.4) for the vibration of a string stretched between the points
x = 0 and x = l and subject to the boundary conditions

(a) u(0, t) = 0 (t > 0) (fixed at the end x = 0);

(b) u(l, t) = 0 (t > 0) (fixed at the end x = l );

(c) ∂u(x, 0)/∂ t = 0 (0 # x # l ) (with zero initial velocity);

(d) u(x, 0) = F(x) (given initial displacement).

1

c2
---- ∂ 2u

∂t2
--------- ∂ 2u

∂x2
---------=

d2v

dx2
-------- −λ2v=

Example 9.14
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Consider the two cases

(i) F(x) = sin (πx /l ) + sin (3πx /l )

(ii) F(x) = 

Solution Clearly, we are solving the problem of a stretched string, held at its ends x = 0 and x = l
and released from rest.

By inspection, we see that the solutions (9.25b, d) cannot satisfy condition (a). We
see that condition (b) is satisfied by the solutions (9.25a, c), provided that

sin λ l = 0, or λ l = nπ (n = 1, 2, 3, . . . )

It may be noted that only specific values of λ in (9.25) give permissible solutions. Thus
the string can only vibrate with given frequencies, nc/2l. The solution (9.25) appropriate
to this problem takes the form either

(9.26a)

or

(9.26b)

(n = 1, 2, 3, . . . ). To satisfy condition (c) for all x, we must choose the solution (9.26a)
and omit (9.26b). Clearly, it is not possible to satisfy the initial condition (d) with
(9.26a). However, because the wave equation is linear, any sum of such solutions is also
a solution. Thus we build up a solution

(9.27)

Case (i)

The initial condition (d) for u(x, 0) gives

and the values of bn can be evaluated by inspection as

b1 = 1, b2 = 0, b3 = , b4 = b5 = . . . = 0

The full solution is therefore

The solution is illustrated in Figure 9.17.
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Case (ii)

The condition (d) for u(x, 0) simply gives

and thus to determine bn we must find the Fourier sine series expansion of the function
f (x) over the finite interval 0 ≤ x ≤ l. We have from (7.17) that 

 

(n = 1, 2, 3, . . . )

The complete solution of the wave equation in this case is therefore

(9.28)

or 

 

The complete solution to Example 9.14 Case (ii) gives some very useful information.
We see that all the even ‘harmonics’ have disappeared from the solution and the
amplitudes of the harmonics decrease like 1/n2. A beautiful theory of musical instruments
can be built up from such solutions. We see that for different instruments different
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harmonics are important and have different amplitudes. It is this that gives an instrument
its characteristic sound. Convergence of Fourier series is not, in general, easy to prove,
but suffice to say that since f(x) is a bounded periodic function with a finite number of
optima and discontinuites, it has pointwise convergence.

A sensible question that we can ask is whether we can use the sum of the series in (9.28)
to plot u, see E. C. Zachmanogla and O. W. Thoe Introduction to Partial Differential
Equations with Applications (New York, Dover, 2003). At discontinuities in particular,
Fourier series can be very slow to converge, so that, although (9.28) is a complete solution,
does it provide us with any useful information? In the present case there is no particu-
lar problem, but the general comment should be noted. The solution (9.28) is plotted in
Figure 9.18 with l = 1 and c = . We note that even with 10 terms u(0.5, 0) = 0.4899 instead
of the correct value 0.5, so there is a 2% error in the calculated value. Perhaps the most
pertinent comment that we can make is that a good number of terms in the series are
required to obtain a solution, and exact solutions may not be as useful as we might expect.

Separated solutions depend on judicious use of the known solutions (9.25) of the
wave equation to fit the boundary conditions. Although it is not always possible to solve
any particular problem using separated solutions, the idea is sufficiently straightforward
that it is always worth a try. The extension to other equations and coordinate systems is
possible. The use of other orthogonal functions was introduced in Section 7.5 and some
of these will be discussed in Sections 9.4 and 9.5.

Solve the wave equation (9.4) for vibrations in an organ pipe subject to the boundary
conditions

(a) u(0, t) = 0 (t $ 0) (the end x = 0 is closed);

(b) ∂u(l, t)/∂x = 0 (t $ 0) (the end x = l is open);

(c) u(x, 0) = 0 (0 # x # l ) (the pipe is initially undisturbed);

(d) ∂u(x, 0)/∂ t = v = constant (0 # x # l ) (the pipe is given an initial uniform blow).

Solution From the solution (9.25), we deduce from condition (a) that solutions (9.25b, d) must be
omitted, and similarly from condition (c) that solution (9.25a) is not useful. We are left with
the solution (9.25c) to satisfy the boundary condition (b). This can only be satisfied if

cos λ l = 0, or λ l = (n = 0, 1, 2, . . . )

Figure 9.18 Solution 
of Example 9.14 (ii) 
with c =  and l = 1.1

3
---

1
3
---

Example 9.15

n 1
2
---+( )π
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Thus we obtain solutions of the form

(n = 0, 1, 2, . . . )

giving a general solution

The condition (d) gives

which, on using (7.17) to obtain the coefficients of the Fourier sine series expansion of
the constant v over the finite interval 0 ≤ x ≤ l, gives

Our complete solution of the wave equation is therefore

or,

It would be instructive to compute this solution and compare it with Figure 9.18, which
corresponds to the solution of Example 9.14.

9.3.3 Laplace transform solution

For linear problems that are time-varying from 0 to ∞, as in the case of the wave
equation, Laplace transforms provide a formal method of solution. The only difficulty
is whether the final inversion can be performed.

First we obtain the Laplace transforms of the partial derivatives

,  ,  ,  

of the function u(x, t), t > 0. Using the same procedure as that used to obtain the Lap-
lace transform of standard derivatives in Section 11.3.1 in Modern Engineering Mathe-
matics (MEM), we have the following:

u bn sin
n 1

2
---+( )πct

l
------------------------ sin

n 1
2
---+( )πx

l
----------------------=

u bn sin
n=0

∞


n 1

2
---+( )πct

l
------------------------ sin

n 1
2
---+( )πx

l
----------------------=

v bn

n=0

∞


n 1

2
---+( )πc

l
---------------------- sin

n 1
2
---+( )πx

l
----------------------=

bn
2v

n 1
2
---+( )π

------------------- l
n 1

2
---+( )πc

---------------------- 8lv

π2c
-------- 1

2n 1+( )2
----------------------= =

u
8lv

π2c
--------

n=0

∞


1

2n 1+( )2
---------------------- sin n 1

2
---+( )π ct

l
---- sin n 1

2
---+( )π x

l
--=

u
8lv

π2c
-------- sin

πct
2l
-------- 
  sin

πx
2l
------ 
  1

9
--- sin

3πct
2l

----------- 
  sin

3πx
2l

--------- 
 +=

+ 1
25
------ sin

5πct
2l

----------- 
  sin

5πx
2l

--------- 
   . . . +

∂u

∂x
------ ∂u

∂t
------ ∂ 2u

∂x2
--------- ∂ 2u

∂t2
--------
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(a)

using Leibniz’s rule (see MEM) for differentiation under an integral sign. Noting
that

we have

(9.29)

(b) Writing y(x, t) = ∂u /∂x, repeated application of the result (9.29) gives

so that

(9.30)

(c)

so that

(9.31)

where we have assumed that u(x, t) is of exponential order.

(d) Writing v(x, t) = ∂u /∂t, repeated application of (9.31) gives

= s[sU(x, s) − u(x, 0)] − v(x, 0)

so that

(9.32)

where ut(x, 0) denotes the value of ∂u /∂t at t = 0.

+
∂u
∂x
------

 
 
  #

0

∞

e−st ∂u
∂x
------ dt

d
dx
------#

0

∞

e−st u x, t( ) dt==

+ u x, t( ){ } U x, s( ) #
0

∞

e−st u x, t( ) dt= =

+
∂u
∂x
------

 
 
  d

dx
------ U x, s( )=

+
∂y
∂x
-----

 
 
  d

dx
------ + y x, t( ){ } d

dx
------ d

dx
------ U x, s( ) 
 ==

+
∂ 2u

∂x2
---------

 
 
  d2U x, s( )

dx2
-----------------------=

+
∂u
∂t
------

 
 
  #

0

∞

e−st ∂u
∂t
------ dt=

e−stu x, t( )[ ]0
∞ s#

0

∞

e−st u x, t( ) dt 0 u x, 0( )–[ ] sU x, s( )+=+=

+
∂u
∂t
------

 
 
 

sU x, s( ) u x, 0( )–=

+
∂v
∂t
-----

 
 
 

sV x, s( ) v x, 0( )–=

+
∂ 2u

∂t2
---------

 
 
 

s2U x, s( ) su x, 0( )– ut x, 0( )–=
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Let us now return to consider the wave equation (9.4)

subject to the boundary conditions u(x, 0) = f (x) and ∂u(x, 0)/∂ t = g(x). Taking Laplace
transforms on both sides of (9.4) and using the results (9.30) and (9.32) gives

(9.33)

The problem has thus been reduced to an ordinary differential equation in U(x, s) of a
straightforward type. It can be solved for given conditions at the ends of the x range,
and the solution can then be inverted to give u(x, t).

MAPLE or MATLAB can be used to assist with the transforms and the inverse trans-
forms but considerable experience is needed to convert results to a simple form.

Solve the wave equation (9.4) for a semi-infinite string by Laplace transforms, given that

(a) u(x, 0) = 0 (x $ 0) (string initially undisturbed);

(b) ∂u(x, 0)/∂ t = x e−x/a (x $ 0) (string given an initial velocity);

(c) u(0, t) = 0 (t $ 0) (string held at x = 0);

(d) u(x, t) → 0 as x → ∞ for t $ 0 (string held at infinity).

Solution Using conditions (a) and (b) and substituting for f (x) and g(x) in the result (9.33), the
transformed equation in this case is

By seeking a particular integral of the form

U = αx e−x/a + β e−x/a

we obtain a solution of the differential equation as

where A and B are arbitrary constants.
Transforming the given boundary conditions (c) and (d), we have U(0, s) = 0 and

U(x, s) → 0 as x → ∞, which can be used to determine A and B. From the second
condition A = 0, and the first condition then gives

so that the solution becomes

c2 ∂2u

∂x2
-------- ∂2u

∂t2
--------=

c2 d2U x, s( )
dx2

----------------------- s2U x, s( ) g x( )– sf x( )–=

Example 9.16

c2 d2

dx2
-------- U x, s( ) s2U x, s( ) x e−x/a–=

U x, s( ) A esx/c B e−sx/c e−x /a

c2/a2 s2–
---------------------- x

2c2/a

c2/a2 s2–
----------------------+–+=

B
2c2/a

c2/a2 s2–( )2
-----------------------------=

U x, s( ) 2c2/a

c2/a2 s2–( )2
-----------------------------  e−sx /c e−x/a

c2/a2 s2–( )
--------------------------- x

2c2/a

c2/a2 s2–( )
---------------------------+–=
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Fortunately in this case these transforms can be inverted from tables of Laplace
transforms.

Using the second shift theorem (5.7) together with the Laplace transform pairs

,

we obtain the solution as

where H(t) is the Heaviside step function defined in Section 5.2.1.

+ sinh ωt{ } ω
s2 ω2–
----------------= + cosh ωt{ } s

s2 ω2–
----------------=

+
ωt cosh ωt sinh ωt–

2ω3
------------------------------------------------

 
 
  1

s2 ω2–( )2
-----------------------=

u
a
c
--- ct x–( ) cosh

ct x–
a------------- 

  H ct x–( ) ct e−x/a cosh
ct
a---- 

 –=

+ a
c
--- e−x/a x a+( ) sinh

ct
a---- 

  a sinh
ct x–

a------------- 
  H ct x–( )–

Solve the wave equation 

subject to the initial conditions

(a) u(x, 0) = sin x (all x)

(b) (x, 0) = 0 (all x)

Use both the d’Alembert solution and the 
separation of variables method and show 
that they both give the same result.

Find the separated solution of the wave equation

that satisfies the initial conditions

u(x, 0) = 0, (x, 0) = sin x(1 + cos x)

Show that

Hence deduce that the function satisfies the wave 
equation. Check that this differential equation is 
satisfied using MAPLE.

The spherically symmetric version of the wave 
equation (9.4) takes the form

Show, by putting v = ru, that it has a solution

ru = f (ct − r) + g(ct + r)

Interpret the terms as spherical waves.

Using the trigonometric identity

sin A cos B = sin(A − B) + sin(A + B)

rewrite the solution (9.28) to Example 9.14 as a 
progressive wave.

Solve the wave equation

subject to the initial conditions

(a) u(x, 0) = 0 (all x)

(b) (x, 0) = x (all x)

9.3.4 Exercises

15

∂ 2u

∂x2
-------- 1

c2
---- ∂ 2u

∂t2
--------=

∂u
∂t
------

16

∂ 2u

∂x2
-------- 1

c2
---- ∂ 2u

∂t2
--------=

∂u
∂t
------

17

2
x ct x2 c2t2–( )–

1 4cxt– x2 c2t2–( )2–
---------------------------------------------------- = 

x ct–
1 x ct–( )2+
----------------------------- x ct+

1 x ct+( )2–
-----------------------------+

18

1

c2
---- ∂ 2u

∂t2
-------- ∂ 2u

∂r2
-------- 2

r
--- ∂u

∂r
------+=

19
1
2
--- 1

2
---

20

∂ 2u

∂x2
-------- 1

c2
---- ∂ 2u

∂t2
--------=

∂u
∂t
------ e−x2
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Find the solutions to the wave equation (9.4) subject 
to the boundary conditions

(a) ∂u(x, 0) /∂ t = 0 for all x

(b)

using d’Alembert’s method. Compare with 
Example 9.11.

Compute the characteristics of the equation

3uxx + 6uxy + uyy = 0

Show that the partial differential equation

has solutions of the form u(x, t) = f (x + λ t) provided 
either λ = 2 or λ = −3. Given

u(x, 0) = x2 − 1 and (x, 0) = 2x for all x

find the solution for u.

The function u(r, t) satisfies the partial differential 
equation

where c is a positive constant. Show that this 
equation has a solution of the form

where ω is a constant and g satisfies

Show that, if u satisfies the conditions

u(a, t) = β cos ω t

u(b, t) = 0

then the solution is

Use characteristics to compute the solution of the 
wave equation (9.4), with speed c = 1, given the 
initial conditions that for all x and t = 0 

(a) u = 0 (b) ∂u /∂ t = exp(−| x |)

Use a time step of 0.5 to compute (on a spreadsheet 
or other package) the first four steps over the range 
−3 , x , 3.

Using the separated solution approach of 
Section 9.3.2, obtain a series solution of the 
wave equation

subject to the boundary conditions

(a) u (0, t) = 0 (t . 0)

(b) ∂u (x, 0)/∂ t = 0 (0 , x , π)

(c) u (π, t) = 0 (t . 0)

(d) u (x, 0) = πx − x2 (0 , x , π)

The end at x = 0 of an infinitely long string, initially 
at rest along the x axis, undergoes a periodic 
displacement a sin ω t, for t . 0, transverse to the 
x axis. The displacement u(x, t) of any point on 
the string at any time is given by the solution of 
the wave equation

subject to the boundary conditions

(a) u (x, 0) = 0 (x . 0)

(b) ∂u (x, 0)/∂ t = 0 (x . 0)

(c) u (0, t) = a sin ω t (t . 0)

(d) | u (x, t) | , L, L constant

where the last condition specifies that the 
displacement is bounded.

Using the Laplace transform method, show that 
the displacement is given by

where H(t) is the Heaviside step function.
Plot a graph of u(x, t), and discuss.

21

u
1 x 0   x  1( )–
1 x −1    x    0( ) at t 0=+
0 x     1( )






=
<<

< <

$

22

23

6
∂ 2u

∂x2
-------- ∂ 2u

∂x∂t
-------------– ∂ 2u

∂t2
--------– 0=

∂u
∂t
------

24

∂ 2u

∂r2
-------- 2

r
--- ∂u

∂r
------+ 1

c2
---- ∂ 2u

∂t2
--------=

u
g r( )

r
---------- cos ωt=

d2g

dr2
-------- ω2g

c2
---------+ 0=

u r, t( ) βa cos ωt
r

---------------------- sin ω b r–( )/c[ ]
sin ω b a–( )/c[ ]
--------------------------------------=

25

26

∂ 2u

∂x2
-------- 1

c2
---- ∂ 2u

∂t2
--------=

27

∂ 2u

∂t2
-------- c2 ∂ 2u

∂x2
-------- x . 0, t . 0( )=

u x, t( ) a sin ω t x
c--– 

  H t x
c--– 

 =
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9.3.5 Numerical solution

For all but the simplest problems, we have to find a numerical solution. In Section 9.3.1
we saw that characteristics give a possible numerical way of working by extending the
solution away from the initial line. While this method is possible, it is difficult to program
except for the simplest problems, where other methods would be preferred anyway.
In particular, when characteristics are curved it becomes difficult to keep track of the
solution front. However, calculus methods suffer because they cannot cope with discon-
tinuities, so that, should these occur, the methods described in this section will tend to
‘smear out’ the shocks. Characteristics provide one of the few methods that will trap the
shocks when we use the fact that the latter are propagated along the characteristics.

The numerical solution of ordinary differential equations was studied in some detail in
Chapter 2. The basis of the methods was to construct approximations to differentials in
terms of values of the required function at discrete points. The commonest approximation
was the ‘central difference approximation’

and for the second derivative

The justification of these approximations and the computation of the errors involved depend
on the Taylor expansions of the functions. In partial differentiation the approximations are
the same except that there is a partial derivative in both x and t for the function u(x, t). 

Figure 9.19 illustrates a mesh of points, or nodes, with spacing Δx in the x direction
and Δt in the t direction. Each node is specified by a pair of integers (i, j ), so that
the coordinates of the nodal points take the form

xi = a + i Δx, tj = b + j Δt

and a and b specify the origin chosen. The mesh points or nodes lie on the intersection
of the rows ( j = constant) and columns (i = constant).

d f a( )
dx

--------------       
f a h+( ) f a h–( )–

2h
--------------------------------------------.

d2 f a( )
dx2

---------------      
f a h+( ) 2f a( ) f a h–( )+–

h2
---------------------------------------------------------------.

Figure 9.19 Mesh 
points for a numerical 
solution of the wave 
equation.
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The approximations are applied to a typical point P, with discretized coordinates
(i, j ), and with increments Δx = xi+1 − xi and Δt = tj+1 − tj, which are taken to be uniform
through the mesh. We know that at the points A and B we can approximate

so that the second derivative at P has the numerical form

Similarly,

Equation (9.34) is a finite-difference representation of the wave equation, and provided
that u is known on rows j − 1 and j then u(i, j + 1) can be computed on row j + 1 from
(9.34) and thus the solution continued. On the zeroth row the boundary conditions
u(x, 0) = f (x) and ∂u(x, 0)/∂ t = g(x) are known, so that fi = u(i, 0) and gi = ∂u(i, 0)/∂ t
are also known at each node on this row, and these are used to start the process off.
From Figure 9.20, we see that

(9.35)

∂u
∂x
------ 
 

A

     
u i, j( ) u i 1, j–( )–

Δx
---------------------------------------------.

∂u
∂x
------ 
 

B

      
u i 1, j+( ) u i, j( )–

Δx
---------------------------------------------.

∂ 2u

∂x2
-------- ∂u/∂x( )B ∂u/∂x( )A–

Δx
-------------------------------------------------- u i 1, j+( ) 2u i, j( )– u i 1, j–( )+

Δx2
-------------------------------------------------------------------------------= =

∂ 2u

∂t2
-------- u i, j 1+( ) 2u i, j( )– u i, j 1–( )+

Δt2
-------------------------------------------------------------------------------=

Thus the wave equation ∂ 2u/∂t 2 = c2∂ 2u/∂x 2 becomes

which can be rearranged as

u(i, j + 1) = 2u(i, j ) − u(i, j − 1) 

+ λ2 [u(i + 1, j ) − 2u(i, j ) + u(i − 1, j )] (9.34)

where

λ = c Δt/Δx

u i, j 1+( ) 2u i, j( )– u i, j 1–( )+
Δt2

-------------------------------------------------------------------------------

c2 u i 1, j+( ) 2u i, j( )– u i 1, j–( )+
Δx2

-------------------------------------------------------------------------------=

Figure 9.20 The first 
rows of mesh points in 
a numerical solution of 
the wave equation.

gi
∂u
∂t
------ u i, 1( ) u i −1,( )–

2Δt
------------------------------------------= =



9.3  SOLUTION OF THE WAVE EQUATION 655

Now (9.34) with j = 0 becomes

u(i, 1) = 2u(i, 0) − u(i, −1) + λ2 [u(i + 1, 0) − 2u(i, 0) + u(i − 1, 0)]

Since u(i, 0) = fi and u(i, −1) = u(i, 1) − 2Δt gi, (9.34) now takes the form 

u(i, 1) = (1 − λ2) fi + λ2 ( fi+1 + fi−1) + Δ t gi (9.36)

Thus the basic strategy is to compute row zero from u(i, 0) = fi , evaluate row one from
(9.36), and then march forward for general row j by (9.34).

Solve the wave equation ∂ 2u/∂ t 2 = c2∂ 2u/∂x2 numerically with the conditions

(a) u(x, 0) = sin(πx) (0 < x < 1) (initial displacement);

(b) ∂u(x, 0)/∂ t = 0 (0 < x < 1) (initially at rest);

(c) u(0, t) = u(1, t) = 0 (t > 0) (the two ends held fixed).

Use the values c = 1, Δx = 0.25, Δt = 0.1.

Solution Note that λ2 = 0.16. The values at t = 0 are given by condition (a)

The values at t = 0.1 (or j = 1) are computed from (9.36) with fi = sin(πx)

u(i, 1) = 0.84fi + 0.08( fi+1 + fi−1)

and give

The first two rows are now complete, so formula (9.34) can be used for each of the
subsequent times, for t = 0.2 (or j = 2)

u(i, 2) = 2u(i, 1) − u(i, 0) + 0.16[u(i + 1, 1) − 2u(i, 1) + u(i − 1, 1)]

which gives

and for t = 0.3 (or j = 3)

and so on.
This problem has an exact solution so the results can be compared with

u(x, t) = sin(πx) cos(πt).

1
2
---

Example 9.17

x 0 0.25 0.5 0.75 1

u 0 0.7071 1 0.7071 0

x 0 0.25 0.5 0.75 1

u 0 0.674 0.9531 0.674 0

x 0 0.25 0.5 0.75 1

u 0 0.5777 0.8169 0.5777 0

x 0 0.25 0.5 0.75 1

u 0 0.4272 0.6042 0.4272 0
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Solve the wave equation ∂ 2u/∂ t 2 = c2∂ 2u/∂x 2 for a semi-infinite string, given the initial
conditions

(a) u(x, 0) = x exp[−5(x − 1)2] (x $ 0) (string given an initial displacement);

(b) ∂u(x, 0)/∂ t = 0 (x $ 0) (string at rest initially);

(c) u(0, t) = 0 (t $ 0) (string held at the point x = 0).

Solution Since gi = 0 in (9.36), only the one parameter λ needs to be specified. Figure 9.21 shows
the solution of u over eight time steps with λ = 0.5. It can be seen that the solution splits
into two waves, one moving in the +x direction and the other in the −x direction. At a
given time t = 0.8/c, the u values are presented in the table shown in Figure 9.22 for
various values of λ. We see that for λ , 1 the solution is reasonably consistent, and we
have errors of a few per cent.

Numerical calculations can be performed very efficiently with MATLAB: the ‘colon’
notation allows complex manipulations of sub-matrices to be done and makes the
package ideally suited to this type of computation. The instructions, for n mesh
points and general parameter L = λ2,

n=5;L=0.16; % values in the example
x=[0:1/(n-1):1]; z=sin(x*pi); %sets up initial line
zz=[0,(1-L)*z([2:n-1])+L*(z([1:n-2])+z([3:n]))/2,0]

%sets up second line
zzz=[0,2*zz([2:n-1])-z([2:n-1])+L*(zz([1:n-2])-
2*zz([2:n-1])+zz([3:n])),0]

%sets up the third line
z=zz;zz=zzz; % prepares for subsequent 

lines

produce the solution to this problem. Repeating the last two lines continues the solu-
tion for t incremented by Δt.

Example 9.18

Figure 9.21 Solution 
of Example 9.18 with 
Δx = 0.2, λ = 0.5 
for successive 
values of ct.
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However, for λ = 2 the solution looks very suspect. A further two time steps gives, at
ct = 1.6, the solution 

Clearly the solution has gone wild!

Looking back to Figure 9.20, we can attempt an explanation for the apparent diver-
gence of the solution in Example 9.18. The characteristics through the points (xi−1, 0)
and (xi+1, 0) are

xi−1 = x − ct

xi+1 = x + ct

which can be solved to give, at the point P,

xP = (xi+1 + xi−1)

ctP = (xi+1 − xi−1) = Δx

Recalling the work done on characteristics, we should require the new point to be inside
the domain of dependence defined by the interval (xi−1, xi+1). Hence we require

tP $ Δt

so

(9.37)

Indeed, a careful analysis, found in many specialist numerical analysis books, shows
that this is precisely the condition for convergence of the method; it is commonly called
the Courant, Friedricks and Levy (CFL) condition.

The stringent condition on the time step Δt has always been considered to be a lim-
itation on so-called explicit methods of the type described here, but such methods have
the great merit of being very simple to program. As computers get faster, the very short
time step is becoming less of a problem, and vector or array processors allow nodes to
be dealt with simultaneously, thus making such methods even more competitive.

There are, however, clear advantages in the stability of calculations if an implicit
method is used. In Figure 9.19 the approximation to uxx may be formed by the average
of the approximations from rows j + 1 and j − 1. Thus

x 0 0.2 0.4 0.6 0.8 1.0

u(λ = 0.25) 0 0.3451 0.4674 0.3368 0.1353 0.0236
u(λ = 0.5) 0 0.3487 0.4665 0.3318 0.1340 0.0272
u(λ = 1) 0 0.3652 0.4582 0.3105 0.1322 0.0408
u(λ = 2) 0 0.1078 0.3571 0.6334 0.5742 0.2749

Figure 9.22
Table of values of u for 
a numerical solution 
of Example 9.18 with 
Δx = 0.2 and ct = 0.8.

x 0 0.2 0.4 0.6 0.8 1

u(λ = 2) 0 −3.12 21.75 −10.25 −34.70 32.72

1
2
---

1
2
---

cΔt
Δx
--------  1#
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[u(i, j + 1) − 2u(i, j) + u(i, j − 1)]/c2Δt 2

= [u(i + 1, j + 1) − 2u(i, j + 1) + u(i − 1, j + 1)

+ u(i + 1, j − 1) − 2u(i, j − 1) + u(i − 1, j − 1)]/Δx 2

Assuming that u is known on rows j and j − 1, we can rearrange the equation into the
convenient form

−λ2u(i + 1, j + 1) + 2(1 + λ2)u(i, j + 1) − λ2u(i − 1, j + 1)

= 4u(i, j) + λ2u(i + 1, j − 1) − 2(1 + λ2)u(i, j − 1) + λ2u(i − 1, j − 1) (9.38)

The right-hand side of (9.38) is known, since it depends only on rows j and j − 1. The
unknowns on row j + 1 appear on the left-hand side. The equations must now be solved
simultaneously using the Thomas algorithm for a tridiagonal matrix (described in
Section 5.5.2 of MEM). This algorithm is very rapid and requires little storage. It can
be shown that the method will proceed satisfactorily for any λ, so that the time step is
unrestricted. The evaluation of rows 0 and 1 is the same as for the explicit method, so
this can reduce the accuracy, and clearly the algorithm needs a finite x region to allow
the matrix inversion.

Solve the wave equation ∂ 2u/∂ t 2 = c2∂ 2u/∂x 2 by an implicit method given

(a) u(0, t) = 0 (t $ 0) (fixed at x = 0);

(b) u(1, t) = 0 (t $ 0) (fixed at x = 1);

(c) ∂u(x, 0)/∂ t = 0 (0 # x # 1) (zero initial velocity);

(d) u(x, 0) = (displaced at the one point x = ).

Compare the solutions at a fixed time for various λ.

Solution Here we have a wave equation solved for a string stretched between two points and
displaced at a single point.

The numerical solution shows the expected behaviour of a wave splitting into two
waves, one moving in the −x direction and the other in the +x direction. The waves are
reflected from the ends, and eventually give a complicated wave shape.

The computations were performed with Δx = 0.125 and various λ or Δ t, with
λ = cΔt/Δx. The values of u are given at the same time, T = Δx/c, for various λ:

Although the method converges for all λ, the accuracy still requires a small λ (or time
step), but the value λ = 0.05 certainly gives an accuracy of less than 1%. It may be noted
that at the chosen value of T the wave has split but has not progressed far enough to be
reflected from the end x = 1.

1
2
---

Example 9.19

1 x 1
4
---=( )

0 otherwise

 1

4
---

x 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
u(λ = 0.2) 0 0.3394 0.2432 0.3412 0.0352 0.0019 0.0001 0 0
u(λ = 0.1) 0 0.3479 0.2297 0.3493 0.0344 0.0014 0 0 0
u(λ = 0.05) 0 0.3506 0.2254 0.3519 0.0341 0.0013 0 0 0
u(λ = 0.025) 0 0.3514 0.2243 0.3526 0.0340 0.0014 0 0 0
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The methods described in this section all extend to higher dimensions, and some to
nonlinear problems. The work involved is correspondingly greater of course.

Equation (9.38) can be written in matrix form

AUj+1 = 4Uj − AUj−1 or Uj+1 = 4A−1Uj − Uj−1

where the U vectors represent the whole row of u values. This makes the problem
ideal for MATLAB. The instructions, for n mesh points and general L = λ2,

n=9;L=0.01; %values for the example
a=[-L 2*(1+L) -L]; A=eye(n); for i=2:n-1, A(i,i-1:i+1)=a; end

%sets up matrix A
b=[L/2 1-L L/2]; C=eye(n); for i=2:n-1, C(i,i-1:i+1)=b; end
u=[0 0 1 0 0 0 0 0 0]’; v=C*u

%sets up lines one and two
B=inv(A);w=4*B*v-u %evaluates line three
u=v;v=w;w=4*B*v-u %continues the solution

compute the solution. Repeating the last line continues the solution by an increment
Δt.

Use an explicit method to solve the wave 
equation ∂ 2u/∂ t2 = c2∂ 2u/∂x 2 for the boundary 
conditions 

(a) u(0, t) = 0 (t $ 0)

(b) u(1, t) = 0 (t $ 0)

(c) u(x, 0) = 0 (0 # x # 1)

(d)

Use Δx = Δt = and study the behaviour for a 
variety of values of λ for the first three time steps. 
Compare your result with the implicit version 
in (9.38).

An oscillator is started at the end of a tube, 
and oscillations propagate according to the 
wave equation. The displacement u(x, t) 
satisfies

in 0 , x , l, for t . 0, with the boundary conditions

(a) u(0, t) = a sin ω t, u(l, t) = 0 (t . 0)

(b) u(x, 0) = = 0 (0 # x # l )

where c, a and ω are real positive constants. 
Show that the solution of the partial differential 
equation is

provided that ω l/πc is not an integer.
Compare this solution with one computed using 

the explicit numerical method. Use a = 1, l = 1, 
c = 1, ω = π, Δx = 0.2 and Δ t = 0.02 to evaluate 
u (x, 0.06).

Solve the equation

9.3.6 Exercises

28

∂u x, 0( )
∂t

--------------------
 x 0  x  1

2
---( )

1 x 1
2
---  x  1( )–




=
#

#

#

#

1
4
---

29

∂ 2u

∂x2
-------- 1

c2
---- ∂ 2u

∂t2
--------=

∂u x, 0( )
∂t

--------------------

u x, t( ) a sin ωt sin ω l x–( )/c[ ]
sin ωl/c( )

----------------------------------------------------------=

+ 2lacω
ω2l2 n2π2c2–
-------------------------------- sin

nπx
l

--------- 
  sin

nπct
l

----------- 
 

n=1

∞



1
2
---

30

c2 ∂ 2u

∂x2
-------- 2+ ∂ 2u

∂t2
--------=
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Solution of the heat-conduction/diffusion equation
In this section we consider methods for solving the heat-conduction/diffusion equation
introduced in Section 9.2.2.

9.4.1 Separation of variables

It was with the aim of solving heat-conduction problems that Fourier (c. 1800) first used
the idea of separation of variables and Fourier series. As indicated in Section 12.1 in
MEM, many mathematicians at the time argued about the validity of his approach, while
he continued to solve many practical problems.

In Section 9.2.2 we noted that the heat-conduction equation

(9.5)

has a steady-state solution U, provided there are no time-varying inputs, satisfying

∇2U = 0

and appropriate boundary conditions. One useful way to write the general solution is

u = U + v

where v also satisfies (9.5) and the boundary conditions for u − U. Certainly the heat-
conduction interpretation supports this idea, and we base our strategy on first finding U
and then determining the transient v that takes the solution from its initial to its final state.
We note that v → 0 as t → ∞, so that u → U, and an obvious method is to try an expo-
nential decay to zero. Thus, in the one-dimensional form of the heat-conduction equation

(9.39)

we seek a separated solution of the special type discussed in Section 9.3.2, where the
physics indicates a solution

v = e−α t w(x)

9.4

1
κ
--- ∂u

∂t
------ ∇2u=

1

κ
--- ∂v

∂t
----- ∂ 2v

∂x2
--------=

numerically, subject to the conditions

u = x(1 − x), = 0 (0 , x , 1) at t = 0

u = 0 (x = 0, 1) for t . 0

Use

(a) an explicit method with Δx = Δt = 0.2 and 
λ = 0.5;

(b) an implicit method with Δx = Δt = 0.2 and 
λ = 0.5.

Compare your solution with that in Exercise 31.

Solve the equation

numerically, subject to the conditions

u = x(1 − x), = 0 for all x at t = 0

Use

(a) an explicit method with Δx = Δt = 0.2 and 
λ = 0.5;

(b) an implicit method with Δx = Δt = 0.2 and 
λ = 0.5.

∂u
∂t
------

31

c2 ∂ 2u

∂x2
-------- 2+ ∂ 2u

∂t2
--------=

∂u
∂t
------
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which on substitution gives

Letting α /κ = λ2, we can solve this simple-harmonic equation to give

w = A sin λx + B cos λx

and hence

v = e−α t(A sin λx + B cos λx) (9.40)

Taking the hint from Section 9.3.2, we expect in general to take sums of terms like (9.40)
to satisfy all the boundary conditions. Thus we build up a solution

(9.41)

Solve the heat-conduction equation ∂T/∂ t = κ∂ 2T/∂x2 subject to the boundary conditions

(a) T = 0 at x = 0 and for all t . 0 (held at zero temperature);

(b) ∂T/∂x = 0 at x = l and for all t . 0 (no heat loss from this end);

(c) T = T0 sin(3πx/2l ) at t = 0 and for 0 # x # l  (given initial temperature profile).

Solution We first note that as t → ∞ the solution will be T = 0, so the steady-state solution is zero,
and so from (9.40) we consider a solution of the form

T = e−α t(A sin λx + B cos λx) (9.42)

In order to satisfy the boundary condition (a), it is clear that it is not possible to include
the cosine term, so B = 0. To satisfy the condition (b) then requires

= A e−α t λ cos λx = 0 (x = l )

so that

cos λ l = 0, or λ l = (n + )π (n = 0, 1, 2, 3, . . . )

leading to the solution

We now compare the T from condition (c) with the solution just obtained at time t = 0,
giving

The unknown parameters can now be identified as n = 1 and A = T0, and hence the final
solution is

−α
κ
--- w

d2w

dx2
---------=

v e
−αnt

An sin λn x Bn cos λn x+( )
n=1

∞

=

Example 9.20

∂T
∂x
------

1
2
---

T A e−αt sin n 1
2
---+( )π x

l
--=

A e−0 sin n 1
2
---+( )π x

l
--  = T0 sin

3πx
2l

--------- 
 

T T0 exp − 9κπ2t

4l2
--------------

 
 
 

sin
3πx
2l

--------- 
 =
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Solve the heat-conduction equation ∂u/∂ t = κ∂ 2u/∂x 2 subject to the boundary conditions

(a) u(0, t) = 0 (t $ 0) (zero temperature at the end x = 0);

(b) u(l, t) = 0 (t $ 0) (zero temperature at the end x = l );

(c) u(x, 0) = u0( − x/l ) (0 , x , l ) (a given initial temperature profile).

Solution We are solving the problem of heat conduction in a bar that is held at zero temperature
at its ends and with a given initial temperature profile.

It is clear that the final solution as t → ∞ is u = 0, so that U = 0 is the steady-state
solution, and hence from (9.40) we seek a solution of the form 

u = e−α t(A sin λx + B cos λx)

subject to the given boundary conditions. The first of these conditions (a) gives B = 0,
while the second condition (b) gives

sin λ l = 0, or λ l = nπ (n = 1, 2, . . . )

Recalling that λ2 = α /κ, we find solutions of the form

(n = 1, 2, . . . )

Clearly we cannot satisfy (c) from a single solution, so, as indicated in (9.41), we revert
to the sum

(9.43)

which is also a solution.
Using the boundary condition (c), we then have

and hence, by (7.17),

Note again that we have used a periodic extension of the given function to obtain a
Fourier sine series valid over the interval 0 < x < l. Outside the interval 0 < x < l we
have no physical interest in the solution. Substituting back into (9.43) gives as a final
solution

(9.44)

or, in an expanded form,

Example 9.21

1
2
---

u A e−κn2π2t/l 2

sin
nπx

l
--------- 
 =

u An e−κn2π2t/l 2

sin
nπx

l
--------- 
 

n=1

∞

=

u0
1
2
---

x
l
--– 

  An sin
nπx

l
--------- 
 

n=1

∞

=

1
2
---lAn u0= #

0

l

1
2
---

x
l
--– 

  sin
nπx

l
--------- 
  dx

0 odd n( )
u0l/nπ even n( )




=

u
u0

π
----- 1

m
----  e−4κm2π2t/l 2

sin
2mπx

l
-------------- 
 

m=1

∞

=

u
u0

π
----- e−4κ π2 t/l2 sin

2πx
l

--------- 
  1

2
--- e−16κ π2t/l 2

sin
4πx

l
--------- 
  1

3
--- e−36κ π2 t/l sin

6πx
l

--------- 
  . . .+ + +=
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In Figure 9.23, u /u0 is plotted against x/l at successive times T = t(4κπ2/l 2) = 0, 0.5, 1, 1.5.
Taking successive terms in the series for the values T = t(4κπ 2/l 2) = 0.5 and x/l = 0.2,

we get

and we see that three terms of this series would probably be sufficient to give three-
figure accuracy. In all such problems some numerical experimentation is required to
determine how many terms are required. For small t and x we should expect to need a
large number of terms, since the temperature at the end switches from u0 to 0 at time
t = 0. It is well known that discontinuities cause convergence difficulties for Fourier
series.

It may be noted in Example 9.21 that the initial discontinuity is smoothed out, as we
expected from the physical ideas that we outlined in Section 9.2.2.

Solve the heat-conduction equation ∂u /∂t = κ∂ 2u/∂x 2 in a bar subject to the boundary
conditions

(a) u(0, t) = 0 (t $ 0) (the end x = 0 is held at zero temperature);

(b) u(1, t) = 1 (t $ 0) (the end x = 1 is at temperature 1);

(c) u(x, 0) = x(2 − x) (0 # x < 1) (the initial temperature profile is given).

Solution First it is clear that the final steady-state solution is U = x, since this satisfies (a) and (b)
and also ∇2U = 0. Secondly putting u = U + v, the new variable v satisfies (9.39), but
now the boundary conditions on v are

1 term 2 terms 3 terms 4 terms

u/u0 0.1836 0.1963 0.1956 0.1953

1
2
---

Figure 9.23 Solution 
of Example 9.21 with 
T = t(4κπ2/l 2).

Example 9.22
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(a′ ) v(0, t) = 0

(b′ ) v(1, t) = 0

(c′ ) v(x, 0) = x(2 − x) − x = x − x2

The appropriate solutions in (9.40) can now be selected; the condition (a′ ) gives B = 0,
while the condition (b′ ), v(1, t) = 0, gives

sin λ = 0, or λ = nπ (n = 1, 2, . . . )

From (9.41) we then have

and condition (c′ ) gives

Determining the Fourier coefficient using (7.17),

Thus the complete solution is

or, in expanded form,

 

9.4.2 Laplace transform method

As we saw for the wave equation in Section 9.3.3, Laplace transforms provide an alter-
native method of solution for the heat-conduction or diffusion equation. The method
has the merit of dealing with the boundary conditions easily, but it suffers from the
usual difficulty of performing the final inversion. The following example serves to illus-
trate these points.

Using the Laplace transform method, solve the diffusion equation

(all x, t . 0)

given that u(x, t) remains bounded and satisfies the boundary conditions

v an e−κn2π2 t sin nπx
n=1

∞

=

x x2– an sin nπx
n=1

∞

=

1
2
--- an # 0

1

x x2–( ) sin nπx dx
4/n3π3 odd n( )

0 even n( )



==

u x
8

π3
-----+ 1

2n 1–( )3
---------------------- e−κ 2n−1( )2π2 t sin 2n 1–( )πx

n=1

∞

=

u x
8

π3
----- e−κ π2t sin πx 1

27
------ e−9κ π2 t sin 3πx 1

125
--------- e−25κ π2t sin 5πx . . . + + +[ ]+=

Example 9.23

∂u

∂t
------ κ∂ 2u

∂x2
--------=
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(a) u(x, 0) = 0 (all x)

(b) u(a, t) = Tδ (t )

Solution The problem models an infinite pipe, coincident with the x axis, that is initially
filled with clean fluid. It is subjected to an instantaneous burst of contaminant
injected at the point x = a . 0; the concentration of the contaminant, as it diffuses, is
required.

Using (9.30) and (9.31) and taking Laplace transforms gives

sU(x, s) − u(x, 0) = κ

which, on using condition (a), leads to the ordinary differential equation

This is readily solved to give

U(x, s) =  + 

Since concentration remains bounded

U(x, s) = for x . a and

U(x, s) = for x , a

Condition (b) then gives

U(a, s) = +{Tδ (t )} = T = 

so that

B = and similarly A = 

giving

U(x, s) = for x . a and U(x, s) = for x , a

To find the solution u(x, t), we must invert the Laplace transform. However, in this
case, the methods discussed in Section 11.2.7 in MEM do not suffice, and it is
necessary to resort to the use of the complex inversion integral, which is dealt
with in specialist texts on Laplace transforms (see also Chapter 8, Review exercise
7). Alternatively, we can turn to the extensive tables that exist of Laplace transform
pairs, to find that

, b . 0

We can then carry out the required inversion to give the solution

(t . 0)

d2U x, s( )
dx2

-----------------------

d2U

dx2
--------- s

κ
---U 0=–

Ae s κ⁄( )x Be s κ⁄( )x–

Be s κ⁄( )x–

Ae s κ⁄( )x

Be s κ⁄( )a–

Te s κ⁄( )a Te s κ⁄( )a–

Te x a–( ) s κ⁄( )– Te a x–( ) s κ⁄( )–

+ −1 e−b s{ } b

2 π
---------- t−3/2 e−b

2
/4t=

u x, t( ) T x a–
2 πκ( )
--------------------t−3/2 e− x−a( )2

/4κ t=
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It should be noted that the solution of Example 9.23 is not variable separable and could
not be obtained from the methods of Section 9.4.1.

To date all the problems studied have been restricted to heat flow in a rod. The ideas
can be extended to spherical or cylindrical regions. Here one example will be considered
that involves radially symmetric regions; see also Exercises 4 and 33. First the heat-
conduction equation is written for a problem that only depends on the radial distance r
from the origin and the time t. Now

r2 = x2 + y2 + z2 so

To obtain the Laplacian

when f = f (r, t) evaluate

and then the second derivative

The y and z derivatives follow in a similar manner so the Laplacian becomes

The radially symmetric heat conduction equation for the temperature T(r, t) is
therefore

(9.45)

This radially symmetric form can be made to look very similar to the one-dimensional
equation by writing

With this substitution

It is possible to solve this example by using the extensive tables of Laplace trans-
forms in MAPLE. It does, however, require some knowledge of the manipulative
skills contained in the package to progress easily.

2r
∂r
∂x
-----  = 2x

∇2f = ∂2f

∂x2
-------- ∂2f

∂y2
-------- ∂2f

∂z2
-------+ +

∂f
∂x
-----  = ∂f

∂r
----- ∂r

∂x
-----  = x

r
-- ∂f

∂r
-----

∂2f

∂x2
--------  = ∂

∂x
----- x

r
-- ∂f

∂r
----- 

   = 1
r
--- ∂f

∂r
----- 1

r2
----x

r
-- x

∂f
∂r
----- 

 – x
r
--x

r
-- ∂2f

∂r2
-------+

∇2f = 3
r
--- ∂f

∂r
----- 1

r3
---- x2 y2 z2+ +( ) ∂f

∂r
-----– x2 y2 z2+ +

r2
-------------------------- ∂2f

∂r2
-------+

 = 2
r
--- ∂f

∂r
----- ∂2f

∂r2
-------+  = 1

r2
---- ∂

∂r
----- r2 ∂f

∂r
----- 

 

1

r2
---- ∂

∂r
----- r2∂T

∂r
------ 

   = 1κ
---∂T

∂t
------

T = θ r t,( )
r

---------------
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and differentiating once more gives

Thus the equation for θ(r, t) is just the usual one-dimensional heat-conduction
equation

(9.46)

Methods developed earlier can now be used on this equation, but note that care must be
taken at the origin where r = 0 since

An example will illustrate some important points.

Solve the radially symmetric heat-conduction equation (9.45)

(a) in the region 0 , r , a subject to the boundary conditions T = T0 on r = a and T
is finite in the region. The initial condition is T(r, 0) = 0.

(b) in the region r . a subject to the boundary conditions T = T0 on r = a and T tends
to zero as r tends to infinity. The initial condition is T(r, 0) = 0.

Solution (a) To solve (9.45) put

T = T0 + 

then θ(r, t) satisfies (9.46) with the modified boundary conditions θ(a, t) = 0 and
θ (r, t)/r is finite at the origin. Clearly the only separated solution in (9.40) that
can satisfy these conditions is

θ = e−α t sin λr where α /κ = λ2

since sinλr/r→ λ as r → 0. The condition at r = a gives sin(λa) = 0 so λa = nπ
where n is a positive integer. Summing all solutions of this type gives

 sin(nπr/a)

The coefficients An are given by the initial condition which reduces to the Fourier
series problem

−rT0 =  sin(nπr/a)

giving

1

r2
---- ∂

∂r
----- θ r+– ∂θ

∂r
------ 

   = 1
rκ
-----∂θ

∂t
------

1
r
--- ∂θ

∂r
------ ∂θ

∂r
------ r+ +– ∂ 2θ

∂r2
--------

 
 
   = 1κ

---∂θ
∂t
------

∂ 2θ
∂r2
--------  = 1κ

---∂θ
∂t
------

T = θ r t,( )
r

---------------

Example 9.24

θ r t,( )
r

---------------

T = T0
1
r
--- Ane−κn2π2t/a2

n=1

∞

+

An

n=1

∞


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and finally

(b) As in part (a) we look to previous methods of solution. First note that it is only
necessary to solve (9.46) with the modified boundary conditions θ (a, t) = aT0 and
θ (r, t) is finite for infinite r. The initial condition is θ(r, 0) = 0. The problem is
now very similar to Example 9.23 and Laplace transforms appears to be a sensible
approach. The set up is precisely as in Example 9.23 (except for a change in the
names of the parameters) to the point where

where it should be noted that the zero initial condition has been used. The solu-
tion is

 + 

which is now subject to the condition that  is finite as r gets large implying
that A = 0. To calculate B, the transformed condition at r = a gives  = aT0/s
and hence

Thus the solution for the transformed equation is

 

The expression requires either access to extensive tables of Laplace transforms or
to the tables in MATLAB or MAPLE. They give

 = aT0erfc

so that

T(r, t) = erfc

The error function

erf(z) = dν

and erfc(z) = 1 − erf(z) occur commonly in the solution of the heat-conduction
equation (see also Section 7.4), and in statistics. It is well documented and appears
as standard in MATLAB and MAPLE. The erfc function is illustrated in Figure 9.24
and the solution T/T0 is plotted against r/a in Figure 9.25 for various times.

An = 2aT0 1–( )n

πn
-------------------------

T = T0
2aT0

π
------------1

r
--- e−κ π2t /a2

sin πr/a( ) 1
2
---e−κ4π2t /a2

sin 2πr/a( ) . . .+––

sθ r s,( ) = κd2θ r s,( )
dr2

---------------------

θ r s,( ) = Ae s κ⁄( )r Be s κ⁄( )r–

θ r s,( )
θ a s,( )

B = aT0

s
--------e s κ⁄( )a

θ r s,( ) = aT0

s
--------e s κ⁄( ) r a–( )–

θ r t,( ) 1
2
---r a–

κt
-----------

 
 
 

aT0

r
-------- 1

2
---r a–

κt
-----------

 
 
 

2

π
-------#

0

z

e ν2–
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Figure 9.24 The 
function erfc(z) of 
Example 9.24.

Figure 9.25 Plot 
of the solution to 
Example 9.24 for times 
4κ t/a2 = 0.01, 0.1, 1, 
10 and 100.

Find the solution to the equation 

satisfying the conditions

(a) ∂u /∂x = 0 at x = 0 for all t
(b) u = 0 at x = 1 for all t
(c) u = a cos (πx) cos ( πx) for 0 < x < 1 

when t = 0

The spherically symmetric form of the heat-
conduction equation is 

By putting ru = v, show that v satisfies the standard 
one-dimensional heat-conduction equation. What 
can we expect of a solution as r → ∞?

Solve the equation in the annulus a < r < b 
given that u(a, t) = T0, u(b, t) = 0 for all t . 0 and 

9.4.3 Exercises

32

∂u

∂t
------ κ∂ 2u

∂x2
--------=

1
2
---

33

urr
2
r
---ur+ 1

κ
--- ut=



670 PAR TIAL DIF FERENTIAL EQUATIONS

the initial condition u(r, 0) = 0 for a < r < b. Show 
that the solution has the form

where λ(b − a) = Nπ. Evaluate the Fourier 
coefficients AN.

Show that u(x, t) = tαF(η), where η = x2/t is a 
solution of the partial differential equation

if F satisfies

Find non-zero values of α and κ for which F = eκη 
is a solution.

Show that u(x, t) = f (x) sin(x − βt) is a solution of 
the heat-conduction equation

provided that f and the constant β  are chosen 
suitably. For a semi-infinite slab of uniform material 
occupying the region x > 0 construct 
the solution that satisfies (a) u is bounded as 
x → ∞ and (b) u(0, t) = u0 sin 2t (that is, a periodic 
temperature is imposed at x = 0).

Show that the equation

θt = κθxx − h(θ − θ0)

can be reduced to the standard heat-conduction 
equation by writing u = eht(θ − θ0). How do you 
interpret the term h(θ − θ0)?

Use separation of variables to obtain a solution to 
the heat-conduction equation ∂u/∂ t = κ∂ 2u/∂x2, 
given

(a) ∂u(0, t)/∂x = 0 (t > 0)

(b) u(l, t) = 0 (t > 0)

(c) u(x, 0) = u0( − x/l ) (0 < x < l )

Compare the solution with that obtained in 
Example 9.21.

The voltage v at a time t at a distance x along an 
electric cable of length L with capacitance and 
resistance only, satisfies

Verify that a form of the solution appropriate to the 
conditions that v = v0 when x = 0, and v = 0 when 
x = L, for all values of t, is given by

where v0 and the cn are constants.
Show that if, in addition, v = 0 when t = 0 for 

0 , x , L,

A uniform bar of length l has its ends maintained 
at a temperature of 0 °C. Initially, the 
temperature at any point between the ends of 
the bar is 10 °C, and, after a time t, the temperature 
u(x, t) at a distance x from one end of the bar 
satisfies the one-dimensional heat-conduction 
equation

(x . 0)

Write down boundary conditions for the bar and 
show that the solution corresponding to these 
conditions is

The function φ(x, t) satisfies the equation 

(−h , x , h, t . 0)

with the boundary conditions

(a) φ(−h, t) = φ(h, t) = 0 (t . 0)

(b) φ(x, 0) = 0 (−h , x , h)

where a, b and h are positive real constants. 
Show that the Laplace transform of the solution φ(x, 
t) is

 

T = aT0

r
-------- b r–

b a–
------------ AN e−κλ2

t sin
r a–
b a–
------------ 
 Nπ

N=1

∞

–

34

∂u

∂t
------ ∂ 2u

∂x2
--------=

4η d2F

dη2
-------- 2 η+( ) dF

dη
------- αF–+ 0=

35

∂u

∂t
------ ∂ 2u

∂x2
--------=

36

37

1
2
---

38

∂ 2v

∂x2
-------- 1

κ
---∂ v

∂t
------=

v v0 1 x
L
---– 

  cn exp −κ n2 π2t

L2
--------------------
 
 
 

sin nπ x
L
---

 
 
 

n=1

∞

+=

cn −
2 v0

nπ
--------=

39

∂ 2u

∂x2
-------- 1

κ
---∂u

∂t
------=

u x, t( ) 20
π
------ 1

n
--- 1 cos nπ–( ) exp −κ n2 π2 t

l 2
--------------------
 
 
 

n=1

∞

=

 sin
πnx

l
--------- 
 3

40

∂φ
∂t
------ a

∂ 2φ
∂x2
-------- b+=

b

s2
---- 1 cosh s/a( )1/2x[ ]

cosh s/a( )1/2h[ ]
-------------------------------------–

 
 
 
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9.4.4 Numerical solution

As for the wave equation, except for the most straightforward problems, we must resort
to numerical solutions of the heat-conduction equation. Even when analytical solutions
are known, they are not always easy to evaluate because of convergence difficulties near
to singularities. They are, of course, crucial in testing the accuracy and efficiency of
numerical methods.

We can write the heat-conduction equation

(9.47)

in the usual finite-difference form, using the notation of Figure 9.26.
We assume that we know the solution up to time step j and we wish to calculate the

solution at time step j + 1. In Section 9.3.5 we showed how to approximate the second
derivative as

To obtain the time derivative, we use the approximation between rows j and j + 1:

Putting these into (9.47) gives

or, on rearranging,

u(i, j + 1) = λu(i − 1, j ) + (1 − 2λ)u(i, j ) + λu(i + 1, j ) (9.48)

where λ = κΔt/Δx2. Equation (9.48) gives a finite-difference representation of (9.47),
and provided that all the values are known on row j, we can then compute u on row j + 1
from the simple explicit formula (9.48).

First a simple example on a coarse grid.

Use an explicit numerical method to solve the heat-conduction equation (9.47) subject
to the boundary conditions

(a) u(0, t) = u(0, 1) = 0 (t > 0) (both ends held at zero temperature);

(b) u(x, 0) = sin(πx) (0 < x < 1) (a given initial temperature distribution).

Use the parameters Δt = 0.1, Δx = 0.25, κ = 0.1.

Solution This problem has the exact solution u = sin(πx), so the accuracy of the numerical
solution can be checked easily.

At t = 0 (or j = 0) the initial values come from the boundary condition (b)

1

κ
--- ∂u

∂t
------ ∂ 2u

∂x2
--------=

Figure 9.26 Mesh for 
marching forward the 
solution of the heat-
conduction equation.

∂ 2u

∂x2
-------- u i 1, j+( ) 2u i, j( )– u i 1, j–( )+

Δx2
-------------------------------------------------------------------------------=

∂u
∂t
------ u i, j 1+( ) u i, j( )–

Δt
---------------------------------------------=

u i, j 1+( ) u i, j( )–
κΔt

--------------------------------------------- u i 1, j–( ) 2u i, j( )– u i 1, j+( )+
Δx2

-------------------------------------------------------------------------------=

Example 9.25

e π2κt–

x 0 0.25 0.5 0.75 1

u 0 0.7071 1 0.7071 0
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Before proceeding further we first note that λ = 0.16. At t = 0.1 (or j = 1) (9.48) becomes

u(i, 1) = 0.16[u(i − 1, 0) + u(i + 1, 0)] + 0.68u(i, 0)

which, on calculation for the values x = 0.25, 0.5, 0.75 or i = 1, 2, 3, gives 

Note that at the ends, x = 0 and 1, the boundary condition (a) u = 0 is imposed.

At t = 0.2 (or j = 2)

u(i, 2) = 0.16[u(i − 1, 1) + u(i + 1, 1)] + 0.68u(i, 1)

and performing the calculations 

Similarly for t = 0.3 (or j = 3)

and so on.
In the last table the exact values have been included for comparison.

Solve the heat-conduction equation (9.47) subject to the boundary conditions

(a) ∂u(0, t)/∂x = 0 (t > 0) (no heat flow through the end x = 0);

(b) u(1, t) = 1 (t > 0) (unit temperature held at x = 1);

(c) u(x, 0) = x2 (0 < x < 1) (a given initial temperature distribution).

Solution To fit the condition (a) most easily, we allow the first mesh space to straddle the t axis
as illustrated in Figure 9.27, where six intervals are used in the x direction. The mesh
implies that Δx = 1/6.5 = 0.1538; condition (a) gives u(0, j ) = u(1, j ) while condition
(b) gives u(7, j ) = 1.

x 0 0.25 0.5 0.75 1

u 0 0.6408 0.9063 0.6048 0

x 0 0.25 0.5 0.75 1

u 0 0.5808 0.8213 0.5808 0

x 0 0.25 0.5 0.75 1

u 0 0.5263 0.7444 0.5263 0
u exact 0 0.5259 0.7437 0.5259 0

Example 9.26

Figure 9.27 Mesh 
for Example 9.26: 
u(7, j) = 1 and 
u(0, j) = u(1, j ) for all 
j; Δx = 1/6.5 = 0.1538.
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The following table gives values for u at the three times t = 0, 0.2Δx2/κ and 20Δx2/κ,
calculated with λ = 0.2. These results are then compared at t = 20Δx2/κ, computed with
λ taken to be 0.5. It may be noted that there are errors in the third significant figure
between the two cases.

For λ = 0.54 we can obtain a solution that compares with the solution given, but for
λ = 0.6 the solution diverges wildly. Figure 9.28 shows a plot of the solution near the
critical value of λ at a fixed time t = 20Δx2/κ. As in the table, the solutions are accurate
to about 1% for small λ, but when λ gets much above 0.5, oscillations creep in and
the solution is meaningless. In Figure 9.29 a further graph illustrates the development
of the solution in the two cases λ = 0.2 and λ = 0.55. One solution progresses smoothly
as time advances, while the other produces oscillations that will eventually lead to
divergence.

Some simple MATLAB code produces the solution very quickly:

n=8;L=0.2; %values of the Example
x=[-0.5/(n-1.5):1/(n-1.5):1],u=x.^2 %initial data
v=[0,L*(u([1:n-2])+u([3:n]))+(1-2*L)*u([2:n-1]),1]; 

v(1)=v(2);
%computes the first row

u=v; v=[0,L*(u([1:n-2])+u([3:n]))+(1-2*L)*u([2:n-1]),1]; 
v(1)=v(2);

%repeat this line of code to obtain successive rows

i 0 1 2 3 4 5 6 7

j = 0 0.0059 0.0059 0.0533 0.1479 0.2899 0.4793 0.7160 1
λ = 0.2 j = 1 0.0154 0.0154 0.0627 0.1574 0.2994 0.4888 0.7255 1

j = 100 0.6817 0.6817 0.7002 0.7362 0.7874 0.8510 0.9233 1
λ = 0.5 j = 40 0.6850 0.6850 0.7033 0.7389 0.7896 0.8526 0.9241 1





Figure 9.28
Numerical solution 
of Example 9.26 at 
time t = 20 Δx2/κ , for 
two values of λ.



674 PAR TIAL DIF FERENTIAL EQUATIONS

Comparing Example 9.26 with the numerical solution of the wave equation under-
taken in Example 9.18, we observe similar behaviour for the explicit scheme, namely
that the method will only converge for small enough time steps or λ. From (9.48) it
may be noted that the middle term changes sign at λ = 0.5, and above this value we
might anticipate difficulties. Indeed, some straightforward numerical analysis shows
that convergence is certain for λ , 0.5. It is sufficient here to note that λ must not be
too large.

To avoid the limitation on λ, we can again look at an implicit formulation of the
numerical equations. Returning to Figure 9.26, the idea is to approximate the x deriva-
tive by an average of row j and row j + 1:

u(i, j + 1) − u(i, j ) = λ{(1 − α)[u(i − 1, j ) − 2u(i, j ) + u(i + 1, j )]

+ α [u(i − 1, j + 1) − 2u(i, j + 1) + u(i + 1, j + 1)]}

where 0 < α < 1 is an averaging parameter. The case α = 0 corresponds to the explicit
formulation (9.48), while α = is the best known implicit formulation, and constitutes
the Crank–Nicolson method. With α = , we have

−λu(i − 1, j + 1) + 2(1 + λ)u(i, j + 1) − λu(i + 1, j + 1)

= λu(i − 1, j ) + 2(1 − λ)u(i, j ) + λu(i + 1, j ) (9.49)

We know the solution on row j, so the right-hand side of (9.49) is known, and the
unknowns on row ( j + 1) have to be solved for simultaneously.

Fortunately the system is tridiagonal, so the very rapid Thomas algorithm can be
used. The method performs extremely well: it converges for all λ, and is the best known
approach to heat-conduction equations.

Figure 9.29 Plots of u against x and t from the solution of Example 9.26 with (a) λ = 0.2; (b) λ = 0.55.

1
2
---

1
2
---
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Repeat Example 9.25 but with an implicit scheme.

Solution At t = 0 (or j = 0) the initial values come from the boundary condition and are identical
for both the implicit and explicit formulations.

At t = 0.1 (or j = 1) the three equations of the type (9.49) corresponding to x = 0.25,
0.5, 0.75 or i = 1, 2, 3 are

−0.16u(0, 1) + 2.32u(1, 1) − 0.16u(2, 1) = 0.16[u(0, 0) + u(2, 0)] + 1.68u(1, 0)

−0.16u(1, 1) + 2.32u(2, 1) − 0.16u(3, 1) = 0.16[u(1, 0) + u(3, 0)] + 1.68u(2, 0)

−0.16u(2, 1) + 2.32u(3, 1) − 0.16u(4, 1) = 0.16[u(2, 0) + u(4, 0)] + 1.68u(3, 0)

After noting that the end boundary conditions give

u(0, 0) = u(0, 1) = u(4, 0) = u(4, 1) = 0

and the right-hand sides evaluated from the initial values, the equations can be written
in matrix form as

The tridiagonal system can be solved to give 

For the next time steps the matrix equation is identical, with the j-suffix advanced by 1
at each time step and the right-hand sides re-evaluated from the most recently computed
values of u. Subsequent values are

and should be compared with the explicit solution in Example 9.25.

Example 9.27

2.32 0.16– 0

0.16– 2.32 0.16–
0 0.16– 2.32

u 1 1,( )
u 2 1,( )
u 3 1,( )

1.348

1.906

1.348

=

x 0 0.25 0.5 0.75 1

u 0 0.6438 0.9105 0.6438 0

x 0 0.25 0.5 0.75 1

u at t = 0.2 0 0.5862 0.829 0.5862 0
u at t = 0.3 0 0.5337 0.7547 0.5337 0
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Solve the heat-conduction equation (9.47) using the implicit formulation (9.49) for the
boundary conditions

(a) u(0, t ) = 0 (t > 0) (the end x = 0 is kept at zero temperature);

(b) u(1, t ) = 1 (t > 0) (the end x = 0 is kept at unit temperature);

(c) u(x, 0) = 0 (0 < x < 1) (initially the bar has zero temperature).

Solution Here a bar is initially at zero temperature. At one end the temperature is raised to the
value 1 and kept at that value.

The results of the calculation are presented in Figure 9.30. At time step 0 the
temperature distribution is discontinuous. The successive time steps 1, 10, 100 are
shown, and the final distribution u = x is labelled ∞. 

Example 9.28

The matrix inversions are very tedious to perform, so again a package such as
MATLAB solves the equations very quickly; note the use of the ‘colon’ notation.

L=0.3; M=2*(1+L); N=2*(1-L); n=11; %values for the Example
u=zeros(1,n)’; u(n)=1; %initial data
p=[-L M -L]; A=eye(n); for i=2:n-1, A(i,i-1:i+1)=p; end
q=[L N L]; B=eye(n); for i=2:n-1, B(i,i-1:i+1)=q; end

%sets up the matrices in equation (9.49)
DD=inv(A)*B; v=DD*u %solves for first row
u=v; v=DD*u; %repeat this line of code for subsequent rows

Figure 9.30 Solution 
of Example 9.28 with 
Δx = 0.1, λ = 0.3 using 
the Crank–Nicolson 
scheme.
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Solution of the Laplace equation
In this section we consider methods of solving the Laplace equation introduced in
Section 9.2.3.

9.5.1 Separation of variables

It is much less obvious how to construct separated solutions for the Laplace equation,
since there is less physical feel for the behaviour except that the solution will be
smooth. We shall therefore work more formally, as in Section 9.3.2, and seek a solution
of the Laplace equation

(9.50)

in the form

u = X(x)Y( y)

which gives on substitution

or

9.5

∂ 2u

∂ x2
-------- + 

∂ 2u

∂y2
--------  = 0

Y
d2X

dx2
-------- X

d2Y

dy2
--------+ 0=

Derive the usual explicit finite-difference 
representation of the equation 

Using this scheme with Δ t = 0.02 and Δx = 0.2, 
determine an approximate solution of the equation 
at t = 0.06, given that

u = x2 when t = 0 (0 ¯ x ¯ 1)

u = 0 when x = 0 (t . 0)

u = 1 when x = 1 (t . 0)

Use both explicit and implicit numerical 
formulations to obtain solutions of the 
heat-conduction equation subject to the boundary 
conditions

(a) u(0, t) = 0 (t ˘ 0) (b) u(1, t) = e−t (t ˘ 0)

(c) u(x, 0) = 0 (0 ¯ x , 1)

Compare the two results for t = 1.

Given that u satisfies the equation

and is subject to the boundary conditions 

(x = 0, t . 0)

u = 0 (x = 1, t . 0)

u = x(1 − x) (t = 0, 0 ¯ x ¯ 1)

derive a set of algebraic equations from the 
implicit formulation in Section 9.4.4. Use the 
implicit method by adapting the MATLAB 
segment in Example 9.28. Find the solution at 
t = 0.02 and 0.04 using the values Δx = 0.2 and 
Δ t = 0.02.

9.4.5 Exercises

41

∂ u

∂ t
------

∂ 2u

∂ x2
--------=

42

43

∂ u

∂ t
------

∂ 2u

∂x2
--------=

∂ u
∂ x
------ = 1
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(9.51)

Now (d2X/dx2)/X is a function of x only and −(d2Y/dy2)/Y is a function of y only. Since
they must be equal for all x and y, both sides of (9.51) must be a constant, λ. We there-
fore obtain two equations of simple-harmonic type

The type of solution depends on the sign of λ, and we have a variety of possible solutions:

λ = −μ2 , 0: u = (A sin μx + B cos μx)(C e μy + D e−μy) (9.52a)

λ = μ2 . 0: u = (A e μx + B e−μx)(C sin μ y + D cos μ y) (9.52b)

λ = 0: u = (Ax + B)(Cy + D) (9.52c)

where A, B, C and D are arbitrary constants. Using the definitions of the hyperbolic
functions, it is sometimes more convenient to express the solution (9.52a) as

u = (A sin μx + B cos μx)(C cosh μ y + D sinh μ y) (9.52d)

and (9.52b) as

u = (A sinh μx + B cosh μx)(C sin μy + D cos μ y) (9.52e)

The actual form of the solution depends on the problem in hand, as illustrated in the
following examples.

Use the separated solutions (9.52) of the Laplace equation to find the solution to (9.50)
satisfying the boundary conditions

u(x, 0) = 0 (0 , x , 2)

u(x, 1) = 0 (0 , x , 2)

u(0, y) = 0 (0 , y , 1)

u(2, y) = a sin 2πy (0 , y , 1)

Solution To satisfy the first two conditions, we need to choose the separated solutions that
include the sin μ y terms. Thus we take solution (9.52b)

u = (A e μx + B e−μx)(C sin μ y + D cos μ y)

The first boundary condition gives

(A e μx + B e−μx)D = 0 (0 , x , 2)

so that D = 0. Thus

u = (A′ e μx + B′ e−μx) sin μy

where A′ = AC and B′ = BC. The second boundary condition then gives

(A′ e μx + B′ e−μx) sin μ = 0 (0 , x , 2)

1
X
---

d2X

dx2
-------- −1

Y
---

d2Y

dy2
-------- λ= =

d2X

dx2
-------- λX,

d2Y

dy2
-------- −λY==

Example 9.29
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so that sin μ = 0, or μ = nπ with n as integer. Thus

u = (A′ e nπx + B′ e−nπx) sin nπy

From the third boundary condition,

(A′ + B′) sin nπy = 0 (0 , y , 1)

so that B′ = −A′, giving

u = A′(enπx − e−nπx) sin nπy

= 2A′ sinh nπx sin nπy

The final boundary condition then gives

2A′ sinh 2nπ sin nπy = a sin 2πy (0 , y , 1)

We must therefore choose n = 2, and a = 2A′ sinh 2nπ = 2A′ sinh 4π, or 2A′ = a/sinh 4π.
The solution is therefore

Solve the Laplace equation (9.50) for steady heat conduction in the semi-infinite region
0 ¯ y ¯ 1, x ˘ 0 and subject to the boundary conditions

Solution Clearly from condition (c) we need a solution that is exponential in x, so we take
(9.52b):

u = (A e μx + B e−μx)(C sin μ y + D cos μ y)

and since the solution must tend to zero as x → ∞, we have A = 0, giving 

u = e−μx(C ′ sin μy + D′ cos μy)

where C ′ = BC and D′ = BD. Condition (a) then gives D′ = 0, and (b) gives sin μ = 0,
or μ = nπ (n = 1, 2, . . . ), so the solution becomes u = C ′ e−nπx sin nπy (n = 1, 2, . . . ).
Because of the linearity of the Laplace equation, we sum over n to obtain the more
general solution

C ′n e−nπx sin nπy

Condition (d) then gives, as before, a classic Fourier series problem

C ′n sin nπy (0 ¯ y ¯ 1)

u = a sin 2πy
sinh 2πx
sinh 4π
--------------------

Example 9.30

a( ) u x 0,( ) = 0 x 0≥( )
b( ) u x 1,( ) = 0 x 0≥( )
c( ) u x y,( ) 0→ as x ∞→ 






temperature kept at zero on two sides and at infinity( );

d( ) u 0 y,( ) = 1 0 ¯ y ¯ 1( ) unit temperature on the fourth side( ).

u = 
n=1

∞



1 = 
n=1

∞


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so that, using (7.17),

C ′n =

The complete solution is therefore

or, in expanded form,

In Figure 9.31 the solution u(x, t) is plotted in the (x, y) plane. Because of the discon-
tinuity at x = 0, for x = 0.05 thirty terms of the series were required to compute u to
four-figure accuracy, while for x = 1, one or two terms were quite sufficient.

It is clear from Example 9.30 that the solutions (9.52) can only be used for rectangular
regions. For various cylindrical and spherically symmetric regions separated solutions
can be constructed, but they need more complicated Bessel and Legendre functions.
The solutions have the same structure as for rectangular regions and follow the general
theory of orthogonal functions discussed in Section 7.5.2. For instance the study of
Legendre polynomials is required for problems similar to Example 9.24 when angular
dependence is included. There is great merit in calculating exact solutions where we
can, since they give significant insight. However, with modern computing techniques it
is certainly not necessarily quicker than a straight numerical solution.

Solve the Laplace equation (9.50) in the region 0 ¯ x ¯ 1, 0 ¯ y ¯ 2 with the conditions

(a) u(x, 0) = x (0 ¯ x ¯ 1)

(b) u(x, 2) = 0 (0 ¯ x ¯ 1)

(c) u(0, y) = 0 (0 ¯ y ¯ 2)

(d) ∂u(1, y) /∂x = 0 (0 ¯ y ¯ 2)

2#
0

1

sin nπy dy
4/nπ odd n( )

0 even n( )



=

u = 
4
π
---

1
2n – 1
---------------- e− 2n−1( )πx sin 2n – 1( )πy

n=1

∞



u = 
4
π
--- e−πx sin πy + 1

3
--- e−3πx sin 3πy + 1

5
--- e−5πx sin 5πy + . . .( )

Figure 9.31 Solution 
of the Laplace equation 
in Example 9.30.

Example 9.31
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Solution The steady heat-conduction interpretation of this problem, looking at Figure 9.32, gives a
zero temperature on ABC, an insulated boundary on CD and a linear temperature on AD.

Of the solutions (9.52), we require zeros on AB and zero derivative on CD, so we
might expect to use trigonometric solutions in the x direction and exponential (or
equivalently sinh and cosh) solutions in the y direction. We therefore take a solution of
the form (9.52d):

u = (A sin μx + B cos μx)(C cosh μ y + D sinh μ y)

From condition (c), we must take B = 0, giving

u = (C ′ cosh μ y + D′ sinh μ y) sin μx

where C ′ = AC and D′ = AD. Condition (d) then gives cos μ = 0 or 

μ = (n + )π (n = 0, 1, 2, . . . )

so the solution becomes

u = [C ′ cosh(n + )πy + D′ sinh(n + )πy] sin(n + )πx (n = 0, 1, 2, . . . ) (9.53)

To satisfy condition (b), it is best to rewrite (9.53) in the equivalent form

u = sin[(n + )πx]{E cosh[(n + )π(2 − y)]

+ F sinh[(n + )π(2 − y)]} (n = 0, 1, 2, . . . )

We see that (b) now implies E = 0, so that our basic solution, summed over all n, is

The final condition (a) then gives the standard Fourier series problem

so that, using (7.17),

The solution in expanded form is therefore

 

Curiously, Laplace transform solutions are not natural for the Laplace equation, since
there is no obvious semi-infinite parameter. Even in cases like Example 9.30, where we
have a semi-infinite region, the Laplace transform in x requires information that is not
available, see Section 9.8.2.

Figure 9.32
Region and boundary 
conditions for 
Example 9.31.

1
2
---

1
2
---

1
2
---

1
2
---

1
2
---

1
2
---

1
2
---

u = Fn sin n + 1
2
---( )πx[ ] sinh n + 1

2
---( )π 2 y–( )[ ]

n=0

∞



x = Fn sinh 2n + 1( )π[ ] sin n 1
2
---+( )πx[ ]

n=0

∞



1
2
--- Fn sinh 2n 1+( )π #=

0

1

x sin n 1
2
---+( )πx[ ] dx

sin n 1
2
---+( )π

π2 n 1
2
---+( )2

---------------------------=

u = 
8

π2
----- sin 1

2
--- πx

sinh 1
2
---π 2 y–( )

sinh π
---------------------------------- −

sin 3
2
---πx sinh 3

2
---π 2 – y( )

9 sinh 3π
----------------------------------------------------- 

 + sin 5
2
--- πx

sinh 5
2
---π 2 y–( )

25 sinh 5π
----------------------------------- … +
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Another technique for solution of the Laplace equation involves complex variables and
was discussed in Section 4.3.2. It is a method that was very widely used in aerodynamics
and in electrostatic problems. Since the advent of modern computers, with highly efficient
Laplace solvers, the method has fallen somewhat into disuse. It was the cornerstone of
all early flight calculations and, for those interested either in the historical context or in
the beautiful mathematical theory, the study of complex-variable solutions is essential.
The real and imaginary parts of a differentiable function f(z) of the complex variable
z = x + jy automatically satisfy the Laplace equation. Example 9.6 showed a solution
that was interpreted as the flow past a cylinder; the function was obtained from the
imaginary part of

It is then possible to use the Kutta–Joukowski transformation (see D. Acheson, Elemen-
tary Fluid Dynamics, Oxford, Oxford University Press, 2002) to transform the circle to
an aerofoil shape and the lift and drag on the aerofoil can be computed. Example 9.32
illustrates a much simpler situation.

If f (z) = φ (x, y) + jψ (x, y) is a complex function of the complex variable z = x + jy,
verify that φ and ψ satisfy the Laplace equation for the case f (z) = z2. Sketch the
contours of φ = constant and ψ = constant.

Solution Now

f (z) = z 2 = (x 2 − y 2) + j2xy

and thus

φ = x 2 − y 2, ψ = 2xy

It is trivial to differentiate these functions, and both clearly satisfy the Laplace equation:

∇2φ = 0, ∇2ψ = 0

The contours of φ and ψ are plotted in Figure 9.33. They are both hyperbolas, which
intersect at right angles. The usual interpretation of these solutions is as irrotational
inviscid fluid flow into a corner.

f z( ) = U z a2

z
--------+

 
 
 

Example 9.32

Figure 9.33
Complex-variable 
solution to the 
Laplace equation 
in Example 9.32, 
showing the 
streamlines of 
flow into a corner.
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If we now try to solve the Poisson equation (9.10), which is an extension of the
Laplace equation with heat sources/sinks f (x, y) on the right-hand side

the problem becomes harder as illustrated in Example 9.33.

Solve the Poisson equation

in the rectangle 0 < x < a, 0 < y < b given the boundary conditions

u = 0 on x = 0, u = f ( y) on x = a

 = 0 on y = 0 and y = b

Solution Physically the problem can be interpreted as a heated plate with the temperature
specified on the two boundaries x = 0 and x = a and with insulated boundaries y = 0
and y = b.

The general strategy is to find a ‘particular integral’ to eliminate the term on the
right-hand side, compute the new boundary conditions and then solve the residual
Laplace equation. In the present case choose

Substitute into the Poisson equation to give

and hence

K −1 = 

Now put

u = U + v

so that v satisfies the Laplace equation

∇2v = 0

and the boundary conditions remain the same

v = 0 on x = 0, v = f ( y) on x = a

 = 0 on y = 0 and y = b

∂ 2u

∂x2
--------

∂ 2u

∂y2
--------+  = f x y,( )

Example 9.33

∂ 2u

∂ x2
--------

∂ 2u

∂ y2
--------+  = πx

a
------

πy
b

------cossin–

∂ u
∂ y
------

U = K πx
a

------
πy
b

------cossin

∇2U = K π2

a2
------

π2

b2
-----+

 
 
  πx

a
------

πy
b

------cossin–

π2 1

a2

--------
1

b2
-----+

 
 
 
 

∂v
∂y
-----
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We are now back to a standard Laplace equation problem that can be solved by separation
of variables. From the solutions (9.52) choose

v = A0 x

v = An n = 1, 2, 3, . . .

These solutions satisfy three of the boundary conditions, just leaving

v = f ( y) on x = a

to be satisfied. The usual infinite sum of terms is constructed

v = A0 x + 

so that on x = a the remaining boundary condition gives the usual Fourier cosine series
problem

f (y) = A0a + 

In Chapter 7 (7.14) and (7.15) give

a0 = A0a = f ( y)dy

and an = An sinh nπ = f ( y) dy n = 1, 2, 3, . . .

The final solution is given by

The method of solution described in Example 9.33 can be quite difficult and clumsy.
Finding the ‘particular integral’, U, is not always easy even for simple right-hand sides.
If U can be found, the new boundary conditions on v can become very awkward,
often further substitutions need to be made to bring the problem to tractable form. In
Example 9.33 the right-hand side was carefully chosen to avoid this extra difficulty. An
alternative method using Green’s functions will be considered in Section 9.7.2. The
solution turns out to be very neat with the right-hand side and the boundary conditions
appearing naturally in various integrals. However, although neat, the computation of the
Green’s function is just as difficult as the method described in Example 9.33.

1
2
---

nπx
a

--------- nπy
b

---------cossinh

1
2
--- An

nπx
a

---------
nπy

b
---------cossinh

n=1

∞



1
2
--- An nπsinh( ) nπy

b
---------cos

n=1

∞



2
b
---#

0

b

2
b
---#

0

b

nπy
b

--------- 
 cos

u = 
a2b2 πx

a
------ 
  πy

b
------ 
 cossin

a2 b2+
----------------------------------------------------

a0

a
-----x

an

nπsinh
-----------------

nπx
a

---------
nπy

b
---------cossinh

n=1

∞

+ +
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Use the separated solutions (9.52) to solve the 
Laplace equation 

in the region 0 < x < 1, y > 0 given the boundary 
conditions

(a) u = 0 on x = 0 and x = 1 ( y > 0)
(b) u → 0 as y → ∞ (0 < x < 1)
(c) u = sin5(πx) on y = 0 (0 < x < 1)

(Note: The identity sin5θ = (sin 5θ − 5 sin 3θ + 
10 sin θ ).)

Show that the function u(x, y) = e−πx/2[ y cos(πy/2) 
− x sin(πy/2)] satisfies the Laplace equation

and the boundary conditions

(a) u = 0 on y = 0 (x > 0)
(b) u = −x e−πx/2 on y = 1 (x > 0)
(c) u = y cos(πy/2) on x = 0 (0 < y < 1)
(d) u → 0 as x → ∞

Show that the function φ(x, y) = x2y satisfies the 
Poisson equation

By putting φ = u + x2y, show that u satisfies the 
Laplace equation. Find the solution for φ in the unit 
square which satisfies the boundary conditions

Show that

u(r, θ ) = Br n sin nθ

satisfies the Laplace equation in polar coordinates,

Determine u that is both finite for r < a and periodic 
in θ, given that

u(a, θ) = sin3θ = sin θ − sin 3θ

Verify that 

both satisfy the Laplace equation, and sketch the 
curves u = constant and v = constant. Show that 

where z = x + jy.

(Hadamard example) Show that the Laplace 
equation

∂ 2u/∂x 2 + ∂ 2u/∂y 2 = 0

with u(0, y) = 0, ux(0, y) = (1/n) sin ny (n . 0) has 
the solution

u(x, y) = sinh nx sin ny

Compare this solution, for large n, with the solution 
to the ‘neighbouring’ problem, when u(0, y) = 0, 
ux(0, y) = 0, and the solution u(x, y) = 0.

Solve the Laplace equation ∂ 2u/∂x 2 + ∂ 2u/∂ y 2 = 0 in 
the region 0 , x , 1, 0 , y , 1 subject 
to the boundary conditions u(0, y) = 0, u(x, 0) = 0, 
u(1, y) = 1, u(x, 1) = 1 by separation methods.

A long bar of square cross-section 0 < x < a, 
0 < y < a has the faces x = 0, x = a and y = 0 
maintained at zero temperature, and the face 
y = a at a control temperature u0. Under steady-state 
conditions the temperature u(x, y) at a point in a 
cross-section satisfies the Laplace equation

Write down the boundary conditions for u(x, y), and 
hence show that u(x, y) is given by

× 

9.5.2 Exercises

44

∂ 2u

∂ x2
-------- + ∂ 2u

∂ y2
--------  = 0

1
16
------

45

∂ 2u

∂ x2
-------- + ∂ 2u

∂ y2
--------  = 0

46

∂ 2φ
∂ x2
-------- + ∂ 2φ

∂ y2
--------  = 2y

φ x 0,( ) = 0

φ x 1,( ) =  x2 + πxsin 


 for 0 < x < 1

φ 0 y,( ) = 0
φ 1 y,( ) =  y 



 for 0 < y < 1

47

urr + 1
r
---ur + 1

r2
----uθθ = 0

3
4
---

1
4
---

48

u = −2y

x2 + y2 + 2x + 1
---------------------------------------, v = x2 + y2 – 1

x2 + y2 + 2x + 1
---------------------------------------

u + jv = j z – 1( )
z + 1

------------------

49

1

n2
-----

50

51

∂ 2u

∂ x2
--------  + ∂

2u

∂ y2
--------  = 0

u x y,( ) = 
4u0

π
--------

 cosech 2n + 1( )π
2n + 1

------------------------------------------
n=0

∞



sinh 2n + 1( )πy
a

------ sin 2n + 1( )πx
a

------



686 PAR TIAL DIF FERENTIAL EQUATIONS

9.5.3 Numerical solution

Of the three classical partial differential equations, the Laplace equation proves to be
the most difficult to solve. The other two have a natural time variable in them, and it is
possible, with a little care, to march forward either by a simple explicit method or by an
implicit procedure. In the case of the Laplace equation, information is given around the
whole of the boundary of the solution region, so the field variables at all mesh points
must be solved simultaneously. This in turn leads to a solution by matrix inversion. 

The usual numerical approximation for the partial derivatives, discussed in Section 9.3.5,
are employed, so that the equation

 (9.54)∂ 2u

∂x2
-------- + 

∂ 2u

∂ y2
-------- = 0

Heat is flowing steadily in a metal plate whose 
shape is an infinite rectangle occupying the 
region −a , x , a, y . 0 of the (x, y) plane. The 
temperature at the point (x, y) is denoted by u(x, y). 
The sides x = ±a are insulated, the temperature 
approaches zero as y → ∞, while the side 
y = 0 is maintained at a fixed temperature −T for 
−a , x , 0 and T for 0 , x , a. It is known that 
u(x, y) satisfies the Laplace equation

and the boundary conditions

(a) u → 0 as y → ∞ for all x in −a , x , a

(b) ∂u/∂x = 0 when x = ±a

(c)

Using the method of separation, obtain the solution 
u(x, y) in the form

× 

A thin semicircular plate of radius a has its bounding 
diameter kept at zero temperature and its curved 
boundary at a constant temperature T0. The steady-
state temperature T(r, θ ) at a point having polar 
coordinates (r, θ), referred to the centre of the 
circle as origin, is given by the Laplace equation

Assuming a separated solution of the form

T = R(r)Θ(θ)

show that

The Laplace equation in spherical polar coordinates 
(r, θ, φ) takes the form

If V is only a function of r and θ, and V takes the form 

V = R(r)y(x), where x = cos θ

show that

where k is a constant.
The function V satisfies the Laplace equation in 

the region a ¯ r ¯ b. On r = a, V = 0 and on 
r = b, V = α sin2θ, where α is a constant. Given that 
solutions for y are

find V throughout the region.

52

∂ 2u

∂ x2
--------

∂ 2u

∂ y2
--------+ 0=

u x 0,( ) = −T −a , x , 0( )
T 0 , x , a( )




u x y,( ) = 4T
π

------
1

2n + 1
---------------- exp − n + 1

2
---( )πy

a
------

n=0

∞



sin n + 1
2
---( )πx

a
------

53

∂ 2T

∂ r2
--------  + 1

r
---

∂ T

∂ r
------  + 1

r2
----

∂ 2T

∂θ 2
---------  = 0

T r θ,( ) = 
4T0

π
--------

r/a( )2n+1

2n + 1
-------------------- sin 2n + 1( )θ

n=0

∞



54

∂
∂ r
------ r2∂ V

∂ r
------ 

   + 1
sin θ----------

∂
∂θ------ sin θ ∂ V

∂θ------ 
 

+ 1

sin2θ
-----------

∂ 2V

∂φ 2
---------  = 0

d
dr
----- r2 dR

dr
------- 

   = k k + 1( )R

1 x2–( ) d2y

dx2
-------- – 2x

dy

dx
------  + k k + 1( )y = 0

y = 
1 k = 0( )
x k = 1( )
1
2
--- 3x2 – 1( ) k = 2( )





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at a typical point, illustrated in Figure 9.34, becomes

For the case Δx = Δy rearranging gives

4u (i, j ) = u (i + 1, j ) + u (i − 1, j ) + u(i, j  + 1) + u (i, j  − 1)  (9.55)

In the typical five-point module (9.55) the increments Δx and Δy are taken to be the
same and it is noted that the middle value u (i, j ) is the average of its four neighbours.
This corresponds to the absence of ‘hot spots’. We now examine how (9.55) can be
implemented.

Solve the Laplace equation (9.54) in the square region 0 ¯ x ¯ 1, 0 ¯ y ¯ 1 with the
boundary conditions

(a) u = 0 on x = 0 (b) u = 1 on x = 1

(c) u = 0 on y = 0 (d) u = 0 on y = 1

Solution For a first solution we take the simplest mesh, illustrated in Figure 9.35(a), which
contains only four interior points labelled u1, u2, u3 and u4. The four equations obtained
from (9.55) are

4u1 = 0 + 0 + u2 + u4

4u2 = 0 + 1 + u3 + u1

4u3 = 1 + 0 + u4 + u2

4u4 = 0 + 0 + u1 + u3

which in turn can be written in matrix form as

u i + 1, j( ) − 2u i, j( ) + u i − 1, j( )
x2Δ

--------------------------------------------------------------------------------------- + 
u i, j + 1( ) − 2u i, j( ) + u i, j − 1( )

y2Δ
--------------------------------------------------------------------------------------- = 0

Figure 9.34 Five-point 
computational module 
for the Laplace 
equation.

Example 9.34

4 −1 0 −1

−1 4 −1 0

0 −1 4 −1

−1 0 −1 4

u1

u2

u3

u4

0

1

1

0

=
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This has the solution u1 = 0.125, u2 = 0.375, u3 = 0.375, u4 = 0.125. A larger mesh
obtained by dividing the sides up into eight equal parts is indicated in Figure 9.35(b).
The equations now take the form

4u(1, 1) = u(2, 1) + 0 + u(1, 2) + 0

4u(2, 1) = u(3, 1) + u(1, 1) + u(2, 2) + 0

 

4u(7, 1) = 1  + u(6, 1) + u(7, 2) + 0

4u(1, 2) = u(2, 2) + 0  + u(1, 3) + u(1, 1)

4u(2, 2) = u(3, 2) + u(1, 2) + u(2, 3) + u(2, 1)

 

4u(7, 2) = 1  + u(6, 2) + u(7, 3) + u(7, 1)

 

We thus generate 49 linear equations in 49 unknowns, which can be solved by any
convenient matrix inverter. The matrices take the block form

Figure 9.35 Meshes for the solution of the Laplace equation in Example 9.34: (a) a simple mesh containing 4 interior 
points; (b) a larger mesh with 49 interior points.

A

4 −1 0 0 0 0 0

−1 4 −1 0 0 0 0

0 −1 4 −1 0 0 0

0 0 −1 4 −1 0 0

0 0 0 −1 4 −1 0

0 0 0 0 −1 4 −1

0 0 0 0 0 −1 4

=
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so that the equations become

(9.56)

The matrix equation (9.56) can be solved by an elimination technique or an iterative method
like successive over-relaxation (SOR). As indicated in Section 5.5.4 of MEM, SOR is the
simplest to program, and elimination techniques are best performed by a package from
a computer library. For the current problem we present the solution in Figure 9.36, where
the cases Δx =  and Δx =  are both shown. It may be seen from this example that the
accuracy of the solution is quite tolerable when the cases Δx =  and Δx =  are compared.

B

−1 0 0 0 0 0 0

0 −1 0 0 0 0 0

0 0 −1 0 0 0 0

0 0 0 −1 0 0 0

0 0 0 0 −1 0 0

0 0 0 0 0 −1 0

0 0 0 0 0 0 −1

=

C  = 

0

0

0

0

0

0

1

, Uk = 

u 1, k( )
u 2, k( )

…

u 7, k( )

A B 0  0 0 0 0

B A B 0 0 0 0

0 B A B 0 0 0

0 0 B A B 0 0

0 0 0 B A B 0

0 0 0 0 B A B
0 0 0 0 0 B A

U1

U2

U3

U4

U5

U6

U7

C

C

C

C

C

C

C

=

j values

8 0 0 0 0 0 0 0 0 1
7 0 0.017 0.038 0.064 0.103 0.164 0.269 0.483 1
6 0 0.032 0.069 0.117 0.184 0.282 0.431 0.661 1
5 0 0.042 0.089 0.150 0.233 0.350 0.512 0.731 1
4 0 0.045 0.096 0.162 0.250 0.371 0.536 0.749 1

(0.098) (0.250) (0.527)
3
2 0 (0.071) (0.188) (0.429) 1
1
0 0 0 0 0 1

0 1 2 3 4 5 6 7 8 i values

Figure 9.36
The solution of 
Example 9.34. 
The solution is 
symmetric about the 
line j = 4; the solution 
with Δx = 0.125 is 
given in the upper half 
and the solution with 
Δx = 0.25 is shown 
in parentheses in the 
lower half.

1
8
---

1
4
---

1
4
---

1
8
---
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Note the averaging behaviour of the Laplace equation and observe that the discontinuity
in the corner does not spread into the solution. The corner nodes are never used in the
numerical calculation, so the discontinuity is avoided.

Because of its simplicity, SOR is an attractive method for solving Laplace-type
problems. Equations (9.55) are rewritten with an iteration superscript as

u n+1(i, j ) = u n(i, j ) + w[u n(i + 1, j ) + u n(i − 1, j ) + u n(i, j + 1) 

+ u n(i, j − 1) − 4u n(i, j )] (9.57)

and w is a relaxation factor, discussed in Chapter 5 of MEM.
Knowing all the u(i, j ) at iteration n, we can use (9.57) to evaluate u(i, j) at iteration

n + 1. Normally the u(i, j ) are over-written in the computer as they are computed, so that
some of the ns in the right-hand side of (9.57) become (n + 1)s. The order of evaluation
of the is and js in (9.57) is critical, but the most obvious methods by rows or columns
prove to be satisfactory.

A great deal is known about the optimum relaxation factor w. It is closely related to
the value of the maximum eigenvalue of the matrix associated with the problem. For
square regions with unit side and with u given on the boundary and equal mesh spacing
it can be shown that w = 2/(1 + sin Δx) is the best value. For other problems this is
usually used as a starting guess, but numerical experimentation is required to determine
an optimum or near-optimum value.

We have only considered u to be given on the boundary, and it is essential to know
how to deal with derivative boundary conditions, since these are very common. Let us
consider a typical example:

 = g( y) on x = 0

We then insert a fictitious line of nodes, as shown in Figure 9.37. Approximately, the
boundary condition gives

u(1, j ) − u(−1, j ) = g( yj)2Δx

so that

u(−1, j ) = u(1, j ) − 2Δx g( yj) (9.58)

Equations (9.55) or (9.57) are now solved for i = 0 as well as i . 0, but at the end of a
sweep u(−1, j ) will be updated via (9.58).

The solution of the Laplace equation is often required so packages like MATLAB have
the machinery to set up the solution for simple regions. For the 9 × 9 problem, with
49 unknowns, the code is listed; note that the MATLAB numbering of the nodes is
different from the text.

G=numgrid(’S’,9) % sets up the numbering for a 9 x 9 square
A=delsq(G); % stored as a sparse matrix
rhs=zeros(49,1);rhs(43:49,1)=ones(7,1); % computes rhs
A\rhs % gives the quoted solution

1
4
---

∂ u
∂ x
------

Figure 9.37
Fictitious nodes, i = −1, 
introduced outside 
the boundary.
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Solve the Laplace equation (9.54) for steady-state heat conduction in the unit square,
given that

(a) ∂u/∂x =  − y, x = 0 (steady heat supply on this boundary);

(b) u = 0 on x = 1, y = 0, y = 1 (zero temperature on the other three sides).

Use Δx = Δy = . 

Solution Labelling the six unknown values u1, u2, . . . , u6 as shown in Figure 9.38, equation (9.55)
gives

4u1 = 0 + u2 + u4 + u−2

4u2 = 0 + u3 + u5 + u1

4u3 = 0 + 0 + u6 + u2

4u4 = u1 + u5 + 0 + u−5

4u5 = u2 + u6 + 0 + u4

4u6 = u3 + 0 + 0 + u5

The values u−2 and u−5 are evaluated from boundary condition (a)

u5 − u−5 = 2h  = − , u2 − u−2 = 2h  = 

so the equations become

4u1 = 2u2 + u4 − 

4u2 = u1 + u3 + u5

4u3 = u2 + u6

4u4 = u1 + 2u5 + 

4u5 = u2 + u4 + u6

4u6 = u3 + u5

Thus there are six linear equations in six unknowns, which can be solved by any
convenient method. For instance, SOR as suggested in (9.57) gives the set of equations
with iteration counter n and relaxation factor w

Example 9.35

1
2
---

1
3
---

Figure 9.38 The mesh 
for Example 9.35.

1
2
---  − 2

3
---( ) 1

9
--- 1

2
---  − 1

3
---( ) 1

9
---

1
9
---

1
9
---
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The equations are diagonally dominant so the iterations converge quickly; six significant
figures are obtained in 11 iterations with w = 1 and at near optimum w = 1.2 in 8
iterations.

The expected symmetry is observed from the solution, physically heat is supplied to
the bottom half of the left-hand boundary and an equal amount is extracted from the
top half. For comparison of the accuracy, the calculations with h =  and  have been
included in the table.

Solve the Poisson equation

for steady heat conduction with a heating term, in the unit square given that

(a) ∂u/∂x = 0 on x = 0 (insulated along this boundary);

(b) u = y2

(c) u = 0

(d) u = x

Solution The region is illustrated in Figure 9.39, with mesh spacing Δx = Δy = . Equation (9.58)
just gives u(−1, j ) = u(1, j ) for each j. Equation (9.55) is modified to take into account
the right-hand side of the Poisson equation. The value Δx2 is added to the right-hand
side of (9.55) for each of the interior points. We can write the equations as

4u(0, 1) = u(−1, 1) + u(1, 1) + 0 + u(0, 2) = 2u(1, 1) + u(0, 2)

4u(1, 1) = u(0, 1) + u(2, 1) + 0 + u(1, 2) + 

4u(2, 1) = u(1, 1) + u(3, 1) + 0 + u(2, 2) + 

u1
n+1 = u1

n + w
4
---- 2u2

n + u4
n − 1

9
---  − 4u1

n( )

u2
n+1 = u2

n + w
4
---- u1

n+1 + u3
n + u5

n − 4u2
n( )

u3
n+1 = u3

n + w
4
---- u2

n+1 + u6
n − 4u3

n( )

u4
n+1 = u4

n + w
4
---- u1

n+1 + 2u5
n  + 1

9
---  − 4u4

n( )

u5
n+1 = u5

n + w
4
---- u2

n+1 + u4
n+1  + u6

n − 4u5
n( )

u6
n+1 = u6

n + w
4
---- u3

n+1 + u5
n+1 − 4u6

n( )

u1 u2 u3 u4 u5 u6

h = −0.024 24 −0.005 05 −0.001 01 0.024 24 0.005 05 0.001 01

h = −0.031 21 −0.005 17 −0.000 77 0.031 21 0.005 17 0.000 77

h = −0.033 57 −0.005 22 −0.000 68 0.033 57 0.005 22 0.000 68

1
3
---

1
6
---

1
12
------

1
6
---

1
12
------

Example 9.36

∂ 2u

∂x2
--------

∂ 2u

∂ y2
--------+  = 1–

on x = 1

on y = 0

on y = 1 





temperature given on three sides( ).

1
4
---

1
16
------

1
16
------
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and so on, and hence obtain 12 equations in 12 unknowns. These can be solved by any
convenient method to give a solution as shown in Figure 9.40. 

Figure 9.39 The mesh 
used in Example 9.36.

j = 4 0.0000 0.2500 0.5000 0.7500 1.0000
j = 3 0.2050 0.3021 0.4278 0.5329 0.5625
j = 2 0.2160 0.2630 0.3137 0.3290 0.2500
j = 1 0.1329 0.1578 0.1727 0.1567 0.0625
j = 0 0.0000 0.0000 0.0000 0.0000 0.0000

i = 0 i = 1 i = 2 i = 3 i = 4

Figure 9.40 Data 
from the solution of 
Example 9.36 using a 
step length 0.25 in each 
direction.

Use the five-point difference approximation in 
(9.55) to solve 

(0 ¯ x ¯ 1, 0 ¯ y ¯ 1)

where u(x, 0) = u(0, y) = 0, u(x, 1) = x, u(1, y) = 
y(2 − y). Find the approximations for u( , ) for 
grid sizes Δx = Δy =  and Δx = Δy = .

Use a mesh Δx = Δy =  and Δx = Δy =  to 
solve

(0 , x , 1, 0 , y , 1)

satisfying u(0, y) = 1, ∂u(1, y)/∂x = 0, u(x, 0) = 0, 
u(x, 1) = 1.

A numerical solution is to be determined for the 
loading of a uniform plate, where the displacement 
w satisfies the equation 

and a square mesh of side h is used. Show that, at 
an interior point 0 with neighbours 1, 2, 3 and 4, the 
approximation to the equation is

4w0 = w1 + w2 + w3 + w4 + 20h2

The plate is in the shape of a trapezium whose 
vertices can be represented by the points (0, 0), 
(5, 0), (2, 3) and (0, 3). The plate is held on its edges 
so that on the boundary w = 0. Compute the solution 
for w at the five interior points if h is taken as 1.

The function φ(x, y) satisfies the equation

and the boundary conditions (see Figure 9.41)

φ = 3 − y 2 on OA (x = 0, 0 ¯ y ¯ 1)

 = −φ on AB ( y = 1, 0 , x , 1)

φ = 1 on BC (x = 1, 0 ¯ y ¯ 1)

φ = 3 − x on CO ( y = 0, 0 , x , 1)

9.5.4 Exercises

55

∂ 2u

∂x2
--------- + 

∂ 2u

∂ y2
---------  = 0

1
2
---

1
2
---

1
2
---

1
4
---

56 1
2
---

1
4
---

∂ 2u

∂x2
--------- + 

∂ 2u

∂ y2
--------- = 0

57

∂ 2w

∂x2
---------- + 

∂ 2w

∂ y2
---------- + 20 = 0

58

∂ 2φ
∂x2
--------- + 

∂ 2φ
∂ y2
---------  = x

∂φ
∂y
------
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Finite elements
In Section 9.5.3 we sought numerical solutions of the Laplace equation, but we noted
that only simple geometries could be handled using finite differences. The region
described in Exercise 57 is about as difficult as can be treated easily. To adapt methods
to awkward regions is not easy, so alternative strategies have been sought. Great
advances took place in the 1960s, when civil engineers pioneered the method of finite
elements. To solve plate bending problems, they solved the appropriate equations for
small patches and then ‘stitched’ the latter together to form an overall solution. The job
is not an easy one, and requires a large amount of arithmetic. It was only when large, fast
computers became available that the method was viable. This method is now very widely
used, and forms the basis of most calculations in stress analysis and for many fluid
flows. It is very adaptable and physically satisfying, but is very difficult to program.
This is in contrast to finite differences, which are reasonably easy. In general the advice
to anyone employing this technique is to use a finite-element ‘package’, available in
most computer libraries, and not to write one’s own program. For instance, in the Partial
Differential Equation Toolbox in MATLAB, finite elements is the standard method of
solution even for solutions in a rectangular region. As with many toolboxes of this type
they need a lot of work to master all the details. It is important, however, to understand
the basis of the method. We shall illustrate this method for a simple situation, but refer
to specialist books for details and extensions: for example, see J. Whiteley Finite Element
Methods: A Practical Guide (Berlin, Springer, 2017).

We consider solutions of the Poisson equation

(9.59)

9.6

∂ 2u

∂x2
-------- + 

∂ 2u

∂y2
-------- = ρ x, y( )

Solve the equation numerically, using a mesh of 
(a) h =  in each direction, (b) h =  in each direction.

The function φ(x, y) satisfies the Laplace equation 

inside the region shown in Figure 9.42. The 
function φ takes the value φ = 9x 2 at all points on the 
boundary. Making full use of symmetry, formulate 

a set of finite-difference equations to solve for the 
nodal values of φ on a square grid of side h = . 
Solve for φ at the nodal points. 

1
2
---

Figure 9.41 Region for Exercise 58.

1
4
---

59

∂ 2φ
∂ x2
--------- + 

∂ 2φ
∂ y2
--------- = 0

Figure 9.42 Region for Exercise 59.

1
3
---
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in a region R with u given on the boundary of R. The region R is divided up into a
triangular mesh as in Figure 9.43. We aim to calculate the value of u at the nodal points
of the mesh, but with the function suitably interpolated in each triangle. The simplest
situation is obtained if, in a typical triangle, u is approximated as a linear function

u = ax + by + c (9.60)

taking the values u0, u1 and u2 at the corners. This function can be written explicitly in
terms of the functions

(9.61)

each of which is taken to be zero outside the triangle with vertices (x0, y0), (x1, y1) and
(x2, y2). The denominators are just 2A, where A is the area of the triangle. The function L0,
illustrated in Figure 9.44(a), takes the values 1 at (x0, y0), 0 at (x1, y1) and (x2, y2); it is
linear in the triangle and is taken to be zero elsewhere. The functions L1 and L2 behave
similarly. The field variable u in the element, denoted by ue, can now be written as

ue(x, y) = u0L0 + u1L1 + u2L2 (9.62)

Figure 9.43
Triangular finite-
element mesh, with the 
local numbering of a 
typical element.

L0 = 

x  y 1

x1 y1 1

x2 y2 1

x0 y0 1

x1 y1 1

x2 y2 1

L1 = 

x  y 1

x2 y2 1

x0 y0 1

x1 y1 1

x2 y2 1

x0 y0 1

L2 = 

x  y 1

x0 y0 1

x1 y1 1

x2 y2 1

x0 y0 1

x1 y1 1

Figure 9.44
(a) The function L0; 
(b) u approximated 
as a linear function 
in the element.



696 PAR TIAL DIF FERENTIAL EQUATIONS

The situation is illustrated in Figure 9.44(b). Note that ue(x, y) is a linear function in x
and y, ue(x0, y0) = u0, u

e(x1, y1) = u1 and ue(x2, y2) = u2, and hence gives an explicit form
for the function in (9.60) that has the correct values at the nodes.

Find the linear function that has the values u0 at (0, 0), u1 at (1, 1) and u2 at (  1).

Solution From (9.61), the functions L0, L1 and L2 are given by

Thus, from (9.62), the required linear function is

u = (1 − y)u0 + (2x − y)u1 + 2( y − x)u2

or

u = x(2u1 − 2u2) + y(−u0 − u1 + 2u2) + u0

We build up the solution of (9.59) as the sum over all the elements of the functions
constructed to be linear in an element and zero outside the element. Thus

u = 

To be of use, this function must satisfy (9.59) in some approximate sense. The function
cannot be differentiated across the element boundaries, since it has discontinuous
behaviour. We therefore have to satisfy the equation in an integrated or ‘weak’ form.

We use the well-known result that if V is continuous and

(9.63)

for a complete set of functions φ (that is, a set of functions that will approximate any
continuous function as accurately as desired) then V ≡ 0 in R. Using the residual of
(9.59) in (9.63) gives

Example 9.37 1
2
---,

L0 = 

x y 1

1 1 1
1
2
--- 1 1

0 0 1

1 1 1
1
2
--- 1 1

 = 1
2
---  − 1

2
--- y( )/1

2
---  = 1 − y

L1 = 

x y 1
1
2
--- 1 1

0 0 1

1
2
---  = 2x − y

L2 = 

x y 1

0 0 1

1 1 1

1
2
---  = 2y − 2x

ue

## Vφ dx dy = 0

R
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0 = 

= 

= −  − 

where the final integral is obtained over the boundary C of R using Green’s theorem

 = 

described in Section 3.4.5.
Choosing φ to be zero on the boundary C, we have an integrated form for (9.59) as

0 = (9.64)

It is this integrated or ‘weak’ form of (9.59) that we shall satisfy. We are therefore
satisfying the equation in a global sense over the whole region. In comparison, finite-
difference approximations are local to the mesh point. Clearly, we cannot use (9.64)
with a complete set of functions φ, since there must be infinitely many of them. The
best that can be done is to use N test functions φn (n = 1, . . . , N) when there are N
interior nodes. There will then be N equations for the N unknowns un (n = 1, . . . , N) at
the node points. As N → ∞, the functions φn must form a complete set, and then the
weak form of (9.64) will be satisfied identically rather than approximately. The most
popular set of functions φi is that due to Galerkin, who used the pyramid functions
illustrated in Figure 9.45. At a typical point 0 with neighbours 1, 2, 3, . . . , m we have

φ = (9.65)

## ∂ 2u

∂x2
-------- + 

∂ 2u

∂y2
-------- − ρ

 
 
  φ dx dy

R

## ∂
∂x
----- φ ∂u

∂x
------ 

   + 
∂

∂y
----- φ ∂u

∂y
------ 

   − 
∂u
∂x
------

∂φ
∂x
----- − 

∂u
∂y
------

∂φ
∂y
------ − ρφ dx dy

R

## uxφx + uyφy + ρφ( ) dx dy

R

# φuy dx − φux dy( )

C

## ∂N
∂x
------- − 

∂M
∂y
---------

 
  dx dy

R

# M dx + N dy( )

C

## uxφx + uyφy + ρφ( ) dx dy

R

Figure 9.45
(a) A typical node 
and its neighbours 
in the region R; 
(b) the pyramid 
function used at 
the typical node.

1 at node 0 and piecewise-linear in each

0 at nodes 1, 2, . . . , m of the neighbouring triangles

identically zero outside the neighbouring triangles



 



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If there are N nodes in the mesh then there are N pyramid functions of the type (9.65).
We substitute each of these functions in turn into (9.64) to satisfy the weak form of our
original Poisson equation. Taking a typical node, we see that φ is piecewise-linear in the
neighbouring triangles. For a typical such triangle 012, φ is just the linear function L0

defined earlier. We substitute φ = L0 into the right-hand side of (9.64) and use the fact that

u = u0L0 + u1L1 + u2L2

to obtain the contribution from this particular triangle as 

Ie = 

where ρe is taken to be constant in the triangle. Since Li (i = 0, 1, 2) are linear, ∂Li /∂x
and ∂Li /∂y are constants, and hence the integrals can be performed explicitly, giving

Ie = {u0[( y1 − y2)
2 + (x1 − x2)

2] + u1[( y2 − y0)( y1 − y2) + (x2 − x0)(x1 − x2)]

+ u2[( y0 − y1)( y1 − y2) + (x0 − x1)(x1 − x2)]}/4A + Aρe

From (9.64) with φ chosen as (9.65), we obtain for the point 0 the sum of such terms
over neighbouring elements:

This is just an equation of the form

where the coefficients ai and b depend only on the geometry and not on the field
variables.

A similar computation is performed for each internal node, with φ taken to be of the
form (9.65). The Poisson equation is linear in the ui, and since there is one such equation
for each internal node, we obtain N equations in the N unknowns ui (i = 1, . . . , N ). These
form a matrix (called the stiffness matrix) equation, which can be solved for the ui. The
general strategy is

(i) calculate all the coefficients;

(ii) assemble the stiffness matrix;

(iii) invert the matrix to obtain the unknowns ui (i = 1, 2, 3, . . . , N );

(iv) calculate any required data from the solution.

For the Laplace equation with linear approximating functions in triangular elements, a
MATLAB implementation will be developed. In this development, note the complexity
of the programming even for this very simple situation and also the organization of the
input data required by the program. There has been no attempt at efficiency in the
programming of the sections of the code.

## u0
∂L0

∂x
-------- + u1

∂L1

∂x
-------- + u2

∂L2

∂x
--------

 
 
  ∂L0

∂x
--------

Δ012

+ u0
∂L0

∂y
-------- + u1

∂L1

∂y
-------- + u2

∂L2

∂y
--------

 
 
  ∂L0

∂y
-------- + ρeL0 dx dy

1
3
---

Ie = 0
e


aiui + b = 0
i=0

m


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Solve the Laplace equation ∂ 2u/∂x2 + ∂ 2u /∂y2 = 0 in the unit square shown in Figure 9.46,
subject to the boundary conditions indicated.

Solution Here we have a simple rectangular region with ρ = 0, and which is the same problem
as Example 9.34.

Δ012 gives a contribution 0.625u0 − 0.375u1 − 0.250u2

Δ023 " 0.500u0 − 0.250u2 − 0.250u3

Δ034 " 0.625u0 − 0.250u3 − 0.375u4

Δ045 " 0.625u0 − 0.375u4 − 0.250u5

Δ056 " 0.500u0 − 0.250u5 − 0.250u6

Δ061 " 0.625u0 − 0.250u6 − 0.375u1

Adding all these contributions for the point 0, which is the only unspecified point, gives

0 = 3.5u0 − 0.75u1 − 0.50u2 − 0.50u3 − 0.75u4 − 0.50u5 − 0.50u6

so that, knowing u1 = u2 = u3 = u5 = u6 = 0 and u4 = 1, we obtain u0 = 0.2143. Comparing
with Example 9.34, we see that our result is not particularly accurate, which is not
surprising, since the mesh chosen here is particularly crude.

It is clear from Example 9.38 that the contributions from each triangle need
considerable computational effort and the finite-element method is unsuitable for
hand computations.

Example 9.38

Figure 9.46
Mesh for the finite-
element solution to 
Example 9.38.

The coefficients in Example 9.38 can be computed from the MATLAB M-file stored
under the name coeff.m. The coordinates of the vertices of the triangle are inserted as
a=[p q], b=[r,s] and c=[u,v]. The coefficients are produced in a0,a1,a2.

function[a0,a1,a2]=coeff(a,b,c)
A=[a 1]; B=[b 1]; C=[c 1]; lx=[1 0 0]; ly=[0 1 0]; 
den=0.5/det([A;B;C]);
L0=[det([lx;B;C]) det([ly;B;C])]; 
L1=[det([lx;C;A]) det([ly;C;A])];
L2=[det([lx;A;B]) det([ly;A;B])];
a0=L0'*L0*den; a1=L1'*L0*den; a2=L2'*L0*den;

Such a function file will be used in a more general program.
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Solve the Laplace equation in the region shown in Figure 9.47 subject to zero boundary
conditions except for the three points indicated. All the triangles are equilateral of side a.

Solution Note that in the region in Figure 9.47 it would be very difficult to implement a standard
finite-difference mesh. We now follow the general strategy. 

(i) Calculate the coefficients. When all the triangles are equilateral, the coefficients are
all identical so the amount of computation is greatly reduced. For a typical point

Δ012 gives a contribution (4u0 − 2u1 − 2u2)/4

Δ023 " (4u0 − 2u2 − 2u3)/4

Δ034 " (4u0 − 2u3 − 2u4)/4



and hence adding the six contributions gives the total for the typical point

(6u0 − u1 − u2 − u3 − u4 − u5 − u6)/

(ii) Assemble the stiffness matrix. Apply the results in (i) to each of the six active points

6u1 = u3 + u4 + u2 + 0 +  + 1

6u2 = u4 + u5 + 0 + 0 + 0 + u1

6u3 = 0 + u6 + u4 + u1 +  + 1

6u4 = u6 + 0 + u5 + u2 + u1 + u3

6u5 = 0 + 0 + 0 + 0 + u2 + u4 

6u6 = 0 + 0 + 0 + u4 + u3 + 0 

and the matrices take the form

stiffness matrix load vector unknowns

Example 9.39

Figure 9.47 Mesh for 
Example 9.39. The 
unmarked boundary 
points are given as 
u = 0.

3

3

3

3

1
2
---

1
2
---

A = 

6 −1 −1 −1 0 0

−1 6 0 −1 −1 0

−1 0 6 −1 0 −1

−1 −1 −1 6 −1 −1

0 −1 0 −1 6 0

0 0 −1 −1 0 6

, b = 

3/2

0

3/2

0

0

0

, u = 

u1

u2

u3

u4

u5

u6
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(iii) We now need to solve the matrix equation Au = b for the vector u. It may be noted
that the matrix does not have much ‘structure’, except that it is diagonally domi-
nant, so a direct inversion is usually preferred unless the dimension of the matrix
is very large. The equations were solved using MATLAB to give

(iv) Calculate any required data from the solution in (iii).

To construct the rows of the stiffness matrix, A, in a MATLAB implementation, the
coordinates of the nodes are put into a matrix

with the internal nodes first followed by the boundary nodes (note in the MATLAB
program this matrix is declared as global). The neighbours of each of the internal
nodes are placed in the matrix link, one row for each node. The MATLAB function,
stored in the M-file stiff.m, computes the contribution to the stiffness matrix from
the kth internal point, the output a gives the contribution to the kth row in the full
stiffness matrix.

function a=stiff(mm,k,L)
%mm=no of neighbours, k=current point, L=row of k’s 
neighbours 
global CO
a=zeros(1,mm+1);
for p=1:mm-1

[l,m,n]=coeff(CO(k,:),CO(L(p),:),CO(L(p+1),:));
% note that coeff.m is used

a(1)=a(1)+l; a(p+1)=a(p+1)+m; a(p+2)=a(p+2)+n;
end

[l,m,n]=coeff(CO(k,:),CO(L(mm),:),CO(L(1),:));
a(1)=a(1)+l; a(mm+1)=a(mm+1)+m; a(2)=a(2)+n;

The following example illustrates the use of MATLAB in the solution of the Laplace
equation.

u = 

0.3481

0.0900

0.3471

0.1514

0.0402

0.0831

CO = 

x1 y1

x2 y2

 
xn yn
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Solve the Laplace equation ∇2φ = 0 in the elliptical region

with φ = 1 on the upper half of the ellipse and φ = 0 on the lower half. The situation is
illustrated in Figure 9.48. 

Solution The problem corresponds physically to an elliptical plate, hot on one side and cold on
the other. In Figure 9.48, the triangulated mesh illustrated is the one used in the program.
Note how well the mesh fits the boundary even for a small number of boundary nodes.

Data for the problem is placed in a script file stored as inform.m.

The solution is then computed from the following code, which should be stored in some
convenient place so that it can be edited easily. The complete stiffness matrix, A, is
assembled and all the boundary data is transferred to the right-hand side vector called rhs.

Example 9.40

x2

cosh21
---------------- + 

y2

sinh21
--------------- = 1

 

Figure 9.48 Mesh for 
the elliptical plate in 
Example 9.40.

nin=5; nbdry=12; %number of internal and boundary nodes 
global CO
v=-pi:pi/6:5*pi/6; X=[cosh(1)*cos(v '), sinh(1)*sin(v ')];
X1=(X(1,:)+X(2,:)+X(3,:)+X(4,:))/7;
CO=[0 0;-X1(1,1) X1(1,2);-X1(1,1) -X1(1,2);X1(1,1) 
-X1(1,2);X1;X];

%coords of points, internal first then bdry
link=[2 3 15 4 5 9; 1 9 10 11 12 3; 1 2 12 13 14 15; 1 15 
16 17 6 5; 1 4 6 7 8 9];

%links from interior points to neighbours, in CO order
bdry=[0.5 0 0 0 0 0 0.5 1 1 1 1 1]; %boundary values, in CO order
A=zeros(nin); rhs=zeros(nin,1);
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The print-out is

The solution has all the correct symmetries about the x and y axes. An exact solution to
the problem can be obtained by separation of variables in an appropriate coordinate
system in terms of Fourier series. For node 3 this method gives the value 0.7076 com-
pared with the FE value of 0.7132; an accuracy of less than 1% has been obtained.

For the solution of the Poisson equation with ρ ≠ 0 in (9.59) all the segments of the
MATLAB programs need to be modified. A similar problem in a rectangular region
was studied in Example 9.36 using finite differences.

Solve the Poisson equation

in the hexagonal region illustrated in Figure 9.49 and with u = 0 on the boundary of
the region.

inform %inserts the data from inform.m
for k=1:nin %for each internal node transfers info to A or 
rhs

r=link(k,:); m=nnz(r);
z=stiff(m,k,r);

%uses stiff.m, which in turn uses coeff.m, to compute the 
contributions from row k

A(k,k)=A(k,k)+z(1);
for i=1:m

if r(i)<=nin
A(k,r(i))=A(k,r(i))+z(i+1);

else
rhs(k)=rhs(k)-z(i+1)*bdry(r(i)-nin);

end
end

end
A, rhs, A\rhs %prints out the stiffness matrix, the rhs 
and the final solution

A= 4.3857 -1.1266 -1.1266 -1.1266 -1.1266 rhs= -0.0604

-1.1266 3.9085 -0.6836 0 0 0.0699

-1.1266 -0.6836 3.9085 0 0 2.0284

-1.1266 0 0 3.9085 -0.6836 2.0284

-1.1266 0 0 -0.6836 3.9085 0.0699

which gives the final solution as

0.5000 0.2868 0.7132 0.7132 0.2868

Example 9.41

∂ 2u

∂ x2
-------- + 

∂ 2u

∂ y2
--------  = −2
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Solution There are several physical interpretations of this problem. In the context of heat flow, the
boundary is kept at a fixed temperature and heat supplied at a uniform rate to the plate.
For the unidirectional flow of a viscous fluid in a long hexagonal pipe, u is the velocity
and the constant right-hand side is related to the pressure gradient along the tube, see
Figure 9.50(a). A honeycomb of tubes in a heat exchanger is a possible application.

When a cylinder is in torsion, by gripping at one end and gripping and twisting
at the other, the stresses can be computed from the same Poisson equation; for an
illustration see Figure 9.50(b). For a detailed description of these physical problems
and the derivations a specialist book should be consulted (S. C. Hunter, Mechanics
of Continuous Media, Chichester, Ellis Horwood, 1983).

The modifications to the MATLAB implementations can be checked easily against
the same problem with an elliptical region since an exact solution is known to be

for the region

Figure 9.49
Hexagonal region 
with mesh used in 
Example 9.41.

(a)

(b)

Figure 9.50
(a) Flow in 
hexagonal pipe; 
(b) cylinder in
torsion.

φ = a2b2

a2 + b2
----------------- 1 x2

a2
-----– y2

b2
-----–

 
 
 

x2

a2
-----  + y

2

b2
-----  = 1
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The stiffness matrix is the same as in Example 9.40 and only the right-hand sides are modified.
For the hexagonal region with the mesh shown in Figure 9.49 the matrices are

computed using the modified MATLAB segments and the print-out is 

rhsT = 0.4330 0.4330 0.4330 0.4330 0.4330 0.4330 0.4330

and gives the solution

0.4167 0.2917 0.2917 0.2917 0.2917 0.2917 0.2917

The problem has a great deal of symmetry which is reflected in the solution and,
indeed, symmetries could have been built into the program to reduce the computational
effort. In the current situation the solution is computed almost instantly, but in most
engineering problems every bit of symmetry should be used to its fullest.

In this section no more than the ‘flavour’ of the finite-element method has been given.
The intimate connection with computers makes it difficult to do more than show the
complications that occur and give an outline of how they are dealt with.

For many problems a linear approximation is not good enough, for example in stress
analysis for finite deformations, when high derivatives are required. Also, there is no
good reason why a triangle is chosen rather than a quadrilateral. There are several
choices that must be made at the start of the calculation:

(i) division of the region into triangles, quadrilaterals, . . . ;
(ii) level of approximation, linear, quadratics, cubics, . . . ;
(iii) choice of test function;
(iv) method of integration over elements: exact, Gaussian, . . . ;
(v) method of labelling nodes;
(vi) method of solution of the resulting matrix equation.

As indicated in (iv), once we have abandoned linear approximations, the integrals
cannot be performed exactly, and we need to use an approximate method. Gaussian
integration for triangles works very well, and is commonly used. Usually, there is no
obvious labelling of nodes and it is necessary for each node to keep a list of which
nodes are neighbours, as in the matrix link in the MATLAB segment inform.m. In the
Partial Differential Equation Toolbox in MATLAB an automatic triangulation of a region
can be found; it automatically chooses the nodes and their coordinates, the labelling,
as in (v), and the list of neighbours. The complexity can be appreciated for a simple
rectangular mesh from the MATLAB commands

g=’squareg’;
[p,e,t]=poimesh(g,4); % p,e,t represent the points, edges, 

triangles respectively
pdemesh(p,e,t)

A= 3.4641 -0.5774 -0.5774 -0.5774 -0.5774 -0.5774 -0.5774

-0.5774 3.4641 -0.5774 0 0 0 -0.5774

-0.5774 -0.5774 3.4641 -0.5774 0 0 0

-0.5774 0 -0.5774 3.4641 -0.5774 0 0

-0.5774 0 0 -0.5774 3.4641 -0.5774 0

-0.5774 0 0 0 -0.5774 3.4641 -0.5774

-0.5774 -0.5774 0 0 0 -0.5774 3.4641
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All these exercises require substantial programming expertise. Alternatively the Partial Differential Equations 
Toolbox in MATLAB can be used.

Solve the Laplace equation for the rectangular 
region 0 < x < 6 and 0 < y < 2  using 
finite elements. On the right-hand boundary u = 1 
and zero on the remainder of the boundary.

(a) Use the mesh in Figure 9.51(a) with two 
interior points.

(b) Use the mesh in Figure 9.51(b) with five 
interior points.

Solve the problem in Exercise 57 using the 
triangular finite-element mesh shown in 
Figure 9.52.

Solve the problem in Exercise 59 using the triangular 
finite-element mesh shown in Figure 9.53.

9.6.1 Exercises

60
3

Figure 9.51 Mesh for Exercise 60: (a) with two interior points; (b) with five interior points.

61

Figure 9.52 Finite-element mesh for 
Exercise 61.

62

Figure 9.53 Finite-element mesh for Exercise 62.

Because the labelling is not straightforward, the resulting stiffness matrix rarely has a
simple structure, and the most usual method of inversion is by a full frontal attack
with Gaussian elimination.

The method has been illustrated for only one equation, the Poisson equation. A similar
analysis has to be undertaken for each new equation considered. 
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Integral solutions
In previous sections solutions were built up from elementary solutions of various partial
differential equations, the most obvious of which was from separated solutions. There
are many problems where separated solutions are not available but building up from
elementary solutions may still be possible. This section will show methods of solution
which can lead to very important ideas that can be exploited practically and importantly
to some proofs of existence and uniqueness of solutions. Some numerical methods also
use these ideas, for instance the boundary element method is an extension of finite
elements with the advantage that the dimension of the calculations is reduced by one.
On the whole the mathematics is quite demanding so the interested reader is left to
explore the full power of the new methods in specialist books.

9.7.1 Separation of variables

In plane polar coordinates with x = r cos θ, y = r sin θ, the Laplace equation

becomes (see Example 3.6 in Section 3.1.1)

(9.66)

Writing u = F(r)G(θ) and substituting gives the separated equations

or

and

For periodic solutions of the equation in G the constant μ must be an integer n. Thus
the solution is

G = A cos nθ + B sin nθ

and for the F equation it follows easily that

where A, B, C, D are arbitrary constants. We now choose a specific problem to illustrate
the use of these solutions.

Solve the Laplace equation ∇2u = 0 inside the circle r = a with u specified on the
boundary as u(a, θ ) = f(θ ), a continuous periodic function with period 2π.

Solution If the solution is finite inside the circle then F must be of the form F = Crn. A sum of
all the terms then becomes

9.7

∂ 2u

∂ x2
--------

∂ 2u

∂ y2
--------+  = 0

1
r
---

∂
∂r
----- r

∂u
∂r
------ 

  1

r2
----

∂ 2u

∂θ 2
-------- 
   = 0+

1
F
---r

d
dr
----- r

dF
dr
------- 

   = − 1
G
----

d2G

dθ 2
---------  = μ2

r
d
dr
----- r

dF
dr
------- 

   = μ2F d2G

dθ 2
--------- μ2G = 0+

F = Crn D

rn
----+

Example 9.42



708 PAR TIAL DIF FERENTIAL EQUATIONS

u (r, θ) = A0 + (9.67)

and the solution is now a standard Fourier series problem (see Chapter 12 in MEM)
namely

u (a, θ) = f (θ) = A0 +

The coefficients are

anAn = f (t) cos(nt) dt and Bn = f (t) sin(nt) dt

These coefficients are substituted into (9.67) and the summation and integration
are interchanged; this is permissible since f (θ) is a continuous and bounded periodic
function 

u (r, θ) = f (t)

or

u (r, θ) = f (t) (9.68)

Now consider the series

 + z + z 2 + z 3 + . . . where z = Re jφ

which has the sum, for | z | , 1,

Take the real part and we obtain, after a little algebra

 + R cos φ + R2 cos 2φ + . . . = 

Use this expression in (9.68) to obtain a final result

u (r, θ) = f (t) (9.69)

which is called the Poisson integral formula.

Example 9.42 shows that the solution of a complicated partial differential
equation can be reduced to an integral. The problem has been reduced essentially from

1
2
--- rn An nθ Bn nθsinh+cos( )

n=1

∞



1
2
--- an An nθ Bn nsin θ+cos( )

n=1

∞



1
π
---#

0

2π

1
π
---#

0

2π

1
π
---#

0

2π

1
2
---

r
a
--- 

 
n

nθ ncos t nsin θ ntsin+cos( )
n=1

∞

+ dt

1
π
---#

0

2π

1
2
---

r
a
--- 

 
n

n θ t–( )cos
n=1

∞

+ dt

1
2
---

1
2
---

z
1 z–
-----------+  = 1 z+

2 1 z–( )
-------------------

1
2
---

1 R2–
2 1 2R φ R2+cos–( )
--------------------------------------------------

1
2π
------#

0

2π

a2 r2–
a2 2ra cos θ t–( )– r2+
---------------------------------------------------------dt
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a two-dimensional problem to a one-dimensional problem on the boundary. Integrals
are well understood and there is a vast array of methods that can be used to solve the
problem either explicitly or numerically. In general if a method can be developed to
convert a partial differential equation to an integral form on the boundary then a great
deal of progress has been made to obtaining a solution.

Not least of the advantages of an integral formulation is that bounds on integrals are
much easier to obtain than on differentials. These are used almost exclusively to prove
uniqueness and existence of solutions. A result that follows easily from (9.69) is
obtained by putting r = 0

u (0, θ) = f (t) dt (9.70)

so that the value at the centre of the circle is the average of the values on the bounding
circle. Thus the value at the centre of the circle can never be the maximum (or minimum)
value in the region. For a general Laplace equation problem, since every interior point can
be placed at the centre of a small circle, it can never be the maximum. We can therefore
deduce that for the Laplace equation the maximum (or minimum) value cannot be in
the interior but must be on the boundary. This result is one of the keystones of the proof
of uniqueness of solution.

9.7.2 Use of singular solutions

Again consider the two-dimensional Laplace equation (9.66) in plane polar coordinates.
If we look for solutions, f (r), that only depend on r, then the equation becomes

which can be integrated as

and then f = A ln r + B

where A, B are arbitrary constants. The solution has a singularity at the origin which
can be exploited to obtain more general solutions and reduce the problem again to an
integral round the boundary, as in Section 9.7.1. The method is based on Green’s theorem
discussed in Section 3.4.5

(9.71)

where the curve C encloses the region S. Put

and

into (9.71) to give

1
2π
------#

0

2π

1
r
---

d
dr
----- r

df
dr
----- 

   = 0

r
df
dr
-----  = A

$
C

P dx Q dy+( ) = ##
S

∂ Q
∂ x
-------

∂ P
∂ y
------– 

  dx dy

P = u
∂ v
∂ y
-----– v

∂ u
∂ y
------+ Q = u∂ v

∂ x
----- v

∂ u
∂ x
------–

$
C

u
∂ v
∂x
-----dy

∂ v
∂ y
-----dx– 

  v
∂ u
∂ x
------dy

∂ u
∂ y
------dx– 

   = ## u∇2v v∇2u–( ) dxdy

s

–
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and finally

(9.72)

where n is the normal direction and s is the length parameter along C.
We now need to choose u and v in the extended Green’s theorem (9.72) to obtain

useful results. The region considered is the interior of S, which is bounded by the curve
C, ‘punctured’ by a small circle C′ with centre r0 and radius ε (which we will eventually
tend to zero), r = r0 + ε (cos φ, sin φ) (see Figure 9.54). Take

u = − ln | r − r0 |

and consider the second term in (9.72) on the small circle C′

and ds = ε dφ

Thus the term becomes

ds = v  = v dφ = v(r0)

The last result just comes from (9.70) and we see that this term just picks out the
value of v at the point r0. It remains to construct appropriate u and v to exploit this
idea. It is left to specialist texts to consider the choices for general problems; here we
will concentrate on the Dirichlet problem (Section 9.8.2) for the Poisson equation,
where

∇2ψ = −ρ(x, y) in the region S and ψ given on C

and let

ψ ′ = G(x, y; x0, y0) = − ln | r − r0 | + H(x, y; x0, y0) (9.73)

so that

∇2ψ ′ = 0 in the region S and ψ ′ = 0 on C

and H has no singularities in the region. In (9.72) put u = ψ ′ and v = ψ. Because ψ ′
satisfies the Laplace equation and ψ the Poisson equation in the region S we can write
(9.72) as

$
C

u
∂ v
∂ n
------ v

∂u
∂ n
------– 

  ds = ## u∇2v v∇2u–( ) dxdy

s

Figure 9.54 Region S 
bounded by the curve 
C, ‘punctured’ by the 
small circle C′.

1
2π
------

∂ u
∂ n′
--------  = ∂u

∂ε------–  = 1
2π
------

∂
∂ε----- εln  = 1

2π
------

1
ε---

$
C ′

v
∂u
∂n′
--------

1
2π
------#

0

2π

1
ε---εdφ 1

2π
------#

0

2π

1
2π
------
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 − ε dφ 

= − Gρ dx dy

Taking the left-hand side terms one by one: the first term is zero since ψ ′ = 0 from the
conditions given; the second gives the required integral round the boundary; the third
term is of order ε ln ε so tends to zero as ε → 0; the fourth term was treated above and
gives ψ (r0); and the fifth term is of order ε and tends to zero. Collecting up the terms
gives

ψ(x0, y0) = − ψ(x, y) G(x, y; x0, y0) ds + G(x, y; x0, y0)ρ(x, y) dx dy (9.74)

We can now find ψ at any point in the region from the value of ψ on the boundary, the
right-hand side of the Poisson equation ρ(x, y), together with the function G(x, y; x0, y0),
called Green’s function. At the moment it is assumed that Green’s function exists and
can be calculated. For simple geometries it can often be found and advanced books
show how and when this can be done. The whole theory of Green’s functions can be
applied to many different equations and boundary conditions but this is the province
of advanced books on partial differential equations (see R. Haberman, Partial
Differential Equations with Fourier Series and Boundary Value Problems, fifth edition,
Pearson, 2013). An example will illustrate the method.

Solve the Laplace equation

∇2f = 0 in the region y . 0

given that f (x, 0) = F(x), a known function, on the x axis and that f is zero at infinity.

Solution Green’s function (9.73) can be constructed by reflection as

G[(x, y; x0, y0)] = − ln | (x − x0, y − y0) | + ln | (x − x0, y + y0) |

= −

Note that the added term has no singularities in the region y . 0; the function is zero
on y = 0 and tends to zero as x and y tend to infinity. Now

Putting y = 0 gives

$
C

ψ′∂ψ
∂n
------- ψ ∂ψ ′

∂n
----------– 

  ds $
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ψ ′∂ψ
∂r
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∂r
-----

1
2π
------ r r0– H r r0,( )+ln– 

 –

##
s

$
C

∂
∂n
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s

Example 9.43
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 
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-------– 1

4π
------

2 y y0–( )
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712 PAR TIAL DIF FERENTIAL EQUATIONS

The solution is then obtained from (9.74) as

ψ (x0, y0) = F(x) dx

Again we see that the solution has been reduced to an integral along the boundary.
Finding the exact form of Green’s function is known for some classic problems, like the
one in Example 9.43, but in general it is a difficult calculation. The problem is closely
connected to finding a solution of the partial differential equation with zero boundary
values (at least for the Dirichlet problem) and a Dirac delta function imposed at a point
in the interior.

9.7.3 Sources and sinks for the heat-conduction equation
In Example 9.4 a solution to the one-dimensional heat-conduction equation was
obtained which corresponded to a pulse of heat being supplied at a particular point at zero
time. The subsequent dissipation of the heat pulse is illustrated in Figure 9.4. A similar
solution can be obtained for the three-dimensional problem. The radial symmetric equation
of the heat-conduction equation is

(9.75)

where r is the radial distance from the origin and κ = k/(ρc) is the thermal diffusivity.
The parameter k is the thermal conductivity, ρ is the density of the medium and c is the
specific heat capacity. The solution corresponding to the one-dimensional solution of
Example 9.4 is

(9.76)

The solution can be verified by direct substitution, as in Example 9.4. It is noted that
there is a singularity at zero time which corresponds to a point source releasing an
instantaneous amount of heat Q, calculated as follows:

The total amount of heat in the whole of the space at time t is computed from the
amount of heat in the shell of radius r and thickness dr and then integrating

H = 4πr2(ρcT )d r = 4πr2

The integration can be obtained by differentiating with respect to α the well known integral

to get
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Thus

The solution (9.76) is usually called an instantaneous source, releasing an amount
of heat Q at time zero. As expected for fixed t and as r tends to infinity the temperature
T tends to its resting temperature of zero. Also for fixed r the temperature tends to zero
as the time t tends to infinity and all the heat is conducted away.

For a continuous source, heat is released continuously at some given rate. In a time
interval ds at time s, assume that heat released is q(s)ds then the temperature is given
by (9.76) with the time starting at s. Temperature due to release of heat q(s)ds at time s
is given by

 t . s

Thus over the whole interval then

(9.77)

Again we see that the solution of the heat-conduction equation can be written as an
integral with all the advantages listed earlier. For most functions q(s), the integral in
(9.77) cannot be performed explicitly, but for q = q0, a constant, it is possible. Making
the substitution

u = r/[4κ (t − s)]1/2

reduces the integral to

(9.78)

where erfc is the known function defined in Example 9.24 and can be found in all
computer packages.

It can be seen that for large times the erfc function tends to one so the steady
temperature due to the source decays like 1/r and the steady temperature Ts is

(9.79)

This function must satisfy the Laplace equation; except at the origin, and gives the
three-dimensional singular solution that is used to construct Green’s function in an
exactly similar manner to the two-dimensional version described in Section 9.7.2.

Many situations can be tackled using (9.76)–(9.79) and the solution can be reduced
to an integral, which usually requires a numerical quadrature.
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Find the steady temperature due a constant line source of length 2L, placed in an infinite
conducting medium with constant thermal properties.

Solution We will use the steady point solution in (9.79). The axes are set up in Figure 9.55, with
(R, z) being the cylindrical polar coordinates of the field point relative to the origin at
the centre of the rod – note that there is no angular coordinate since the solution is
clearly symmetrical about the z axis.

Take an element of the line at ( p, 0) of length dp releasing heat at a rate of qLdp then
from (9.79) the temperature at (R, z) due to this element is

Hence the temperature due the whole of the line is

TL(R, z) = 

= 

Such a calculation can be used to model the temperature due to a heated pipe or cable
buried underground or diffusion of contaminant from a section of a steadily leaking
pipe. The effect of the burial of a line source at a distance below a surface with a fixed
temperature can be calculated by adding a parallel line sink at an equal distance above
the surface (see Exercise 66). Note that for large R the square bracket behaves like

Example 9.44

Figure 9.55
(a) Line source 
and (b) cylindrical 
coordinates (R, z) for 
Example 9.44.
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2L/R to first order so that at large distances the line source just looks like a point source
with strength 2LqL. A wide range of applications of these ideas can be found in H. S.
Carslaw and J. C. Jaeger, Conduction of Heat in Solids (New York, Oxford University
Press, 1959).

Use the Poisson formula (9.69) to solve the Laplace 
equation in the disk r < a with the temperature given 
as T = T0 for 0 , θ , π and T = 0 for π , θ , 2π, 
where (r, θ) are plane polar coordinates.

Show that

u(x, y) = ln[(x − a)2 + (y − b)2]

satisfies the Laplace equation at all points except 
(a, b). Check that the function

G(x, y; x0, y0) = 

- satisfies all the properties of the Green’s function 
for the Dirichlet problem for the Laplace equation 
in the quarter region x > 0, y > 0. Hence solve 
the Laplace equation ∇2T = 0 in the region x > 0, 
y > 0 with the boundary conditions T (x, 0) = f (x) 
for x > 0 and T(0, y) = g(y) for y > 0 and T remains 
bounded at infinity. Show that

T(x0, y0) =

+ 

Evaluate T when f (x) = 1 and g(y) = 0.

Green’s function of the Dirichlet problem for the 
Laplace equation in the disk, r < a, can be written in

terms of polar coordinates of the point (r0, θ0) and 
its inverse point (a2/r0, θ0). Check that the function

G(r, θ; r0, θ0) = 

satisfies the conditions of Green’s function 
with G = 0 on r0 = a. Deduce that the solution 
of the Laplace equation in the region r < a and 
u(a, θ) = f (θ) is given by the Poisson formula (9.69).

Find the steady temperature T(x, y, z) due to a 
constant line source of length 2L, placed at x = a, 
y = 0, −L < z < L with the plane x = 0 maintained at 
zero temperature. Use the result in Example 9.44.

A uniform ring source consists of instantaneous point 
sources at the points of the circle z = 0, x2 + y2 = a2 or 
x = a cos θ, y = a sin θ. Each element of the ring, adθ, 
releases an amount of heat qadθ at time t = 0. Use 
(9.76) to show that the temperature at any point 
(R cos φ, R sin φ, z) is

T(R cos φ, R sin φ, z)

where I0 is a modified Bessel function, which is a 
known function available in MAPLE and MATLAB. 
It can be defined as

I0(α) = exp(α cos ψ) dψ

9.7.4 Exercises
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General considerations
There are properties of a general nature that can be deduced without reference to any
particular partial differential equation. The formal classification of second-order
equations and their intimate connection with the appropriateness of boundary
conditions will be considered in this section. The much more difficult problems of the
existence and uniqueness are left to specialist texts.

9.8.1 Formal classification
In the preceding sections we have discussed in general terms the three classic partial dif-
ferential equations. We shall now show that second-order linear equations can be reduced
to one of these three types.

Consider the general form of a second-order equation:

Auxx + 2Buxy + Cuyy + Dux + Euy + F = 0 (9.80)

where A, B, C, . . . are constants. If we make a change of variable

r = ax + y, s = x + by

then the chain rule gives

uxx = a2urr + 2aurs + uss

uxy = aurr + (1 + ab)urs + buss

uyy = urr + 2burs + b2uss

Substituting into (9.80) gives

urr(Aa2 + 2Ba + C) + 2urs(aA + B + abB + bC ) + uss(A + 2Bb + b2C )

+ (aD + E )ur + (D + Eb)us + F = 0

If we choose to eliminate the urs term then we must put

a (A + bB) = − (B + bC ) (9.81)

and we can eliminate a by substitution to obtain

(A + 2bB + b2C)  + . . . = 0 (9.82)

We can see immediately that the behaviour of (9.82) depends critically on the sign of
AC − B2 and this leads to the following classification.

Case 1: AC − B2 . 0, elliptic equations

On putting (AC − B2)/(A + Bb)2 = λ2, (9.82) becomes

α (uss + λ2urr) + . . . = 0

and on further putting q = r/λ,

uss + uqq + . . . = 0

The second-order terms are just the same as the Laplace operator. Equations such as
(9.80) with AC − B2 . 0 are called elliptic equations.

9.8

uss + 
AC − B2

A + Bb( )2
------------------------- urr
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Case 2: AC − B2 = 0, parabolic equations

In this case (9.82) simply becomes

uss + . . . = 0

with only one second-order term surviving. The equation is almost identical to the
heat-conduction equation. Equations such as (9.80) with AC − B2 = 0 are called
parabolic equations.

Case 3: AC − B2 < 0, hyperbolic equations

On putting (AC − B2)/(A + Bb)2 = −μ 2, (9.82) becomes

α (uss − μ 2urr) + . . . = 0

and on further putting t = r/μ,

uss − utt + . . . = 0

which we can identify with the terms of the wave equation. Equations such as (9.80) with
AC − B2 , 0 are called hyperbolic equations.

Thus we see that simply by changing axes and adjusting length scales, the general
equation (9.80) is reduced to one of the three standard types. We therefore have
strong reasons for studying the three classical equations very closely. An example
illustrates the process.

Discuss the behaviour of the equation

uxx + 2uxy + 2αuyy = 0

for various values of the constant α.

Solution In the notation of (9.80), A = 1, B = 1 and C = 2α , so from (9.81)

and the change of variables r = ax + y, s = x + by gives

Thus if α .  and q = r(1 + b)/ , we have the elliptic equation

uss + uqq = 0

If α = , we have the parabolic equation

uss = 0

If α ,  and t = r(1 + b)/ , we have the hyperbolic equation 

uss − utt = 0

Example 9.45

a = −1 + 2αb
1 + b

--------------------

uss + 
 2α − 1

1 + b( )2
-------------------- urr = 0

1
2
--- 2α 1–( )

1
2
---

1
2
--- 1 2α–( )
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In (9.80) the assumption was that A, B, C, . . . were constants. Certainly for many
problems this is not the case, and A, B, . . . are functions of x and y, and possibly u also.
Therefore the analysis described may not hold globally for variable-coefficient equations.
However, we can follow the same analysis at each point of the region under consideration.
If the equation at every point is of one type, say elliptic, then we call the equation
elliptic. There are good physical problems where its type can change. One of the best
known examples is for transonic flow, where the equation is of the form

where u and v are the velocity components and c is a constant. We calculate

AC − B2 = 

If we put q/c = M, the Mach number, then for M . 1 the flow is hyperbolic and supersonic,
while for M , 1 it is elliptic and subsonic. It is easy to appreciate that transonic flows
are very difficult to compute, since different boundary conditions and techniques are
required on the subsonic and supersonic sides.

9.8.2 Boundary conditions

In the preceding sections we chose natural boundary conditions for the three classical
partial differential equations. We can formalize these ideas a bit further and look at
appropriate boundary conditions and the consequences of choosing inappropriate
conditions. We shall confine ourselves to two-variable situations, but it is possible to
extend the theory to problems with more variables.

Suppose that we are trying to obtain the solution u(x, y) to a partial differential equation
in a region R with boundary C. The commonest boundary conditions involve u or the
normal derivative ∂u/∂n on C. The normal derivative (which is discussed in Section 3.2.1)
at a point P on C is the rate of change of u with respect to the variable n along the line
that is normal to C at P. The three conditions that are found to occur most regularly are

It is common for different conditions to apply to different parts of the boundary C. A
boundary is said to be closed if conditions are specified on the whole of it, or open if
conditions are only specified on part of it. The boundary can of course include infinity;
conditions at infinity are specified if the boundary is closed or unspecified if it is open.
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The natural conditions for the wave equation are Cauchy conditions on an open
boundary. The d’Alembert solution (9.15) in the (x, t) plane in Section 9.3.1 corresponds
to u and ∂u/∂ t given on the open boundary, t = 0. Physically these conditions correspond
to a given displacement and velocity at time t = 0. However, the vibrations of a finite
string, say a violin string, will be given by mixed conditions (Figure 9.56a). On the
initial line 0 ¯ x ¯ l, t = 0 (Figure 9.56b) Cauchy conditions will hold, with both u
and ∂u/∂ t given. The ends of the string are held fixed, so we have Dirichlet conditions
u = 0 on x = 0, t ˘ 0 and u = 0 on x = l, t ˘ 0.

Figure 9.56 is typical of the hyperbolic-type equations in the two variables x and t
that arise in wave propagation problems. For the second-order equation

Auxx + 2Buxy + Cuyy = 0

the characteristics are defined by

(9.83)

For a hyperbolic equation, B2 − AC . 0, so there are two characteristics, which for
constant A, B and C are straight lines. Each of the characteristics carries one piece of
information from the boundary into the solution region. This is illustrated in Figure 9.56(c),
where the solution at P is completely determined from the information on AB. The pair
of characteristics, TC and SC, then allows us to push the solution further into the region.
It is clear from the d’Alembert solution that Cauchy data is required on the line t = 0
but a single condition is required on the lines x = 0, l.

There is no reason why the boundaries cannot be at infinity – an extremely long string
can sensibly be modelled in this way. Care at such infinite boundaries must be taken, since
the modelling of what happens there is not always obvious; certainly it requires thought.

We have mentioned the commonest boundary conditions, but it is possible to con-
ceive of others. However, such conditions do not always give a unique solution; a phys-
ical example will illustrate this point.

Consider the problem in Example 9.1, which has the solution

u = u0 sin cos

Suppose that a photograph of the string is taken at the times t = L/2c and t = 3L/2c. Can
the solution then be constructed from these two photographs? At the two times the

Figure 9.56
(a) A vibrating 
string fixed at its 
ends x = 0 and x = l; 
(b) the corresponding 
region and boundary 
conditions in the (x, t) 
plane; (c) wave 
moving forward 
with time.

dy
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------ = 
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A
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L
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string has the same shape u = 0; that is, the string is in its resting position. One possible
solution is therefore that the string has not moved. We know that a non-zero solution to
Example 9.1 is possible, so we have two solutions to our problem, and we have lost
uniqueness. Specifying the displacement at two successive times is not a sensible set of
boundary conditions. Although we have stated an extreme case for clarity, the same
problem is there for any T, and non-unique solutions can occur if incorrect boundary
conditions are imposed.

The boundary conditions for the heat-conduction equation (9.7) for the one-
dimensional case are given by specifying u or the normal derivative ∂u/∂n on a curve C
in the (x, t) plane, that is Dirichlet or Neumann conditions respectively. Because there is
only one time derivative in (9.7), we need only specify one function at t = 0 (say), rather
than two as in the wave equation. In the simplest one-dimensional problem, at time t = 0
the temperature in a bar is given, u(x, 0) = f(x), and at the ends some temperature
condition is satisfied for all time. Typical conditions might be u(0, t) = 0, so that the end
x = 0 is kept at zero temperature, and ∂u(L, t)/∂x = 0, which implies no heat loss from
the end x = L. The situation is illustrated in Figure 9.57. It is clear that, no matter what
the starting temperature f(x) is, the solution must tend to u = 0 as the final solution.

In the case of a parabolic equation we have B2 − AC = 0, so the characteristics in
(9.83) coalesce. Imagine that there are two characteristics very close together. The
information on the boundaries will propagate a long way, since the two lines will meet
‘close to infinity’. We should therefore expect that information on the initial line would
propagate forward in time, and because there is only one characteristic that one piece
of information on the boundary curve would be sufficient. Figure 9.57(c) illustrates the
situation, with the solution on CB being determined by a single boundary condition on
each of CO, OA and AB.

Again, as with the wave equation, there is no reason why the bar cannot be of infinite
length, at least in a mathematical idealization, so that the initial curve C can include
infinite parts. The conditions at infinity are usually quite clear and cause little difficulty.

An interesting feature is that it is very difficult to integrate the heat-conduction equation
backwards in time. Suppose we are given a temperature distribution at time t = T and seek
the initial distribution at t = 0 that produces such a distribution of temperature at t = T. If
there is an exact solution then the problem can be solved, but it is unstable in the sense
that small changes at t = T can lead to huge changes at t = 0. Consider, for instance, the
solution to the heat-conduction equation with κ = 0.5 in the following two situations:

Figure 9.57
(a) A heated bar with 
a temperature u = 0 at 
x = 0 and insulated, 
∂u/∂x = 0, at x = L; 
(b) the corresponding 
region and boundary 
conditions in the (x, t) 
plane. (c) Solution 
can be computed at 
successive times.
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The two conditions at t = 5 differ by a very small amount (, 10−11) but, integrating
backwards to t = 0, the two solutions are significantly different. Although this analysis
is physically artificial it indicates why integrating backwards in time is unstable. This
phenomenon, in particular, leads to almost insuperable difficulties when a numerical
solution is sought, since errors are inherent in any numerical method. Such a situation
applies, for instance, when a space capsule is required to have a specified temperature
distribution on reaching its final orbit. The designer wants to know an initial temperature
distribution that will achieve this end.

The boundary conditions most relevant to the Laplace equation are Dirichlet or
Neumann conditions. These specify respectively u or the normal derivative ∂u/∂n
on a closed physical boundary. One condition around the whole boundary, which may
include an infinite part, is sufficient for this equation. Typically, on a rectangular plate
as shown in Figure 9.58, the temperature is maintained at 1 on CD, at 0 on AB and AD,
and there is no heat loss from CB.

However, it should be noted that for Neumann conditions, ∂u/∂n = f (s), on the whole
boundary C, where s is a measure of length along the boundary, the function f (s) must
satisfy an integral condition. Just consider the Laplace equation ∇2u = 0 in the region A
with this boundary condition. In Section 3.4.5 Green’s theorem was written

This can be re-written by putting P = −(∂u/∂y), Q = ∂u/∂x to give

The right-hand side is put equal to zero since u satisfies the Laplace equation. Thus

0 = · (dy, −dx) = ds

and therefore

f(s) ds = 0

Given u = 0 on x = 0 and 1, and at t = 5

u(x, 5) = sin(πx) e−2.5π2

find u(x, 0).

The solution is just one of the 
separated solutions in (9.40), namely

u(x, t) = sin(πx) e−0.5π2t

At t = 5 u , 2 × 10−11

At t = 0 u = sin(πx)

Given u = 0 on x = 0 and 1, and at t = 5

u(x, 5) = sin(2πx) e−10π2

find u(x, 0).

The solution is just one of the 
separated solutions in (9.40), namely

u(x, t) = sin(2πx) e−2π2t

At t = 5 u , 1.4 × 10−43

At t = 0 u = sin(2πx)

$
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For the steady heat-conduction interpretation, ∂u/∂n is proportional to the heat entering
through an element of the boundary. This result says that for a steady state to be
achieved the net amount of heat entering the region must be zero.

Figure 9.58 is typical of an elliptic equation where we have conditions on a closed
boundary. In (9.83) we have the condition that B2 − AC , 0, so the characteristics
associated with the solution do not make sense in the real plane. There is no ‘time’ in
elliptic problems; such problems are concerned with steady-state behaviour and not
propagation with time. We are dealing with a fundamentally different situation from
the hyperbolic and parabolic cases. The interpretation of the idea of characteristics is
unclear physically, and does not prove to be a useful direction to explore, although
advanced theoretical treatments do use the concept.

It is possible to solve the Laplace equation with other boundary conditions, for instance
Cauchy conditions u and ∂u/∂x on the y axis. However, an example due to Hadamard
(see Exercise 49) shows that the solution is unstable in the sense that small changes in
the boundary conditions cause large changes in the solution. This type of problem is not
well posed, and should not occur in a physical situation; however, mistakes are made
and this type of behaviour should be carefully noted. 

Figure 9.59 gives in tabular form a summary of the appropriate boundary conditions
for these problems.

Figure 9.58 Typical 
boundary conditions 
for the Laplace 
equation in a 
rectangular plate.

Data Boundary ∇2u = utt

Hyperbolic
∇2u = 0
Elliptic

∇2u = ut

Parabolic

Dirichlet
or

Neumann

Open Insufficient
data

Insufficient
data

Unique, stable
solution for t . 0

Closed Not unique Unique, stable
(to an arbitrary
constant in the
Neumann case)

Overspecified

Cauchy Open Unique,
stable

Solution may
exist, but is
unstable

Overspecified

Closed Overspecified Overspecified Overspecified

Figure 9.59
Appropriateness of 
boundary conditions 
to the three classical 
partial differential 
equations (adapted 
from P. M. Morse and 
H. Feshbach, Methods 
of Theoretical Physics, 
Volume I. New York, 
McGraw-Hill, 1953).
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Engineering application: wave propagation under a 
moving load

A wide range of practical problems can be studied under the general heading of moving
loads. Cable cars that carry passengers, buckets that remove spoil to waste tips, and
cable cranes are very obvious examples, while electric train pantographs on overhead
wires are perhaps less obvious. Extending the problem to beams opens up a whole range
of new problems, such as trains going over bridges, gantry cranes and the like. An
excellent general discussion and wide range of applications is given by L. Fryba, Vibration
of Solids and Structures under Moving Loads (Groningen, Noordhoff, 1973), and Initial
Value Problems, Fourier Series, Overhead Wires, Partial Differential Equations of
Applied Mathematics, Open University Mathematics Unit M321, 5, 6 and 7 (Milton
Keynes, 1974) treat pantographs on overhead wires. See also S. Howsion, Practical
Applied Mathematics (Cambridge, Cambridge University Press, 2005).

9.9 Engineering application:

Determine the type of each of the following 
partial differential equations, and reduce them 
to the standard form by change of axes: 

(a) uxx + 2uxy + uyy = 0

(b) uxx + 2uxy + 5uyy + 3ux + u = 0

(c) 3uxx − 5uxy − 2uyy = 0

Find the general solution of the equation 
Exercise 68(c).

Use the change of variable u = x + y, v = x − y to 
transform the partial differential equation

(9.84)

to

Hence compute the general solution of (9.84) as

f = (x − y)F(x + y) + G(x + y)

where F and G are arbitrary functions.

Establish the nature of the Tricomi equation 

yuxx + uyy = 0

in the regions (a) y . 0, (b) y = 0 and (c) y , 0. 
Use (9.83) to determine the characteristics of the 
equation where they are real.

Verify that the function f = [Ax3 + (B/x2)] y(1 − y2), 
with A and B constants, satisfies the partial 
differential equation

In which regions is the equation elliptic, parabolic 
and hyperbolic?

Determine the nature of the equation

Show that if p = (x2 − y2) and q = (x2 + y2), the 
equation reduces to the Laplace equation in x and y.

Show that the equation

is hyperbolic. Sketch the domain of 
dependence and range of influence from 
the characteristics.

9.8.3 Exercises
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A straightforward linearized theory of a cable tightly stretched between fixed
supports provides important information about the behaviour of such systems. Certainly,
if such a theory could not be solved then more complicated problems involving
large deformations, slack cables or beams would be beyond reach. The basic assumptions
are

(a) the deflections from the horizontal are small compared with the length of the cable; 

(b) deflections due to the weight of the cable itself are neglected;

(c) the horizontal tension in the cable is so large compared with the perturbations
caused by the load that it may be regarded as constant.

Figure 9.60 shows the situation under study and the coordinate system used.
Because the problem is one of small deflections, the basic equation is the wave

equation with a forcing term from the moving load:

Since the two ends are fixed, we have

z(0, t) = z(l, t) = 0 (t > 0) (9.85)

A trolley is assumed to start at x = 0, with the cable initially at rest; that is,

z(x, 0) = z(x, 0) = 0 (0 < x < l ) (9.86)

It remains to specify the forcing function p(x, t) due to the moving load. We use the
simplest assumption of the delta function and step function, as defined in Section 5.2,
namely

(9.87)

The delta function models the impulse of the trolley at time t at distance x, while the
step function switches off the forcing function when the trolley reaches the end x = l.

There are several ways of solving this equation, but here the Laplace transform
method will be used. Taking the transform of (9.87) using (9.30) and (9.32) together
with the initial condition (9.86), we obtain the ordinary differential equation

−c2Z″ + s2Z = P e−sx/vH(l − x)

Since we have no interest in the case x . l, the final term can be omitted, since it is just
1 if x , l and 0 if x . l. It is now straightforward to solve this equation as 

Z = A esx /c + B e−sx /c + 

Before evaluating A and B, it is clear that the speed v = c causes problems, since the
third term is then infinite, and the solution is not valid for this case. The solution is
going to depend on whether the trolley speed is subcritical v , c or supercritical v . c.

Equation (9.85) gives Z(0, s) = Z(l, s) = 0 for the boundary conditions, so that A and
B can now be evaluated from 

Figure 9.60 Moving 
load across a taut wire. −c2 ∂ 2z

∂x2
-------- + 

∂ 2z

∂ t2
------- = p x, t( )

∂
∂ t
-----

−c2 ∂ 2z

∂x2
-------- + 

∂ 2z

∂ t2
------- = Pδ t − 

x
v--- 

  H l − x( )

P e−sx/v

s2 1 − c2/v2( )
--------------------------------
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0 = A + B + 

0 = A esl/c + B e−sl/c + 

Some straightforward algebra gives A and B, and hence Z, as

It is easy to check that the two boundary conditions at x = 0 and x = l are satisfied.
As with all transform solutions, the main question is whether the inversion can be
performed. Fortunately the three terms can be found in tables of transforms, to give

(9.88)

The three terms can be identified immediately. The first is the displacement caused by
the trolley moving with speed v and hitting the value x after a time t = x /v; the second
term only appears for t . l /v, and gives the reflected wave from x = l; while the third
term is the wave caused by the trolley disturbance propagating in the cable with wave
speed c.

To look a little more closely at the solution (9.88), we shall consider the case x = l.
Thus the motion of the midpoint will be considered as a function of time. Plotting such
waves is easier in non-dimensional form, so we first rewrite (9.88) in terms of 

, ,

so that D is the non-dimensional displacement, τ is the non-dimensional time, with τ = 1
corresponding to the time for the wave to propagate the length of the cable, and λ is the
ratio of wave speed to trolley speed. The second step is then to take x = l to give

D = (τ − λ) H (τ − λ)

In Figure 9.61 the supercritical case, λ = 0.3, is displayed. It may be noted that the
three terms ‘switch on’ at times τ  = 0.15, τ  = 0.8 and τ = 0.5 respectively, corresponding
physically to the trolley hitting, the reflected wave arriving and the initial wave arriving.
The motion is subsequently periodic, as indicated in the figure.
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Similarly, the subcritical case λ = 3 is shown in Figure 9.62. Here the switches are
at τ = 1.5, 2.5 and 0.5 respectively for the three terms, with the same interpretation as
above. Because of the very odd choice of parameter λ, only one pulse is seen at the
centre point, with the terms subsequently cancelling.

While the model illustrates many of the obvious properties of wave propagation, it
clearly has its limitations. The discontinuous behaviour in the gradient of the displacement
looks unrealistic, and the absence of damping means that oscillations once started
continue for ever. It is clear that more subtle modelling of the phenomenon is required to
make the solutions realistic, but the general behaviour of the solution would still be followed.

Engineering application: blood-flow model
A problem of considerable interest is how to deal with the flow of a fluid through a tube
with distensible walls and hence variable cross-section. An obvious application is to
the flow of blood in a blood vessel. The full Navier–Stokes equations for viscous flow
are difficult to solve and the distensible wall, where boundary conditions are not clear,

Figure 9.61 Solution 
of the moving-load 
problem for x = l 
and λ = 0.3; the 
supercritical case.

1
2
---

Figure 9.62 Solution 
of the moving-load 
problem for x = l and 
λ = 3; the subcritical 
case.

1
2
---

9.10 Engineering application:
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makes for an impossible problem. An alternative, simpler and more heuristic approach
is possible and some useful solutions can be deduced. The work is based on a paper by
A. Singer (Bulletin of Mathematical Biophysics 31 (1969) 453–70), where more details
can be found about the practical application to blood flows.

The assumptions required to set up the model are as follows:

(1) the flow is one-dimensional;

(2) the flow is incompressible and laminar;

(3) the flow is slow, so that all quadratic terms can be neglected;

(4) the resistance to flow is assumed to be proportional to the velocity;

(5) there is a leakage through the walls that is proportional to the pressure;

(6) the cross-sectional area S is a function of the pressure only.

We take the situation illustrated in Figure 9.63, and we denote the pressure by p, the
velocity by v, the time by t and the axial distance along the tube by x. The first equation
that we derive is a continuity equation, which states that in a time Δt the fluid that comes
into the element must leave the element:

(St+Δt − St)Δx = −(vS )x+ΔxΔt + (vS )xΔt − gpS ΔxΔt
volume volume volume out of volume into leakage

after before right-hand end left-hand end

The proportionality constant g is the leakage per unit volume of tube per unit time. The
equation can be rewritten as

or 

(9.89)

A second equation is required to evaluate v, and this comes from Newton’s law that the
force is proportional to the rate of change of momentum. The force in the x direction
acting on the element in Figure 9.63 is

force = ( pS )x − ( pS )x+Δx − vrS Δx
pressure force pressure force resistance
on left-hand on right-hand

end end

where r is the resistance per unit length per unit cross-section per unit time, and is the
proportionality constant in assumption (4). The change in the momentum in time Δt is
more difficult to compute because of the convection due to the moving fluid. However,
these effects only involve second-order terms, and hence can be omitted by assumption
(3). The calculation is straightforward under this assumption, so that

Figure 9.63
An element of the 
flexible tube in the 
blood-flow problem.

St+ tΔ  − St

tΔ
---------------------- + 

vS( )x+ xΔ − vS( )x

xΔ
--------------------------------------- + gpS = 0

∂ S
∂ t
------ + 

∂
∂ x
----- vS( ) + gpS = 0
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ΔM = change in momentum = ρ(vt+Δt)S Δx − ρ(vt)S Δx
momentum before momentum after

where ρ is the density of the fluid. Thus

Putting the force equal to the rate of change of momentum, we obtain, on taking the
limit as Δx → 0,

(9.90)

Now assumption (6) gives S = S( p), so that

We define c = (1/S ) dS/dp as the distensibility of the tube, that is the change in S per
unit area per unit change in p. Equations (9.89) and (9.90) become

cpt + vx + cpxv + gp = 0

ρvt + px + cpx p + rv = 0

and since the terms vpx and ppx can be neglected by assumption (3), we arrive at our
final equations

(9.91)

These are the linearized flow equations, and are identical with the transmission
line equations describing the flow of electricity down a long, leaky wire such as a
trans-atlantic cable (see Exercise 10).

We can now look at special cases that will prove to be very informative about the
various terms in the equation.

Case (i): c = constant, r = g = 0

This case corresponds to constant distensibility, which in turn gives S = A ecp, since S
must satisfy c = (1/S ) dS/dp. Thus we have made a specific assumption about how S
depends on p. The r = g = 0 implies the absence of resistance and leakage. Eliminating
p between the two equations in (9.91) gives

vxx = (cρ)vtt

which is just the wave equation. We know that any pulse will propagate perfectly with
a velocity u = 1/ . The assumption in the problem is that the tube is one-dimen-
sional and has no branches. Clearly a heart pulse will propagate to the nearest branch,
but there will then be reflection and a complicated behaviour near the branch. In long
arteries like the femoral artery the theory can be checked for its validity.

∂M
∂ t
-------- = ρS

∂ v
∂ t
----- xΔ

ρS
∂ v
∂ t
----- = −∂ pS( )

∂ x
-------------- − vrS

1
S
---

∂S
∂ x
------ = 

1
S
---

dS
dp
------

∂ p
∂ x
------

1
S
---

∂ S
∂ t
------ = 

1
S
---

dS
dp
------

∂ p
∂ t
------

cpt + vx + gp = 0

ρvt + px + rv = 0 



cρ( )
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Case (ii): S = constant

Here we are considering a rigid tube where the cross-sectional area does not vary, and
hence c = 0. Eliminating p between the two equations in (9.91) gives

ρvt − vxx + rv = 0

Substituting v = Ve−rt/ρ, we have

so that

which is just the diffusion equation. The solution for this rigid-tube case is therefore
a damped, diffusion solution. Typically, if we start with a delta-function pulse at the
origin then it can be checked that the solution is

where A is a constant. This solution is plotted in Figure 9.64, and shows the rapid
damping. Such a pulse would be most unlikely to propagate far enough for blood to
reach the whole of the system.

The two cases considered are extremes, but, just from the analysis performed, some
conclusions can be drawn. If there is no distensibility then pulses will not propagate but
will just diffuse through the system. We conclude that to move blood through the system
with a series of pulses is not possible with rigid blood vessels, and we need flexible
walls. Certainly for older people with hardening of the arteries, a major problem is to
pump blood round the whole system, and this fact is confirmed by the mathematics.

The actual situation is somewhere between the two cases cited, but there are no sim-
ple solutions for such cases except for the ‘balanced line’ case when cr = gρ (see Exer-
cise 10(c) and Review exercise 20). Singer solves the equations numerically for data
appropriate to a dog aorta, and compares his results with experiment. Although the
agreement is good, there are problems, since there appears to be a residual pressure
after each pulse. The overall pressure would therefore build up to levels that are clearly
not acceptable.

1
g
---

ρ Vt − 
rV
ρ------ 

   − 
Vxx

g
------- + rV = 0

Vt = 
1

ρg
------Vxx

v = A
e−rt/ρ

t1/2
----------- e−ρgx2/4t

Figure 9.64
Development of 
the solution to the 
blood-flow problem 
from a delta function 
for successive times t1, 
t2 and t3.
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A uniform string is stretched along the x axis and its 
ends fixed at the points x = 0 and x = a. The string 
at the point x = b (0 , b , a) is drawn aside through 
a small displacement ε perpendicular to the x axis, 
and released from rest at time t = 0. By solving the 
one-dimensional wave equation, show that at any 
subsequent time t the transverse displacement y is 
given by 

where c is the transverse wave velocity in the string.

The function φ(x, t) satisfies the wave equation

(t . 0, 0 ¯ x ¯ l )

and the conditions

φ(x, 0) = x2 (0 ¯ x ¯ l )

(x, 0) = 0 (0 ¯ x ¯ l )

φ(0, t) = 0 (t . 0)

(l, t) = 2l (t . 0)

Show that the Laplace transform of the 
solution is

Using tables of Laplace transforms, deduce that the 
solution of the wave equation is

The damped vibrations of a stretched string are 
governed by the equation

(9.92)

where y(x, t) is the transverse deflection, t is the 
time, x is the position coordinate along the string, 
and c and τ are positive constants. A taut elastic 
string, 0 ¯ x ¯ l, is fixed at its end points so that 
y(0) = y(l) = 0. Show that separation of variable 
solutions of (9.92) satisfying these boundary 
conditions are of the form

yn(x, t) = Tn(t) sin (n = 1, 2, . . . )

where

Show that if the parameters c, τ and l are such 
that 2πcτ . l, the solutions for Tn are all of the 
form

Tn(t) = e−t/2τ(an cos ωnt + bn sin ωnt)

where

and an and bn are constants.
Hence find the general solution of (9.92) 

satisfying the given boundary conditions.
Given the initial conditions y(x, 0) = 4 sin(3πx/l) 

and (∂y/∂ t)t=0 = 0, find y(x, t).

A thin uniform beam OA of length l is clamped 
horizontally at both ends. For small transverse 
vibrations of the beam the displacement u(x, t) 
at time t at a distance x from O satisfies the 
equation

where a is a constant. The restriction that the 
beam is clamped horizontally gives the boundary 
conditions

u = 0,  = 0 (x = 0, l )

Show that for periodic solutions of the type

u(x, t) = V(x) sin(ω t + ε)

9.11 Review exercises (1–21)
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where ω and ε are constants, to exist, V must satisfy 
an equation of the form

 = α 4V (9.93)

where α 4 = (ω /a)2, and the boundary conditions

V(0) = V ′(0) = V(l ) = V ′(l ) = 0

Verify that

V = A cosh αx + B cos αx + C sinh αx 

+ D sin αx

where A, B, C and D are constants, satisfies (9.93), 
and show that this function satisfies the boundary 
conditions provided that

B = −A, D = −C

and α is a root of

cos α l cosh α l = 1

In a uniform bar of length l the temperature θ(x, t) 
at a distance x from one end satisfies the 
equation

where a is a constant. The end x = l is kept at 
zero temperature and the other end x = 0 is 
perfectly insulated, so that

θ(l, t) = 0, (0, t) = 0 (t . 0)

Using the method of separation of variables, 
show that if initially the temperature in the bar is 
θ(x, 0) = f(x) then subsequently the temperature is

θ(x, t) = 

× 

where

A2n+1 = 

Given θ(x, 0) = θ0(l − x), where θ0 is a constant, 
determine the subsequent temperature in the bar.

Prove that if z = x /  and φ(x, t) = f(z) satisfies the 
heat-conduction equation

(9.94)

then f(z) must be of the form

f (z) = A erf  + B

where A and B are constants and the error 
function is defined as

erf (ξ) = 

A heat-conducting solid occupies the 
semi-infinite region x ˘ 0. At time t = 0 the 
temperature everywhere in the solid has the 
value T0. The temperature at the surface, x = 0, 
is suddenly raised, at t = 0, to the constant value 
T0 + φ0 and is then maintained at this temperature. 
Assuming that the temperature field in the solid 
has the form

T = φ(x, t) + T0

where φ satisfies (9.94) in x . 0, find the solution 
of this problem.

Use the explicit method and the Crank–Nicolson 
formula to solve the heat-conduction equation

given that φ satisfies the conditions

φ = 1 (0 ¯ x ¯ 1, t = 0)

Compute φ(x, t) at x = 0, 0.2, 0.4, 0.6, 0.8, 1 when 
t = 0.004 and t = 0.008.

An infinitely long bar of square cross-section has 
faces x = 0, x = a, y = 0, y = a. The bar is made of 
heat-conducting material, and under steady-state 
conditions the temperature T satisfies the Laplace 
equation 

d4V

dx4
---------
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All the faces except y = 0 are kept at zero 
temperature, while the temperature in the face 
y = 0 is given by T(x, 0) = x(a − x). Show that 
the temperature distribution in the bar is

(Harder) The function φ satisfies the Poisson 
equation

inside the area bounded by the parabola y2 = x and 
the line x = 2. The function φ is given at all points 
on the boundary as φ = 1. By using a square grid of 
side  and making full use of symmetry, formulate 
a set of finite-difference equations for the unknown 
values φ, and solve.

A semi-infinite region of incompressible fluid of 
density ρ and viscosity μ is bounded by a plane wall 
in the plane z = 0 and extends throughout the region 
z ˘ 0. The wall executes oscillations in its own 
plane so that its velocity at time t is U cos ω t. No 
pressure gradients or body forces are operative. It 
can be shown that the velocity of the liquid satisfies 
the equation

where v = μ /ρ. Establish that an appropriate 
solution of the equation is

u = U e−α z cos(ω t − α z)

where α = .

Determine the value of the constant k so that

U = t k e−r2/4t

satisfies the partial differential equation

Sketch the solution for successive values of t.

The function z(x, y) satisfies

with the boundary conditions

z = 2x when y = −x (x . 0)

Find the unique solution for z and the region in 
which this solution holds. Check the solution 
using MAPLE.

The function φ(x, y) satisfies the Laplace equation 

in the region 0 , x , π, 0 , y, and also the 
boundary conditions

φ → 0 as y → ∞

φ(0, y) = φ(π, y) = 0

Show that an appropriate separation of variables 
solution is

φ = cn sin(nx) e−ny

Show that if further

φ(x, 0) = x(π − x)

then c2m = 0 while the odd coefficients are given by

c2m+1 = 

The boundary-value problem associated with the 
torsion of a prism of rectangular cross-section 
−a ¯ x ¯ a, −b ¯ y ¯ b entails the solution of

subject to χ = 0 on the boundary. Show that the 
differential equation and the boundary conditions 
on x = ±a are satisfied by a solution of the form

× 

From the condition χ = 0 on the boundaries y = ±b, 
evaluate the coefficients A2n+1.

When 0 , x , 1 and t . 0 the function u(x, t) 
satisfies the wave equation
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and is also subject to the following boundary 
conditions:

(a) u(0, t) = u(1, t) = 0 for all t . 0 

(b) (x, 0) = 0 (0 , x , 1)

(c) u(x, 0) = 1 − x (0 , x , 1)

Use the separation method to find the solution for 
u(x, t) that is valid for 0 , x , 1 and t . 0.

The excess porewater pressure u(z, t) in an infinite 
layer of clay satisfies the diffusion equation

(t . 0, 0 , z , h)

where t is the time in minutes, z is the vertical 
height in metres from the base of the clay layer 
and c is the coefficient of consolidation. There is 
complete drainage at the top and bottom of the clay 
layer, which is of thickness h. The distribution 
of excess porewater pressure u(z, t) is A at t = 0 
where A is a constant. Show that

By seeking a separated solution of the form 
φ = X(x)T(t), find a solution to the telegraph 
equation

satisfying the conditions

(a) φ = A cos px for all values of x and for t = 0 
for the case when c2p2 . K2;

(b) φ = A and ∂φ/∂t = AK for x = 0 and t = 0.

For the two-dimensional flow of an incompressible 
fluid the continuity equation may be expressed as 

where r and θ are polar coordinates in a 
plane parallel to the flow, and vr and vθ are the 
respective velocity components. Show that a stream 
function ψ such that

vr = 

vθ =

satisfy the continuity equation.
Take

ψ = Ur sin θ − sin θ

and interpret the solution physically.

(An extended problem) Section 9.9 looked at 
wave propagation caused by moving loads on 
cables. For loads on beams a similar analysis 
models such problems as trains going over 
bridges or loads moving on gantry cranes. 
Use a similar analysis for the beam equation

(An extended problem) In the blood-flow model 
in Section 9.10 consider the following cases:

(a) S = constant, g = 0 for a pulsating flow

v = v0 e jω t at x = 0 for all t

(b) S = constant, r = 0 for a pulsating flow

v = v0 e jω t at x = 0 for all t

(c) the balanced-line case when gρ = rc. Show that 
v = e−gt/cU gives

Solve the equation and interpret your solution.

(An extended problem) Fluid flows steadily in the 
two-dimensional channel shown in Figure 9.65. 
The temperature θ = θ(x, t) depends only on the 
distance x along the channel and the time t. The 
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fluid flows at a constant rate so that an amount L 
crosses any given section in unit time. The specific 
heat of the fluid is a constant c, and the heat H in a 
length δx with cross-section S is therefore

H = c(S δ x)θ

Heat is transferred through the walls of the 
channel, AB and DC, at a rate proportional to the 
temperature difference between the inside and 
outside. Heat conduction in the x direction is 
neglected. Show that the heat balance in the 
element ABCD leads to the equation

cS  = −Lc  + k1(θ″ − θ) + k2(θ′ − θ) 

This type of analysis can now be applied to the 
long heat exchanger illustrated in Figure 9.66. The 
configuration is considered to be two-dimensional 
and symmetric with respect to the x axis; in the 
inner region the flow is to the right, while in the 
outer regions it is to the left. The regions are 
separated by metal walls in which similar 
assumptions to the above are made, except 
of course there is no fluid flow.

Set up the equations of the system in the form

c1S1  = −L1c1  + 2k1(θ2 − θ1)

c2S2  = −k1(θ1 − θ2) + k2(θ3 − θ2)

c3S3  = L3c3  + k2(θ2 − θ3)

where the assumption is made that there is no 
heat flow through the outside lagged walls. Solve 
the steady-state equations and fit the arbitrary 
constants to the conditions that at the inlet 
(x = 0) the fluid enters the inner region at a given 
temperature θ1 = T1, while at the outlet (x → ∞) 
the fluid in the outer regions enters at a given 
temperature θ3 = T3. Find flow rates that ensure 
that this situation is possible, and discuss the 
implications of any results obtained.

Discuss the assumptions made in setting 
up this problem, the limitations imposed by the 
assumptions, possible applications of this type 
of analysis, and extensions of the work, for 
example a time-dependent solution.
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Figure 9.66 Heat-exchanger configuration in 
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Introduction
The need to get the ‘best’ out of a system is a very strong motivation in much of
engineering. A typical problem may be to obtain the maximum amount of product or to
minimize the cost of a process or to find a configuration that gives maximum strength.
Sometimes what is ‘best’ is easy to define, but frequently the problem is not so clear
cut, and a lot of thought is required to reach an appropriate function to optimize. In most
cases there are very severe and natural constraints operating: the problem may be one
of maximizing the amount of product, subject to the supply of materials; or it may be
minimizing the cost of production, with constraints due to safety standards. Indeed,
much of modern optimization is concerned with constraints and how to deal with them.

We have seen in Chapter 9 of Modern Engineering Mathematics (MEM) how to
obtain the maximum and minimum of a function of many variables. However, the methods
described there founder very quickly because most engineering optimization prob-
lems are not possible to solve analytically. A simple one-dimensional example soon
shows that a numerical solution is required.

Find the positive x value that maximizes the function

Solution Equating the derivative to zero gives

so that we need to solve

1 + x = sinh 2x

which has no simple positive solutions that can be obtained analytically.

To solve such problems, a set of numerical algorithms was developed during the
1960s as fast computers became available to perform the large amounts of arithmetic
required. These algorithms will be described in Section 10.4. Perhaps the main stimulus
for this development came from the space industries, where small percentage savings,
achieved by doing some mathematics, could save vast amounts of money. The ideas
were quickly taken up by ‘expensive’ areas of engineering, such as the chemical and
steel industries and aircraft production.

The idea of dealing with constraints is not new: Lagrange developed the theory of
equality-constrained optimization around the 1800s. However, it was not until the 1940s
that inequality constraints were studied with any seriousness. The use of Lagrange
multipliers for equality constraints was also introduced in Chapter 9 of MEM, and
will be looked at again in more detail in Section 10.3 below. The only work on

10.1

Example 10.1
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inequality constraints will be for linear programming problems in Section 10.2.
Where inequality constraints are nonlinear, the problems become very difficult, and
are the province of specialist books on optimization, for example E. K. P. Chong and
S. H. Zak, An Introduction to Optimization (fourth edition, New York, Wiley, 2013).
Linear programming, however, is much more straightforward, and the basic simplex
algorithm has been spectacularly successful – so successful in fact that many workers
try to force their problems to be linear when they are clearly not. The computer
scientist’s maxim GIGO (‘garbage in, garbage out’) is very applicable to people who
try to fit the problem to the mathematics rather than the mathematics to the problem!

Before considering detailed methods of solution of optimization problems, we
shall look at a few examples. Let us first revisit an extended form of the milk
carton problem considered in Example 8.34 (and illustrated in Figure 8.38) of MEM.

A milk carton is designed from a sheet of waxed cardboard as illustrated in Figure 10.1,
where a 5 mm overlap has been allowed.

It is to contain 2 pints of milk, and we require the minimum surface area for the carton.

Solution The only difference between this example and Example 8.34 of MEM is that we no
longer insist on a square cross-section. The total area in square millimetres is

A = (2b + 2w + 5)(h + b + 10)

and the volume of the two-pint container is

volume = hbw = 1 136 000 mm3

We first note that a constraint, the given volume, occurs naturally in the problem. Because
of its simplicity, we can eliminate w from the constraint to give

A = (h + b + 10)

Following the standard minimization procedure and equating partial derivatives to
zero gives

Example 10.2

Figure 10.1 Waxed 
cardboard milk 
container opened up, 
with measurements in 
millimetres and with a 
5 mm overlap.

2 272 000
hb

----------------------- + 2b + 5 
 
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We therefore have two highly nonlinear equations in the two unknowns h and b, which
cannot be solved without resorting to numerical techniques. We shall return to this problem
later in Examples 10.12 and 10.18 to see how a practical solution can be obtained.

Most practical optimization problems come from very expensive projects
where savings of a few per cent can be very significant. Laying natural gas or water
pipe networks are typical examples. Without considering the expense of installing
compressors, the problem is to minimize the capital cost. This cost is directly related to
the weight of the pipe, subject to constraints imposed by pressure-drop limitations,
which in turn depend on the pipe diameter in a nonlinear way. Adding the compressors
imposes further costs and constraints.

Heat exchangers provide an example of a system where we try to remove heat. We
design the flow rates, the pipe sizes and pipe spacing to maximize the heat transferred.
A related heating problem might be the design of an industrial furnace. It is required
that the energy consumption be minimized subject to constraints on the heat flow and
the maintenance of various temperatures.

A final example, the moonshot problem, illustrates a large-scale, very complicated
problem that stimulated much of the recent developments in optimization (see Figure 10.2).
Which path from a point on the Earth to a point on the Moon should be chosen to
minimize the weight of fuel carried by a rocket? The complicated relation between the
weight of fuel, the mechanical equations of the rocket and the path must be established
before it is possible to proceed to obtain the optimum. The numerous constraints on the
strengths of materials, the maximum tolerable acceleration etc. add to the difficulty
of the problem.

In the problems discussed above, we have assumed that an optimum exists at a point,
and we have asked for the mathematical conditions that must hold. The other way round
is much more difficult. Given that the appropriate conditions hold, does an optimum
exist, and if so what type of optimum is it? For many simple finite-dimensional

∂A

∂h
------

2 272 000

hb
----------------------- 2b 5 h b 10+ +( )2 272 000

h2b
-----------------------–+ + 0= =

∂A

∂b
------

2 272 000

hb
----------------------- 2b 5 h b 10+ +( ) −2 272 000

hb2
--------------------------- 2+ 
 –+ + 0= =

Figure 10.2
The moonshot 
problem.
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problems these conditions are known, but may not be very simple to apply. To serve as a
reminder, the condition f ′(0) = 0 is a necessary condition for a maximum to exist for the
differentiable function f (x) at x = 0. It is not sufficient, however, as can be seen from the
three functions f1(x) = x2, f2(x) = x3 and f3(x) = −x2, which have respectively a minimum,
a point of inflection and a maximum at the origin. In many dimensions the difficulties
are similar, but much more complicated.

Linear programming

10.2.1 Introduction

In Section 10.1 it was indicated that constraints are very important in most applications.
When all functions are linear, there is an extremely efficient algorithm, developed by Danzig
in the 1940s, which will be described for the linear programming (LP) problem.

We shall start by posing a particular problem and looking at a simple graphical
solution.

A manufacturing company makes two circuit boards R1 and R2, constructed as follows:

R1 comprises 3 resistors, 1 capacitor, 2 transistors and 2 inductances;
R2 comprises 4 resistors, 2 capacitors and 3 transistors.

The available stocks for a day’s production are 2400 resistors, 900 capacitors, 1600
transistors and 1200 inductances. It is required to calculate how many R1 and how many
R2 the company should produce daily in order to maximize its overall profits, knowing
that it can make a profit on an R1 circuit board of 5p and on an R2 circuit board of 9p.

Solution If the company produces daily x of type R1 and y of type R2 then its stock limitations give

3x + 4y < 2400 (10.1a)

x + 2y < 900 (10.1b)

2x + 3y < 1600 (10.1c)

2x < 1200 (10.1d)

x > 0, y > 0

and it makes a profit z given by

z = 5x + 9y (10.2)

These inequalities are plotted on a diagram as in Figure 10.3(a). The shaded region defines
the area for which all the inequalities are satisfied, and is called the feasible region. The
lines of constant profit z = constant, defined by (10.2), are plotted as ‘dashed’ lines in
Figure 10.3(b). It is clear from the geometry that the largest possible value of z that
intersects the feasible region is at S with x = 500, y = 200, and this gives the optimal

10.2

Example 10.3
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solution. At this point we can analyse the usage of the stocks as in Figure 10.4 and note
that a profit of £43 has been made.

Example 10.3 has encapsulated much of the LP method, and we shall try to extract
the maximum amount of information from this example. The function to be optimized,
usually denoted by Z, is called the objective function. The objective function and the
constraints are functions of the decision variables. The graphical method will only
work if the problem has two decision variables, so we need to consider how to translate
the geometry into an algebraic form that will work with any number of variables.
Although we shall concentrate in this chapter on small problems in order to illustrate
the methods, in practical problems there can be hundreds of variables and constraints.
Large problems bring further difficulties that will not be considered here; for instance,
how a large amount of information can be input into a computer accurately or how large
data sets are handled in the computer. In the MATLAB implementation of LP, there is
a specific option to deal with ‘LargeScale’ problems.

From Figure 10.3 it can be seen that the solutions must be at a ‘corner’ of the feasible
region, other than in the exceptional case when the profit line z = constant is parallel to
one of the constraints. This follows through into many-dimensional problems, so that it is
only necessary to inspect the corners of the feasible region. The simplex method, described
in Section 10.2.3, uses this fact and selects a starting corner, chooses the neighbouring
corner that increases z the most, and then repeats the process until no improvement is
possible. The method writes the equations into a standard form; it then automates the
choice of corner and finally reprocesses the equations back to the standard form again.

Figure 10.3 (a) Feasible region for the circuit board manufacture problem of Example 10.3. (b) Lines of constant z show 
that S (500, 200) gives the optimum.

Available Used Left over

Resistors 2400 2300 100
Capacitors 900 900 0
Transistors 1600 1600 0
Inductances 1200 1000 200

Figure 10.4 Table of 
stock usage.
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Once a solution has been obtained, it may be observed from Figures 10.3 and 10.4
that the binding constraints (b) and (c) intersect at S and are satisfied identically, so
that all the stocks are used, while the non-binding constraints (a) and (d) leave some
stock unused. It can also be seen from Figure 10.3 that the constraint (a) is redundant
since it does not intersect the feasible region. These might appear obvious comments,
but they prove to be useful and relevant observations when a sensitivity analysis is per-
formed. Such an analysis asks whether or not the solution changes as the stocks vary or
the costs vary, or the coefficients are changed. In practice, parameters vary over a
period, and we wish to know whether a new calculation must be performed or whether
the solution that we have already obtained can be used.

10.2.2 Simplex algorithm: an example

We now need to convert the ideas of Section 10.2.1 into a useful algebraic algorithm.
There is a whole array of technical terms that are used in LP, and they will be introduced
as we reconsider Example 10.3 to develop the solution method. The first step is to
introduce slack variables r, s, t and u into (10.1) to make the inequality constraints into
equality constraints.

If we are given x and y in the feasible region, the variables r, s, t and u provide a measure
of how much ‘slack’ is available before all the corresponding resource is used up, so 

3x + 4y + r = 2400 (10.3a)

x + 2y + s = 900 (10.3b)

2x + 3y + t = 1600 (10.3c)

2x + u = 1200 (10.3d)

where x, y, r, s, t and u are now all greater than or equal to zero. We now have more
variables than equations, and this enables us to construct a feasible basic solution by
inspection:

non-basic basic variables
variables

with 4 basic variables (the same number as constraints, which are non-zero) and 2 non-
basic variables (the remainder of the variables, which are zero). (Note: This corre-
sponds to the origin in Figure 10.3.)

The algebraic equivalent of moving to a neighbouring corner is to increase one of
the non-basic variables from zero to its largest possible value. From the profit function
given in (10.2), we have

z = 5x + 9y

Currently z has the value zero, and it seems sensible to change y, since the coefficient
of y is larger; this will increase z the most. So keep x = 0 in (10.3) and increase y to its
maximum value in each case: either

(a) change y to 600 and reduce r to zero, or

(b) change y to 450 and reduce s to zero, or

(c) change y to 533 and reduce t to zero, or

(d) note that there is no effect on changing y.

x  = y = 0 ; r = 2400, s= 900, t = 1600, u =1200 

                     

1
3
---
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Choose option (b), since increasing y above 450 will make s negative, which would then
violate the condition that all variables must be positive. Interchange s and y between the
set of basic and non-basic variables and rewrite in the same form as (10.3). This is
achieved by solving for y from (10.3b), y = 450 − x − s, and substituting to give

x − 2s + r = 600 (10.4a)

x + s + y = 450 (10.4b)

x − s + t = 250 (10.4c)

2x + u = 1200 (10.4d)

and, from (10.2),

z = 4050 + x − s (10.4e)

The problem is now reduced to exactly the same form as (10.3), and the same
procedure can be applied. The non-basic variables are x = s = 0, and the basic variables
are r = 600, y = 450, t = 250 and u = 1200. z has increased its value from 0 to 4050.

Now only x can be increased, since increasing the other non-basic variable, s, would
decrease z. Increasing x to 500 in (10.4c) and reducing t to 0 is the best that can be done.
Using (10.4c) to write x = 3s − 2t + 500, we now eliminate x from the other equations
to give

s − 2t + r = 100 (10.5a)

2s − t + y = 200 (10.5b)

−3s + 2t + x = 500 (10.5c)

6s − 4t + u = 200 (10.5d)

and

z = 4300 − 3s − t (10.5e)

We now have the final solution, since increasing s or t can only decrease z. Thus we
have x = 500, y = 200, which is in agreement with the previous graphical solution, the
maximum profit is z = 4300 as before, and the amounts left over in Figure 10.4 are just
the 100 and 200 appearing on the right-hand sides of (10.5a, d).

We have just described the essentials of the simplex algorithm, although the method
of working may have appeared a little haphazard. It can be tidied up and formalized
by writing the whole system in tableau form. Equations (10.3) are written with the
basic variables in the left-hand column, the coefficients in the equations placed in the
appropriate array element and the objective function z placed in the first row with minus
signs inserted. 

1
2
---

1
2
---

1
2
---

1
2
---

1
2
---

3
2
---

1
2
---

9
2
---

Non-basic
variables Basic variables

x y r s t u Solution

Objective function z −5 −9 0 0 0 0 0

Basic variables

r 3 4 1 0 0 0 2400
s 1 2 0 1 0 0 900
t 2 3 0 0 1 0 1600
u 2 0 0 0 0 1 1200

     
      

         
              

 

 

 




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The current solution can easily be read from the tableau. The basic variables in the
left-hand column are equal to the values in the solution column, so r = 2400, s = 900,
t = 1600 and u = 1200. The remaining non-basic variables are zero, namely x = y = 0.
The profit z is read similarly as the entry in the solution column, namely z = 0. The
negative signs in the z row ensure that z remains positive in the subsequent
manipulation. It should be noted that a 4 × 4 unit matrix (shown shaded) occurs in the
tableau in the basic variable columns, with zeros occurring above in the z row. This
standard display is always the starting place for the simplex method, with the only
possible complication being that the columns of the unit matrix might be shuffled
around. The algorithm can now be performed in a series of steps:

Step 1

Choose the most negative entry in the z row and mark that column (the y column in
this case).

Step 2

Evaluate the ratios of the solution column and the positive entries in the y column,
choose the smallest of these and mark that row (the s row in this case).

Step 3

Change the marked basic variable in the left-hand column to the marked non-basic variable
in the top row (in this case s changes to y in the left-hand column).

Step 4

Make the pivot (the element in the position where the marked row and column cross)
1 by dividing through. In this case we divide the row elements by 2. These series of
steps lead to the tableau

x y r s t u Solution

z −5 −9 0 0 0 0 0 Ratios

r 3 4 1 0 0 0 2400 2400/4 = 600
s 1 2 0 1 0 0 900 900/2 = 450
t 2 3 0 0 1 0 1600 1600/3 = 533
u 2 0 0 0 0 1 1200 – 

1
3
---

x y r s t u Solution

z −5 −9 0 0 0 0 0

r 3 4 1 0 0 0 2400

y 1 0 0 0 450

t 2 2 0 0 1 0 1600
u 2 0 0 0 0 1 1200

1
2
---

1
2
---



744 OPTIMIZATION

Step 5

Clear the y column by subtracting an appropriate multiple of the y row (this is just
Gaussian elimination); for example, (z row) + 9 × ( y row), (r row) − 4 × ( y row) and so
on. This leads to the tableau

This tableau can now easily be recognized as equations (10.4). It may be noted that the
unit matrix appears in the tableau again, with the columns permuted, and the z row has
zero entries in the basic variable columns.

The tableau is in exactly the standard form, and is ready for reapplication of the five
given steps. Steps 1 and 2 give the tableau

Steps 3, 4 and 5 then produce a final tableau (compare with equations (10.5))

All the entries in the z row are now positive, so the optimum is achieved. The solution
is read from the tableau directly; the left-hand column equals the right-hand column,
giving z = 4300, r = 100, y = 200, x = 500 and u = 200, which is in agreement with the
solution obtained in Example 10.3.

x y r s t u Solution

z − 0 0 0 0 4050

r 1 0 1 −2 0 0 600

y 1 0 0 0 450

t 0 0 − 1 0 250

u 2 0 0 0 0 1 1200

1
2
--- 9

2
---

1
2
--- 1

2
---

1
2
---

3
2
---

x y r s t u Solution

z − 0 0 0 0 4050 Ratios

r 1 0 1 −2 0 0 600 600

y 1 0 0 0 450 900

t 0 0 − 1 0 250 500

u 2 0 0 0 0 1 1200 600

1
2
--- 9

2
---

1
2
---

1
2
---

1
2
---

3
2
---

x y r s t u Solution

z 0 0 0 3 1 0 4300

r 0 0 1 1 −2 0 100
y 0 1 0 2 −1 0 200
x 1 0 0 −3 2 0 500
u 0 0 0 6 −4 1 200
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10.2.3 Simplex algorithm: general theory

We can now generalize the problem to the standard form of finding the maximum of
the objective function

z = c1x1 + c2x2 + .  .  . + cnxn

subject to the constraints

(10.6)

by the simplex algorithm, where the b1, b2, . . . , bm are all positive and all decision
variables x1, x2, . . . , xn are non-negative. A linear program written in this form is said
to be in standard form. By introducing the slack variables xn+1, . . . , xn+m > 0 we
convert (10.6) into the standard tableau

Any subsequent tableau takes this general form, with an m × m unit matrix in the basic
variables columns. As noted in the previous example, the basic variables change, so the
left-hand column will have m entries, which can be any of the variables, x1, . . . , x m+n.
The unit-matrix columns are usually not in the above neat form but are permuted and
hence the zeros of the ‘z’ row can be any of the 1 to n+m entries corresponding to the
basic variables.

The five basic steps in the algorithm follow quite generally:

a11x1 a12x2
. . . a1nxn     b1+ + +

a21x1 a22x2
. . . a2nxn    b2+ + +

   
am1x1 am2x2

. . . amnxn bm+ + + 





 <

 <

 < 

x1 x2 . . . xn xn+1 xn+2 . . . xn+m Solution

z −c1 −c2 . . . −cn 0 0 . . . 0 0

xn+1 a11 a12 . . . a1n 1 0 . . . 0 b1

xn+2 a21 a22 . . . a2n 0 1 . . . 0 b2

       
xn+m am1 am2 . . . amn 0 0 . . . 1 bm

Step 1

Choose the most negative value in the z row, say −ci. 
If all the entries are positive then the maximum has 
been achieved.

Step 2

Evaluate b1/a1i, b2/a2i, . . . , bm/ami for all positive aki. 
Select the minimum of these numbers, say bj/aji.

(Identify column i)

(Identify row j )
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The algorithm is then repeated until at Step 1 the maximum is achieved. The
method provides an extremely efficient way of searching through the corners of the feasi-
ble region. To inspect all corners would require the computation of (m+n

m ) points, while
the simplex algorithm reduces this very considerably, often down to something of the
order of m + n.

Several checks should be made at the completion of each cycle, since it may be
possible to identify an exceptional case. Perhaps the most complicated of the excep-
tions is when one of the bi = 0 during the calculation, implying that one of the basic
variables is zero. This can be a temporary effect, in which case the problem goes
away at the next iteration, or it may be permanent, and that basic variable is indeed
zero in the optimal solution. The best that may be said, other than going into sophis-
ticated techniques found in specialist books on LP, is that problems are possible and
the computation should be watched carefully. The solution can get into a cycle that
cannot be broken.

A second exception, that should be noted carefully, occurs when one of the ci = 0 for
a non-basic variable in the optimal tableau. The normal simplex algorithm can then change
the solution without changing the z row by selecting this i column at Step 1. Because
ci = 0, Step 5 is never used on the z row at all. This case corresponds to a degenerate
solution with many alternative solutions to the problem, and geometrically the profit
function is parallel to one of the constraints.

The third exception occurs at Step 2 when all the a1i, a2i, . . . , ami in the optimal
column are zero or negative and it becomes impossible to identify a row to continue the
method. The region in this case is unbounded, and a careful look at the original problem
is required to decide whether this is reasonable, since it may still be possible to get a
solution to such a problem.

Step 3

Replace xn+j by xi in the basic variables in the left-hand 
column.

Step 4

In row j replace ajk by ajk/aji for k = 1, . . . , n + m + 1. 
(Note that the first row and the final column are treated 
as part of the tableau for computation purposes, −cp = a0p, 
bq = aq(n+m+1).)

Step 5

In all other rows, l ≠ j, replace alk by alk − aliajk for all k = 1, 
. . . , m + n + 1 and for each row l = 0, . . . , m (l ≠ j).

(Change the basis)

(Make pivot = 1)

(Gaussian elimination)
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Find the maximum of

z = 5x1 + 4x2 + 6x3

subject to

4x1 + x2 + x3 < 19

3x1 + 4x2 + 6x3 < 30

2x1 + 4x2 + x3 < 25

x1 + x2 + 2x3 < 15

x1, x2, x3 > 0

Solution The example cannot be solved graphically, since it has three variables, but is in a correct
form for the simplex algorithm. The initial tableau gives the solution x4 = 19, x5 = 30,
x6 = 25, x7 = 15 and non-basic variables x1 = x2 = x3 = 0.

In the initial tableau the pivot is identified, and x5 is removed from the basic variable
column and replaced by x3. The pivot is made equal to unity by dividing the x3 row by
6. The other entries in the x3 column are then made zero by the Gaussian elimination in
Step 5. This gives the tableau

The process is then repeated and the pivot is again found, x4 is replaced by x1 in the
first column, and the next tableau is constructed by following the remaining steps of the
simplex algorithm, giving the tableau

Example 10.4

x1 x2 x3 x4 x5 x6 x7 Solution

z −5 −4 −6 0 0 0 0 0 Ratios

x4 4 1 1 1 0 0 0 19 19/1 = 19
x5 3 4 6 0 1 0 0 30 30/6 = 5
x6 2 4 1 0 0 1 0 25 25/1 = 25
x7 1 1 2 0 0 0 1 15 15/2 = 7.5

x1 x2 x3 x4 x5 x6 x7 Solution

z −2 0 0 0 1 0 0 30 Ratios

x4 0 1 − 0 0 14 4

x3 1 0 0 0 5 10

x6 0 0 − 1 0 20 13.3

x7 0 − 0 0 − 0 1 5 –

7
2
---

1
3
--- 1

6
---

1
2
---

2
3
--- 1

6
---

3
2
---

10
3

------ 1
6
---

1
3
---

1
3
---
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Thus the solution is now optimal, and gives x1 = 4, x2 = 0, x3 = 3, and z = 38 as the
maximum value. Note that the first two constraints are binding, that is satisfied exactly,
while the other two are not. This can easily be deduced by looking at the slack variables
in the initial tableau. We have x4 = x5 = 0, corresponding to the first two constraints, and
x6 ≠ 0, x7 ≠ 0 for the last two constraints.

x1 x2 x3 x4 x5 x6 x7 Solution

z 0 0 0 0 38

x1 1 0 − 0 0 4

x3 0 1 − 0 0 3

x6 0 0 − − 1 0 14

x7 0 − 0 0 − 0 1 5

4
21
------

4
7
--- 19

21
------

2
21
------ 2

7
---

1
21
------

13
21
------

1
7
--- 4

21
------

67
21
------

3
7
--- 2

21
------

1
3
---

1
3
---

Computers are particularly helpful when there is an efficient algorithm, such as the
simplex algorithm for solving LP problems, since they can perform the arithmetic
with speed and accuracy. A typical implementation of the algorithm in MAPLE for
Example 10.4 is now given:

with(simplex):
constr:={4*x1+x2+x3<=19,3*x1+4*x2+6*x3<=30,
2*x1+4*x2+x3<=25,x1+x2+2*x3<=15};
obj:=5*x1+4*x2+6*x3;
maximize(obj,constr,NONNEGATIVE);

These few lines of code give x1 = 4, x2 = 0 and x3 = 3 instantly. Similarly in MATLAB,
LP problems can be solved but are set up in a slightly different way. It always solves
the minimum problem

minx f Tx such that 

and the way that the problem is tackled can be controlled in optimset. The follow-
ing lines of code give the solution to Example 10.4:

f=[-5;-4;-6]; A=[4 1 1;3 4 6;2 4 1;1 1 2]; b=[19;30;25;15];
Aeq=[ ]; beq=[ ]; lb=zeros(3,1); ub=[ ]; x0=[ ]; 
%[ ] indicates not used but the lower bound, lb, must be

set to zero
options=optimset(ʻLargeScaleʼ,ʻoffʼ,ʻSimplexʼ,ʻonʼ);
[x,fval,exitflag,output,lamda]=linprog(f,A,b,Aeq,beq,lb,

ub,x0,options)

Typing lamda.ineqlin gives the values 0.5714, 0.9048, 0, 0 which are
the values in the z row of the final tableau and determines whether or not the ine-
qualities are binding.

Clearly this is the quick way to get the ‘answer’, but it does not give any under-
standing of the method. The package has the facilities to go through the steps of the
algorithm one at a time so it can be used to help with the arithmetic while leaving
the user to determine the steps of the method.

Ax b

Aeq = beq

lb



  <

 < x  <ub
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A firm has two plants, P1 and P2, that can produce a particular chemical. The product
is made from three constituents, A, B and C. In a given period there are 36 000 litres of
A, 30 000 litres of B and 12 000 litres of C available. Plant P1 requires the constituents
A, B, C to be mixed in the ratio 4:2:1 respectively, and the manufacturer makes a profit
of £1.50 per litre of product; plant P2 requires the ratio 3:3:1, and gives a profit of
£1 per litre of product.

Determine how production should be allocated to each plant to maximize the profits,
and how much of A, B and C remain.

There is a major breakdown in the supply of chemical C, so that only 8000 litres
are available in the given period. How should production be changed to maximize the
profits, how much has profit been reduced, and how much of A, B and C remain?

Solution For each 1000 litres produced in plant P1,  × 1000 will be constituent A,  × 1000
will be B and  × 1000 will be C. For each 1000 litres produced in plant P2, × 1000
will be constituent A,  × 1000 will be B and  × 1000 will be C. Thus, taking the three
constituents in turn and letting x1 and x2 represent respectively the amount (in 1000 litre
units) produced in plants P1 and P2, we obtain 

x1 + x2 < 36 4x1 + 3x2 < 252

x1 + x2 < 30 or 2x1 + 3x2 < 210

x1 + x2 < 12 x1 + x2 < 84

x1, x2 > 0

and the profit

z = 1.5x1 + x2

We can immediately construct the initial tableau

The pivot has been found, and hence we introduce x1 into the basis and construct the
next tableau following the steps of the simplex algorithm:

Example 10.5

x1 x2 x3 x4 x5 Solution

z −1.5 −1 0 0 0 0 Ratios

x3 4 3 1 0 0 252 63
x4 2 3 0 1 0 210 105
x5 1 1 0 0 1 84 84

x1 x2 x3 x4 x5 Solution

z 0 0 0 94.5

x1 1 0 0 63

x4 0 − 1 0 84

x5 0 − 0 1 21

4
7
---

2
7
---

1
7
--- 3

7
---

3
7
---

1
7
---

4
7
--- 3

7
---

2
7
--- 3

7
---

1
7
---

1
7
---

1
8
---

3
8
---

3
4
---

1
4
---

3
2
---

1
2
---

1
4
---

1
4
---
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The z row is all positive, and hence we can immediately read off the solution (multiply
by 1000 to re-establish proper costs)

x1 = 63 000, x2 = 0, z = £94 500

and only plant P1 is utilized. From the initial tableau we see that since x3 = 0, there are
zero litres of A remaining; x4 = 84, so that we have (84/7) × 1000 = 12 000 litres of B
remaining; and x5 = 21, so that (21/7) × 1000 = 3000 litres of C remain.

After the breakdown, the 12 000 litres of C are reduced to 8000 litres, so that the first
tableau becomes

We note that we have a different pivot, and hence we expect a different solution. The next
tableau is derived in the usual way, giving

The tableau is again optimal, so

x1 = 56 000, x2 = 0, z = £84 000

The profit is thus reduced by £10 500 by the breakdown, but still only plant P1 is used.
The remaining amounts of A, B and C can be checked to be 4000, 14 000 and zero litres
respectively.

Since this problem has only two variables, it would be instructive to check these
results using the graphical method.

Find the maximum of

z = 4x1 + 2x2 + 4x3

x1 x2 x3 x4 x5 Solution

z −1.5 −1 0 0 0 0 Ratios

x3 4 3 1 0 0 252 63
x4 2 3 0 1 0 210 105
x5 1 1 0 0 1 56 56

x1 x2 x3 x4 x5 Solution

z 0 0.5 0 0 1.5 84

x3 0 −1 1 0 −4 28
x4 0 1 0 1 −2 98
x1 1 1 0 0 1 56

Example 10.6
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subject to

3x1 + x2 + 2x3 < 320

x1 + x2 + x3 < 100

2x1 + x2 + 2x3 < 200

Note that in the above tableau there is some arbitrariness in the choices in both Steps 1
and 2. In Step 1 the column is chosen arbitrarily between the x1 and x3 columns. From
the ratios, the x5 row is selected from the x5 and x6 rows at Step 2, which both have equal
ratios. Steps 3–5 are then followed to give the tableau

Although this is the optimal solution with x1 = x2 = 0, x3 = 100 and z = 400, we have
c1 = 0 in the z row. Since x1 is a non-basic variable, there is degeneracy. If we follow
through the algorithm, choosing the first column at Step 1, we obtain an equally optimal
solution in the following tableau. Replace x3 by x1 in the basic variables, and subtract
the x1 row from the x4 row:

This solution gives x1 = 100, x2 = x3 = 0 and z = 400 once more. It can easily be deduced
that x1 = 100(1 − α), x2 = 0, x3 = 100α is an optimal solution for any 0 < α < 1
with z = 400. We could have observed this fact geometrically, since z is just a multiple
of the left-hand side of the last constraint.

x1 x2 x3 x4 x5 x6 Solution

z −4 −2 −4 0 0 0 0 Ratios

x4 3 1 2 1 0 0 320 160
x5 1 1 1 0 1 0 100 100
x6 2 1 2 0 0 1 200 100

Solution

x1 x2 x3 x4 x5 x6 Solution

z 0 2 0 0 4 0 400

x4 1 −1 0 1 −2 0 120
x3 1 1 1 0 1 0 100
x6 0 −1 0 0 −2 1 0

x1 x2 x3 x4 x5 x6 Solution

z 0 2 0 0 4 0 400

x4 0 −2 −1 1 −3 0 20
x1 1 1 1 0 1 0 100
x6 0 −1 0 0 −2 1 0
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Use the graphical method to find the maximum 
value of

f = 4x + 5y

subject to

3x + 7y < 10

2x + y < 3

x, y > 0

Sketch the constraints

2x – y < 6

x + 2y < 8

3x + 2y < 18

y < 3

and verify that the maximum of the function 
x + y in the feasible region is at x = 4 and y = 2. 
Check the solution with the simplex method. 
Use a package such as MAPLE or MATLAB to 
verify the solution.

A manufacturer produces two types of cupboard, 
which are constructed from chipboard and oak 
veneer that both come in standard widths. The first 
type requires 4 m of chipboard and 5 m of oak 
veneer, takes 5 h of labour to produce and gives a 
profit of £24 per unit. The second type requires 5 m 
of chipboard and 2 m of oak veneer, takes 3 h of 
labour to produce and gives a £12 profit per unit.

On a weekly basis there are 400 m of chipboard 
available, 200 m of oak veneer and a maximum of 
250 h of labour. Write this problem in a linear 
programming form. Use the simplex method to 
determine how many cupboards of each type should 
be made to maximize profits. How much profit is 
made? Which of the scarce resources remain 
unused? Show that the amount of oak veneer 
available can be reduced to 175 m without affecting 
the basis. What is the new solution, and by how 
much is the profit reduced?

A factory manufactures nails and screws. The profit 
yield is 2p per kg nails and 3p per kg screws. Three 
units of labour are required to manufacture 1 kg nails 
and 6 units to make 1kg screws. Twenty-four units 
of labour are available. Two units of raw material 
are needed to make 1 kg nails and 1 unit for 1 kg 
screws. Determine the manufacturing policy that 
yields maximum profit from 10 units of raw material.

A manufacturer makes two types of cylinder, CYL1 
and CYL2. Three materials, M1, M2 and M3, are 
required for the manufacture of each cylinder. 
The following information is provided: 

£4 profit is made on one CYL1 and £3 profit on 
one CYL2. How many of each cylinder should 
the manufacturer make in order to maximize 
profit?

The Yorkshire Clothing Company makes two 
styles of jacket, the ‘York’ and the ‘Wetherby’. 
The York requires 3 m of cloth and 3 h of 
labour, and makes a profit of £25. The Wetherby 
needs 4 m of cloth and 2 h of labour, and makes 
a profit of £30. The Yorkshire has 400 m of 
cloth available and 300 h of labour available 
each week. Advise the company on the number 
of each style it should produce in order to maximize 
profits.

The company is prepared to buy more cloth to 
increase its profits, but it will not employ any more 
labour. Under this revised policy, is there a strategy 
that will increase its profits?

Find the optimal solution of the following LP 
problem: maximize

z = kx1 + 20x2

subject to

x1 + 2x2 < 20

3x1 + x2 < 25

x1, x2 > 0

10.2.4 Exercises

1

2

3

4

Quantities of materials required

M1 M2 M3

CYL1 1 1 2
CYL2 5 2 1

Quantities of materials available

M1 M2 M3

45 21 24

5

6

7
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where k is a positive parameter representing 
variable profitability. Use both the simplex method 
and the graphical method, and interpret the results 
geometrically.

Use the simplex method to solve the following 
problem: maximize

2x1 + x2 + 4x3 + x4

subject to

2x1 + x3 < 3

x1 + 3x3 + x4 < 4

4x2 + x3 + x4 < 3

x1, x2, x3, x4 > 0

A publisher has three books available for printing, 
B1, B2 and B3. The books require varying amounts 
of paper, and the total paper supplies are limited:

Books B1 and B2 are similar in content, and the 
total combined market for these two books is 
estimated to be at most 15 000 copies. Determine 
how many copies of each book should be printed 
to maximize the overall profit.

Euroflight is considering the purchase of new 
aircraft. Long-range aircraft cost £4 million each, 
medium-range £2 million each and short-range 
£1 million each, and Euroflight has £60 million 
to invest. The estimated profit from each type 
of aircraft is £0.4 million, £0.3 million and 
£0.15 million respectively. The company has trained 
pilots for at most a total 25 aircraft. Maintenance 
facilities are limited to a maximum of the equivalent 
of 30 short-range aircraft. Long-range aircraft need 
twice as much maintenance as short-range ones, and 
medium-range 1.5 times as much. Set this up as a 
linear programming problem, and solve it. Aircraft 
can only be bought in integer numbers, so estimate 
how many of each type should be bought.

Find x1, x2, x3, x4 > 0 that maximize

f = 6x1 + x2 + 2x3 + 4x4

subject to

2x1 + x2 + x4 < 3

x1 + x3 + x4 < 4

x1 + x2 + 3x3 + 2x4 < 10

B1 B2 B3
Total units
available

Units of paper
required per
1000 copies

3 2 1 60

Profit per 1000
copies

£900 £800 £300

8

9

10

11

10.2.5 Two-phase method

The previous section only dealt with ‘<’ constraints and did not consider ‘>’ constraints.
These prove to be much more troublesome, since there is no obvious initial feasible
solution, and Phase 1 of the two-phase method is solely concerned with getting such
a solution. Once this has been obtained, we then move to Phase 2. This is the standard
simplex method, starting from the solution just obtained from Phase 1. A simple example
will illustrate the problems involved and the basic ideas of the two-phase method.

Find the maximum of

z = x + y

subject to

−x + 2y < 6

x < 4

2x + y > 4

x, y > 0

Example 10.7
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Solution The region defined by the constraints is shown in Figure 10.5. It is clear from the figure
that the origin is not in the feasible region and that x = 4, y = 5 gives the optimal solution.
We have already appreciated that the graphical method is only useful for two-dimensional
problems, so we must explore how the simplex method copes with this problem.

Add in the positive variables r, s and t to give

−x + 2y + r = 6

x + s = 4

2x + y − t = 4

The r and s are the usual slack variables. Because we must subtract t to take away the
surplus, t is called a surplus variable. The obvious solution x = y = 0, r = 6, s = 4, t = −4
does not satisfy the condition that all variables be positive. The algebra is saying that
the origin is not in the feasible region. Because the simplex method works so well, the
last equation is forced into standard form by adding in yet another variable, u, called an
artificial variable, to give

2x + y − t + u = 4

Now we have a feasible solution x = y = t = 0, r = 6, s = 4, u = 4, but not to the problem
we originally stated. As the term ‘artificial variable’ implies, we wish to get rid of u and
then reduce the problem back to our original one at a feasible corner. The variable u can
be eliminated by forcing it to zero and this can be done by entering Phase 1 with a new
cost function

z′ = −u

We see that if we can maximize z ′ then this is at u = 0, and our Phase 1 will be complete.
The simplex tableau for Phase 1 then takes the form

Figure 10.5
Feasible region of 
Example 10.7.

x y r s t u Solution

z −1 −1 0 0 0 0 0
z′ 0 0 0 0 0 1 0

r −1 2 1 0 0 0 6
s 1 0 0 1 0 0 4
u 2 1 0 0 −1 1 4
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where z has been included for the elimination but does not enter the optimization: only
the z′ row is considered in Phase 1. It may be observed that the tableau is not of standard
form, since u is a basic variable and the (z′, u) entry is non-zero. This must be remedied
by subtracting the u row from the z′ row to give the standard-form tableau

Manipulation using the usual simplex algorithm gives the tableau

At this stage z′ = 0 and u = 0, so that we have driven u out of the problem, and the z′
row and u column can now be deleted. The Phase 1 solution gives x = 2, y = 0, which can
be observed to be a corner of the feasible region in Figure 10.5.

We now enter Phase 2, with the z′ row and u column deleted, and perform the usual
sequence of steps. The initial tableau is

Two further cycles are required, leading sequentially to the following two tableaux:

x y r s t u Solution

z −1 −1 0 0 0 0 0
z′ −2 −1 0 0 1 0 −4

r −1 2 1 0 0 0 6
s 1 0 0 1 0 0 4
u 2 1 0 0 −1 1 4

x y r s t u Solution

z 0 − 0 0 − 2

z′ 0 0 0 0 0 1 0

r 0 1 0 − 8

s 0 − 0 1 − 2

x 1 0 0 − 2

1
2
---

1
2
---

1
2
---

5
2
---

1
2
---

1
2
---

1
2
---

1
2
---

1
2
---

1
2
---

1
2
---

1
2
---

x y r s t Solution

z 0 − 0 0 − 2

r 0 1 0 − 8

s 0 − 0 1 2

x 1 0 0 − 2

1
2
---

1
2
---

5
2
---

1
2
---

1
2
---

1
2
---

1
2
---

1
2
---

x y r s t Solution

z 0 0 0 −

y 0 1 0 −
s 0 0 1

x 1 0 − 0 −

1
5
--- 3

5
---

18
5

------

2
5
--- 1

5
---

16
5

------

1
5
---

2
5
---

18
5

------

1
5
---

2
5
---

2
5
---
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We now have an optimum solution, since all the z row entries are non-negative with x = 4,
y = 5 and objective function z = 9 in agreement with the graphical solution.

The general two-phase strategy is then as follows:

There are other approaches to obtaining an initial feasible basic solution, but Phase 1 of the
two-phase method gives an efficient way of obtaining a starting point. Geometrically,
it uses the simplex method to search the non-feasible vertices until it is driven to a
vertex in the feasible region.

Use the two-phase method to solve the following LP problem: maximize

z = 4x1 + x2 + x3

subject to

x1 + 2x2 + 3x3 > 2

2x1 + x2 + x3 < 5

x1, x2, x3 > 0

x y r s t Solution

z 0 0 0 9

y 0 1 0 5

t 0 0 1 9

x 1 0 0 1 0 4

1
2
---

3
2
---

1
2
---

1
2
---

1
2
---

5
2
---

Phase 1

(a) Introduce slack and surplus variables.

(b) Introduce artificial variables alongside the surplus variables, say xp, . . . , xq.

(c) Write the artificial cost function

z ′ = −xp − xp+1 . . . − xq

(d) Subtract rows xp, xp+1, . . . , xq from the cost function z ′ to ensure there are zeros
in the entries in the z ′ row corresponding to the basic variables.

(e) Use the standard simplex method to maximize z ′ (keeping the z row as an extra
row) until z ′ = 0 and

xp = xp+1 = . . . = xq = 0

Phase 2

(a) Eliminate the z ′ row and artificial columns xp, . . . , xq.

(b) Use the standard simplex method to maximize the objective function z.

Example 10.8
1
2
---
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Solution
Phase 1 Introduce a surplus variable x4 and a corresponding artificial variable x5 into the first

inequality. A slack variable x6 is required for the second inequality. The artificial cost is just

z ′ = −x5

and we can construct the initial tableau

We subtract the x5 row from the z ′ row to eliminate the 1 from the (z ′, x5) element,
giving the tableau

We now apply the steps of the simplex algorithm to give the tableau

Since z ′ = 0 and the artificial variable x5 has been driven into the non-basic variables,
phase 1 ends.

Phase 2 The z ′ row and the x5 column are now deleted, and the following sequence of tableaux
constructed following the rules of the simplex algorithm:

x1 x2 x3 x4 x5 x6 Solution

z −4 − −1 0 0 0 0

z′ 0 0 0 0 1 0 0

x5 1 2 3 −1 1 0 2
x6 2 1 1 0 0 1 5

1
2
---

x1 x2 x3 x4 x5 x6 Solution

z −4 − −1 0 0 0 0

z′ −1 −2 −3 1 0 0 −2

x5 1 2 3 −1 1 0 2
x6 2 1 1 0 0 1 5

1
2
---

x1 x2 x3 x4 x5 x6 Solution

z − 0 − 0

z′ 0 0 0 0 1 0 0

x3 1 − 0

x6 0 − 1

11
3

------
1
6
---

1
3
---

1
3
---

2
3
---

1
3
---

2
3
---

1
3
---

1
3
---

2
3
---

5
3
---

1
3
---

1
3
---

1
3
---

13
3

------

x1 x2 x3 x4 x6 Solution

z − 0 − 0

x3 1 − 0

x6 0 1

11
3

------
1
6
---

1
3
---

2
3
---

1
3
---

2
3
---

1
3
---

2
3
---

5
3
---

1
3
---

1
3
---

13
3

------
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The solution is now optimal, with x1 = , x2 = x3 = 0 and z = 10. Note that the first
inequality is not binding, since x4 ≠ 0, while the second inequality is binding.

Three ores, A, B and C, are blended to form 100 kg of alloy; the percentage contents and
the costs are as follows:

The alloy must contain at least 20% iron, at least 25% lead but less than 48% copper.
Find the blend of ores that minimizes the cost of the alloy.

x1 x2 x3 x4 x6 Solution

z 0 11 −4 0 8

x1 1 2 3 −1 0 2
x6 0 −3 −5 2 1 1

x1 x2 x3 x4 x6 Solution

z 0 1 0 2 10

x1 1 0

x4 0 − − 1

As indicated in the previous section a computer package such as MAPLE or MATLAB
can deal easily with LP problems. For ‘>=’ inequalities the packages are equally efficient
and will produce the answer, but there is no indication that the two-phase method has
been used. For Example 10.8 the MAPLE code

with(simplex):
constr:={x1+2*x2+3*x3>=2,2*x1+x2+x3<=5};
obj:= 4*x1+.5*x2+x3;
maximize(obj,constr,NONNEGATIVE);

produces the result x1 = 5/2, x2 = 0 and x3 = 0 instantly.
The corresponding MATLAB code is

f=[−4;−0.5;−1]; A=[−1 −2 −3;2 1 1]; b=[−2,5];
Aeq=[ ]; beq=[ ]; lb=zeros(3,1); ub=[ ];x0=[ ];
options=optimset(’LargeScale’,’off’,’Simplex’,’on’);
[x,fval,exitflag,output,lamda]=linprog(f,A,b,Aeq,beq,lb,

ub,x0,options)

Ore A B C

Iron 70 60 0
Lead 20 10 40
Copper 10 30 60
Cost (£ kg−1) 3000 2000 1000

15
2

------

3
2
---

1
2
---

1
2
---

1
2
---

5
2
---

3
2
---

5
2
---

1
2
---

1
2
---

5
2
---

Example 10.9
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Solution Let x1, x2 and x3 be the weights (kg) of ores A, B and C respectively in the 100 kg of alloy.
The constraints give

iron 0.7x1 + 0.6x2 > 20

lead 0.2x1 + 0.1x2 + 0.4x3 > 25

copper 0.1x1 + 0.3x2 + 0.6x3 < 48

and to make the 100 kg of alloy,

x1 + x2 + x3 = 100

The cost is

3000x1 + 2000x2 + 1000x3 

which is to be minimized.
To reduce the problem to standard form, we change the problem to a maximization of

z = −3000x1 − 2000x2 − 1000x3 

For the inequality constraints we use surplus variables x4 and x5 and a slack variable x6.
We require two artificial variables x7 and x8 alongside the surplus variables. Thus the
inequalities become

0.7x1 + 0.6x2 − x4 + x7 = 20

0.2x1 + 0.1x2 + 0.4x3 − x5 + x8 = 25

0.1x1 + 0.3x2 + 0.6x3 + x6 = 48

To deal with the equality constraint, we introduce a further artificial variable x9:

x1 + x2 + x3 + x9 = 100

We must drive x9 to zero, to ensure that the equality holds, so it is essential to put x9 into
the artificial cost function. (Note that this is the standard way of dealing with an equality
constraint.) We first enter Phase 1. Steps (a)–(c) of Phase 1 of the two-phase method
give the initial tableau

It is necessary to remove the 1s from the z ′ row in the basic variable columns x7, x8 and
x9. Following (d) of the general strategy, we replace the z ′ row by (z ′ row) − (x7 row) −
(x8 row) − (x9 row) to give the tableau

x1 x2 x3 x4 x5 x6 x7 x8 x9 Solution

z 3000 2000 1000 0 0 0 0 0 0 0
z′ 0 0 0 0 0 0 1 1 1 0

x7 0.7 0.6 0 −1 0 0 1 0 0 20
x8 0.2 0.1 0.4 0 −1 0 0 1 0 25
x6 0.1 0.3 0.6 0 0 1 0 0 0 48
x9 1 1 1 0 0 0 0 0 1 100
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Several tableaux need to be completed to drive z ′ to zero and complete Phase 1, with
the final tableau being

Removing the artificial variables and the z ′ row gives the tableau

The algorithm is now ready for Phase 2, since a sensible feasible basic solution is
available. The standard procedure leads, after many cycles, to the final tableau

and the solution can be read off as

x1 = 0, x2 = 40, x3 = 60

x1 x2 x3 x4 x5 x6 x7 x8 x9 Solution

z 3000 2000 1000 0 0 0 0 0 0 0
z′ −1.9 −1.7 −1.4 1 1 0 0 0 0 −145

x7 0.7 0.6 0 −1 0 0 1 0 0 20
x8 0.2 0.1 0.4 0 −1 0 0 1 0 25
x6 0.1 0.3 0.6 0 0 1 0 0 0 48
x9 1 1 1 0 0 0 0 0 1 100

x1 x2 x3 x4 x5 x6 x7 x8 x9 Solution

z 0 −2000 0 0 −10 000 0 0 10 000 −1000 −250 000
z′ 0 0 0 0 0 0 1 1 1 0

x1 1 1.5 0 0 5 0 0 −5 2 75
x3 0 −0.5 1 0 –5 0 0 5 −1 25
x6 0 0.45 0 0 2.5 1 0 −2.5 0.4 25.5
x4 0 0.45 0 1 3.5 0 –1 −3.5 1.4 32.5

x1 x2 x3 x4 x5 x6 Solution

z 0 −2000 0 0 −10 000 0 −250 000

x1 1 1.5 0 0 5 0 75
x3 0 −0.5 1 0 −5 0 25
x6 0 0.45 0 0 2.5 1 25.5
x4 0 0.45 0 1 3.5 0 32.5

x1 x2 x3 x4 x5 x6 Solution

z 333.3 0 0 0 0 3333.3 −140 000

x4 0.3 0 0 1 0 −2 4
x3 −0.67 0 1 0 0 3.33 60
x2 1.67 1 0 0 0 −3.33 40
x5 −0.3 0 0 0 1 1 3
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with the cost minimized at £140 000. (Note that the cost in the tableau is negative, since
the original problem is a minimization problem.) It may be noted that x6 = 0, so the
copper constraint is binding while the iron constraint gives 4% more than the required
minimum and the lead constraint gives 3% more than the required minimum.

Except for simple, illustrative examples, the amount of computational work in the two-
phase strategy is heavy and requires the use of a computer package. Even for the
comparatively simple Example 10.9, many tableaux were required in the solution. The
computer packages MAPLE and MATLAB have no difficulty in dealing with the equality
constraint that appears in the problem.

10.2.6 Equality constraints and variables that are 
unrestricted in sign

An equality constraint can be written as two constraints: one ‘<’ and one ‘>’ con-
straint.  For example, the equation 6x1 −  x2 = 10 can be expressed as

6x1 −  x2 > 10

6x1 −  x2 < 10

All the problems considered so far have demanded the decision variables be non-
negative. In many applications the decision variables can take any real value. That is,
they are unrestricted in sign (URS). To solve such problems with the simplex method
the URS variables are reformulated as the difference between two non-negative varia-
bles. So if −∞ , xi , ∞ then we write xi = xi′ −  xi″, where xi′, xi″ > 0. If xi′ . xi″ then
xi . 0 and if xi′ , xi″ then xi , 0. 

Use the simplex method to solve

Max z = 4x1 + 2x2

subject to

2x1 + x2 < 7

x1 + x2 < 3, x1 > 0, −∞ , x2 , ∞

Solution Decision variable x2 is URS so we let x2 = x2′  −  x2″ , where the new variables are non-
negative and substitute for x2 into the linear program to obtain

Max z = 4x1 + 2x2′ −  2x2″

subject to

2x1 + x2′  −  x2″  < 7

x1 + x2′−  x2″  < 3

x1, x2′ , x2″  > 0

We can now use the simplex algorithm in the usual way. The initial tableau is (with
slack variables r and s for constraints 1 and 2, respectively)

Example 10.10
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Proceeding as discussed in Section 10.2.3, the next two iterations yield

At this point the algorithm terminates because all entries in the z row are non-negative.
Reading the final table tells us that the maximum value of z is 14 and this occurs when
x1 = 4 and x2″  = 1. It is important to give a solution in terms of the variables of the
problem, that is x1 and x2. Since x2 = x2′  – x2″  and x2′  is a non-basic variable (equal to
zero), we say 

Max z = 14 when x1 = 4 and x2 = –1

One may ask how to handle linear programming problems that restrict the decision varia-
bles to the integers. This is an important question but integer programming is significantly
more challenging than standard linear programming and beyond the scope of this book.
Suffice to say that most linear programming software packages have in-built routines for
integer variable (for example, intcon and intlinprog in MATLAB).

x1 x2′ x2″ r s Solution

z −4 −2 2 0 0 0 Ratios

r 2 1 −1 1 0 7
s 1 1 −1 0 1 3

3

7
2
--- 3.5=

x1 x2′ x2″ r s Solution

z 0 2 −2 0  4 12 Ratios

r 0 −1 1 1 −2 1  1
x1 1 1 −1 0 1 3

−3

x1 x2′ x2″ r s Solution

z 0 0 0 2 0 14

x2″ 0 −1 1 1 −2 1
x1 1 0 0 1 −1 4

Use the graphical approach to solve the LP problem

max(x + 2y)

subject to the constraints

1 < y < 4

x + y < 5

Check your solution using the two-phase method 
and by using a MAPLE or MATLAB implementation.

Use the simplex method to find positive values of x1 
and x2 that minimize

f = 10x1 + x2

10.2.7 Exercises

12

13
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subject to

4x1 + x2 < 32

2x1 + x2 > 12

2x1 − x2 < 4

−2x1 + x2 < 8

Sketch the points obtained by the simplex method 
on a graph, indicating how the points progress 
through Phases 1 and 2 to the solution.

The Footsie company produces boots and shoes. 
If no boots are made, the company can produce a 
maximum of 250 pairs of shoes in a day. Each pair 
of boots takes twice as long to make as each pair of 
shoes. The maximum daily sales of boots and shoes 
are 200, but 25 pairs of boots must be produced to 
satisfy an important customer. The profits per pair 
of boots and shoes are £8 and £5 respectively. 
Determine the daily production plan to maximize 
profits. Use the two-phase method to obtain the 
solution, and verify your result with a graphical 
solution.

In Exercise 9 there is an additional union agreement 
that at least 50 000 books must be printed. Does the 
solution change? If so, calculate the new optimum 
strategy.

Solve the LP problem

max(x + y + z)

subject to the constraints

x > 1

x + 2y < 3

y + 3z < 4

by using the two-phase method. Check your result 
using MAPLE or MATLAB.

Solve the following LP problem: minimize

2x1 + 7x2 + 4x3 + 5x4 

subject to

x1 − x3 − x4 > 0

x2 + x3 > 2

x1, x2, x3, x4 > 0

A trucking company requires antifreeze that 
contains at least 50% of pure glycol and at least 
5% of anticorrosive additive. The company can 
buy three products, A, B and C, whose constituents 
and costs are as follows:

What blend will provide the required antifreeze 
solution at minimum cost? What is the cost of 
100 litres of solution?

A builder is constructing three different styles of 
house on an estate, and is deciding which styles 
to erect in the next phase of building. There are 
40 plots of equal size, and the different styles 
require 1, 2 and 2 plots respectively. The builder 
anticipates shortages of two materials, and estimates 
the requirements and supplies (in appropriate 
units) to be as follows:

The local authority insists that there be at least 
5 more houses of style 2 than style 1. If the profits 
on the houses are £1000, £1500 and £2500 for 
styles 1, 2 and 3 respectively, find how many of 
each style the builder should construct to maximize 
the total profit.

A manufacturer produces three types of carpeting, 
C1, C2 and C3. Two of the raw materials, M1 
and M2, are in short supply. The following table 
gives the supplies of M1 and M2 available (in 1000s 
of kg), the quantities of M1 and M2 required for 
each 1000 m2 of carpet, and the profits made from 
each type of carpet (in £1000s per 1000 m2):

14

15

16

17

A B C

% glycol 65 25 80
% additive 10 3 0
Cost (£/litre) 1.8 0.9 1.5

Requirements
Total
supplyStyle 1 Style 2 Style 3

Facing 1 2 5 58
stone

Weather 3 2 1 72
boarding

18

19

20
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Carpet of type C3 is non-profit-making, but is 
included in the range in order to enable the 

company to satisfy its customers. The company 
has policies that require that, if x1, x2 and x3 
1000s of m2 of C1, C2 and C3 respectively are 
made then

x1 > 1

and 

x1 − x2 + x3 > 2

How much carpet of each type should the company 
manufacture in order to satisfy the constraints and 
maximize profits?

Quantities
required

M1 M2 Profit

C1 1 1 2
C2 1 1 3
C3 1 0 0

Quantities available 5 4

Lagrange multipliers

10.3.1 Equality constraints

In Section 10.2 we looked at the situation where all the functions were linear. As soon
as functions become nonlinear, the problems become very much more difficult. This
is generally the case in most of mathematics, and is certainly true in optimization
problems.

In Section 9.7.4 of MEM it was shown how to use Lagrange multipliers to solve the
problem of the optimization of a nonlinear function of many variables subject to
equality constraints. For the general problem it was shown that the necessary condi-
tions for the extremum of

f (x1, x2, . . . , xn)

subject to

gi(x1, x2, . . . , xn) = 0 (i = 1, 2, . . . , m (m , n))

are

(k = 1, 2, . . . , n) (10.7)

where λ1, λ 2, . . . , λm are the Lagrange multipliers. These n equations must be solved
together with the m constraints gi = 0. Thus there are n + m equations in the n + m
unknowns x1, x2, . . . , xn and λ1, λ 2, . . . , λm.

For a two-variable problem of finding the extremum of

f (x, y) subject to the single constraint g(x, y) = 0

the problem is illustrated geometrically in Figure 10.6. We are looking for the
maximum, say, of the function f(x, y), but only considering those points in the plane
that lie on the curve g(x, y) = 0. The mathematical conditions look much simpler of
course, as

10.3

∂ f
∂ xk

------- λ1
∂ g1

∂ xk

-------- λ2
∂ g2

∂ xk

-------- + . . . + λm

∂ gm

∂ xk

---------+ +  = 0
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(10.8)

There are two comments that should be noted. First, the method fails if gx = gy = 0
at the solution point. Such points are called singular points: fortunately they are rare,
but their existence should be noted. Secondly, sufficient conditions for a maximum, a
minimum or a saddle point can be derived, but they are difficult to apply and not very
useful. Example 10.13 will illustrate an intuitive approach to sufficiency.

A few examples should be enough to remind the reader of the problems involved and
to show the techniques required to solve the equations.

Fermat stated in 1661 that ‘Light travels along the shortest path’. Find the path that
joins the eye to an object when they are in separate media (Figure 10.7).

Solution The velocities of light in the two media are v and V. The time of transit of light is given
by the geometry as

and is then subject to the geometrical constraint that

L = a tan α + b tan β

Applying (10.8),

fx λgx+  = 0
fy λgy+  = 0

g = 0 





Figure 10.6 Lagrange 
multiplier problem.

Example 10.11

Figure 10.7 Fermat’s 
shortest-path problem.

T = a
v αcos
-----------------

b
V βcos
-----------------+

0 = ∂T
∂α------- λ ∂g

∂α-------+  = a
v
--- α αtansec λa sec2α+

0 = ∂T
∂β------ λ∂g

∂β------+  = b
V
--- β βtansec λb sec2β+
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These give as the only solution

sin α = −λv, sin β = −λV

or

which is known as Snell’s law.

In Example 10.11, to obtain Snell’s law, the solution of the equation was quite straight-
forward, but it is rarely so easy. Frequently it is technically the most difficult task, and
it is easy to miss solutions. We return to the ‘milk carton’ problem discussed earlier to
illustrate the point.

Find the minimum area of the milk carton problem stated in Example 10.2 and illustrated
in Figure 10.1.

Solution Taking measurements in millimetres, the basic mathematical problem is to minimize 

A = (2b + 2w + 5)(h + b + 10)

subject to

hbw = 1 136 000

Applying the Lagrange multiplier equations (10.7), we obtain

0 = (2b + 2w + 5)  + λbw

0 = (2b + 2w + 5) + 2(h + b + 10) + λhw

0 = 2(h + b + 10) + λhb

giving four equations in the four unknowns h, b, w and λ. If we eliminate λ and w from
these equations, we are left with the same equations that we derived in Example 10.2,
which have no simple analytical solutions.

The only way to proceed further with Example 10.12 is by a numerical solution. Thus,
even with simple problems such as this one, we need a numerical algorithm, and in most
realistic problems in science and engineering we encounter similar severe computa-
tional difficulties. It is often a problem even to write down the function or the constraints
explicitly. Such functions frequently emerge as numbers from a complicated computer
program. It is therefore essential to look for efficient numerical algorithms to optimize
such functions. This will be the substance of Section 10.4.

A final example shows the situation where there are more than two variables involved.
An indication will be given of the difficulties of proving that the point obtained is a
maximum.

αsin
βsin

------------ = v
V
--- = μ

Example 10.12
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A hopper is to be made from a cylindrical portion connected to a conical portion as
indicated in Figure 10.8. It is required to find the maximum volume subject to a given
surface area.

Solution We can compute the volume of the hopper as

V = πR2L + πR3 tan α

and find its maximum subject to the surface area being given as

A = 2πRL + πR2 sec α

Applying (10.7) with the appropriate variables, we obtain

0 = = 2πRL + πR2 tan α + λ (2πL + 2πR sec α)

0 = = πR2 + λ2πR

0 = = πR3 sec2α + λπR2 sec α tan α

First, λ can be easily evaluated as λ = − R. The last of the above three equations
becomes

πR2 sec2α ( R + λ sin α) = 0

and hence sin α = . Since 0 < α < π, we have α = 0.730 rad or 41.8°. A little further
algebraic manipulation between the constraints and the above equations gives R2 = A/π ,
so that R = 0.377A1/2 and V = 0.126A3/2.

Normally it would be assumed that this is a maximum for the volume on intuitive
or geometrical grounds. To prove this rigorously, we take small variations around the
suspected maximum and show that the volume is larger than all its neighbours. For
simplicity let R2 = (A/π )(1 + δ ), sec α = (3/ )(1 + ε), evaluate L from the constraint
g = 0 and then calculate V to second order in ε and δ by Taylor’s theorem. Some careful
algebra gives

This shows that for any non-zero values of ε and δ we obtain a smaller volume, and
hence we have proved that we have found a maximum.

It should be reiterated that the major problem lies in solving the Lagrange multiplier
equations and not in writing them down. This is typical, and supports the need for good
numerical algorithms to solve such problems; they only have to be marginally more
difficult than Example 10.13 to become impossible to manipulate analytically.

Example 10.13

Figure 10.8 Hopper of 
Example 10.13.

1
3
---

∂ V
∂ R
------ λ∂ g

∂R
------+

∂ V
∂L
------ λ∂g

∂L
------+

∂V
∂ α------- λ∂ g

∂α-------+ 1
3
---

1
2
---

1
3
---

2
3
---

1
2
---

5

5 5

V
A3/2

3π1/251/4
-------------------- 1 − 1

8
---δ 2

 − 9
16
------ε 2( )=



768 OPTIMIZATION

10.3.2 Inequality constraints

Although we do not intend to consider them in any detail here, for reference we shall
state the basic extension of (10.7) to the case of inequality constraints. Kuhn and Tucker
proved the following result in the 1940s.

To maximize the function

f (x1, . . . , xn)

subject to

gi(x1, . . . , xn) < 0 (i = 1, . . . , m)

the equivalent conditions to (10.7) are

(k = 1, . . . , n)

(i = 1, . . . , m)

The equation λ igi = 0 gives two alternative conclusions for each constraint, either

(a) gi = 0, in which case the constraint is ‘active’ and the corresponding λ i . 0, or

(b) λ i = 0 and gi , 0, so that the optimum is away from this constraint and the
Lagrange multiplier is not necessary.

Implementation of the Kuhn–Tucker result is not very easy, even though in principle
it looks straightforward. There are so many cases to check that it becomes very
susceptible to error.

∂ f
∂xk

------- λ1
∂ g1

∂ xk

--------– . . .– λm

∂ gm

∂ xk

---------–  = 0

λigi = 0
λi   0

gi   0 





$

#

Find the optimum of f = x2 + xy + y2 subject to the 
constraint x + y = 1 using Lagrange multpliers. 
Show that the optimum is a minimum.

Find the shortest distance from the origin to the ellipse

Determine the lengths of the sides of a rectangle 
with maximum area that can be inscribed within 
the ellipse

Find the optimum of f = xy2z subject to x + 2y + 3z 
= 6 using a Lagrange multiplier method.

Show that the stationary points of f = x2 + y2 + z2 
subject to x + y − z = 0 and yz + 2zx − 2xy = 1 are 
given by the solution of the equations

0 = 2x + λ + (2z − 2y)μ

0 = 2y + λ + (z − 2x)μ

0 = 2z − λ + ( y + 2x)μ

Add the last of these two equations, and show 
that either μ = −2 or y + z = 0. Hence deduce the 
stationary points.

A rectangular box without a lid is to be made. 
It is required to maximize the volume for a given 
surface area. Find the dimensions of the box when 
the total surface area is A.

10.3.3 Exercises

21

22

x2

a2
-----

y2

b2
-----+  = 1 a < b( )

23

x2

a2
-----

y2

b2
-----+  = 1

24

25

26
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Hill climbing

10.4.1 Single-variable search

Most practical problems give calculations that cannot be performed explicitly, and need
a numerical technique. Typical cases are those in Examples 10.1 and 10.12, where the
final equations cannot be solved analytically and we need to resort to numerical methods.
This is not an uncommon situation, and hill climbing methods were devised to cope with
just such problems.

In many engineering problems the functions that we are trying to optimize cannot be
written down explicitly. Take for example a vibrational problem where the frequencies
of vibration are calculated from an eigenvalue problem. These frequencies will depend
on the parameters of the physical system, and it may be necessary to make the largest
frequency as low as possible. To illustrate this idea, suppose that the eigenvalues come
from the equation

where there is just one parameter a. In this case the mathematical problem is to find
(λmax). We note that there is no explicit formula for λmax as a simple function of a,

and our function is the result of a solution of the determinantal equation. For some values
of a the function can be calculated easily, λmax(−1) = , λmax(0) =  and λmax(1) = 2,
but any other value requires a considerable amount of work. However, a computer pack-
age such as MATLAB will perform this hard work very quickly with the instruction

10.4

a λ– −1 0

−1 −λ −1

0 −1 a2 λ–

 = 0

min
a

3 2

(Harder) The lowest frequency of vibration, 
α, of an elastic plate can be computed by 
minimizing

I [ω] = (∇2ω)2 dx dy

subject to

ω 2 dx dy = 1

over all functions ω (x, y), where R is the region 
of the plate in the (x, y) plane. If R is the square 
region |x | < 1, |y | < 1 and the plate is clamped at 
its edges, use the approximation

ω = A cos2 πx cos2 πy

to show that I [ωmin] = α 2 = π4.

Use the improved approximation

ω = cos2 πx cos2 πy(A + B cos πx cos πy)

to get a better estimate of α.
(Note: ³1−1 cos2n πz dz = (2n)!/(n!)222n−1 for 

non-negative integers n. Preferably use an algebraic 
symbolic manipulator, for example MAPLE, to 
evaluate the differentials and integrals.)

Use the Kuhn–Tucker criteria to find the minimum of 

2x 2
1 + x 2

2 + 2x1x2

subject to

x1 − x2 < α

where α is a parameter. Find the critical value 
of α at which the nature of the solution changes. 
Sketch the situation geometrically to illustrate 
the change.

27

##
R

##
R

1
2
---

1
2
---

8
9
---

1
2
---

1
2
---

1
2
---

1
2
---

1
2
---

28
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lamda = max(eig([a -1 0; -1 0 -1; 0 -1 a^2])). Calculating the derivative
of the function with respect to a is too difficult even to contemplate.

In the determinant example we have a function of a single variable, but in most problems
there are many variables. One of the commonest methods of attack is to obtain the
maximum or minimum as a sequence of single-variable searches. We choose a direction
and search in this direction until we have found the optimum of the function in the chosen
direction. We then select a new direction and repeat the process. For this to be a successful
method, we need to be able to perform single-variable searches very efficiently. This
section therefore deals with single-variable problems, and only then in Section 10.4.3
are multivariable techniques discussed. In deciding on a strategy for solution, one crucial
point is whether derivatives can or cannot be calculated. In the eigenvalue problem,
calculation of the derivative is difficult, and would probably not be attempted. If the
derivative can be obtained, however, more information is available, and any numerical
method can be speeded up considerably. With the increase in sophistication of computers,
this is becoming a less important consideration, since a good numerical approximation to
the derivative is usually quite satisfactory. This is certainly the case in the MATLAB
routine fminunc.

The basic problem is to determine the maximum of a function y = f(x) that is difficult to
evaluate and for which the derivative may or may not be available. The task is performed
in two stages: in Stage 1 we bracket the maximum by obtaining x1 and x2 such that
x1 < xmax < x2 as described in Figures 10.9 and 10.10, and in Stage 2 we devise a method
that iterates to the maximum to any desired accuracy, as in Figures 10.11 and 10.12.

Figure 10.9 
Bracketing procedure.

(a) {Derivative not known}
If the function is defined by the anonymous function

f=@(x) .....
then the following code

aold= -1;h=.01;nmax=10; % aold, h, nmax are specified at values appropriate to the problem
zold=f(aold);a=aold+h;h=2*h;z=f(a);n=0;% step 1
while (z>zold)&(n<nmax)

n=n+1;h=2*h;aoldold=aold;aold=a;a=a+h;zoldold=zold;zold=z;z=f(a); % subsequent steps 
end

provides the bracket [aoldold,aold,a].

(b) {Derivative known}
If the function and its derivative are defined by the anonymous functions

f=@(x) .....
fdash=@(x) .....

then the following code
a=.01;h=.01;nmax=10;
zold=f(a);zdashold=fdash(a);aold=a;a=a+h;z=f(a);zdash=fdash(a);h=2*h;n=0;
while (zdash>0) & (n<nmax)

n=n+1;zold=z;zdashold=zdash;aold=a;z=f(a);zdash=fdash(a);a=a+h;h=2*h;
end

provides the bracket [aold,a].

Figure 10.10 
MATLAB code for 
obtaining a bracket for 
the maximum of f (x).
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Figure 10.11
(a) MATLAB 
file qapp.m for 
the quadratic 
approximation 
algorithm; the function 
segment for f (x) 
is declared in the 
file fnn.m; (b) diagrams 
corresponding to the 
four cases considered 
in the program.

(a)

function [x,f ]=qapp(a,b)
% a=[a1,a2,a3] is the input vector of three points from bracketing
% b=[f(a1),f(a2),f(a3)] is the vector of function values
x=a;f=b;p=polyfit(a,b,2);
xstar=-0.5*p(2)/p(1);fstar=fnn(xstar);
if fstar>b(2)

if xstar<a(2), x(3)=a(2);f(3)=b(2);
else x(1)=a(2);f(1)=b(2); end

x(2)=xstar;f(2)=fstar;
else

if xstar<a(2), x(1)=xstar;f(1)=fstar;
else x(3)=xstar;f(3)=fstar; end

end
% x contains the three points of the new bracket and f the function values

(a)

function [an,bn]=cufit(a,b)
% a=[x1 f(x1) fdash(x1)] and b=[x2 f(x2) fdash(x2)] are the input vectors
v=[a(2);b(2);a(3);b(3)];
A=[a(1)^3 a(1)^2 a(1) 1;b(1)^3 b(1)^2 b(1) 1;3*a(1)^2 2*a(1) 1 0;3*b(1)^2 2*b(1) 1 0];
p=A\v;xstar=(-p(2)-sqrt(p(2)^2-3*p(1)*p(3)))/(3*p(1));c=cub(xstar);
if c(3)>0 an=c;bn=b; else bn=c;an=a;end
% an and bn contain the new bracket vectors

Figure 10.12
(a) MATLAB 
file cufit.m for the cubic 
approximation 
algorithm for the 
maximum of f (x); 
x and the function 
segments f (x) and 
fdash(x) are declared 
in the file cub.m; 
(b) diagrams 
corresponding to the 
two cases considered in 
the program.
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A bracket is most quickly achieved by starting at a given point, taking a step in the
increasing direction and proceeding in this direction, doubling the step length at each
step until the bracket is obtained (Figure 10.9). If the derivative f ′(x) of the function is
known and positive when evaluated at x1 and negative at the next point, x2, in the search
then x1 < xmax < x2. If we do not have the derivative of f (x) then we need three points to
bracket the maximum of the function. We can say that if the function increases in value
between x1 and x2, and then decreases between x2 and x3 then x1 < xmax < x3 and xmax ∈[x1,
x2, x3]. The bracket [x1, x2, x3] is called a bracketing triple. The basic idea is summarized
in Figure 10.10, which gives a MATLAB procedure for this technique. It is written as a
‘stand-alone’ segment and can be adapted for other packages, but it would normally be
incorporated in a more general program. It is assumed that sensible values for a and h
have been chosen, but in a working program great care has to be taken. A great deal of
effort is required to cope with inappropriate choices and to prevent the program aborting.

The algorithm works very efficiently provided that appropriate safeguards are
included, but it is not foolproof. The maximum number of steps chosen, nmax, is usu-
ally 10, and the initial value of h is small compared with the overall dimension of the
problem under consideration.

Find a bracket for the first maximum of f (x) = x sin x using the algorithm in Figure 10.10.

Solution Choose a = 0.01 and h = 0.01; the algorithm then gives

If the derivative is not used then the bracket is 1.28 < x < 5.12.
If the derivative is used then the bracket is 1.28 < x < 2.56.

Stage 2 of the calculation is to use the bracket just obtained and then iterate to an
accurate maximum. A simple and efficient approach is to use a polynomial
approximation to estimate the maximum and then choose the ‘best’ points to
repeat the calculation. Another, not discussed here, is the Golden search algorithm.

If it is assumed that no derivative is available then a bracket is known from the algo-
rithm of Figure 10.10, so that x1, x2, x3 and the corresponding f1, f2, f3, with f1 , f2 and
f3 , f2, are given. The quadratic polynomial through these points can be written down
immediately: it is just the Lagrange interpolation formula that was discussed in Sec-
tion 2.3 of MEM. It can easily be checked that the quadratic which passes through the
required points is given by

(10.9)

Example 10.14

a 0.01 0.02 0.04 0.08 0.16 0.32 0.64 1.28 2.56 5.12

f 0.000 0.000 0.002 0.006 0.025 0.101 0.382 1.226 1.406 −4.701
f ′ 0.020 0.040 0.080 0.160 0.317 0.618 1.111 1.325 −1.590 –

f . F
x x1–( ) x x2–( )

x3 x1–( ) x3 x2–( )
---------------------------------------- f3

x x2–( ) x x3–( )
x1 x2–( ) x1 x3–( )

---------------------------------------- f1+=

+ 
x x3–( ) x x1–( )

x2 x3–( ) x2 x1–( )
---------------------------------------- f2
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Then F ′ = 0 at the point x*, which is given, after a little algebra, by

(10.10)

A MATLAB procedure for the algorithm that uses this new x* and f * is given in
Figure 10.11, where the best three values are chosen for the next iteration. The code can
be easily adapted for other packages. It can be re-written in terms of anonymous func-
tions as in Figure 10.10 but there is great merit in breaking the program into small units
that can be checked independently; these are M-files in MATLAB as in Figure 10.11.

The method works exceptionally well by repeating the instruction [a,b]=qapp(a,b),
but again it is not totally foolproof, and remedial checks need to be put into a working
program. The stopping criterion is very problem-dependent, and requires thought and
numerical experimentation. The MATLAB procedure fminbnd uses the quadratic
approximation method (for the minimum problem). It only requires a bound for the
minimum and uses another method, the Golden section (see Exercise 34), to obtain
three starting values. It then proceeds similarly to the current algorithm. The two lines
of code below solve the eigenvalue problem posed at the start of this section

options=optimset(’display’,’iter’);
[x,fval]=fminbnd(’max(eig([x -1 0;-1 0 -1;0 -1 x\2]))’,

-1,1,options)

It is worth looking at the full code of the MATLAB procedure for fminbnd to appre-
ciate the enormous effort required to automate the problem fully, to deal with errors and
failures and to make the progam ‘user friendly’.

Find the first maximum of f (x) = x sin x given the values from Example 10.14, namely
x1 = 1.28, x2 = 2.56, x3 = 5.12, f1 = 1.226, f2 = 1.406 and f3 = −4.701.

Solution From (10.10), x* = 2.03 and f * = 1.820, so for the next iteration choose

x1 = 1.28, x2 = 2.03, x3 = 2.56

f1 = 1.226, f2 = 1.820, f3 = 1.406

From (10.10), x* = 1.98 and f * = 1.816, so for the next iteration choose

x1 = 1.98, x2 = 2.03, x3 = 2.56

f1 = 1.816, f2 = 1.820, f3 = 1.406

From (10.10), x* = 2.027 and f * = 1.820, so the method has almost converged.

When the derivative is available, a better approximating polynomial than (10.9)
can be used, since x1, f1, f ′1 (. 0), x2, f2, and f ′2 (, 0) are known from the bracketing
algorithm, and this data can be fitted to a cubic polynomial

f . F = ax 3 + bx 2 + cx + d

F ′ = 3ax 2 + 2bx + c

x* = 
x2

2 x3
2–( ) f1 x3

2 x1
2–( ) f2 x1

2 x2
2–( ) f3+ +

2 x2 x3–( ) f1 x3 x1–( ) f2 x1 x2–( ) f3+ +[ ]
------------------------------------------------------------------------------------------------

Example 10.15
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In this case fitting the values just gives the matrix equation

(10.11)

and the maximum of F is given by F ′ = 0, so that

(10.12)

and the negative sign is chosen (the positive sign for a minimum problem) to ensure that
x1 , x* , x2.

A simple algorithm uses these results to choose the appropriate bracket for the
next iteration. The algorithm is illustrated in Figure 10.12, and is an efficient iterative
way of evaluating the maximum; just repeat the instruction [a,b]=cufit(a,b).
Unfortunately it is very easy to make errors in a hand computation, and many people
prefer the quadratic algorithm for this purpose. On a computer, however, the cubic
approximation method is almost universally used.

Find the first maximum of f (x) = x sin x given the bracket values from Example 10.14,
namely x1 = 1.28, f1 = 1.226, f ′1 = 1.325, and x2 = 2.56, f2 = 1.406, f ′2 = −1.590.

Solution Solving (10.11) gives a = −0.3333, b = 0.7814 and c = 0.9630, and hence, from (10.12), 

x* = 2.036, f * = 1.820, f *′ = −0.0192

Thus x2, f2 and f ′2 are replaced by x*, f * and f *′, and x1, f1 and f ′1 are retained.
Equation (10.11) is now recomputed and solved to give

a = −0.4626, b = 1.412, c = −0.0153

Hence, from (10.12),

x* = 2.029, f * = 1.820, f *′ = −0.0007

Further iterations may be performed to get an even more accurate value. Comparison
with Example 10.15 shows that both the quadratic and cubic algorithms work well for
this function.

f1

f2

f 1′

f 2′

 =

x1
3 x1

2 x1 1

x2
3 x2

2 x2 1

3x1
2 2x1 1 0

3x2
2 2x2 1 0

a

b

c

d

x* = b ± b2 3ac–( )1/2–
3a

--------------------------------------------

Example 10.16

There are ‘built in’ maximizing routines included in most computer packages
which can deal with most functions that arise in engineering computations. In MATLAB
the single instruction fminbnd(’-x*sin(x)’,1.28,5.12) produces the value
x = 2.0288 instantly.
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10.4.3 Simple multivariable searches: steepest ascent and 
Newton’s method

As indicated in Section 10.4.1, many multivariable search methods use a sequence of
single-variable searches to achieve a maximum. The fundamental question is how to
choose a sensible direction in which to search for the top of the hill with a very limited

(a) Find a bracket for the minimum of the function
f(x) = x + 1/x 2. Start at x = 0.1 and h = 0.2.

(b) Use two cycles of the quadratic approximation 
to obtain an estimate of the minimum.

(c) Use one cycle of the cubic approximation to 
obtain an estimate of the minimum.

The function

has been computed as follows:

Compare the brackets, obtained from the 
bracketing procedure, to be used in calculating 
the maximum of the function: (a) without using 
the derivatives, and (b) using the derivatives. 
Use these brackets to perform one iteration of 
each of the quadratic and the cubic algorithms. 
Compare the values obtained from the two 
calculations.

Starting with the bracket 1 , x , 3, determine an 
approximation to the maximum of the function

f (x) = x(e−x − e−2x)

(a) using two iterations of the quadratic 
algorithm, and 

(b) using two iterations of the cubic algorithm.
(c) How many iterations are required to obtain 

three-figure accuracy?

Use the quadratic algorithm to obtain an estimate of 
the value of x that gives the minimum value to the 
largest root of the eigenvalue equation (that is, 

[λmax(x)])

Use the bracket given by x = 1 and x = −1.

Show that if x1 = x2 − h and x3 = x2 + h then (10.10) 
reduces to

(Note: This provides a better hand computation 
method than the Lagrange interpolation approach. 
The best x value is chosen and h is replaced by

h after each step.) Show that this formula is a 
numerical form of the Newton–Raphson method 
applied to the equation f ′(x) = 0.

An interval AB is divided symmetrically at points C 
and D. If AC/AD = AD/AB show that C divides AB 
in the Golden Ratio α = 1/2(3 − ) = 0.382. . . .

The function f(x) is known to have a maximum in 
the interval a1 < x < a4. It is evaluated at the points α1, 
α4 and at the golden section points a2 = (1 − α)a1 + αa4 
and a3 = αa1 + (1 − α)a4. If f(a2) . f(a3) then the new 
bracket is taken as a1 < x < a3; if f (a2) . f(a3) then 
the new bracket is taken as a2 < x < a4. The method 
is then repeated. Test the method on the functions

(a) f(x) = x sin x with bracket 0, 2.5;

(b)  with bracket 

1.5, 2.5.

10.4.2 Exercises

x −0.5 0 1 3

f −0.3825 0 0.4207 0.0141
f ′ 0.3952 1 −0.1506 −0.1075

29

30

f = 
xsin

1 x2+
--------------

31

32

min
x

x λ– −1 0

−1 −λ −1

0 −1 x2 λ–

 = 0

33

x* = x2
1
2
---h

f1 f3–
f1 2f2– f3+
--------------------------+

1
2
---

34

5

f x( ) 1

1 x–( )2
------------------  x 2 1 x–( )

1 x+-------------------+ln 
 =
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amount of local information. The problem can be visualized when no derivatives are
available as sitting in a dense fog and trying to get to the top of the hill with only an
altimeter available. If derivatives are available then the fog has lifted a little, and we can
now see a few meters around, so that at least we can see which is the uphill direction.
The criteria for choosing a direction are (a) an easy choice of direction and (b) one that
gives an efficient climbing method. This is not a simple task. We consider two methods
in this section: the method of steepest ascent and Newton’s method. Although they
are rarely used for industrial-scale problems, they provide the basis for many more
advanced methods. Modern methods are difficult to program, not because the basic
method is difficult but because of the vast amount of remedial action that must be taken
to prevent the program failing when something goes wrong. The general advice here is
to understand the basic idea behind a method and then to implement it using a program
from a reliable software library such as NAG (distributed by Numerical Algorithms
Group Ltd of Oxford, UK) or a package such as MATLAB.

Perhaps the most obvious method of choosing a search direction is to use the locally
steepest direction. For the function f (x1, x2, . . . , xn) this is known to be in the gradient
direction G = grad f = [∂ f /∂x1, ∂ f /∂x2, . . . , ∂ f /∂xn]. If the derivatives are not available
then in current practice they are evaluated numerically.

The gradient direction can be easily proved to give the maximum change. From a
given point (a1, . . . , an), we proceed in the direction (h1, h2, . . . , hn) with given step
length h so that h2

1 + h2
2 + . . . + h2

n = h2. We then require

max F = f (a1 + h1, . . . , an + hn) − f (a1, . . . , an)

subject to the constraint

h2
1 + . . . + h2

n = h2

The problem is one of Lagrange multipliers, so

Thus

and hence

[h1, h2, . . . , hn] is proportional to

The method of steepest ascent (or steepest descent, for minima) then proceeds from the
point a by choosing the gradient direction G (or −G for minima) for a search direction.
We therefore need to find

{g(t) = f (a1 + tG1, a2 + tG2, . . . , an + tGn)} (10.13)

Since (10.13) is a function of a single variable t, the methods of Section 10.4.1 are
appropriate, and we should expect the cubic algorithm to be used in the optimization.
Once the best available point in the search direction has been found, a + tmax G, the new
gradient direction is computed and the whole process is repeated. The algorithm is
fairly straightforward, and is summarized in Figure 10.13.

0 ∂F
∂hi

------- λ2hi
∂f
∂hi

------- 2λhi i 1, … , n=( )–=–=

∂f
∂hi

-------
∂f
∂xi

------- 2λhi i 1, … , n=( )= =

∂f
∂x1

--------, … , 
∂f

∂xn

--------  =  G

max
t
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The steepest-ascent (or descent) method has the great advantage of being simple and
secure, but it has the disadvantage of being very slow, particularly near to the optimum.
It is rarely used nowadays, but does form the basis of the hill climbing methods described
in Section 10.4.5.

Find the maximum of the function

f (x1, x2) = −(x1 − 1)4 − (x1 − x2)
2

by the steepest-ascent method, starting at the point (0, 0).

Solution It is clear that (1, 1) gives the maximum, but this example is used to illustrate the basic
method. The gradient is easily calculated from the partial derivatives

Cycle 1: At the point (0, 0), f = −1, G = [4, 0], the search direction is x1 = 4t, x2 = 0,
and we require

{g(t) = − (4t − 1)4 − 16t 2}

This can be calculated as tmax = 0.102 56, so that we can start Cycle 2.
Cycle 2: The new point is (0.410 25, 0), f = −0.259 and G = [0, 0.8205]. The next

search is in the direction x1 = 0.410 25, x2 = 0.8205t, and we require

{g(t) = −0.1210 − (0.410 25 − 0.8205t)2}

This has the obvious solution tmax = , so that we can move to Cycle 3.
Cycle 3: The new point is (0.410 25, 0.410 25), f = −0.1210, and G = [0.8205, 0].
The calculation can be continued until G = 0 to the required accuracy.

There are a couple of points to note from this calculation. The function value is steadily
increasing, which is a good feature of the method, but after the first few iterations the
method progresses in a large number of very small steps. The successive search directions
are parallel to the axes, and hence are perpendicular to each other. This perpendicularity
is just a restatement of the known result that the gradient vector is perpendicular to
the contours (see Section 3.2.1). In Example 10.17 the function g(t) is written down
explicitly for clarity. In practice on a computer this would not be done, since once the
search direction has been established, x1 and x2 are known functions of t only, and by
the chain rule we have

Example 10.17

read (keyb, a1, . . . , an)
repeat

{evaluate f(a) and G1 = ∂ f/∂ x1, G2 = ∂ f/∂ x2, . . . }
{maximize g(t) in (10.13) by the cubic algorithm

to give a new point a ← a + tmaxG}
until {G = 0}

Figure 10.13
Steepest-ascent 
algorithm.

∂ f
∂x1

--------  = −4 x1 1–( )3 2 x1 x2–( ),
∂ f
∂x2

-------- 2 x1 x2–( )=–

max
t

max
t

1
2
---

dg
dt
------

∂ f
∂x1
--------

dx1

dt
--------

∂ f
∂x2
--------

dx2

dt
--------

∂ f
∂x1
--------G1

∂ f
∂x2
--------G2+=+=
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Since x1 and x2 are known, both ∂ f /∂x1 and ∂ f /∂x2 can be calculated, and G = [G1, G2]
is the known search direction; therefore dg/dt is computed without explicitly writing
down the function g.

The major criticism of the steepest-ascent method is that it is slow to converge, and
so the question arises as to how it can be speeded up. One method in use in many
programs is to use a fixed number of iterations in the line search, provided the function
is increased. Some experimentation is required on how to implement this idea, but it can
lead to significant improvement in speed.

It is well known that given a suitable initial condition, Newton–Raphson methods
(see Section 9.4.8 of MEM) converge very rapidly, so the same basic idea is tried for
these problems. It is convenient to employ matrix notation, and indeed most multi-
dimensional optimization methods are written in matrix form. This gives a compact
notation, and arrays appear naturally in computer languages.

Taylor’s theorem (see Section 9.4.1 of MEM) can be written in matrix form to
second order as

f (a1 + h1, . . . , an + hn) . f (a1, . . . , an) + hTG + hTJh (10.14)

where

The form (10.14) can be verified by multiplying out the matrices and comparing
with the standard form of Taylor’s theorem. The vector G is just the gradient vector,
which is now written in matrix form as a column vector, and J is an n × n symmetric
matrix of second derivatives called the Hessian (or Jacobian) matrix.

The Newton method takes (10.14) as an approximation to f, finds the maximum
(or minimum) of this quadratic approximation, and uses the optimal value of a to start
the cycle again.

The optimum of (10.14) is given by ∂ f /∂hi = 0 (i = 1, 2, . . . , n). The first of these
conditions gives

(10.15)

Noting that, since J is symmetric, for any vectors r and s we have

rTJs = (rTJs)T = sTJr

and hence (10.15) can be written as

0 = [ 1 0 0 . . . 0 ] (G + Jh)

1
2
---

h = 

h1


hn

, G

∂f

∂x1

--------



∂f

∂xn

--------

, J

∂ 2f

∂x1
2

-------- . . .
∂ 2f

∂x1∂ xn

-----------------

 

∂ 2f

∂xn∂ x1

----------------- . . .
∂ 2f

∂xn
2

--------

==

0 = ∂f
∂h1
-------- = 1 0 0 . . . 0[ ]G 1

2
--- 1 0 . . . 0[ ]Jh 1

2
---hTJ

1

0

0


0

+ +
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Similarly for the other components we obtain 

0 = [ 0 1 0 . . . 0 ] (G + Jh)

 

0 = [ 0 0 0 . . . 1 ] (G + Jh)

The only way to satisfy this set of equations is to have

G + Jh = 0

and hence, provided the inverse exists,

h = −J −1G

The update  rule for  Newton’s method  is thus  ai+1 = ai − Ji
−1Gi and  the  basic  algorithm

is now straightforward, as indicated in Figure 10.14.

When Newton’s algorithm of Figure 10.14 converges, it does so very rapidly and
satisfies our request for a fast method. For a quadratic function it only takes one
iteration so, provided the function looks like a quadratic, the method will be expected
to converge rapidly.

Use Newton’s method to find the maximum of

Solution Here we have returned to the ‘milk carton’ problem of Example 10.2. We can calculate

repeat
{ai known, calculate Gi, Ji}
{evaluate ai+1 = ai − J i

−1 Gi}
until {sufficient accuracy}

Figure 10.14 Newton 
algorithm.

Example 10.18

A = h b 10+ +( ) 2 272 000
hb

----------------------- 2b 5+ + 
 

∂A

∂h
------

2 272 000

hb
----------------------- 2b 5+ + 
  h b 10+ +( ) 2 272 000

h2b
-----------------------–=

∂A

∂b
------

2 272 000

hb
----------------------- 2b 5+ + 
  h b 10+ +( ) −2 272 000

hb2
----------------------- 2+ 

 +=

∂ 2A

∂h2
--------- 2 b 10+( ) 2 272 000

h3b
-----------------------=

∂ 2A

∂b ∂h
-------------- 2

10 2× 272 000

h2b2
-----------------------------------+=

∂ 2A

∂b2
--------- 4

2 2× 272 000 h 10+( )
hb3

-----------------------------------------------------+=
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Iteration 1

Iteration 2

Iteration 3

The iterations converge very rapidly; h = 139, b = 65 is not far from the solution, and
gives A = 827 cm2.

Unfortunately Newton’s method is very unreliable, particularly for higher-dimensional
problems, unless the starting value is close to the maximum. The reason for this is fairly
clear. The analysis given only uses the necessary condition for a maximum, but it would

a = 
100

100
, G = 

−44.92

375.1
, J = 

4.998 2.227

2.227 8.998

anew = 
100

100

0.2249 −0.0557

−0.0557 0.1249

−44.92

375.1
 = 

131

50.6
–

a = 
131

50.6
, G = 

−52.3

−465.7
, J = 

2.421 2.517

2.517 41.75

anew = 
131

50.6

−0.4407 −0.0266

−0.0266 0.0255

−52.3

465.7
 = 

141.7

61.1
–

Since the Newton method involves matrices MATLAB proves to be a very suitable
package to perform the manipulations. The simple instructions

z=[100;100]
[a,G,J]=newton(z(1),z(2)),z=z-J\G’

with the last line repeated, gives the successive iterations of the example. The
following listing gives the m-file newton.m that is used for Example 10.18.

function [a,agrad,ajac]=newton(h,b)
t1=h+b+10;t2=2272000/(h*b)+2*b+5; a=t1*t2;
agrad(1)=t2-t1*2272000/(h^2*b);
agrad(2)=t2+t1*(-2272000/(h*b^2)+2);
ajac(1,1)=2*(b+10)*2272000/(h^3*b);
ajac(1,2)=2+10*2272000/(h^2*b^2);ajac(2,1)=ajac(1,2);
ajac(2,2)=4+2*(h+10)*2272000/(h*b^3);

a
141.7

61.1
, G

−4.493

−98.76
, J

−1.858 2.303

2.303 25.33
===

anew = 
141.7

61.1

0.6067 −0.0552

−0.0552 0.0445

−4.493

−98.76
 = 

139

65.2
–
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apply equally well to a minimum or saddle point. In multi-dimensional problems saddle
points are abundant, and the usual failure of the Newton method is that it proceeds
towards a distant saddle point and then diverges.

Applying the method to the Rosenbrock function, called the ‘banana’ function in
MATLAB,

f (x, y) = 100(y2 − x)2 + (1 − x)2

the unreliability, but rapid convergence, is illustrated in Figure 10.15.

Starting point Iterations to convergence Final point Comments

(−1.9, 1) 1 (1, 1) minimum
(−1.9, 0.9) 6 (1, 1) minimum
(−1.9, 0.5) 6 (1, −1) minimum
(−1.9, 0) run 1 – – aborts, J is singular
(−1.9, 0) run 2 1 (1/101, 0) saddle point
(−1.9, −0.5) 7 (1, 1) minimum
(−1.9, −1) 1 (1, −1) minimum

Figure 10.15
Behaviour of Newton’s 
method for the 
Rosenbrock function 
for various starting 
points.

Follow the first two complete cycles in the 
steepest-descent algorithm for finding the 
minimum of the function

starting at a =

Show that the function

f (x, y) = 2(x + y)2 + (x − y)2 + 3x + 2y 

has a minimum at the point

Starting at the point (0, 0), use one iteration 
of the steepest-descent algorithm to determine 
an approximation to the minimum point. 
Show that one iteration of Newton’s method 
yields the minimum point from any starting 
point.

Use the steepest-ascent method to find the 
maximum of the function

f (x, y, z) = −(x − y + z)2 − (2x + z − 2)2 − (z2 − 1)2

starting from (2, 2, 2).

Minimize the function

f (x, y, z) = (x − y + z)2 + (2x + z − 2)2 + (z2 − 1)2

by Newton’s method. starting at (2, 2, 2).

A new link road is to be constructed from a city centre 
to an existing road. In suitable coordinates and units 
the city centre is at (0, 0) and the existing road has 
equation y = 11 − 2x. The cost of construction is 
proportional to the length of road, but it is twice as 
expensive to construct the road in the urban region 
| x | < 1 compared with outside the region. The link 
road consists of two straight sections, inside and 
outside the urban region. Find the equations of the 
two sections that minimize the overall cost.

10.4.4 Exercises

35

f x1, x2( ) = xT 1

0
 + 1

2
--- xT 1 −1

−1 2
x

1

1
.

36

− 7
16
------ , − 3

16
------( ).

37

38

39
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10.4.5 Advanced multivariable searches

To overcome the problems of evaluating second derivatives, which are rarely available,
and of the unreliability of the Newton method, but to use its speed of convergence,
several methods were produced in the early 1960s. Two have survived and are now the
methods currently available in most program libraries. Conjugate-gradient methods
give one approach, but these will not be described here. We shall look at a method due
to Davidon, commonly called DFP (after Davidon, Fletcher and Powell, who developed
the method) or quasi-Newton methods. There is a whole class of such methods, but
only one will be studied. Further details and more advanced topics can be found in
specialist optimization books such as D. G. Luerberger and Y. Ye, Linear and Nonlinear
Programming (fourth edition, New York, Springer, 2016).

The basic idea of the DFP method is to look for the minimum of the function
f (x1, . . . , xn) with gradient given by the column vector G = [∂f /∂x1 ∂f /∂x2 . . . ∂f /∂xn]

T

by iterating with a matrix Hi, which will be updated at each iteration, so that

ai+1 = ai − λHiGi (10.16)

The reliable but slow steepest-descent method chooses Hi = I, the unit matrix, and λ = λ min,
while the less reliable but fast Newton method chooses Hi = J i

−1 and λ = 1. Thus
the idea is to compute a sequence of Hi so that H0 = I and H i → J −1 as the minimum is
approached. The basic analysis required to implement this scheme is quite difficult and
beyond the scope of this book, so only the briefest of outlines will be given. For a
quadratic function

at two successive points the gradient is given by

Gi = G + J xi

Gi+1 = G + J xi+1

so, subtracting,

Gi+1 − Gi = J (xi+1 − xi)

Writing hi = xi+1 − xi and yi = Gi+1 − Gi and working on the assumption that HiJ = I
since we require Hi → J −1, we obtain

Hi yi = HiJ hi = hi (10.17)

It is found to be impossible to satisfy (10.17) unless an exact solution is known, so the
next best thing is to satisfy (10.17) one step behind as

Hi+1 yi = hi (10.18)

There is a whole class of matrices that satisfy the key equation (10.18) but only the
original Davidon matrix is quoted here, namely

(10.19)

It can be shown that for a quadratic function this sequence of Hs produces J −1 in
n iterations, where n is the dimension of the problem. The basic algorithm is described
in Figure 10.16 for the minimum of a general function f (x1, . . . , xn) with gradient
G = [∂ f /∂x1 . . . ∂ f /∂xn]

T.

f c x i
TG 1

2
--- x i

TJxi+ +=

Hi+1 Hi
Hi yi y i

THi

y i
THi yi

-----------------------– hih i
T

h i
Tyi

----------+=
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This method was a major breakthrough in the early 1960s, and is still one of the best
and most reliable available. Proofs of convergence and computational experience are
available in advanced texts on optimization. To repeat a word of warning: these
programs are very long and tedious to write because of the large amount of checking
and remedial work that has to be inserted to prevent the program stopping. Such
programs are available in software libraries, and these should be used.

Use the DFP method to find the minimum of

f (x, y) = x4 + y4 + (2x + y − 5)2

starting at (0, 0).

Solution Note that only the first derivatives

are required in this method.

Iteration 1

and we search in the direction

for a minimum of f ; that is, we compute

The cubic algorithm gives λ min = 0.064 14, so

read {initial values x0, H0 = I}
{calculate the gradient G0 and f0}

repeat
{Find f(xi − λHiGi), by the cubic algorithm}

{Put xi+1 = xi − λminHiGi}
{Calculate fi+1, Gi+1 and hence hi = xi+1 − xi

and yi = Gi+1 − Gi}
{Update Hi to Hi+1 by (10.19)}

until {sufficient accuracy}

min
λ

Figure 10.16
DFP algorithm for 
the minimum of 
f(x1, x2, . . . , xn).

Example 10.19

G = 4x3 4 2x y 5–+( )+
4y3 2 2x y 5–+( )+

a0 = 
0

0
, G0 = 

−20

−10
, H0 = 

1 0

0 1
, f0 = 25

a = 
0

0
λ

1 0

0 1

−20

−10
 = 

20λ
10λ

–

min
λ

20λ( )4 + 10λ( )4 + 50λ 5–( )2{ }

a1 = 
1.2828

0.6414
, G1 = 

1.2706

−2.5308

h0 = 
1.2828

0.6414
, y0 = 

–21.2706

 7.4692
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Thus H is calculated from (10.19) as

Iteration 2

We now search in the direction

and the cubic algorithm gives λ min = 0.272. We can now compute the next point and its
gradient as

, f = 5.6101

The new Davidon matrix is calculated from (10.19) as

Iteration 3 The next iteration gives

The iterations continue until convergence at x = 1.1886 and y = 0.9434.

In current practice the steepest-descent method is rarely used because it is too slow.
Newton’s method requires a matrix of second derivatives, which are not usually available,
and, although fast, it is too unreliable as illustrated in the previous section, particularly
in higher-dimensional problems. The quasi-Newton methods, however, are widely
available in most libraries and packages. They are reliable, very competitive and
compare favourably with other well used methods, such as conjugate gradients. In
MATLAB the optimization routine fminunc, DFP and steepest descent are available,
but a variant BFGS (Broyden, Fletcher, Goldfarb, Shanno – see Exercise 40) is the
default method. In the Optimization Toolbox of MATLAB the ‘unconstrained nonlinear’
option contains a demo of the three methods on the Rosenbrock function (it was also
used to illustrate Newton’s method in the previous section).

f (x, y) = 100( y 2 − x)2 + (1 − x)2

H1 = 
0.1611 −0.2870

−0.2870 0.9031

a1 = 
1.2828

0.6414
, G1

1.2706

−2.5308
, H1

0.1611 −0.2870

−0.2870 0.9031
, f1 6.092===

a = 
1.2828

0.6414
λ

0.1611 −0.2870

−0.2870 0.9031

 1.2706

−2.5308
–

= 
1.2828 0.9309λ–
0.6414 2.6501λ+

a2 = 
1.1782

0.9390
, G2

–0.2761

–0.0969
=

H2  = 
0.0597 −0.0050

−0.0050 0.1191

a3 = 1.1879

0.9452
, G3

–0.0122

 0.0192
, H3

0.0461 −0.0216

−0.0216 0.1019
, f 5.6084===
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A major development since the 1970s has been in devising modifications that avoid
the line searches. It was found that the latter were very time-consuming, so there was
great pressure to avoid them. The searches were replaced by one or more steps in the
search direction until the function has been reduced ‘sufficiently’ and then the matrix
H is updated. This not only reduces the number of function evaluations, which is nor-
mally the most expensive part of the routine, but it is found to reduce the number of
iterations required. The BFGS variant is found to be very suitable for this approach and
it is used in the MATLAB implementation. What is meant by ‘sufficiently’ requires
careful consideration and a discussion can be found in R. Fletcher, Practical Methods
of Optimization. See also D. G. Luerberger and Y.Ye, Linear and Nonlinear Program-
ming (fourth edition, New York, Springer, 2016).

The early development of numerical optimization algorithms led to very distinct
methods for cases when derivatives were or were not available. As computers devel-
oped in speed, this difference became less necessary, since derivatives could be calcu-
lated very rapidly by a numerical method. Options are now built into packages and
library routines which use derivatives when supplied, or use a numerical approximation
if the derivatives are not supplied.

Adapting methods to deal with constraints is of intense interest in practice, and has
been a major thrust in the subject. For fully nonlinear problems with nonlinear

There are some first class graphics showing the progress of the method and the
convergence found from the starting point (−1.9, 1) is

This performance is typical of the methods. The complication of the methods and
the intimate relation with computers illustrates the need for packages to perform the
extensive arithmetic. For the milk carton problem, Example 10.2, the function
information is put in the M-file milk.m

function [f,g]=milk(x)
f=(x(1)+x(2)+10)*(2272000/(x(1)*x(2))+2*x(2)+5);
if nargout>1

g(1)=(2272000/(x(1)*x(2))+2*x(2)+5)-(x(1)+x(2)+10)
*2272000/(x(1)^2*x(2));¹¹

g(2)=(2272000/(x(1)*x(2))+2*x(2)+5)+(x(1)+x(2)+10)*
(-2272000/(x(1)*x(2)^2)+2);

end

The instructions

x0=[100;100];
options=optimset(ʻGradObjʼ,ʻonʼ,ʻdisplayʼ,ʻiterʼ);
[x,fval]=fminunc(@milk,x0,options)

produce the minimum of 827 cm2 with h = 138.6 mm and b = 65.7 mm in six iterations.

BFGS 34 iterations 50 function evaluations
DFP 40 iterations 64 function evaluations
Steepest descent exceeds limit 250 function evaluations
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constraints the practical difficulties are very severe, but, robust programs are now
available in most libraries and packages.

10.4.6 Least squares

When minimization problems are in the form of least squares

F = f 1
2(x1, x2, . . . , xn) + f 2

2(x1, x2, . . . , xn) + . . . + f m
2(x1, x2, . . . , xn)

then there is a slightly different and potentially more efficient technique that exploits
the specific structure of the problem. In matrix form F becomes

Each of the functions is expanded by Taylor’s theorem, in matrix form, to first order
about x = a, for example putting x1 = a1 + h1, x2 = a2 + h2, . . . for f1,

f1 = (x1, x2, . . . , xn) = f1 (a1, a2, . . . , an) + 

Where the partial derivatives are evaluated at x = a. Repeating for all the m functions
gives in matrix form

or in a more compact notation

f (x) = f (a) + Jh (10.20)

The minimum of F requires

Repeating this differentiation for each of the variables and putting the equations into
matrix form 0 = J Tf (x) and using (10.20) gives

0 = J T f (x) = J T( f (a) + Jh)

F = [ f1 f2 . . . fm]

f1

f2


fm

f T f=

∂f1

∂x1

--------
∂f1

∂x2

-------- . . . ∂f1

∂xn

--------

h1

h2


hn

f1

f2


fm

f1

f2


fm

x a=

∂f1

∂x1
--------

∂f1

∂x2
-------- . . .

∂f1

∂xn

--------

∂f2

∂x1

--------
∂f2

∂x2

-------- . . .
∂f2

∂xn

--------


∂fm

∂x1

--------
∂fm

∂x2

-------- . . .
∂fm

∂xn

--------

h1

h2


hn

+=

0 = 
∂F
∂x1
-------- = 2 ∂f1

∂x1

--------
∂f2

∂x1

-------- . . . ∂fm

∂xn

--------

f1

f2


fm



10.4  HILL  CLIMBING 787

Hence we can now compute h as

h = −(J TJ )−1J T f (a)

provided, of course, that the inverse exists. This is the same result that was quoted in
Section 1.8.3 on singular value decomposition. To compute the minimum the result is
iterated as

ai+1 = ai − (J T
i J i)

−1J T
i fi (10.21)

Find the minimum of the function, starting at (0, 0),

F = (x + y − 1)2 + (x − y + 1)2 + (2x − y)2

Solution

so at the start point

 and (J TJ )−1J T 

From (10.21) the new value of a is (2/7, 6/7) with F = 2/7. Because all the functions are
linear the minimum is obtained in one iteration.

The experimental data

is thought to fit the function

Estimate the values of a and b and compare.

Example 10.20

MATLAB has a built-in procedure to solve this type of problem; the following
instructions obtains the same result quickly

C=[1,1;1,-1;2,-1];d=[1;-1;0];% f = Cx - d
x=lsqlin(C,d,[ ],[ ]) % Can use linear equality and 

inequality constraints, [ ] indicates empty

X 0 1.2 2 5 10

f 0 0.80 1.15 1.55 1.89

f
x y 1–+
x y– 1+
2x y–

J
1 1

1 1–
2 1–

= =

f
1–
1

1

= 1
14
------ 5 1 4

8 4– 2–
=

Example 10.21

f aX
1 bX+----------------=
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Solution The minimization of the least squares function

should give good estimates of a and b. Note that the origin automatically satisfies the
function. Take

 and 

Starting at a=1 and b=0.5 the iteration (10.21) was written in MATLAB and quickly
gives a converged value of a=1.0779 and b=0.4764. However starting from (1, 1)
the method quickly diverges. It is important that a good starting guess is known. The
code

ezplot(’1.0778*x/(1+0.4764*x)’,[0,10]), hold on
plot(0,0,’*’,1.2,0.8,’*’,2,1.15,’*’,5,1.55,’*’,10,1.89,’*’)

produces Figure 10.17, which gives an illustration of how good the fit is. Note that least
squares often gives a better fit to experimental data than interpolation methods, such as
splines, since rogue points are not dominant in the method.

F a b,( ) fi
aXi

1 bXi+-----------------–
 
 
 

2

i=1

4

=

f

f1
aX1

1 bX1+
------------------–

f2
aX2

1 bX2+
------------------–

f3
aX3

1 bX3+
------------------–

f4
aX4

1 bX4+
------------------–

= J

X1–
1 bX1+------------------

aX1
2

1 bX1+( )2
-------------------------

X2–
1 bX2+
------------------

aX2
2

1 bX2+( )2
-------------------------

· · · · ·

· · · · ·

=

Figure 10.17
Fit of the function in 
Example 10.21.
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MATLAB has built-in procedures to deal with exactly this type of curve fitting. The
following instructions obtain the same result.

xd=[0 1.2 2 5 10];yd=[0 0.80 1.15 1.55 1.89]; % inserts 
the data

gg=@(b,xd)b(1)*xd./(1+b(2)*xd); % sets up the test function
x=lsqcurvefit(gg,[1 1],xd,yd) % returns the values 

x = 1.0779 0.4764

A much wider range of start values can be used since lsqcurvefit can access a
variety of methods of solution and contains numerous safeguards.

Minimize the following functions by the DFP 
method, completing two cycles:

(a) f (x, y) = (x − y)2 + 4(x − 1)2, starting at (2, 2);
(b) f (x, y, z) = (x − y + z)2 + (2x + z − 2)2 + z4, 

starting at (0, 0, 0).

Show that the updating formulas 

(i) rank (1)

and

(ii)

(BFGS)

satisfy (10.18). Follow the DFP method through for 
two cycles, but using these updates for H, on the 
functions

(a) x 2 + 2y 2, starting at (1, 2);
(b) x 2 + (x − y + 1)2 + y 2z 2, starting at 

(0.5, 0.5, 0.5).

Show that the update formula (with suffixes 
suppressed)

H ′ = H + vpT − HuqT

satisfies the basic quasi-Newton equation (10.18)

H ′u = v

where p and q are vectors satisfying

pTu = 1, qTu = 1

but are otherwise arbitrary.
By making a suitable choice of α, β and α′, β′ in 

the expressions

p = αv  + βHu

q = α′v  + β ′Hu

show that the Davidon formula (10.19) and formula 
(i) in Exercise 41 can be obtained.

An alternative algorithm for finding the minimum 
of a function, f (x) with gradient g, of several 
variables is due to Fletcher and Reeves. Starting 
at the point x0, the first search direction is chosen as 
p0 = −g0. Successive search directions are given by

pi = −gi + 

and successive points satisfy

xi = xi−1 + λi−1pi−1

where λ i−1 is chosen to minimize the function f (x) 
in this search direction.

Apply the method to the functions

(a) f = (3x 2 + y 2) and 

(b) f = (x − y + 1)2 + x 2y 2 + (z − 1)2

10.4.7 Exercises

40

41

Hi+1 = Hi

hi Hi yi–( ) hi Hi yi–( )T

hi Hi yi–( )Tyi

------------------------------------------------------+

Hi+1 = Hi 1
yi

THi yi

hi
T yi

---------------+
 
 
  hihi

T

hi
Tyi

-----------+

 
hi yi

THi Hi yihi
T+

hi
Tyi

---------------------------------------
 
 
 

–

42

43

gi
T gi

gi 1–
T gi 1–

-------------------pi 1–

1
2
---
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Engineering application: chemical processing plant
A chemical processing plant consists of a main processing unit and two recovery units.
Chemicals A and B are fed into the plant, and produce a maximum output of 100 t day−1

of material C. The effluent stream is rich in chemical B, which can be recovered from the
primary and secondary recovery units. The total recovered, when at full throughput, is
10 t day−1 of pure B, and it is fed back into the incoming stream of chemical B. The process
is illustrated in Figure 10.18; the numbers in parentheses indicate the maximum flow (in
t day−1) that can be sent down the pipes, and the xi indicate the actual flow (in t day−1).

The chemistry of the process implies that the chemicals must be mixed in given
ratios. For the present system it is found that

x1:x3 = 1:1, x1:x4 = 3:5, x1:x5 = 3:1, x5:x7 = 5:3

x5:x6 = 5:2, x7:x8 = 6:1, x7:x10 = 6:5

must be maintained for any flow through the system. Chemical A costs £100t−1, chemical B
costs £120 t−1 and chemical C sells for £220 t−1. The running costs are as follows:

It is required to find the most profitable operating policy that can be achieved.
The profit can be written down for a day’s production as

z = − (fixed costs) + (profit from sale of C) − (costs of chemicals A and B)

−  (process unit costs) − (primary unit costs) − (secondary unit costs)

− (waste product costs)

= −1200 + (220x4) − (100x1 + 120x2)

− (70x4) − (30x5) − (40x7)

− 30x10

z = −1200 − 100x1 − 120x2 + 150x4 − 30x5 − 40x7 − 30x10

10.5 Engineering application:

Figure 10.18
Schematic diagram 
of a chemical 
processing plant. 
The numbers in 
parentheses give the 
maximum flow.

Variable costs Fixed costs

Process unit £70 t−1 of product £500 day−1

Primary recovery £30 t−1 of input £200 day−1

Secondary recovery £40 t−1 of input £100 day−1

Disposal of waste £30 t−1

Indirect cost £400 day−1
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The constraints on the flow, given by the maximum throughput, are

x1 < 60, x2 < 50, x3 < 60, x4 < 100, x5 < 20, x6 < 8,  x7 < 12,

x8 < 2, x9 < 10, x10 < 10

The constraints on the chemistry given by the fixed ratios can be written in a convenient
form as

x1 − x3 = 0, 5x1 − 3x4 = 0, x1 − 3x5 = 0, 3x5 − 5x7 = 0, 2x5 − 5x6 = 0,

x7 − 6x8 = 0, 5x7 − 6x10 = 0

Finally, at the junctions J and K, continuity (what flows in equals what flows out) gives 

x6 + x8 − x9 = 0, x2 + x9 − x3 = 0

The problem thus has 10 variables, 10 inequality constraints and 9 equality constraints.
The choice is whether to use the equality constraints to eliminate some of the variables
or just to treat the 19 constraints directly by LP. The equations are sufficiently simple
to solve for the variables as

x2 = x1, x3 = x1, x4 = x1, x5 = x1, x6 = x1, x7 = x1, x8 = x1,

x9 = x1, x10 = x1, z = 27x1 − 1200

Thus x1 must be as large as possible, that is, at the value 60, giving a maximum profit
of £420 day−1. We must check that all the constraints are satisfied, and indeed this is the
case. It is easily seen that each variable reaches its maximum possible value indicated
in Figure 10.18.

When we look at variations on the problem, it becomes less clear whether to
eliminate or just to use LP directly on the modified equations. For instance a very
sensible question is whether it is worth using the primary or secondary recovery units.
We can consider this question by allowing a portion to go to waste (at the same cost
given previously), as indicated in Figure 10.19.

We add to the previous continuity equations similar equations for the junctions L
and H:

x5 − x11 − x12 = 0

x7 − x13 − x14 = 0

The inputs to the primary and secondary units are now x12 and x14, so we need to modify
the fixed ratio chemical constraint as follows:

replace 3x5 − 5x7 = 0 by 3x12 − 5x7 = 0

replace 2x5 − 5x6 = 0 by 2x12 − 5x6 = 0

5
6
---

5
3
---

1
3
---

2
15
------

1
5
---

1
30
------

2
15
------

1
6
---

Figure 10.19
Modification to 
the chemical 
processing plant.
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replace x7 − 6x8 = 0 by x14 − 6x8 = 0

replace 5x7 − 6x10 = 0 by 5x14 − 6x10 = 0

In the cost function x5 is replaced by x12, and x7 by x14, and the additional waste costs
(−30x11 − 30x13) must be added:

z = −1200 + 150x4 − 100x1 − 120x2

− 30x12 − 30x11 − 40x14 − 30x13 − 30x10

We now have three free variables, so we shall certainly need an LP approach. An LP
package was used to obtain the solution

x1 = 57.69, x2 = 50, x3 = 57.69, x4 = 96.15

x5 = 19.23, x6 =  7.69, x7 = 11.54, x8 =  0

x9 =  7.69, x10 = 0, x11 = 0, x12 = 19.23

x13 = 11.54, x14 = 0

and the profit is £530.77 day−1. It can be seen that x11 = 0, so nothing is sent to waste
before the primary recovery unit; but x14 = 0, so that all the material from the primary
to the secondary goes to waste, and the secondary unit is bypassed. The effect of this
strategy is to increase the profit by about 20%.

There are many other variations that can be considered for this model. For instance,
pumps often go wrong, so it is important to investigate what happens if the maximum
flows are reduced or even cut completely. Once the basic program has been set up, such
variations are quite straightforward to implement.

Engineering application: heating fin
A heating fin is of the shape indicated in Figure 10.20, where the wall temperature is
T1, the ambient temperature is T0 and within the fin the value T = T(x) is assumed to
depend only on x and to be independent of y and z. Heat is transferred by conduction
along the fin, which has thermal conductivity k, and heat is transferred to the outside
according to Newton’s law of cooling, with surface heat-transfer coefficient h.
Considering an area of the fin of unit width in the z direction and height 2y, the heat
transferred by conduction in the x direction is k2y dT/dx. The net transfer through the
element illustrated is (d/dx)(k2y dT/dx). The total heat lost through a surface element
of unit width in the z direction and length Δs = [1 + (dy/dx)2]1/2 Δx along the surface is
h(T − T0)Δs. Since there are two surfaces, we can write the heat-transfer equation as

Provided that dy/dx is not too large, (dy/dx)2 can be neglected, giving

(10.22)

10.6 Engineering application:

2
d

dx
------ ky

d
dx
------ T T0–( )  = 2h T T0–( ) 1

dy
dx
------ 

 
2

+
1/2

d
dx
------ y

d
dx
------ T T0–( )  = h

k
--- T T0–( )
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The mass of the fin is given, so that its cross-sectional area is known, and hence

(10.23)

Finally, we wish to maximize the heat transfer, so we require the maximum of

(10.24)

over all possible functions y(x).
The problem involves choosing a function y(x) that satisfies (10.23) and then solving

(10.22) for T − T0. This is then substituted into (10.24) and the integral evaluated.
Out of all possible such functions y, we choose the one that maximizes I. The scheme
outlined is extremely difficult and belongs to a class called variational problems.
An alternative approximate method must be sought. The assumption made is that the
temperature falls linearly with x as

T − T0 = (T1 − T0)(1 − αx)

We also assume that y = 0 at x = a. We thus have two free parameters, α and a, which
we can use to give an approximate solution. Given T − T0, y can be computed from
(10.22) as

It can be seen that our basic assumption implies that y is quadratic in x. To satisfy the
area constraint (10.23), a simple integral is performed to give

which gives a relation between α and a. The function I is now integrated as

Figure 10.20
Heating fin.

#
0

a

y dx = 1
2
--- A

I = 2h #
0

a

T T0–( ) dx

y = h
kα------ a 1

2
---αa2– x– 1

2
---αx2+( )

1
2
--- A = h

kα------ a2 1
2
---

1
3
---αa–( )

I = 2h T1 T0–( ) #
0

a

1 αx–( ) dx
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or

Thus the very difficult problem has been reduced to a Lagrange multiplier problem of
maximizing

f = a − αa2

subject to

(10.25)

where S 3 = kA/2h. The Lagrange multiplier analysis gives the equations

Hence

λ = α 2

1 − 2αa + α 2a2 = 0

so that aα = 1. Substituting back into the constraint (10.25) gives

and therefore

so that

Thus, given the physical parameters k, h and A, the ‘best’ shape can be derived.
This model shows how a very difficult mathematical problem in optimization can be
reduced to a much more straightforward one by an appropriate choice of test functions
for T − T0.

I
2h T1 T0–( )
----------------------------  = a 1

2
---αa2–

1
2
---

g = 0 = a2

2α------- 1
3
---a3– S3–

 
 
 

∂ f λg–( )
∂a

-----------------------  = 1 αa– λ a
α---

a2–
 
 –  = 0

∂ f λg–( )
∂α-----------------------  = − 1

2
---a2 λ a2

2α2
---------+  = 0

S 3 = 1
6
---a3, or a

3kA
h

---------- 
 

1/3

=

T T0–( ) = T1 T0–( ) 1 x
a
---– 

 

y
a
---  = ha

2k
------ 1 x

a
---– 

 
2
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Use the simplex method to find the maximum of 
the function

F = 12x1 + 8x2

subject to the constraints

x1 + x2 < 350

2x1 + x2 < 600

x1 + 3x2 < 900

x1, x2 > 0

Check your results with a graphical solution.

A manufacturer makes three types of sailboard 
and is trying to decide how many of each to 
make in a given week. There are 400 h of labour 
available, and the three types of sailboard require 
respectively 10, 20 and 30 h of labour to construct. 
A shortage of fibreglass and of resin coating is 
anticipated. The quantities required by each type 
of sailboard are as follows:

If the profits on types 1, 2 and 3 are £10, £15 and 
£25 respectively, how many of each type should the 
manufacturer make to maximize profit?

A motor manufacturer makes a ‘standard’, a ‘super’ 
and a ‘deluxe’ version of a particular model of car. 
It is found that each week two of the materials 
are in limited supply: that of chromium trim 
being limited to 1600 m per week and that of 
soundproofing material to 1500 m2 per week. The 
quantity of each of these materials required by a car 
of each type is as follows:

All other materials are in unlimited supply.

The manufacturer knows that any number of 
standard models can be sold, but it is estimated 
that the combined market for the super and 
deluxe versions is limited to 50 models per week. 
In addition there is a contractual obligation to 
supply a total of 70 cars (of any type) each week.

The profits on a standard, super and deluxe 
model are £100, £300 and £400 respectively. 
Assuming that the facilities to manufacture any 
number of cars are available, how many of each 
model should be made to maximize the weekly 
profit, and what is that profit?

A poor student lives on bread and cheese. 
The bread contains 1000 calories and 25 g 
protein in each kilogram, and the cheese has 
2000 calories and 100 g of protein per kg. To 
maintain a good diet, the student requires at 
least 3000 calories and 100 g of protein per day. 
Bread costs 60p per kg and cheese 180p per kg. 
Find the minimum cost of bread and cheese 
needed per day to maintain the diet.

Use Lagrange multipliers to find the maximum 
and minimum distances from the origin to the 
point P lying on the curve

x 2 − xy + y 2 = 1

A solid body of volume V and surface area S is 
formed by joining together two cubes of different 
sizes so that every point on one side of the 
smaller cube is in contact with the larger cube. 
If S = 7 m2, find the maximum and/or minimum 
values of V for which both cubes have non-zero 
volumes.

Find the maximum distance from the point 
(1, 0, 0) to the surface represented by

2x + y 2 + z = 8

Find the local extrema of the function

F(x, y, z) = x + 2y + 3z

subject to the constraint 

x 2 + y 2 + z 2 = 14

Obtain also the global maximum and minimum 
values of F in the region

x > 0, y > 0, z > 0, x2 + y2 + z2 < 14

10.7 Review exercises (1–26)

Type 1 Type 2 Type 3
Total
supplies

Fibreglass
(kg) 5 10 25 290

Resin
coating
(litres) 3 2 1 72

Standard Super Deluxe

Chromium trim (m) 10 20 30
Soundproofing (m2) 10 15 20

1

2

3

4

5

6

7

8
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A triangle with sides a, b, c has given perimeter 
2s. Recall that the area of the triangle, A, is given 
by the formula

A2 = s(s − a)(s − b)(s − c)

(i) If a is given, use Lagrange multipliers to find 
the values of b and c that make the area a 
maximum. 

(ii) If a, b, c are unrestricted use Lagrange 
multipliers to find the values that make 
the area a maximum.

A nuclear reactor is in the form of a circular 
cylinder of radius r and height h. According to 
the theory of nuclear diffusion, the restriction 

applies, where a and b are constants. Use Lagrange 
multipliers to find the values of r and h that make 
the volume of the reactor a maximum.

According to lubrication theory, the lift on a pad 
bearing, where fluid flows in the narrow gap 
between a pad and a fixed piece of machinery, 
is given by

where A is a constant, k = h1/h2 . 1 and h1 and h2 
are the gap widths at the front and back of the 
pad. Find the value of k that makes F a maximum 
by using the bracket/quadratic approximation 
technique.

A cylindrical can of radius R (cm) and height 
H (cm) is to be made with volume 1000 cm3. 
The cost of making the can is proportional to 

(amount of metal) × (machine factor)

where the amount of metal is proportional to the 
surface area of the can (including the two ends) 
and the machine factor is given by 1 + [1 − (H/4R)]2 
and reflects the difficulty of machining the can. 
Show that the cost is

Find a bracket for R and use the quadratic algorithm 
to estimate the radius that minimizes the cost.

Use the quadratic approximation method to 
obtain a first estimate of the minimum of the 
function

f(x) = 1 − t + t 2

where t is the non-negative root of

t 2 + tx − (1 − x 2) = 0

Start with the interval 0 < x < 1 and note that 
for x = 0.5, t = 0.6514 and f = 0.7729.

In Figure 10.21 the disc rotates at a constant 
angular velocity, so θ = α t. The subsequent 
movement of the slider P gives x = x(t). If 
L /a = λ show that the velocity, v, of the 
slider is given by

 

Use the bracket and quadratic approximation 
technique to evaluate the maximum and minimum 
velocities of the slider in the case λ = 3.

A trucking company estimates that the cost of 
running a truck is

pounds per mile at a constant speed v. The driver 
earns £5 per hour. Find the cost for a journey 
of D miles. What speed is recommended to 
minimize the cost?

Use (a) the steepest-descent method, (b) the Newton 
method and (c) the DFP method to 
find the position of the minimum of the 
function

f(x, y) = x 2 + (x − y)2 + (x + y + 1)4

starting at (0, 0). Perform two cycles of each 
method, and compare your results.

9

10

a
r
--- 

 
2

 + π
h
--- 

 
2

 = b

11

F = A 1

k 1–( )2
------------------ kln 2

k 1–
k 1+
-----------– 

 

12

2
1000

R
------------  + πR2

 
  1 + 1 1000

4πR3
------------– 

  2
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14

v
αa
-------  = −sin θ 1

cos θ
λ2 sin2θ–( )

--------------------------------+

Figure 10.21 Disc and slider in Review 
exercise 14.
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A compound pendulum consists of a rectangular 
lamina with a heavy particle embedded in it, as 
illustrated in Figure 10.22. For small oscillations 
about the equilibrium, θ = α, and putting θ = α + ε, 
the equation of motion is

..ε = −μ2ε

where the period of the oscillations μ is given, 
after a substantial calculation, by

with

Explore this expression for maximum and 
minimum values in the region |X | < k, Y  < 2; 
take the case λ = and k = .

A method called Partan uses the notation D(i) for 
the gradient of f evaluated at x = x(i ). The iteration 
scheme for evaluating the minimum of f using 
Partan is

x (2) = x(1) − μ1D
(1)

where μ i and λ i are chosen by optimum line searches.
Sketch the progress of this method up to the point
x(4) for a scalar function of two variables f(x1, x2).

Illustrate the use of Partan and the method 
of steepest descent on the quadratic function

f = (x1 − x2)
2 + (x1 − 1)2

starting at (0, 0).

The Newton method described in Section 10.4.3 
often fails to converge. One way of overcoming 
this problem is to restrict the step length at 
each iteration. Given that x = a + h, this can be 
implemented by constraining h to have length L, 
where 

hTh = L2

Use a Lagrange multiplier λ to show that the 
result gives

xnew = xold − (J + λI )−1G

The algorithm is then implemented by 
successively using λ = 0, 1, 10, 100, . . . 
until a reduction in the function f is 
obtained.

Starting at x = [1 1]T, perform one 
complete step of the modified algorithm on 
the function

f = x 2 + y 2 − x 2y

Use the method developed in Section 10.4.6 to 
iterate to the minimum of the functions

(a) F = (x − y)2 + (x + y + 1)4, starting at 
x = 0, y = 0;

(b) , starting at 

x = 1, y = 1.

It is known from experience that a curve of 
the form

y = 1/(a + bx)

should give a good fit to experimental data in the 
form of a set of points

(xi, yi) (i = 1, 2, . . . , p)

It is required to calculate a and b by a best 
least-squares fit, and thus to minimize

17

Figure 10.22 Compound pendulum in Review 
exercise 17.
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Use the least-squares algorithm described in 
Example 10.21 to fit the function to the data points

(0, 1) (1, 0.6), (2, 0.3), (3, 0.2)

A quadratic function f(x1, x2, . . . , xn) with a 
unique minimum is given in matrix form as 

f = c + bTx + xTAx

Show that a search in the direction

x = a + λd

produces the minimum at 

Complete two complete cycles of the steepest-
descent algorithm for the function

f (x, y) = (1 − x)2 + (x − y)2

starting at x = 0, y = 0. Use Review exercise 22 
for the minimization in the search directions.

Show that the minimum is obtained in a 
single iteration of the Newton method.

(Harder) It is required to solve the differential 
equation

yy″ − y ′2 + y ′ = 0

with the boundary conditions y(0) = 1 and 
y (1) = 3, by a shooting method. The equation 
is solved for the initial conditions

y (0) = 1, y ′(0) = α

by any suitable method (for example, by a 
Runge–Kutta method). With this solution, 
calculate

F(α) = y (1)

and then try to drive F to the value 3 by 
minimization of

[F(α) − 3]2

In this example illustrate the method by using 
the exact solution

y = (1 + b) ex/b − b

for the forward integration.

(An extended problem) In the chemical 
processing plant model in Section 10.5 
consider the profits when 

(a) the primary pump is faulty and the 
constraint x5 < 12 is imposed;

(b) the waste pump between primary and 
secondary fails so that x13 = 0 (see 
Figure 10.19).

(An extended problem) Extend the heating 
fin analysis in Section 10.6, using a higher 
approximation to the temperature:

T − T0 = (T1 − T0)(1 − αx − βx 2)

Compare the shape of the fin with that given 
in the text, and compute the heat transferred 
in each case.

22

1
2
---

λmin = − b Aa+( )Td

dTAd
-------------------------------

23

24

25

26
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Introduction
Applications of probability and statistics in engineering are very far-reaching. Data from
experiments have to be analysed and conclusions drawn, decisions have to be made,
production and distribution have to be organized and monitored, and quality has to be
controlled. In all of these activities probability and statistics have a central role to play. 

The distinction between applied probability and statistics is blurred, but essen-
tially it is this: applied probability is about mathematical modelling of a situation
that involves random uncertainty, whereas statistics is the business of handling data
and drawing conclusions, and can be regarded as a branch of applied probability.
Most of this chapter is about statistics, but Section 11.9 on queueing theory is
applied probability.

When applying statistical methods to a practical problem, the most visible activity is
the processing of data, often using a statistical package such as R to apply a formula or
standard procedure. The relative ease and obviousness of this activity sometimes leads
to a false sense that there is nothing more to it. On the contrary, the handling of the data
is quite superficial compared with the essential task of trying to understand both the
problem at hand and the assumptions upon which the various statistical procedures are
based. If the wrong procedure is chosen, a wrong conclusion may be drawn.

It is, unfortunately, all too easy to use a formula while overlooking its theoretical
basis, which largely determines its applicability. It is true that there are some statistical
methods that continue to work reliably even where the assumptions upon which they
are based do not hold (such methods are called robust), but it is unwise to rely too
heavily upon this and even worse to be unaware of the assumptions at all.

The conclusions of a statistical analysis are often expressed in a qualified way such
as ‘We can be 95% sure that . . .’. At first this seems vague and inadequate. Perhaps a
decision has to be made, but the statistical conclusion is not expressed simply as ‘yes’
or ‘no’. A statistical analysis is rather like a legal case in which the witness is required
to tell ‘the whole truth and nothing but the truth’. In the present context ‘the whole
truth’ means that the statistician must glean as much information from the data as is
possible until nothing but pure randomness remains. ‘Nothing but the truth’ means that
the statistician must not state the conclusion with any greater degree of certainty or
confidence than is justified by the analysis. In fact there is a practical compromise
between truth and precision that will be explained in Section 11.3.3. The result of all
this is that the decision-maker is aided by the analysis but not pre-empted by it.

In this chapter we shall first review the basic theory of probability and then cover
some applications that are beneficial in engineering and many other fields: the statistics
of means, proportions and correlation, linear regression and goodness-of-fit testing,
quality control and queueing theory.

We will also consider applications of Bayes’ theorem, an important result in proba-
bility, and Bayesian statistical inference.

We supply R code for many of the calculations and analyses discussed in this chapter.
R is a free software environment for statistical computing and graphics, available from
https://www.r-project.org/. Unlike some other statistical packages, R is not menu driven,
but requires the user to type in and then run commands. Most of these commands are
based on functions. We recommend working with R through the easy to use RStudio
interface available from https://www.rstudio.com/. RStudio provides a customized editor
from which commands can be run by R, together with many other features designed to

11.1

https://www.rstudio.com/
https://www.r-project.org/
https://www.rstudio.com/
https://www.r-project.org/
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make R easier to use. A file or R script comprising the R code developed in a session can
be saved for future use. An enormous amount of documentation and help about R and
RStudio is available from the links just given and from other online sources.

The basic R software, sometimes referred to as base R, is enhanced by thousands of
contributed packages which provide specially written R functions to perform a massive
range of modern statistical and data science tasks. R can also be used to solve many
other problems that arise in engineering. For example, V. A. Bloomfield, Using R for
Numerical Analysis in Science and Engineering (Boca Raton, FL, Chapman and Hall/
CRC, 2014) discusses the use of R in areas including matrix analysis, ordinary and
partial differential equations and optimization, and presents a range of interesting engi-
neering case studies. RStudio provides tools for producing reports that integrate R code
and the output that it produces with the narrative using a file format called R Mark-
down. reports of statistical analyses produced in this way are easy to update if the data
change and can be readily reproduced by other users. We do not discuss the production
of dynamic documents or reproducible research further, except to refer the interested
reader to C. Gandrud, Reproducible Research with R and RStudio and Y. Xie, Dynamic
Documents with R and knitr (both second edition, Boca Raton, FL, Chapman and Hall/
CRC, 2015). for example.

Review of basic probability theory

This section contains an overview of the basic theory used in the remainder of this chapter.
No attempt is made to explain or justify the ideas or results: a full account can be found
in Chapter 13 of Modern Engineering Mathematics (MEM) or elsewhere. For the same
reason there are no examples or exercises. In the process of reviewing the basic theory,
this section also establishes the pattern of notation used throughout the chapter, which
follows standard conventions as far as possible. No reader should embark on this chapter
without having a fairly thorough understanding of the material in this section.

11.2.1 The rules of probability

We associate a probability P (A) with an event A, which in general is a subset of a sample
space S. The usual set-theoretic operations apply to the events (subsets) in S, and there
are corresponding rules that must be satisfied by the probabilities.

Complement rule

P(S − A) = 1 − P(A)

The complement S − A of an event A is often written as A
-
.

Addition rule

P(A < B) = P(A) + P(B) − P(A > B)

For disjoint events, A > B = \, and the addition rule takes the simple form

P(A < B) = P(A) + P(B)

Product rule

P(A > B) = P(A)P(B | A) 

11.2
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This is actually the definition of the conditional probability P(B | A) of an event B
given that an event A has occurred. If A and B are independent then the product rule
takes the simple form

P(A > B) = P(A)P(B)

since the occurrence of B does not depend on the occurrence of A. A more often used
expression for this conditional probability P(B | A) is

P(B | A) = 

provided P(B) > 0.

11.2.2 Random variables

A random variable has a sample space of possible numerical values together with a
distribution of probabilities. Random variables can be either discrete or continuous.
For a discrete random variable (X, say) the possible values can be written as a list
{v1, v2, v3, . . . } with corresponding probabilities P(X = v1), P(X = v2), P(X = v3), . . . .
The mean of X is then defined as

μX = 

(sum over all possible values), and is a measure of the central location of the distribution.
The variance of X is defined as

Var(X ) = σ 2
X = 

and is a measure of dispersion or spread of the distribution about the mean. The
symbols μ and σ2 are conventional for these quantities. In general, the expected
value of a function h(X) of X is defined as

E{h(X )} = 

of which the mean and variance are special cases obtained by setting h(x) = x and
h(x) = (x2μX )

2. The standard deviation σX is the square root of the variance. If the
random variable X has units associated with it, then μX and σX have the same units,
while σX

2
 is measured in the square of the original units.

For a continuous random variable (X, say), there is a probability density function
fX (x) and a cumulative distribution function FX (x). The cumulative distribution function
is defined as

FX (x) = P(X < x)

and is the definite integral of the density function:

This function determines the probabilities of events for the continuous random variable
X. The probability that X takes a value within the real interval (x1, x2) is the area under
the density function over that interval, or equivalently the difference in values of the
distribution function at its ends:

P A    B( )
P B( )

-----------------------
 

>

vk P X vk=( )
k


vk μX–( )2P X vk=( )
k


h vk( )P X vk=( )
k


FX x( ) = #
∞–

x

fX t( ) dt

P x1 , X , x2( ) = #
x1

x2

fX t( ) dt = FX x2( ) FX x1( )–



11.2  RE VIEW OF BASIC PROBABILITY  THEOR Y 803

(see Figure 11.1). Note that the events x1 , X , x2, x1 < X , x2, x1 < X < x2 and
x1 < X < x2 are all equivalent in probability terms for a continuous random variable
X because the probability of X being exactly equal to either x1 or x2 is zero. The mean
and variance of X, and the expected value of a function h(X ), are defined in terms of
the probability density function by

These definitions assume that the random variable is defined for values of x from −∞
to ∞. If the random variable is defined in general for values in some real interval, say
(a, b), then the domain of integration can be restricted to that interval, or alternatively
the density function can be defined to be zero outside that interval.

Just as events can be independent (and then obey a simple product rule of
probabilities), so can random variables be independent. We shall consider this in more
detail in Section 11.4. Means and variances of random variables (whether discrete or
continuous) have the following important properties (X and Y are random variables, and
c is an arbitrary constant):  

fX (x)

x2 xx10

Figure 11.1
Probability of interval 
from density function.

μX  = #
∞–

∞

x fX x( ) dx

Var X( ) = σ X
2  = #

∞–

∞

x μX–( )2 fX x( ) dx

E h X( ){ } = #
∞–

∞

h x( ) fX x( ) dx

E(cX ) = cE(X ) = cμX

Var(cX ) = c2Var(X ) = c2σ 2
X

E(X + c) = E(X ) + c = μX + c

Var(X + c) = Var(X ) = σ 2
X

E(X + Y ) = E(X ) + E(Y ) = μX + μY

(this applies whether or not X and Y are independent),

Var(X + Y ) = Var(X ) + Var(Y ) = σ 2
X + σ 2

Y

(this applies only when X and Y are independent).
It is also useful to note that Var(X ) = E(X 2) − [E(X )]2.
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Please also note that

can provide us with an easy way of finding Var(X) from E(X) and E(X2). It is not the
definition of Var(X) but a consequence of the definition

.

11.2.3 The Bernoulli, binomial and Poisson distributions

The simplest example of a discrete distribution is the Bernoulli distribution. This has
just two values: X = 1 with probability p and X = 0 with probability 1 − p, from which
the mean and variance are p and p(1 − p) respectively.

The binomial and Poisson distributions are families of discrete distributions whose
probabilities are generated by formulae, and which arise in many real situations. The
binomial distribution governs the number (X, say) of ‘successes’ in n independent
‘trials’, with a probability p of ‘success’ at each trial:

where the range of possible values k is {0, 1, 2, . . . , n}. The binomial distribution can
be thought of as the sum of n independent Bernoulli random variables. This distribution
(more properly, family of distributions) has two parameters, n and p. In terms of these
parameters, the mean and variance are

μX = np

σ 2
X = np(1 − p)

The Poisson distribution is defined as

P(X = k) = 

where the range of possible values k is the set of non-negative integers {0, 1, 2, . . . }.
This has mean and variance both equal to the single parameter λ, and, by setting λ =
np, provides a useful approximation to the binomial distribution that works when n is
large and p is small. As a guide, the approximation can be used when n > 25 and p <
0.1. The Poisson distribution has many other uses, as will be seen in Section 11.9.

Var X( ) E X2( ) E X( )[ ]2–=

Var X( ) E X E X[ ]–( )2[ ]=

It is easy to calculate binomial and Poisson probabilities in R:

dbinom(2, 4, 0.6) # binomial probability with k = 2, n = 4 
# and p = 0.6

dpois(4, 2) # Poisson probability with k = 4 and lambda = 2

These R commands can be typed into the RStudio’s R script editor window (availa-
ble initially by means of File → New File → R Script) and then run by R
in the Console window by clicking on ‘Run’ or by pressing ‘Ctrl’ and ‘Enter’
together on a Windows machine. Both dbinom and dpois are examples of R func-
tions. The symbol # is used to denote a comment, that will not be processed by R.
Here are the results, indicated throughout using #>:

#> [1] 0.3456
#> [1] 0.09022352

P X = k( ) = 
n
k 
  pk 1 p–( )n−k

λ k e λ–

k!
-------------
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11.2.4 The normal distribution

This is a family of continuous distributions with probability density function given by

The index [1] means that this is the first element of the output; in fact, here there
is just one element. Compare this with the output of the rpois function that gener-
ates 70 random numbers from a Poisson distribution with λ = 2:

rpois(70, 2)
#> [1] 2 0 1 2 2 2 2 1 4 2 1 2 1 1 1 1 1 1 0 4 3 3 0 3 1 
1 0 1 3 1 1 1 4 4 2
#> [36] 3 0 3 2 3 2 4 1 3 2 1 3 1 3 1 1 6 2 2 4 2 0 1 1 
1 0 2 1 2 1 1 3 1 0 1

It is easy to see the help file for an R function:

?dbinom
help("dbinom") # Alternative

R functions have arguments contained in brackets: (argument_1, argument_2),
for example. It can be seen from the help file (not shown here, but available using
R) that dbinom has four arguments: x, here the value of the number of successes k;
size, the value of the number of trials n; prob, the probability of success p; and
log which would cause R to report the natural logarithm of P(X = k) if it were set
to TRUE (by default log is set to FALSE so that this argument can be ignored for our
purposes). Hence, the following R commands yield the same results and illustrate
the use of arguments:

dbinom(2, 4, 0.6) # Arguments specified by order
#> [1] 0.3456
dbinom(x = 2, size = 4, prob = 0.6) # Arguments specified 

# by name
#> [1] 0.3456
# Argument order is not important provided argments are
# specified by name
dbinom(size = 4, prob = 0.6, x = 2)
#> [1] 0.3456
# Do not compute log probability (default)
p <− dbinom(x = 2, size = 4, prob = 0.6, log = FALSE); p
#> [1] 0.3456
# Now compute the natural log of the probability
dbinom(x = 2, size = 4, prob = 0.6, log = TRUE)
#> [1] −1.062473
log(p) # Check
#> [1] −1.062473

The term  can be computed in R using the choose function. Here is an exampe
with n = 6 and k = 2:

choose(6, 2)
#> [1] 15

n
k 
 

fX x( ) = 1

σX 2π( )
---------------------- exp 1

2
---– x μX–

σX

-------------- 
 

2
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for −∞ , x , +∞, where the parameters μX and σX are the mean and standard deviation
of the distribution. It is conventional to denote the fact that a random variable X has a
normal distribution by

X ~ N(μX, σ 2
X)

The standard normal distribution is a special case with zero mean and unit variance,
often denoted by Z:

Z ~ N(0, 1)

Tables of the standard normal cumulative distribution function

are widely available (see, for example, Figure 11.2). These tables can be used for
probability calculations involving arbitrary normal random variables. For example, if
X ~ N(μX, σ 2

X) then

We will refer to this method of computing the probability as the standardization
approach. R can perform probability calculations as we will see below.

The key result for applications of the normal distribution is the central limit theo-
rem: if {X1, X2, X3, . . . , Xn} are independent and identically distributed random varia-
bles (the distribution being arbitrary), each with mean μX and finite variance σ 2

X, and if

then, as n → ∞, the distributions of Wn and Zn tend to Wn ~ N(μX, σ 2
X /n) and Zn ~ N(0, 1)

respectively. Loosely speaking, the sum and the mean of independent identical
distributed random variables tend to normal distributions.

The central limit theorem is the key to many statistical processes, some of which are
described in Section 11.3. One corollary is that the normal distribution can be used to
approximate the binomial distribution when n is sufficiently large: if X is binomial
with parameters n and p then the approximating distribution (by equating the means
and variances) is Y ~ N(np, np(1 − p)). This is explained (together with the important
continuity correction) in Section 13.5.5 of MEM, and the approximation is used as
follows:

P(X < k) .

P(X = k) .

As a guide, the approximation can be used when n > 25 and 0.1 < p < 0.9. However,
as we have seen, binomial probabilities can be computed in R.

Φ z( ) P Z < z( )=  = 1

2π( )
--------------- #

∞–

z

e t 2/2– dt

P X < a( ) = P X μX–
σX

---------------  < 
a μX–

σX

--------------
 
 
   = Φ a μ X–

σX

--------------
 
 
 

Wn = X1 Xn++
n

--------------------------------- , Zn = X1 Xn nμX–++
σX n

------------------------------------------------
 . . .

Φ k 0.5 np–+
np1 p–

----------------------------
 
 
 

Φ k 0.5 np–+
np1 p–

----------------------------
 
 
  Φ k 0.5– np–

np1 p–
----------------------------
 
 
 –

. . .
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z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359

.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753

.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517

.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549

.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621

1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830

1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015

1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177

1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441

1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545

1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633

1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706

1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817

2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857

2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890

2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916

2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952

2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964

2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974

2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981

2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990

3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993

3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995

3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997

3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

z 1.282 1.645 1.960 2.326 2.576 3.090 3.291 3.891 4.417
Φ (z) .90 .95 .975 .99 .995 .999 .9995 .999 95 .999 995
2[1− Φ (z)] .20 .10 .05 .02 .01 .002 .001 .000 1 .000 01

Figure 11.2 Table of 
the standard normal 
cumulative distribution 
function Φ(z).
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11.2.5 Sample measures

It is conventional to denote a random variable by an upper-case letter (X, say), and an
actual observed value of it by the corresponding lower-case letter (x, say). An observed
value x will be one of the set of possible values (sample space) for the random variable,
which for a discrete random variable may be written as a list of the form {v1, v2, v3, . . . }.
It is possible to observe a random variable many times (say n times) and obtain a series
of values. In this case we assume that the random variable X refers to a population
(whose characteristics may be unknown), and we refer to the series of random variables
{X1, X2, . . . , Xn} as a sample. Each Xi is assumed to have the characteristics of the
population, so they all have the same distribution. The actual series of values {x1, x2,
. . . , xn} consists of data upon which we can work. It is useful to define certain sample
measures in terms of the random variables {X1, X2, . . . , Xn} in order to produce
analytical procedures for data. Principal among these measures are the sample average
and sample variance, defined as

It is easy to use R to compute the values of Φ(z) given in Figure 11.2. R provides
more decimal places than Figure 11.2. Here are some examples:

pnorm(0) # z = 0, giving P(Z <= 0) = Phi(0)
#> [1] 0.5
pnorm(1.52) # z = 1.52, giving P(Z <= 1.52) = Phi(1.52)
#> [1] 0.9357445
pnorm(1.645)
#> [1] 0.9500151
pnorm(1.960)
#> [1] 0.9750021
1 − pnorm(1.645) # P(Z > 1.645) = 1 − Phi(1.645)
#> [1] 0.04998491
pnorm(1.645, lower.tail = FALSE) # easier and better way 

# of computing the same
probability

#> [1] 0.04998491
2 * (1 − pnorm(1.645)) # 2 [1 − Phi(1.645)
#> [1] 0.09996981
2 * (1 − pnorm(1.960)) # 2 [1 − Phi(1.960)]
#> [1] 0.04999579

If the random variable X ~ N(3,25), so that μX = 3 and  = 25 (σX = 5), we can
calculate P(X ≤ 2) as follows:

pnorm((2 − 3) / 5) # using the standardization approach # 
# formula Phi((x − mu_X) / sigma_X)

#> [1] 0.4207403

or more simply as

pnorm(2, 3, 5)

σ 2
X

X = 1
n
--- Xi, SX

2  = 1
n
--- Xi X–( )

2

i=1

n


i=1

n


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respectively. To make calculations shorter it is useful to note that the sample variance
is the average of the squares minus the square of the average:

, 

in which . This form of  can suffer considerably from numerical 

problems. We shall also need the following alternative definition of sample variance in
Section 11.3.5:

This is the definition used by R and by many other statistics packages. We can use
the properties of means and variances (summarized in Section 11.2.2) to find the mean
and variance of the sample average as follows:

E(X{) = E(X1 + . . . + Xn) = [E(X1) + . . . + E(Xn)]

=  = μX

Var(X{) = Var(X1 + . . . + Xn) = [Var(X1) + . . . + Var(Xn)]

Here we are assuming that the population mean and variance are μX and σ 2
X respectively

(which may be unknown values in practice), and that the observations of the random
variables Xi are independent, a very important requirement in statistics.

We can use R to calculate the sample average  and the alternative sample variance
 of a series {x1, x2, . . . , xn} of values:

 

For example, let us assume that we observe n = 3 values x1 = 2, x2 = 5 and x3 = 4.
These can be entered into R using:

x <− c(2, 5, 4)
# <− can be thought of as the assignment operator
# the function c collects together the data
# so: x is assigned to the collection of data 2, 5, 4

x # To show the contents of an R object just type its name
#> [1] 2 5 4

Individual elements can be accessed using [element number(s)]:

x[2] # Second element
#> [1] 5
x[2:3] # Elements 2 to 3
#> [1] 5 4

SX
2  = X 2

X( )
2

–

X
2 1

n
--- Xi

2

i=1

n

= SX
2

SX ,n−1
2  = 1

n 1–
------------ Xi X–( )

2

i=1

n



1
n
--- 1

n
---

nμX

n
---------

1

n2
----- 1

n2
-----

= 
nσ X

2

n2
----------  = 

σ X
2

n
------

x
sX n 1–,

2

x
1
n
--- xi,

i=1

n

= sX n 1–,
2 1

n 1–
------------ xi x–( )

2

i=1

n

=
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Estimating parameters

11.3.1 Interval estimates and hypothesis tests

The first step in statistics is to take some data from an experiment and make inferences
about the values of certain parameters. Such parameters could be the mean and variance of
a population, or the correlation between two variables for a population. The data are never
sufficient to determine the values exactly, but two kinds of inferences can be made:

(a) a range of values can be computed from the observed data, with intervals computed
in this way from repeatedly sampled data containing the population parameter with
high probability, or

(b) a decision can be made as to whether or not the data are compatible with a par-
ticular value (or range of values) of the parameter.

The first of these is called interval estimation, and provides an assessment of the value
that is rather more honest than merely quoting a single number derived from the sample
data, which may be more or less uncertain depending upon the sample size. The second
approach is called hypothesis testing and allows a value of particular interest to be
assessed. These two approaches are usually covered in separate chapters in introductory
textbooks on statistics, but they are closely related and are often used in conjunction
with each other. Tests of simple hypotheses about a specified parameter value will
therefore be covered here within the context of interval estimation.

11.3.2 Distribution of the sample average

Suppose that a clearly identified population has a numerical characteristic with an unknown
mean value, such as the mean lifetime for a kind of electronic component or the mean salary
for a job category. A natural way to estimate this unknown mean is to take a sample from
the population, measure the appropriate characteristic, and find the average value. If the
sample size is n and the measured values are {x1, x2, . . . , xn} then the average value

x[c(1,3)] # Elements 1 and 3
#> [1] 2 4
x[−c(l,3)] # Elements except 1 and 3
#> [1] 5

The sample quantities  and  can be computed as:

mean(x)
#> [1] 3.666667
var(x)
#> [1] 2.333333

These and other R functions have been carefully developed with numerical accuracy
in mind.

x sX n 1–,
2

11.3

X  = 1
n
--- xi

i=1

n





11.3  ESTIMATING PARAMETER S 811

is a reasonable estimate of the population mean μX provided that the sample is
representative and independent, and the size n is sufficiently large.

We can be more precise about how useful this estimate is if we treat the sample
average as a random variable. Now we have a sample {X1, X2, . . . , Xn} with average

and the mean and variance of  are given by

E( ) = μX, Var( ) = 

(see Section 11.2.5). This shows that the expected value of the average is indeed equal
to the population mean, and that the variance decreases with sample size n and so is
smaller for larger samples. However, we can go further. The central limit theorem
(Section 11.2.4) tells us that sums of identical random variables tend to have a normal
distribution regardless of the distribution of the variables themselves. The only
requirement is that a sufficient number of variables contribute to the sum (the actual
number required depends very much on the shape of the underlying distribution).

This allows us to use a general method of inference concerning means instead of a
separate method for each underlying distribution – even if this were known, which is
usually not the case. In practice, a sample size of 25 or more is usually sufficient for the
normal approximation.

For all children taking an examination, the mean mark was 60%, with a standard
deviation of 8%. A particular class of 30 children achieved an average of 63%. Is this
unusual?

Solution The average of 63% is higher than the mean, but not by very much. We do not know the true
distribution of marks, but the sample average has (approximately) a normal distribution.
We can test the idea that this particular class result is a fluke by reducing the sample
average to a standard normal in the manner described in Section 11.2.4 and checking
its value against the table of the cumulative distribution function Φ (z) (Figure 11.2):

P(  > 63) =  = P (Z > 2.054) = 1 − P(Z , 2.054) 

= 1 − Φ (2.054) = 0.020

It is unlikely (one chance in 50) that an average as high as this could occur by chance,
assuming that the ability of the class is typical. Figure 11.3 illustrates that the result
is towards the tail of the distribution. It therefore seems that this class is unusually
successful.

X  = 1
n
--- Xi

i=1

n


X

X X
σ X

2

n
------

The sample average is a sum of random variables, and therefore has (approximately)
a normal distribution for a sufficiently large sample:

 ~ N( μX, σ 2
X /n)X̃

Example 11.1

X P
X 60–
8 30
--------------- > 

63 60–
8 30

------------------
 
 
 
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11.3.3 Confidence interval for the mean

A useful notation will be introduced here. For the standard normal distribution, define
zα to be the point on the z axis for which the area under the density function to its right
is equal to α :

P(Z > zα) = α

or equivalently

Φ (zα ) = 1 − α

(see Figure 11.4a). From the standard normal table we have z0.05 = 1.645 and z0.025 = 1.96.
By symmetry 

P(−zα /2 , Z , zα /2) = 1 − α

It is useful to see how to perform this probability calculation in a general way in R:

mu <− 60 # Mean for all children
sigma <− 8 # Standard deviation for all children
n <− 30 # Sample size
x_bar <− 63 # Sample mean
# Standardization approach
z <− (x_bar − mu) / (sigma / sqrt(n)); z
#> [1] 2.05396

# Here we separate two R commands using a semicolon to 
# save space
# In practice, it is usually better to put each R command 
# on a separate line

1 − pnorm(z); pnorm(z, lower.tail = FALSE)
#> [1] 0.0199898
#> [1] 0.0199898
# Direct calculation
pnorm(x_bar, mu, sigma / sqrt(n), lower.tail = FALSE)
#> [1] 0.0199898

Figure 11.3 Normal 
density function for 
Example 11.1.
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(see Figure 11.4b). Assuming normality of the sample average, we have

which, after multiplying through the inequality by σX /  and changing the sign, gives

so that

Assume for now that the standard deviation of X is known (it is actually very rare for
σX to be known when μX is unknown, but we shall discuss this case first for simplicity
and later consider the more general situation where both μX and σX are unknown).

The temperature (in degrees Celsius) at ten points chosen at random in a large building
is measured, giving the following list of readings:

{18°, 16.5°, 17.5°, 18°, 19.5°, 16.5°, 18°, 17°, 19°, 17.5°}

The standard deviation of temperature through the building is known from past
experience to be 1°C. Find a 90% confidence interval for the mean temperature in the
building.

Solution The average of the ten readings is 17.75 °C, and, using z0.05 = 1.645, the 90% confidence
interval is

(17.75 ± 1.645(1/ ) = (17.2, 18.3)

P zα/2–  , 
X μX–
σX / n
----------------  , zα /2

 
 
 

 = 1 α–

Figure 11.4 Normal density functions with (a) zα and (b) zα /2.

n

P zα /2– σX

n
-------  , μX X–  , zα /2

σX

n
-------

 
 
   = 1 α–

P X zα /2
σX

n
-------  , μX , X zα /2

σX

n
-------+–

 
 
 

 = 1 α–

The interval defined by X { ± zα /2σX / is called a 100(1 − α)% confidence inter-
val for the mean, with variance known. If a value for α is specified, the upper and
lower limits of this interval can be calculated from the sample average. The proba-
bility is 1 − α that this random interval contains the true mean.


 n



Example 11.2

10
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The confidence interval is used to indicate the degree of uncertainty in the sample
average. The simplicity of the calculation is deceptive because the idea is very important
and easily misunderstood. It is not the population mean that is random but rather the
interval that would enclose it 100(1 − α)% of the times the experiment is performed. It
is tempting to think of the interval as fixed by the experiment and the mean as a random
variable that has a probability 1 − α of lying within it, but this is not correct.

Typical values of α are 0.1, 0.05 and 0.01, giving 90%, 95% and 99% confidence
intervals respectively. The value chosen is a compromise between truth and precision,
as illustrated in Figure 11.5. Loosely speaking, a statement saying that the mean lies
within the interval (−∞, ∞) is 100% true (certain to be the case), but totally uninform-
ative because of its total imprecision. None of the possible values is ruled out. On the
other hand, saying that the mean equals the exact value given by the sample average is
maximally precise, but again of limited value because the statement is false − or rather
the probability of its truth is zero. A statement quoting a finite interval for the mean has
a probability of being true, chosen to be quite high, and at the same time it rules out
most of the possible values and therefore is highly informative. The higher the proba-
bility of truth, the lower the informativeness, and vice versa.

The width of the interval also depends on the sample size n. A larger
experiment yields a more precise result. If figures for the confidence 1 − α and precision
(width of the interval) are specified in advance then the sample size can be chosen
sufficiently large to satisfy these requirements. In some experimental situations

This confidence interval can be computed in R as follows:

# Input the data
temperature <− c(18, 16.5, 17.5, 18, 19.5, 16.5, 18, 17,
19, 17.5)
sigma <− 1 # Assumed known
n <− length(temperature) # Sample size
x_bar <− mean(temperature) # Sample mean
se <− sigma / sqrt(n) # Standard error of the mean
alpha <− 0.1 # As 90% confidence interval required
z <− qnorm(alpha / 2, lower.tail = FALSE); z 

# We want z such that P(Z > z) = alpha / 2
#> [1] 1.644854
# Confidence interval
c(x_bar − z*se, x_bar + z*se)
#> [1] 17.22985 18.27015

Figure 11.5
Confidence intervals: 
(a) infinite interval; 
(b) finite interval; 
(c) point value.

2zα 2⁄ σX n⁄
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(for example, destructive testing) there are incentives to keep sample sizes as small as
possible. The experimenter must weigh up these conflicting objectives and design the
experiment accordingly.

A machine fills cartons of liquid; the mean fill is adjustable but the dial on the gauge
is not very accurate. The standard deviation of the quantity of fill is 6 ml. A sample of
30 cartons gave a measured average content of 570 ml. Find 90% and 95% confidence
intervals for the mean.

Solution Using α = 0.05 and z0.025 = 1.96, the 95% confidence interval is

(570 ± 1.960(6/ )) = (567.8, 572.1)

Likewise, using α = 0.1 and z0.05 = 1.645, the 90% confidence interval is

(570 ± 1.645(6/ )) = (568.2, 571.8)

As expected, the 95% interval is slightly wider.

11.3.4 Testing simple hypotheses

As explained in Section 11.3.1, the testing of hypotheses about parameter values is
complementary to the estimation process involving an interval. A ‘simple’ hypothesis
is one that specifies a particular value for the parameter, as opposed to an interval, and
it is this type that we shall consider. The following remarks apply generally to parameter
hypothesis testing, but will be directed in particular to hypotheses concerning means.

There are two kinds of errors that can occur when testing hypotheses:

(a) a true hypothesis can be rejected (this is usually referred to as a type I error), or

(b) a false hypothesis can be accepted (this is usually called a type II error).

In reality, all simple hypotheses that prescribe particular values for parameters are false,
but they may be approximately true and rejection may be the result of an experimental
fluke. This is the sense in which a type I error can occur. Any such hypothesis will be
rejected if the sample size is large enough. Acceptance really means that there is
insufficient evidence to reject the hypothesis, but this is not an entirely negative view
because if the hypothesis has survived the test then it has some degree of dependability.

Example 11.3

30

30

Normally a simple hypothesis is tested by evaluating a test statistic, a quantity
that depends upon the sample and leads to rejection of the hypothesized parameter
value if its magnitude exceeds a certain threshold. If the hypothesized mean is μ0

then the test statistic for the mean is

with the hypothesis ‘rejected at significance level α’ if | Z | . zα /2.

Z = 
X μ0–
σX / n
---------------
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The significance level can be regarded as the probability of false rejection, an error
of type I. If the hypothesis is true then Z has a standard normal distribution and the
probability that it will exceed zα /2 in magnitude is α. If Z does exceed this value then
either the hypothesis is wrong or else a rare event has occurred. It is easy to show
that the test statistic lies on this threshold (for significance level α) exactly when
the hypothesized value lies at one or other extreme of the 100(1 − α)% confidence
interval (see Figure 11.6). An alternative way to test the hypothesis is therefore to see
whether or not the value lies within the confidence interval. For example, the hypothesis
that the mean takes the value would be rejected at significance level α = 0.05 if the
corresponding 95% confidence interval does not contain .

For the situation described in Example 11.3 test the hypothesis that the mean fill of liquid
is 568 ml (one imperial pint).

Solution The value of the test statistic is

This exceeds z0.05 = 1.645 (10% significance), but is less than z0.025 = 1.96 (5%
significance). Alternatively, the quoted figure lies within the 95% confidence interval but
outside the 90% confidence interval. Either way, the hypothesis is rejected at the 10%
significance level but accepted at the 5% level. If the actual mean is 568 ml then there is
less than one chance in 10 (but more than one in 20) that a result as extreme as 570 ml
will be obtained. It looks as though the true mean is larger than the intended value, but
the evidence is not particularly strong. The probability of false rejection (type I error) is
somewhere between 5% and 10%, which is small but not negligible.

Examples 11.3 and 11.4 set the pattern for the interpretation and use of confidence
intervals. We shall now see how to apply these ideas more generally.

μ0

μ0

Figure 11.6
Confidence interval 
and hypothesis test.

Example 11.4

Z = 570 568–
6/ 30

------------------------  = 1.83
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11.3.5 Other confidence intervals and tests concerning means

Mean when variance is unknown

With the basic ideas of interval estimation and hypothesis testing established, it is
relatively easy to cover other cases. The first and most obvious is to remove the
assumption that the variance is known. If the sample size is large then there is
essentially no problem, because the sample standard deviation SX,n−1 can be used in
place of σX in the confidence interval, where

 

This definition was introduced in Section 11.2.5. Note that the sum is divided by n − 1
rather than n. For a large sample this makes little difference, but for a small sample this
form must be used because the ‘t distribution’ requires it.

Suppose that the sample size is small, say less than 25. Using SX,n−1 in place of σX

adds an extra uncertainty because this estimate is itself subject to error. Furthermore,
the central limit theorem cannot be relied upon to ensure that the sample average has a
normal distribution. We have to assume that the data themselves are normal. In this
situation the random variable

has a t distribution with parameter n − 1. This distribution resembles the normal
distribution, as can be seen in Figure 11.7, which shows the density functions of T2 and
T5 together with that of the standard normal distribution. In fact Tn tends to the standard
normal distribution as n → ∞. The parameter of the t distribution (whose value here is one
less than the size of the sample) is usually called the number of degrees of freedom.

SX n−1,
2  = 1

n 1–
------------ Xi X–( )

2

i=1

n



Figure 11.7 Density 
functions of Tn and z.

Tn = X μX–
SX n−1, / n
----------------------

Defining tα,n−1 by

P(Tn . tα,n−1) = α

(by analogy with zα), we can derive a 100(1 − α)% confidence interval for the mean
by the method used in Section 11.3.3:

X  ± tα/2,n−1
SX n−1,

n
-------------

 
 
 
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The measured lifetimes of a sample of 20 electronic components gave an average of
1250 h, with a sample standard deviation SX,n21 of 96 h. Assuming that the lifetime has a
normal distribution, find a 95% confidence interval for the mean lifetime of the popula-
tion, and test the hypothesis that the mean is 1300 h.

This takes explicit account of the uncertainty caused by the use of SX,n−1 in place of
σX. Values of tα,n−1 for typical values of α can be read directly from the table of the t
distribution, an example of which is shown in Figure 11.8. To obtain a test statistic
for an assumed mean μ0, simply replace μX by μ0 in the definition of Tn.

n α = 0.10 α = 0.05 α = 0.025 α = 0.01 α = 0.005 n

1 3.078 6.314 12.706 31.821 63.657 1
2 1.886 2.920 4.303 6.965 9.925 2
3 1.638 2.353 3.182 4.541 5.841 3
4 1.533 2.132 2.776 3.747 4.604 4
5 1.476 2.015 2.571 3.365 4.032 5

6 1.440 1.943 2.447 3.143 3.707 6
7 1.415 1.895 2.365 2.998 3.499 7
8 1.397 1.860 2.306 2.896 3.355 8
9 1.383 1.833 2.262 2.821 3.250 9

10 1.372 1.812 2.228 2.764 3.169 10

11 1.363 1.796 2.201 2.718 3.106 11
12 1.356 1.782 2.179 2.681 3.055 12
13 1.350 1.771 2.160 2.650 3.012 13
14 1.345 1.761 2.145 2.624 2.977 14
15 1.341 1.753 2.131 2.602 2.947 15

16 1.337 1.746 2.120 2.583 2.921 16
17 1.333 1.740 2.110 2.567 2.898 17
18 1.330 1.734 2.101 2.552 2.878 18
19 1.328 1.729 2.093 2.539 2.861 19
20 1.325 1.725 2.086 2.528 2.845 20

21 1.323 1.721 2.080 2.518 2.831 21
22 1.321 1.717 2.074 2.508 2.819 22
23 1.319 1.714 2.069 2.500 2.807 23
24 1.318 1.711 2.064 2.492 2.797 24
25 1.316 1.708 2.060 2.485 2.787 25

26 1.315 1.706 2.056 2.479 2.779 26
27 1.314 1.703 2.052 2.473 2.771 27
28 1.313 1.701 2.048 2.467 2.763 28
29 1.311 1.699 2.045 2.462 2.756 29
∞ 1.282 1.645 1.960 2.326 2.576 ∞

Figure 11.8 Table 
of the t distribution tα ,n. 
(Based on Table 12 
of Biometrika Tables 
for Statisticians, 
Volume 1. Cambridge 
University Press, 1954. 
By permission of the 
Biometrika trustees.)

These tabulated values can be easily calculated in R. Here is an example:

alpha <− 0.025
n <− 6 # Number of degrees of freedom
qt(alpha, n, lower.tail = FALSE)
#> [1] 2.446912

Example 11.5
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Solution The appropriate figure from the t table is t0.025,19 = 2.093, so the 95% confidence interval is

(1250 ± 2.093(96)/ ) = (1205, 1295)

The claim that the mean lifetime is 1300 h is therefore rejected at the 5% significance
level. The same conclusion is reached by evaluating

which exceeds t0.025,19 in magnitude.

Difference between means

Now suppose that we have not just a single sample but two samples from different
populations, and that we wish to compare the separate means. Assume also that the
variances of the two populations are equal but unknown (the most common situation).
Then it can be shown that the 100(1 − α)% confidence interval for the difference μ1 − μ2

between the means is

Here are the lifetimes of 5 electronic components in hours: 1106, 1251, 1368, 1101
and 1266. We can test the hypothesis that μ0 = 1300 h in R as follows:

lifetimes <− c(1106, 1251, 1368, 1101, 1266)
t.test(lifetimes, mu = 1300)
#>
#> One Sample t-test
#>
#> data: lifetimes
#> t = −1.5984, df = 4, p-value = 0.1852
#> alternative hypothesis: true mean is not equal to 1300
#> 95 percent confidence interval:
#> 1076.658 1360.142
#> sample estimates:
#> mean of x
#> 1218.4

The hypothesis that μ0 = 1300 h would be rejected at significance level α if the
p-value were less than α. Here μ0 = 1300 h would not be rejected by a test of
significance level 0.05 (5%) or 0.10 (10%). R also calculated a 95% confidence
interval. A 90% confidence interval can be found using

t.test(lifetimes, mu = 1300, conf.level = 0.9)$conf.int
#> [1] 1109.566 1327.234
#> attr(, "conf.level")
#> [1] 0.9

Both these intervals contain 1300 h.

20

Tn = 1250 1300–
96 / 20

------------------------------  = 2.33–

X1 X2  ± tα /2,nSp

1
n1

----- 1
n2

-----+
 
 
 

–
 
 
 
 
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For small samples the populations have to be normal, but for larger samples this is not
required and the t-table figure can be replaced by zα /2.

Two kinds of a new plastic material are to be compared for strength. From tensile strength
measurements of 10 similar pieces of each type, the sample averages and standard
deviations were as follows:

= 78.3, S1 = 5.6,  = 84.2, S2 = 6.3

Compare the population mean strengths, assuming normal data.

Solution The pooled estimate of the standard deviation is 5.960, the t table gives t0.025,18 = 2.101,
and the 95% confidence interval for the difference between means is

(78.3 − 84.2 ± 2.101(5.96)/ ) = (−11.5, −0.3)

The difference is significant at the 5% level because zero does not lie within the interval.
Also, assuming zero difference gives

which confirms the 5% significance.

where 1 and 2 are the respective sample averages, n1 and n2 are the respective
sample sizes, S 2

1 and S 2
2 are the respective sample variances (using the ‘n − 1’ form

as above),

is a pooled estimate of the unknown variance, and

n = n1 + n2 − 2

is the parameter for the t table. The corresponding test statistic for an assumed
difference d0 = μ1 − μ2 is

X X

S p
2 = 

n1 1–( )S 1
2 n2 1–( )S 2

2+
n1 n2 2–+

-------------------------------------------------------

Tn = 
X1 X2– d0–

Sp 1/n1 1/n2+( )
-----------------------------------------

Example 11.6

X1 X2

The tensile strength measures of 4 pieces of plastic of type 1 were 76.4, 72.9. 78.0
and 87.1, and of 5 pieces of plastic of type 2 were 89.5, 96.7, 94.9, 91.2 and 83.4.
We can compare the population mean stengths as follows:

type_1 <− c(76.4, 72.9, 78.0, 87.1)
type_2 <− c(89.5, 96.7, 94.9, 91.2, 83.4)
t.test(type_1, type_2, mu = 0, var.equal = TRUE) 
# Population variances assumed equal
#>
#> Two Sample t-test
#>

5

Tn = 78.3 84.2–
5.96/ 5

---------------------------  = 2.21–
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It is also possible to set up confidence intervals and tests for the variance σ 2
X, or for

comparing two variances for different populations. The process of testing means and
variances within and between several populations is called analysis of variance. This
has many applications, and is well covered in statistics textbooks. For a detailed
treatment with R implementations, see P. Dalgaard, Introductory Statistics with R
(second edition, New York, Springer, 2008) or N.J. Harton and K. Kleinman, Using
R and RStudio for Data Management, Statistical Analysis, and Graphics (second
edition, Boca Raton, FL, Chapman and Hall, 2015).

11.3.6 Interval and test for proportion

The ideas of interval estimation do not just apply to means. If probability is interpreted
as a long-term proportion (which is one of the common interpretations) then measuring
a sample proportion is a way of estimating a probability. The binomial distribution
(Section 11.2.3) points the way. We count the number of ‘successes’, say X, in n ‘trials’,
and estimate the probability p of success at each trial, or the long-term proportion, by
the sample proportion

 = 

(it is common in statistics to place the ‘hat’ symbol ˆ over a parameter to denote an
estimate of that parameter). This only provides a point estimate. To obtain a confidence
interval, we can exploit the normal approximation to the binomial (Section 11.2.4)

X ~ N(np, np(1 − p) )

approximately, for large n. Dividing by n preserves normality, so

~ 

Following the argument in Section 11.3.3, we have

#> data: type_1 and type_2
#> t = −3.3529, df = 7, p-value − 0.0122
#> alternative hypothesis: true difference in means is not 
# equal to 0
#> 95 percent confidence interval:
#> −21.383839 −3.696161
#> sample estimates:
#> mean of x mean of y
#> 78.60 91.14

As before, conclusions can be based on the p-value or the confidence interval. Here
a test of significance level 0.05 (5%) would reject the hypothesis that μ1 − μ2 = 0 or
that μ1 = μ2.

p̂ X
n
---

p̂ N p
p 1 p–( )

n
--------------------, 

 

P p zα /2
p 1 p–( )

n
-------------------- , p̂ , p– zα /2

p 1 p–( )
n

--------------------+
 
 
 

 = 1 α–
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and, after rearranging the inequality,

In an opinion poll conducted with a sample of 1000 people chosen at random, 30% said
that they support a certain political party. Find a 95% confidence interval for the actual
proportion of the population who support this party.

Solution The required confidence interval is obtained directly as

A variation of about 3% either way is therefore to be expected when conducting opinion
polls with sample sizes of this order, which is fairly typical, and this figure is often
quoted in the news media as an indication of maximum likely error.

P p̂ zα /2
p 1 p–( )

n
--------------------  , p , p̂– zα/2

p 1 p–( )
n

--------------------+
 
 
 

 = 1 α–

Because p is unknown, we have to make a further approximation by replacing p by
inside the square root, to give an approximate 100(1 − α)% confidence interval for p:

The corresponding test statistic for an assumed proportion p0 is

with ±zα /2 as the rejection points for significance level α.

p̂

p̂ ± zα /2
p̂ 1 p̂–( )

n
--------------------

 
 
 

Ζ = X np0–
np0 1 p0–( )[ ]

------------------------------------

Example 11.7

To obtain this approximate interval in R:

prop.test(x = 300, n = 1000)$conf.int
#> [1] 0.2719222 0.3296354
#> attr(, “conf.level”)
#> [1] 0.95

0.3 ± 1.96
0.3( ) 0.7( )

1000
-------------------------

 
 
 

0.27 0.33,( )=

A similar argument that also exploits the fact that the difference between two
independent normal random variables is also normal leads to the following 100(1 − α)%
confidence interval for the difference between two proportions, when 1 and 2 are
the respective sample proportions:

p̂ p̂

p̂1 p̂2 ± zα /2

p̂1 1 p̂1–( )
n1

------------------------ p̂2 1 p̂2–( )
n2

------------------------+–
 
 
 
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One hundred samples of an alloy are tested for resistance to fatigue. Half have been
prepared using a new process and the other half by a standard process. Of those
prepared by the new process, 35 exhibit good fatigue resistance, whereas only 25 of
those prepared in the standard way show the same performance. Is the new process
better than the standard one?

Solution The proportions of good samples are 0.7 for the new process and 0.5 for the standard
one, so a 95% confidence interval for the difference between the true proportions is

The pooled estimate of proportion is

= (35 + 25)/(50 + 50) = 0.6

so that

Both approaches show that the difference is significant at the 5% level. However, it is
only just so: if one more sample for the new process had been less fatigue-resistant, the
difference would not have been significant at this level. This suggests that the new process
is effective – but, despite the apparently large difference in success rates, the evidence
is not very strong.

This method only applies to independent sample proportions. It would not be legitim-
ate to apply it, for instance, to a more elaborate version of the opinion poll (Example 11.7)
in which respondents can choose between two (or more) political parties or else support
neither. Support for one party usually precludes support for another, so the proportions
of those interviewed who support the two parties are not independent. More elaborate

Again it is assumed that n1 and n2 are reasonably large. The test statistic for equality
of proportions is

where  = (X1 + X2)/(n1 + n2) is a pooled estimate of the proportion.

Ζ  = 
p̂1 p̂2–

p 1 p̂–( ) 1/n1 1/n2+( )[ ]
-------------------------------------------------------------

p̂

Example 11.8

To obtain this approximate interval in R:

prop.test(x = c(35, 25), n = c(50, 50), correct = 
FALSE)$conf.int # No continuity correction is applied
#> [1] 0.01200686 0.38799314
#> attr(, "conf. level")
#> [1] 0.95

0.7 0.5–  ± 1.96 0.7( ) 0.3( )
50

------------------------- 0.5( ) 0.5( )
50

-------------------------+
 
 
 

 = 0.01 0.39,( )

p

Z
0.7 0.5–

0.6( ) 0.4( )/25[ ]
------------------------------------------ 2.04= =
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confidence intervals, based on the multinomial distribution, can handle such situations.
Chapter 7 of J. J. Faraday, Extending the Linear Model with R (second edition, Boca
Raton, FL, Chapman and Hall/CRC, 2016) is devoted to modelling multinomial data.
This shows how important it is to understand the assumptions upon which statistical
methods are based. It would be very easy to look up ‘difference between proportions’
in an index and apply an inappropriate formula.

Check your calculations using R whenever possible.

An electrical firm manufactures light bulbs whose 
lifetime is approximately normally distributed with 
a standard deviation of 50 h.

(a) If a sample of 30 bulbs has an average life of 
780 h, find a 95% confidence interval for the 
mean lifetime of the population.

(b) How large a sample is needed if we wish to be 
95% confident that our sample average will be 
within 10 h of the population mean?

Monthly rainfall measurements (in mm) were taken 
at a certain location for three years, with results 
as follows:

38 48 50 94 105 53 81 91 110 103 90 84

115 113 35 130 77 67 72 113 98 37 61 91

9 112 29 16 56 61 82 132 48 68 114 55

Find the average monthly rainfall for this period. 
Also find a 95% confidence interval for the mean 
monthly rainfall, using the measured standard 
deviation as an estimate of the true value.

Quantities of a trace impurity in 12 specimens of a 
new material are measured (in parts per million) 
as follows:

8.8, 7.1, 7.9, 10.2, 8.9, 7.7, 10.6, 9.4, 9.2, 7.5, 
9.0, 8.4

Find a 95% confidence interval for the population 
mean, assuming that the distribution is normal.

A sample of 30 pieces of a semiconductor material 
gave an average resistivity of 73.2 mΩ m, with a 
sample standard deviation of 5.4 mΩ m. Obtain 
a 95% confidence interval for the resistivity of 

the material, and test the hypothesis that this is 
75 mΩ m.

The mean weight loss of 16 grinding balls after 
a certain length of time in mill slurry is 3.42 g, 
with a standard deviation of 0.68 g. Construct 
a 99% confidence interval for the true mean 
weight loss of such grinding balls under the 
stated conditions.

While performing a certain task under simulated 
weightlessness, the pulse rate of 32 astronaut 
trainees increased on average by 26.4 beats per 
minute, with a standard deviation of 4.28 beats 
per minute. Construct a 95% confidence interval 
for the true average increase in the pulse rate of 
astronaut trainees performing the given task.

The quality of a liquid being used in an etching 
process is monitored automatically by measuring 
the attenuation of a certain wavelength of light 
passing through it. The criterion is that when the 
attenuation reaches 58%, the liquid is declared as 
‘spent’. Ten samples of the liquid are used until they 
are judged as ‘spent’ by the experts. The light 
attenuation is then measured, and gives an average 
result of 56%, with a standard deviation of 3%. 
Is the criterion satisfactory?

A fleet car company has to decide between two 
brands A and B of tyre for its cars. An experiment 
is conducted using 12 of each brand, run until 
they wear out. The sample averages and standard 
deviations of running distance (in km) are 
respectively 36 300 and 5000 for A, and 39 100 and 
6100 for B. Obtain a 95% confidence interval for 
the difference in means, assuming the distributions 
to be normal, and test the hypothesis that brand B 
tyres outrun brand A tyres.

11.3.7 Exercises

1

2

3

4

5

6

7

8
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A manufacturer claims that the lifetime of a 
particular electronic component is unaffected by 
temperature variations within the range 0–60 °C. 
Two samples of these components were tested, 
and their measured lifetimes (in hours) recorded 
as follows:

0 °C: 7250, 6970, 7370, 7910, 6790, 6850, 
7280, 7830

60 °C: 7030, 7270, 6510, 6700, 7350, 6770, 
6220, 7230

Assuming that the lifetimes have a normal 
distribution, find 90% and 95% confidence intervals 
for the difference between the mean lifetimes at the 
two temperatures, and hence test the manufacturer’s 
claim at the 5% and 10% significance levels.

Suppose that out of 540 drivers tested at random, 38 
were found to have consumed more than the legal 
limit of alcohol. Find 90% and 95% confidence 
intervals for the true proportion of drivers who were 
over the limit during the time of the tests. Are the 
results compatible with the hypothesis that this 
proportion is less than 5%?

It is known that approximately one-quarter of 
all houses in a certain area have inadequate loft 

insulation. How many houses should be inspected 
if the difference between the estimated and true 
proportions having inadequate loft insulation is 
not to exceed 0.05, with probability 90%? If in fact 
200 houses are inspected, and 55 of them have 
inadequate loft insulation, find a 90% confidence 
interval for the true proportion.

A drug-manufacturer claims that the proportion 
of patients exhibiting side-effects to their new 
anti-arthritis drug is at least 8% lower than for the 
standard brand X. In a controlled experiment 31 out 
of 100 patients receiving the new drug exhibited 
side-effects, as did 74 out of 150 patients receiving 
brand X. Test the manufacturer’s claim using 90% 
and 95% confidence intervals.

Suppose that 10 years ago 500 people were 
working in a factory, and 180 of them were 
exposed to a material which is now suspected as 
being carcinogenic. Of those 180, 30 have since 
developed cancer, whereas 32 of the other workers 
(who were not exposed) have also since developed 
cancer. Obtain a 95% confidence interval for the 
difference between the proportions with cancer 
among those exposed and not exposed, and 
assess whether the material should be considered 
carcinogenic, on this evidence.

9

10

11

12

13

Joint distributions and correlation
Just as it is possible for events to be dependent upon one another in that information
that one has occurred changes the probability of the other, so it is possible for random
variables to be associated in value. In this section we show how the degree of depend-
ence between two random variables can be defined and measured.

11.4.1 Joint and marginal distributions

The idea that two variables, each of which is random, can be associated in some way
might seem mysterious at first, but can be clarified with some familiar examples. For
instance, if one chooses a person at random and measures his or her height and
weight, each measurement is a random variable – but we know that taller people also
tend to be heavier than shorter people, so the outcomes will be related. On the other
hand, a person’s birthday and telephone number are not likely to be related in any

11.4
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way. In general, we need a measure of the simultaneous distribution of two random
variables.

Two textbooks are selected at random from a shelf containing three statistics texts, two
mathematics texts and three engineering texts. Denoting the number of books selected
in each subject by S, M and E respectively, find (a) the joint distribution of S and M, and
(b) the marginal distributions of S, M and E.

Solution (a)

The joint distribution (shown in Figure 11.9) is built up element by element using
the addition and product rules of probability as follows:

P(S = M = 0) = P(E = 2) = ( )( ) =  

that is, the probability that the first book is an engineering text (three chances out
of eight) times the probability that the second book is also (two remaining chances
out of seven). Continuing,

P(S = 0 > M = 1) = P(M = 1 > E = 1)

= ( )( ) + ( )( ) = 

that is, the probability that the first book is a mathematics text and the second an
engineering text, plus the (equal) probability of the books being the other way
round. The other probabilities are derived similarly.

For two discrete random variables X and Y with possible values {u1, . . . , um} and
{v1, . . . , vn} respectively, the joint distribution of X and Y is the set of all joint
probabilities of the form

P(X = uk > Y = vj) (k = 1, . . . , m; j = 1, . . . , n)

The joint distribution contains all relevant information about the random variables
separately, as well as their joint behaviour. To obtain the distribution of one variable,
we sum over the possible values of the other:

P(X = uk) = (X = uk > Y = vj) (k = 1, . . . , m)

P(Y = vj) = (X = uk > Y = vj) ( j = 1, . . . , n)

The distributions obtained in this way are called marginal distributions of X and Y.

P
j=1

n



P
k=1

m



Example 11.9

M

S 0 1 2 Total

0

1

2

Total 1

3
28
------ 3

14
------ 1

28
------ 5

14
------

9
28
------ 3

14
------ 15

28
------

3
28
------ 3

28
------

15
28
------ 3

7
--- 1

28
------

Figure 11.9
Joint distribution 
for Example 11.9.

3
8
--- 2

7
--- 3

28
------

2
8
--- 3

7
--- 3

8
--- 2

7
--- 3

14
------
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(b) The marginal distributions of S and M are just the row and column totals as shown
in Figure 11.9. The marginal distribution of E can also be derived from the table:

P(E = 2) = P(S = M = 0) = 

P(E = 1) = P(S = 1 > M = 0) + P(S = 0 > M = 1) = 

P(E = 0) = P(S = 2) + P(S = 1 > M = 1) + P(M = 2) = 

This is the same as the marginal distribution of S, which is not surprising, because
there are the same numbers of engineering and statistics books on the shelf.
Note the way that the joint probabilities and the marginal probabilities sum to 1.

In order to apply these ideas of joint and marginal distributions to continuous random
variables, we need to build on the interpretation of the probability density function.
The joint density function of two continuous random variables X and Y, denoted by
fX,Y (x, y), is such that

for all intervals (x1, x2) and ( y1, y2). This involves a double integral over the two variables
x and y. This is necessary because the joint density function must indicate the relative
likelihood of every combination of values of X and Y, just as the joint distribution does
for discrete random variables. The joint density function is transformed into a proba-
bility by integrating over an interval for both variables. The double integral here can
be regarded as a pair of single-variable integrations, with the outer variable (x) held
constant during the integration with respect to the inner variable ( y). In fact the same
answer is obtained if the integration is performed the other way around.

The joint density function of random variables X and Y is

where c is a constant such that 0 < c < 1 (which means that fX,Y(x, y) is unity over the
trapezoidal area shown in Figure 11.10 and zero elsewhere). Find the marginal
distributions of X and Y. Also find the probability that neither X nor Y exceeds one-half,
assuming c = 1.

P(x1 , X , x2 and y1 , Y , y2) = 

3
28
------

15
28
------

5
14
------

#
x1

x2

#
y1

y2

fX Y, x y,( ) dy dx

The marginal density functions for X and Y are obtained from the joint density
function in a manner analogous to the discrete case: by integrating over all values
of the unwanted variable:

fX (x) = (−∞ , x , ∞)

fY ( y) = (−∞ , y , ∞)

#
∞–

∞

fX,Y x y,( ) dy

#
∞–

∞

fX ,Y x y,( ) dx

Example 11.10

fX Y, x y,( ) = 
1 0 < x < 1, cx < y < cx 1+( )
0 otherwise



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Solution To find the marginal distribution of X, we integrate with respect to y:

The marginal distribution for Y is rather more complicated. Integrating with respect to
x and assuming that 0 , c < 1,

(Exercise 16). When c = 0, the marginal distribution for Y is the same as that for X.
Finally, when c = 1,

P(X < and Y < ) = 

Here the inner integral (with respect to y) is performed with x treated as constant, and
the resulting function of x is integrated to give the answer.

The definitions of joint and marginal distributions can be extended to any number of
random variables.

11.4.2 Independence

The idea of independence of events can be extended to random variables to give us
the important case in which no information is shared between them. This is important
in experiments where essentially the same quantity is measured repeatedly, either
within a single experiment involving repetition or between different experiments. As
mentioned before, independence within a sample is one of the properties that is
assumed by a range of statistical procedures.

For example, the random variables X and Y in Example 11.10 are independent if and
only if c = 0 in which case fX,Y(x,y) = 1, fX(x) = 1 and fY(y) = 1 (0 < x < 1, 0 < y < 1). 

The assembly of a complex piece of equipment can be divided into two stages. The
times (in hours) required for the two stages are random variables (X and Y, say) with
density functions e−x and 2 e−2y respectively. Assuming that the stage assembly times are
independent, find the probability that the assembly will be completed within four hours.

fX x( ) = #
cx

cx+1

dy 1 0 < x < 1( )=

0 otherwise





fY y( ) = 

1
1
c
--- y 1–( )– 1 < y < 1 c+( )

1 c < y < 1( )
y
c
-- 0 < y < c( )









Figure 11.10
Density function for 
Example 11.10. The 
dashed unit square 
indicates the area in 
which fX,Y(x,y) is non-
zero when c = 0.

1
2
--- 1

2
--- #

0

1/2

#
x

1/2

1 dy dx = #
0

1/2
1
2
--- x– 
  dx = 1

8
---

Two random variables X and Y are called independent if their joint distribution
factorizes into the product of their marginal distributions:

P(X = uk > Y = vj) = P(X = uk)P(Y = vj) in the discrete case

fX,Y (x, y) = fX(x) fY ( y) in the continuous case

Example 11.11
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Solution The assumption of independence implies that

fX,Y (x, y) = fX(x) fY ( y) = e2x 2e22y = 2 e−(x+2y)

If the time for the first stage is x, the total time will not exceed four hours if

Y , 4 − x

so the required value is

P(X + Y , 4) =  = 

Where random variables are dependent upon one another, it is possible to express
this dependence by defining a conditional distribution analogous to conditional
probability, in terms of the joint distribution (or density function) and the marginal
distributions. Examples are

P(X = uk | Y = vj) = P(X = uk ∩ Y = vj) / P(Y = vj) in the discrete case and 

fX | Y (x | y) = fX,Y (x,y) / fY (y ) in the continuous case.

We shall now consider a numerical measure of dependence that can be estimated
from sample data.

11.4.3 Covariance and correlation

The use of mean and variance for a random variable is motivated partly by the difficulty
in determining the full probability distribution in many practical cases. The joint
distribution of two variables presents even greater difficulties. Since we already have
numerical measures of location and dispersion for the variables individually, it seems
reasonable to define a measure of association of the two variables that is independent
of their separate means and variances so that the new measure provides essentially new
information about the variables.

There are four objectives that it seems reasonable for such a measure to satisfy. Its
value should

(a) be zero for independent variables,

(b) be non-zero for dependent variables,

(c) indicate the degree of dependence in some well-defined sense, detached from the
individual means and variances,

(d) be easy to estimate from sample data.

It is actually rather difficult to satisfy all of these, but the most popular measure of
association gets most of the way.

#
0

4

#
0

4−x

fX ,Y x y,( ) dy dx #
0

4

#
0

4−x

2 e x+2y( )– dy dx

= #
0

4

e x– e 8−x( )––( ) dx 0.964=

The covariance of random variables X and Y, denoted by Cov(X, Y ), is defined as

Cov(X, Y ) = E{(X − μX)(Y − μY)}
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If whenever the random variable X is larger than its mean the random variable Y also tends
to be larger than its mean, then the product (X − μX)(Y − μY) will tend to be positive. The
same will be true if both variables tend to be smaller than their means simultaneously. The
covariance is then positive. A negative covariance implies that the variables tend to move
in opposite directions with respect to their means. Both covariance and correlation
therefore measure association relative to the mean values of the variables. It turns out that
correlation measures association relative to the standard deviations as well.

It should be noted that the variance of a random variable X is the same as the
covariance with itself:

Var(X ) = Cov(X, X )

Also, by expanding the product within the integral or sum in the definition of covariance,
it is easy to show that an alternative expression is

Cov(X, Y) = E(XY) − E(X)E(Y)

Although the sign of the covariance indicates the direction of the dependence, its magnitude
depends not only on the degree of dependence but also upon the variances of the random
variables, so it fails to satisfy the objective (c). In contrast, the correlation is limited in range

−1 < ρX,Y < +1

and it adopts the limiting values of this range only when the random variables are
linearly related:

ρX,Y = ±1 if and only if there exist a, b such that Y = aX + b

(this is proved in most textbooks on probability theory, such as G. R. Grimmett and D. R.
Stirzaker, Probability and Random Processes, third edition, Oxford, Clarendon Press,
2000). The magnitude of the correlation indicates the degree of linear relationship, so
that objective (c) is satisfied.

Find the correlation of the random variables S and M in Example 11.9.

Solution The joint and marginal distributions of S and M are shown in Figure 11.9. First we find
the expected values of S and S 2 from the marginal distribution, and hence the variance
and standard deviation:

for discrete and continuous variables respectively. The correlation ρX,Y is the covariance
divided by the product of the standard deviations:

ρX,Y = 

= 

uk μX–( ) vj μY–( )P X uk > Y vj= =( )
j=1

n


k=1

m



#
∞–

∞

#
∞–

∞

x μX–( ) y μY–( ) fX Y, x y,( ) dx dy








Cov X Y,( )
σXσY

--------------------------

Example 11.12

E S( ) = 1( )15
28
------ 2( ) 3

28
------+  = 21

28
------, E S 2( ) = 1( )2 15

28
------ 22( ) 3

28
------( )+  = 27

28
------

Var S( ) = 27
28
------ 21

28
------( )2– 315

282
---------=
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from which

σS = 

Next we do the same for M:

from which

σM = 

All products of S and M are zero except when both are equal to one, so the expected
value of the product is

E(SM ) = 

The correlation now follows easily:

 = −0.447.

The correlation is negative because if there are more statistics books in the selection then
there will tend to be fewer mathematics books, and vice versa, as two textbooks are selected.

Find the correlation of the random variables X and Y in Example 11.10.

Solution Proceeding as in Example 11.12, we have for X

E(X ) = 

E(X 2 ) = 

so that Var(X ) = E(X 2) − [E(X )]2 =  Also, for Y

= (1 + c) after simplification

= (1 + c2) + c after simplification

so that Var(Y ) = E(Y 2) − [E(Y )]2 = (1 + c2). For the expected value of the product
we have

3
28
------ 35

E M( ) = 1( )3
7
--- 2( ) 1

28
------+  = 1

2
--- , E M2( ) = 1( )2 3

7
--- 2( )2 1

28
------+  = 4

7
---

Var M( ) = 4
7
--- 1

4
---–  = 9

28
------

3
2
--- 1

7
---

1( ) 3
14
------ 3

14
------=

ρS M,  = E SM( ) E S( )E M( )–
σSσM

-------------------------------------------------  = 
3
14
------ 21

28
------( ) 1

2
---( )–

3
28
------ 35( ) 3

2
--- 1

7
---( )

--------------------------------  = 1

5
-------–

Example 11.13

#
0

1

x dx = 1
2
---

#
0

1

x2 dx = 1
3
---

1
12
------.

E Y( ) = #
0

c
y2

c
---- dy + #

c

1

y dy + #
1

1+c

y 1
1
c
--- y 1–( )– dy

1
2
---

E Y 2( ) = #
0

c
y3

c
---- dy #

c

1

y2 dy #
1

1+c

y2 1
1
c
--- y 1–( )– dy+ +

1
3
--- 1

2
---

1
12
------

E XY( ) = #
0

1

#
cx

cx+1

xy dy dx = 1
2
--- #

0

1

x 1 2cx+( ) dx = 1
4
--- 1

3
---c+
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Finally, the correlation between X and Y is

Note that in fact the result of Example 11.13 holds for any value of c, and not just for
the range 0 < c < 1 assumed in Example 11.10. As the value of c increases (positive
or negative), the correlation increases also, but its magnitude never exceeds one. It is
also clear that if X and Y are independent then c = 0 and the correlation is zero. Refer
to Figure 11.10 for a geometrical interpretation: when c = 0, the sample space is a
square within which all points are equally likely, so there is no association between
the variables; as c increases (positive or negative), the sample space becomes more
elongated as the variables become more tightly coupled to one another.

The general relationship between independence and correlation is expressed as
follows: if the random variables X and Y are independent then their correlation is zero.
This is easily shown as follows for continuous random variables (or by a similar argument
for discrete random variables). First we have

fX,Y (x, y) = fX (x) fY ( y)

and then

= (μX − μX)(μY − μY) = 0

since probability density functions integrate to 1.
Unfortunately, the converse does not hold: zero correlation does not imply independ-

ence. In general, correlation is a measure of linear dependence, and may be zero or very
small for variables that are dependent in a nonlinear way (see Exercise 15). Objective
(a) is satisfied, therefore, but not objective (b) in general.

Another problem with correlation is that a non-zero value does not imply the
presence of a causal relationship between the variables or the phenomena that they
measure. Correlation can be ‘spurious’, deriving from some third variable that may be
unrecognized at the time. For example, among the economic statistics that are gathered
together from many countries, there are figures for the expenditure on luxury goods per
head of population, birth rate, and the gross domestic product per capita (GDP). It turns
out that there is a large negative correlation between expenditure on luxury goods per
head and the birth rate, but no-one would suggest that the expenditure on luxury goods
has any direct application in birth control. The GDP is a measure of wealth, and there
is a large positive correlation between this and expenditure on luxury goods, and a large
negative correlation between GDP and birth rate, both for quite genuine reasons. The
correlation between expenditure on luxury goods and birth rate is therefore spurious,
and a more sophisticated measure called the partial correlation can be used to
eliminate the third variable (provided that it is recognized and measured). Indeed, the

ρX ,Y = E XY( ) E X( )E Y( )–
Var X( ) Var Y( )[ ]

-------------------------------------------------

 = 
1
4
--- 1

3
---c 1

4
--- 1 c+( )–+

1
12
------ 1 c2+( )

--------------------------------------  = c

1 c2+( )
-----------------------

#
∞–

∞

#
∞–

∞

x μX–( ) y μY–( ) fX x( ) fY y( ) dx dy

= #
∞–

∞

x μX–( ) fX x( ) dx #
∞–

∞

y μY–( ) fY y( ) dy
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partial correlation ρX,Y | Z between two variables X and Y allowing for variable Z is the
correlation between X and Y after the effect of Z has been removed, perhaps using a
regression approach (see Section 11.5).

We have considered all the objectives except (d); that this is satisfied is shown in
Section 11.4.4.

11.4.4 Sample correlation

There are two kinds of situations where we take samples of values of two random
variables X and Y. First we might be interested in the same property for two different
populations. Perhaps there is evidence that the mean values are different, so we take
samples of each and compare them. This situation was discussed in Section 11.3.5. The
second kind involves two different properties for the same population. It is to this
situation that correlation applies. We take a single sample from the population and
measure the pair of random variables (Xi, Yi) for each i = 1, . . . , n.

Like the true underlying population correlation, the sample correlation is limited in
value to the range [−1, 1] and rX,Y = ±1 when (and only when) all of the points lie along
a line. Figure 11.11 contains four typical scatter diagrams of samples plotted on the
(x, y) plane, with an indication of the correlation for each one. The range of behaviour
is shown from independence (a) through imperfect correlation (b) and (c) to a perfect
linear relationship (d).

By expanding the product within the outer bracket in the numerator, it is easy to
show that an alternative expression is

This expression is quicker to calculate by hand, although it can suffer from considerable
numerical problems.

For a sample {(X1, Y1), . . . , (Xn, Yn)} the sample correlation coefficient is
defined as

rX Y,

1
n
---

i=1

n

 Xi X–( ) Yi Y–( )[ ]

SX SY

--------------------------------------------------------=

Figure 11.11 Scatter plots for two random variables: (a) rX,Y = 0; (b) rX,Y > 0; (c) rX,Y < 0; (d) rX,Y = 1.

rX Y,
XY X( ) Y( )–

SX SY

------------------------------=
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A material used in the construction industry contains an impurity suspected of having
an adverse effect upon the material’s performance in resisting long-term operational
stresses. Percentages of impurity and performance indexes for 22 specimens of this
material are as follows:

Find the sample correlation coefficient.

Solution The following quantities are easily obtained from the data:

= 4.6545, SX = 0.550 81,  = 19.1818, SY = 6.0350,  = 87.3591

(Note that it is advisable to record these results to several significant digits in order to
avoid losing precision when calculating the difference within the numerator of rX,Y.) The
sample correlation is then rX ,Y = { − ( )( )/(SXSY)} = −0.58, using the alternative
expression. The negative value suggests that the impurity has an adverse effect upon
performance. It remains to be seen whether this is statistically significant.

The sample correlation coefficient can be computed in R using the function cor as
we will see in Example 11.14. R functions for calculating summary statistics have
been carefully developed with numerical accuracy in mind.

Example 11.14

% Impurity Xi 4.4 5.5 4.2 3.0 4.5 4.9 4.6 5.0 4.7 5.1 4.4
Performance Yi 12 14 18 35 23 29 16 12 18 21 27

% Impurity Xi 4.1 4.9 4.7 5.0 4.6 3.6 4.9 5.1 4.8 5.2 5.2
Performance Yi 13 19 22 20 16 27 21 13 18 17 11

We first show in detail how to work out the sample correlation in R using the alter-
native expression. We will confirm our result by computing the sample correlation
coefficient from the definition and then more easily using R’s function cor.

Impurity_X <− c(4.4, 5.5, 4.2, 3.0, 4.5, 4.9, 4.6, 
5.0, 4.7, 5.1, 4.4, 4.1, 4.9, 4.7, 5.0, 4.6, 3.6, 
4.9, 5.1, 4.8, 5.2, 5.2)
#
Performance_Y <− c(12, 14, 18, 35, 23, 29, 16, 12, 18, 21, 
27, 13, 19, 22, 20, 16, 27, 21, 13, 18, 17, 11)
# Step by step calculations
# Preliminary calculations of sums
X_sum <− sum(Impurity_X); X_sum 
Y_sum <− sum(Performance_Y); Y_sum
#> [1] 102.4
#> [1] 422
X_2_sum <− sum(Impurity_X^2); X_2_sum 
Y_2_sum <− sum(Performance_Y^2); Y_2_sum

X Y XY

XY X Y
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11.4.5 Interval and test for correlation

#> [1] 483.3
#> [1] 8896
XY_sum <− sum(Impurity_X * Performance_Y); XY_sum
#> [1] 1921.9
n <− length(Impurity_X); n # n, sample size
#> [1] 22
# Sample means
X_bar <− X_sum / n; X_bar; Y_bar <− Y_sum / n; Y_bar
#> [1] 4.654545
#> [1] 19.18182
# Sample standard deviations S_X and S_Y
S_2_X <− (X_2_sum / n) − X_bar^2; S_X <− sqrt(S_2_X); S_X
#> [1] 0.5508071
S_2_Y <− (Y_2_sum / n) − Y_bar^2; S_Y <− sqrt(S_2_Y); S_Y
#> [1] 6.035022
# Mean of the products
XY_bar <− XY_sum / n; XY_bar
#> [1] 87.35909
# Sample correlation coefficient using the alternative 
# expression
(XY_bar − X_bar * Y_bar) / (S_X * S_Y)
#> [1] −0.5786633
# Sample correlation using the definition
(1 / n) * sum((Impurity_X − X_bar) * (Performance_Y − 
Y_bar)) / (S_X * S_Y)
#> [1] −0.5786633
# Sample correlation coefficient using R’s function cor
r <− cor(Impurity_X, Performance_Y); r
#> [1] −0.5786633

Correlation is more difficult to deal with than mean and proportion, but for normal
random variables X and Y with a true correlation ρX ,Y the sample statistic

is approximately standard normal for large n. This can be used directly as a test
statistic for an assumed value of ρX ,Y. Alternatively, an approximate 100(1 − α)%
confidence interval for ρX ,Y can be derived:

Z = n 3–( )
2

--------------------- 1 rX ,Y+( ) 1 ρX ,Y–( )
1 rX ,Y–( ) 1 ρX ,Y+( )

---------------------------------------------ln

1 r c 1 r–( )–+
1 r c 1 r–( )+ +
------------------------------------- 1 r 1 r–( )/c–+

1 r 1 r–( )/c+ +
---------------------------------------, 

 
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For the data in Example 11.14 find 95% and 99% confidence intervals for the true
correlation between percentage of impurity and performance index, and test the
hypothesis that these are independent.

Solution The sample correlation (from the 22 specimens) was found in Example 11.14 to be
−0.58. For the 95% confidence interval the constant c = 2.458 and the interval itself is
(−0.80, −0.21). Similarly, the 99% confidence interval is (−0.85, −0.07). Assuming
ρXY = 0, the value of the test statistic is Z = −2.88, which exceeds z0.005 = 2.576 in
magnitude. Either way, we can be more than 99% confident that the impurity has an
adverse effect upon performance.

where

(the subscripts X and Y have been dropped from rX ,Y in this formula).

c = 
2zα /2

n 3–( )
---------------------exp

Example 11.15

Here are the calculations in R:

# 95% confidence interval
alpha <− 0.05 # As 95% confidence interval required
z <− qnorm(alpha / 2, lower.tail = FALSE); z 

# We want z such that P(Z > z) = alpha / 2
#> [1] 1.959964
constant <− exp(2 * z / sqrt(n − 3)); constant
#> [1] 2.457865
# Confidence interval
c((1 + r − constant*(1 − r)) / (1 + r + constant*(1 − r)), 
(1 + r − (1 − r) / constant) / (1 + r + (1 − r) / constant))
#> [1] −0.8040968 −0.2077362
# 99% confidence interval
alpha <− 0.01 # As 99% confidence interval required
z <− qnorm(alpha / 2, lower.tail = FALSE); z
# We want z such that P(Z > z) = alpha / 2

#> [1] 2.575829
constant <− exp(2 * z / sqrt(n − 3)); constant
#> [1] 3.260471
c((1 + r − constant*(1 − r)) / (1 + r + constant*(1 − r)), 
(1 + r − (1 − r) / constant) / (1 + r + (1 − r) / constant))
#> [1] −0.84867200 −0.06940328
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# Sample statistic
rho <− 0 # Value under the null hypothesis H_0: rho = 0
Z_statistic <− (sqrt(n − 3) / 2) * log(((1 + r) * (1 − 
rho)) / ((1 − r) * (1 + rho)))
Z_statistic
#> [1] −2.878838
z # Critical value from above
#> [1] 2.575829

The confidence intervals can be obtained in R directly:

cor.test(Impurity_X, Performance_Y) 
# Default is a 95% confidence interval

#>
#> Pearson’s product-moment correlation
#>
#> data: Impurity_X and Performance_Y
#> t = −3.1731, df = 20, p-value = 0.004781
#> alternative hypothesis: true correlation is not equal to 0
#> 95 percent confidence interval:
#> −0.8040968 −0.2077362
#> sample estimates:
#> cor
#> −0.5786633
cor.test(Impurity_X, Performance_Y, conf.level = 0.99) 

# 99% confidence interval
#>
#> Pearson’s product-moment correlation
#>
#> data: Impurity_X and Performance_Y
#> t = −3.1731, df = 20, p-value = 0.004781
#> alternative hypothesis: true correlation is not equal to 0
#> 99 percent confidence interval:
#> −0.84867200 −0.06940328
#> sample estimates:
#> cor
#> −0.5786633

R uses a different form of the test statistic. The null hypothesis that ρXY = 0 would
be rejected at significance level α if the p-value were less than α. As the p-value of
0.004781 is less than 0.01, we reject the null hypothesis H0: ρXY = 0 at the 0.01 level
of significance.
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11.4.6 Rank correlation

As has been previously emphasized the correlation only works as a measure of
dependence if

(1) n is reasonably large,

(2) X and Y are numerical characteristics,

(3) the dependence is linear, and

(4) X and Y each have a normal distribution.

There is an alternative form of sample correlation, which has greater applicability,
requiring only that

(1) n is reasonably large,

(2) X and Y are rankable characteristics, and

(3) the dependence is monotonic (that is, always in the same direction, which may be
forward or inverse, but not necessarily linear).

The variables X and Y can have any distribution. For a set of data X1, . . . , Xn, a rank of 1
is assigned to the smallest value, 2 to the next-smallest and so on up to a rank of n assigned
to the largest. This applies wherever the values are distinct. Tied values are given the mean
of the ranks they would receive if slightly different. The following is an example:

Xi 8 3 5 8 1 9 6 5 3 5 7 2
Rank 10.5 3.5 6 10.5 1 12 8 6 3.5 6 9 2

We can obtain these ranks in R using the rank function:
x <- c(8, 3, 5, 8, 1, 9, 6, 5, 3, 5, 7, 2)
rank(x)
#> [1] 10.5 3.5 6.0 10.5 1.0 12.0 8.0 6.0 3.5 6.0 9.0 2.0

The Spearman rank correlation coefficient rS for data (X1, Y1), . . . , (Xn, Yn) is the
correlation of the ranks of Xi and Yi, where the data X1, . . . , Xn and Y1, . . . , Yn are
ranked separately. If the number of tied values is small compared with n then

where di is the difference between the rank of Xi and that of Yi. The value of rS always
lies in the interval [−1, 1], and adopts its extreme values only when the rankings
precisely match (forwards or in reverse).

To test for dependence, special tables must be used for small samples (n , 20), but
for larger samples the test statistic

Z = rS

is approximately standard normal.

rS . 1
6

n n2 1–( )
----------------------

i=1

n

 d i
2–

n 1–( )
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Find and test the rank correlation for the data in Example 11.14.

Solution The data with their ranks are as follows: 

From this, the rank correlation is rS = −0.361, and Z = −1.66, which exceeds z0.05 = 1.645
and is therefore just significant at the 10% level. If the approximate formula is used, the
sum of squares of differences is 2398, so

and Z = −1.62, which is just short of significance.
These results show that the rank correlation is a more conservative test than the sample

correlation rX,Y, in that a larger sample tends to be needed before the hypothesis of inde-
pendence is rejected. A price has to be paid for the wider applicability of the method.

Example 11.16

Xi 4.4 5.5 4.2 3.0 4.5 4.9 4.6 5.0 4.7 5.1 4.4
Rank 5.5 22 4 1 7 14 8.5 16.5 10.5 18.5 5.5

Yi 12 14 18 35 23 29 16 12 18 21 27
Rank 2.5 6 11 22 18 21 7.5 2.5 11 15.5 19.5

Xi 4.1 4.9 4.7 5.0 4.6 3.6 4.9 5.1 4.8 5.2 5.2
Rank 3 14 10.5 16.5 8.5 2 14 18.5 12 20.5 20.5

Yi 13 19 22 20 16 27 21 13 18 17 11
Rank 4.5 13 17 14 7.5 19.5 15.5 4.5 11 9 1

Here are the ranks of the impurity and performance data:

rank(Impurity_X)
#> [1] 5.5 22.0 4.0 1.0 7.0 14.0 8.5 16.5 10.5 18.5 5.5 
3.0 14.0 10.5
#> [15] 16.5 8.5 2.0 14.0 18.5 12.0 20.5 20.5
rank(Performance_Y)
#> [1] 2.5 6.0 11.0 22.0 18.0 21.0 7.5 2.5 11.0 15.5 19.5 
4.5 13.0 17.0
#> [15] 14.0 7.5 19.5 15.5 4.5 11.0 9.0 1.0

The Spearman rank correlation coefficient can be found by computing the sample
correlation of the ranks:

cor(rank(Impurity_X), rank(Performance_Y))
#> [1] −0.3613398

The Spearman rank correlation coefficient can be calculated directly in R as:

r_S <− cor(Impurity_X, Performance_Y, 
method = "spearman"); r_S

#> [1] −0.3613398

The test statistic takes the value

Z <− r_S * sqrt(n − 1); Z
#> [1] −1.655867

rS . 1
6( ) 2398( )
22( ) 483( )

-------------------------– −0.354=
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the absolute value 1.655867 of which can be compared with the critical value:

alpha <− 0.1
z <− qnorm(alpha / 2, lower.tail = FALSE); z
#> [1] 1.644854

A hypothesis test can be performed in R as follows:

cor.test(Impurity_X, Performance_Y, method = "spearman")
#>
#> Spearman’s rank correlation rho
#>
#> data: Impurity_X and Performance_Y
#> S = 2410.9, p-value = 0.09848
#> alternative hypothesis: true rho is not equal to 0
#> sample estimates:
#> rho
#> −0.3613398

Again, R uses a different form of the test statistic. The null hypothesis of zero cor-
relation would be rejected at the significance level α if the p-value were less than α.
As the p-value of 0.09848 is less than 0.1, we reject the null hypothesis at the 0.1
level of significance.

The approximate values of the Spearman rank correlation coefficient and the
associated test statistic can be calculated as:

diff_rank <− rank(Impurity_X) − rank(Performance_Y)
r_S_approx <− 1 − (6 / (n * (n^2 − 1))) * sum(diff_rank^2); 
r_S_approx
#> [1] −0.3540373
Z <− r_S_approx * sqrt(n − 1); Z
#> [1] −1.622403

Check your calculations using R whenever possible.

Suppose that the random variables X and Y have the 
following joint distribution:

Find (a) the marginal distributions of X and Y, 
(b) P(Y = 3 | X = 2), and (c) the mean, variance 
and correlation coefficient of X and Y.

Consider the random variable X with density 
function

fX(x) = 

Show that the covariance of X and X 2 is zero. 
(This shows that zero covariance does not imply 
independence, because obviously X 2 is dependent 
on X.)

11.4.7 Exercises

X

Y 1 2 3

1 0 0.17 0.08
2 0.20 0.11 0
3 0.14 0.25 0.05

14

15

1 1
2
--- , x , 1

2
---–( )

0 otherwise


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The joint density function of random variables 
X and Y is

fX,Y (x, y) = 

where c is a constant such that 0 < c < 1. 
Find the marginal density function for Y 
(see Example 11.10).

Let the random variables X and Y represent the 
lifetimes (in hundreds of hours) of two types 
of components used in an electronic system. 
The joint density function is given by

fX,Y (x, y) = 

Find (a) the probability that two components 
(one of each type) will each last longer than 100 h, 
and (b) the probability that a component of the 
second type (Y ) will have a lifetime in excess 
of 200 h.

The following are the measured heights and 
weights of eight people:

Find the sample correlation coefficient.

The number of minutes it took 10 mechanics to 
assemble a piece of machinery in the morning (X ) 
and in the late afternoon (Y ) were measured, with 
the following results:

Find the sample correlation coefficient.

If the sample correlation between resistance and 
failure time for 30 overloaded resistors is 0.7, find a 
95% confidence interval for the true correlation.

Find a 95% confidence interval for correlation 
between height and weight using the data in 
Exercise 18.

Marks obtained by 20 students taking examinations in 
mathematics and computer studies were as follows:

Find the sample correlation coefficient and the 
90% and 95% confidence intervals. Hence test the 
hypothesis that the two marks are independent at the 
5% and 10% significance levels. Also find and test 
the rank correlation.

Let the random variables X and Y have joint density 
function given by

fX,Y (x, y) = 

Find (a) the value of the constant c, (b) P(x , , 
y . ), and (c) the marginal density functions for 
X and Y.

The ball and socket of a joint are separately moulded 
and then assembled together. The diameter of the 
ball is a random variable X between 29.8 and 
30.3 mm, all values being equally likely. The 
internal diameter of the socket is a random variable 
Y between 30.1 and 30.6 mm, again with all values 
equally likely. The condition for an acceptable fit 
is that 0 < Y − X < 0.6 mm. Find the probability of 
this condition being satisfied, assuming that the 
random variables are independent.

Height (cm) 182.8 162.5 175.2 185.4 170.1 167.6 177.8 172.7
Weight (kg) 86.1 58.3 83.0 92.4 60.2 69.3 83.6 72.7

X 11.1 10.3 12.0 15.1 13.7 18.5 17.3 14.2 14.8 15.3
Y 10.9 14.2 13.8 21.5 13.2 21.1 16.4 19.3 17.4 19.0

16

1 (0 < x < 1  cx < y < cx 1)+;
0 otherwise




17

1
8
--- x e x+y( )/2– x . 0, y . 0( )

0 otherwise



18

19

Math. 45 77 43 64 58 64 58 54 71 45
57 52 67 57 54 54 61 58 55 42

Comp. 64 67 47 75 42 65 58 42 70 44
44 67 49 70 51 58 37 60 42 36

20

21

22

23

c 1 y–( ) (0 < x < y < 1)

0 otherwise



3
4
---

1
2
---

24

Regression
A procedure that is very familiar to engineers is that of drawing a good straight line
through a set of points on a graph. When calibrating a measuring instrument, for example,
known inputs are applied, the readings are noted and plotted, a straight line is drawn as
close to the points as possible (there are bound to be small errors, so they will not all
lie on the line), and the graph is then used to interpret the readings for unknown inputs.
It is possible to draw the line by eye, but there is a better way, which involves calculating

11.5
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the slope and intercept of the line from the data. The given line then minimizes the total
squared error for the data points. This procedure (which for historical reasons is called
regression) can be applied in general to pairs of random variables.

Computer packages such as R are very often used to carry out the regression calcu-
lations and display the results. This is of special value when the data tend to follow a
curve and various nonlinear models are tried and compared (see Section 11.5.4).

11.5.1 The method of least squares

The correlation was introduced in Section 11.4.3 as a way of measuring the dependence
between random variables. Subsequently, we have seen how the correlation can be
estimated and the dependence tested using sample data. We can take the idea of
correlation between variables (say X and Y ) a stage further by assuming that the sample
pairs {(X1, Y1), . . . , (Xn, Yn)} satisfy a linear relationship of the form

Yi = a + bXi + ε i (i = 1, . . . , n)

where the intercept a and the slope b are unknown coefficients and the random variables
ε i have zero mean and represent the associated errors, that is the differences between
the observed values Yi and the values on the line a + bXi. This assumption is prompted
by the scatter diagrams in Figure 11.11, which illustrate how the points may be con-
centrated around a line. Figure 11.12 shows a typical scatter diagram again, this time
with the line drawn in. If we can estimate the coefficients a and b so as to give the best
fit, we shall be able to predict the value of Y when the value of X is known.

The least-squares approach is to choose estimates â and  to minimize the sum of
squares of the values ε i:

Equating to zero the partial derivatives of this sum with respect to the two coefficients
gives a pair of equations that determine the minimum:

 

Figure 11.12 Scatter 
plot with regression 
line (Example 11.17).

b̂

Q a b,( ) = ε i
2

i=1

n

  = Yi a bXi+( )–{ }2

i=1

n



∂Q
∂ a
-------  = 0  −2 Yi â b̂Xi+( )–{ }

i=1

n

 0=

∂Q
∂ b
-------  = 0   −2 Xi Yi â b̂Xi+( )–{ }

i=1

n

 0=
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These can be rewritten as

nâ + (i X i)  = (i Yi)

(i Xi)â + (i X 2
i )  = (i XiYi)

(where i = n
i=1) from which the solution is

This process of fitting a straight line through a set of data of the form {(X1, Y1), . . . ,
(Xn, Yn)} is called linear regression, and the coefficients are called regression coefficients.

A strain gauge has been bonded to a steel beam, and is being calibrated. The resistance
of the strain gauge is converted into a voltage appearing on a meter. Known forces (X,
in kN) are applied and voltmeter measurements (Y, in V) are as follows:

Fit a regression line through the data and estimate the tension in the beam when the
meter reading is 13.8 V.

Also, estimate the voltmeter measurement when the tension or force is 8.5 kN.

Solution The following quantities are calculated from the data:

= 7.5, SX = 4.031 13,  = 12.0714, SY = 4.950 68,  = 110.421

(When using a hand calculator to solve linear regression problems, it is advisable to
work to at least five or six significant digits during intermediate calculations, because
the subtraction in the numerator of  often results in the loss of some leading digits.)
From these results,  = 1.22 and â = 2.89 (Figure 11.12). The estimated value of tension
for a reading of Y = 13.8 V is given by

13.8 = 2.89 + 1.22 X

from which X = 8.9 kN.

b̂

b̂

where

and

are the sample covariance and variances.

b̂ = SXY

SX
2

-------, â = Y b̂X–

X = 1
n
--- Σi Xi, Y  = 1

n
--- Σi Yi

SXY = 1
n
--- Σi Xi X–( ) Yi Y–( ) = XY X( ) Y( )–

SX
2  = 1

n
--- Σi Xi X–( )

2
 = X 2 X( )

2
–

SY
2 = 1

n
--- Σi Yi Y–( )

2
 = Y 2 Y( )

2
–

Example 11.17

X 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Y 4.4 4.9 6.4 7.3 8.8 10.3 11.7 13.2 14.8 15.3 16.5 17.2 18.9 19.3

X Y XY

b̂
b̂
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When the force is 8.5 kN, the voltmeter measurement is estimated to be

 =  +  3 8.5 = 2.89 + 1.22 3 8.5 ≈ 13.3V

We first show in detail how to work out these quantities in R using the formulas. We
have seen some of these calculations before. After, we will confirm our result using
R’s function lm for linear modelling. J. J. Faraway, Linear Models with R (second
edition, Boca Raton, FL, Chapman and Hall/CRC, 2015) provides a book length
treatment of linear models.

X <− 1:14 # Integer sequence from 1 to 14
Y <− c(4.4, 4.9, 6.4, 7.3, 8.8, 10.3, 11.7, 13.2, 14.8, 
15.3, 16.5, 17.2, 18.9, 19.3)
# Step by step calculations, starting with some sums
X_sum <− sum(X); X_sum; Y_sum <− sum(Y); Y_sum
#> [1] 105
#> [1] 169
X_2_sum <− sum(X^2); X_2_sum; Y_2_sum <− sum(Y^2); Y_2_sum
#> [1] 1015
#> [1] 2383.2
XY_sum <− sum(X * Y); XY_sum
#> [1] 1545.9
n <− length(X); n
#> [1] 14
X_bar <− X_sum / n; X_bar
#> [1] 7.5
Y_bar <− Y_sum / n; Y_bar
#> [1] 12.07143
S_2_X <− (X_2_sum / n) − X_bar^2; S_2_X 
S_X <− sqrt(S_2_X); S_X
#> [1] 16.25
#> [1] 4.031129
S_2_Y <− (Y_2_sum / n) − Y_bar^2; S_2_Y 
S_Y <− sqrt(S_2_Y); S_Y
#> [1] 24.50918
#> [1] 4.950675
XY_bar <− XY_sum / n; XY_bar
#> [1] 110.4214
S_XY <− XY_bar − X_bar * Y_bar; S_XY
#> [1] 19.88571
# Note that S_2_X, S_2_Y and S_XY can be computed
# in a less efficient way according to the definitions as
sum((X − X_bar)^2) / n; sum((Y − Y_bar)^2) / n 
sum((X − X_bar) * (Y − Y_bar)) / n
#> [1] 16.25
#> [1] 24.50918
#> [1] 19.88571

Ŷ â b̂
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# Estimate of slope
b_hat <− S_XY /S_2_X; b_hat
#> [1] 1.223736
# Estimate of intercept
a_hat <− Y_bar − b_hat * X_bar; a_hat
#> [1] 2.893407

R’s function lm uses a somewhat different and more numerically stable approach
based on QR methods to find  and . Here’s how lm can be used:

# Define m as the linear model (lm) that results from 
# asking: how does Y depend on (~) X?
m <− lm(Y − X)
# Look at m and extract the coefficients
m
#>
#> Call:
#> lm(formula = Y ~ X)
#>
#> Coefficients:
#> (Intercept) X
#> 2.893 1.224
coef(m)
#> (Intercept) X
#> 2.893407 1.223736

To estimate the voltmeter measurement when the tension or force is 8.5 kN we can
either perform the calculation directly, or use the predict function to make a pre-
diction from the linear model fit:

X_new <− 8.5
a_hat + b_hat * X_new
#> [1] 13.29516
# predict requires the newdata to be placed in a data frame 
#(see below)
predict(m, newdata = data.frame(X = X_new))
#> 1
#> 13.29516

We can add the fitted straight line to a plot of the data using the abline function.
This code produced Figure 11.12.

plot(X, Y,
xlab = "Known forces X (kN)",
ylab = "Voltmeter measurements Y (V)",
xlim = c(0, 14), # Limits on the x axis
ylim = c(0, 20), # Limits on the y axis
pch = 16) # Use filled dots as the plotting character

abline(m) # Add the regression line

â b̂
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The voltmeter measurements corresponding to the observed values X1, . . . , Xn are
known as the fitted values and can be calculated using  =  + Xi, i = 1, . . . , n.

These values can be easily found in R using the predict and fitted functions:

a_hat + b_hat * X[1:5] # Direct calculation; show the first 
# five values
#> [1] 4.117143 5.340879 6.564615 7.788352 9.012088
predict(m)[1:5]
#> 1 2 3 4 5
#> 4.117143 5.340879 6.564615 7.788352 9.012088
fitted(m)[1:5]
#> 1 2 3 4 5
#> 4.117143 5.340879 6.564615 7.788352 9.012088

The model Yi = a + bXi + εi, i = 1, . . . , n, can be written in matrix format as

Let the n × 2 matrix X be defined as

which is referred to as the model matrix.

The model matrix can be extracted in R from the fitted model using model.matrix:

X_mat <− model.matrix(m); head(X_mat) # Show first six 
rows, which are labelled
#> (Intercept) x
#> 1 1 1
#> 2 1 2
#> 3 1 3
#> 4 1 4
#> 5 1 5
#> 6 1 6

It can be shown mathematically that the estimates ( , )T of the coefficients can be
found from the model matrix X using matrix multiplication as (XT X)−1XTY, in which
Y is the vector of observed values (Y1,Y2, . . . ,Yn)

T. The vector of fitted values

 can be found using

Ŷi â b̂

Y1

Y2


Yn 

 
 
 
 
  1 X1

1 X2

 
1 Xn 

 
 
 
 
 

a

b 
 
 

ε1

ε2


εn 

 
 
 
 
 
 

+=

X

1 X1

1 X2

 
1 Xn 

 
 
 
 
 

=

â b̂

Ŷ Ŷ1 Ŷ2 . . . , Ŷn, ,( )
T

=

Ŷ X
â

b̂ 
 
 

X XTX( ) 1–
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There are more efficient ways of performing the above calculations, using crossprod
for example, but these are not important here.

The columns of the model matrix X are (1, 1, . . . , 1)T and (X1, X2, . . . , Xn)
T. These

can be thought of as the basis elements of a vector space χ, say, which we can think of
as the ‘model vector space’. The vector of fitted values  is the orthogonal or perpen-
dicular projection of the vector of observed values Y into the vector space χ, and in this
sense  is the best approximation of Y in the model vector space χ.

There are other ways of defining the basis elements of the vector space χ. Often, the

vectors (1, 1, . . . , 1)T and  are taken as basis elements,
in which . These basis vectors are orthogonal because their scalar or dot
product  is zero:

(Calculation developed on the next page)

These fitted values can be calculated from this formula in R using the following steps:

X_T_X <− t(X_mat) %*% X_mat 
# t means transpose, %*% means matrix multiplication

X_T_X
#> (Intercept) X
#> (Intercept) 14 105
#> X 105 1015
# Note that this is not a diagonal matrix
X_T_X_inverse <− solve(X_T_X) # solve finds the inverse
# Estimates of coefficients
coef_hat <− X_T_X_inverse %*% t(X_mat) %*% Y
coef_hat; coef(m) # Compare with the results from lm
#> [,1]
#> (Intercept) 2.893407
#> X 1.223736
#> (Intercept) X
#> 2.893407 1.223736
# Fitted values
Y_hat <− X_mat %*% coef_hat
# Confirm by rounding the differences to 5 decimal places
# to take account of numerical inaccuracies; 0.00000 
# printed as 0
head(round(Y_hat − fitted(m), 5)) # Differences
#> [,1]
#> 1 0
#> 2 0
#> 3 0
#> 4 0
#> 5 0
#> 6 0

Ŷ

Ŷ

X1 X
ˆ– X2 X

ˆ
. . . ,– Xn X–, ,( )

T

X Σi 1=
n Xi n⁄=

•

1

1


1 

 
 
 
 
 

•

X1 – X

X2 – X



Xn – X 
 
 
 
 
 
 
 
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Because of this we sometimes refer to the functions 1 (constant function) and  as
‘orthogonal polynomials’. We also say that the values X1, X2 , . . . , Xn have been ‘cen-
tered’ to have mean 0.

The estimates (â' , ' )T  can also be found from the model matrix

as 

( X T
cent  Xcent )

-1 X T
cent Y

We can fit the ‘centered model’  as follows:

m_cent <− lm(Y ~ I(X − mean(X))) 
# The calculation of X − mean(X) must be enclosed in I

coef(m_cent)
#> (Intercept) I(X − mean(X))
#> 12.071429 1.223736

Since , it follows that â' = â +  and that ' = :

a_hat + b_hat * mean(X); b_hat
#> [1] 12.07143
#> [1] 1.223736

They can be calculated from this formula in R using the following code: 

X − mean(X) # Centered valued

#> [1] −6.5 −5.5 −4.5 −3.5 −2.5 −1.5 −0.5 0.5 1.5 2.5 3.5 
4.5 5.5 6.5
mean(X − mean(X)) 

# The data in X are centered to have mean zero
#> [1] 0
X_cent <− model.matrix(m_cent)
head(X_cent)
#> (Intercept) I(X − mean(X))
#> 1 1 −6.5
#> 2 1 −5.5
#> 3 1 −4.5
#> 4 1 −3.5
#> 5 1 −2.5
#> 6 1 −1.5

1 X1 X–( ) 1+× X2 X–( ) … 1 Xn X–( )×+ +×=
X1 X–( ) X2 X–( ) … 1 Xn X–( )×+ + +=

X1 X2– … Xn nX–+ +=
nX nX– 0==

X X–

Yi a′– b′ Xi X–( ) εi+ +

a bX+ a bX+( ) b X X–( )+= X b̂ b̂

b̂

Xcent

1 X1 X–

1 X2 X–
 

1 Xn X– 
 
 
 
 
 
 
 

=
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From the above we see that  X T
cent  Xcent is a diagonal matrix and hence is easy to invert.

This is because the columns of Xcent are orthogonal. In fact, it turns out that under simple
assumptions about ε i that we will meet in the next section, the estimates  and  are
independent, whereas  and  would not be independent. This means that  and 
express essentially different information, while  and  express overlapping informa-
tion. This has important implications for statistical inference, as discussed in Section 9.4
of J. J. Faraway, Linear Models with R (second edition, Boca Raton, FL, Chapman and
Hall/CRC, 2015), for example.

X_cent_T_X_cent <− t(X_cent) %*% X_cent
X_cent_T_X_cent
#> (Intercept) I(X − mean(X))
#> (Intercept) 14 0.0
#> I(X − mean(X)) 0 227.5
# Note that this is a *** diagonal matrix ***
X_cent_T_X_cent_inverse <− solve(X_cent_T_X_cent) 

# solve finds the inverse
# Estimates of coefficients
coef_cent_hat <− X_cent_T_X_cent_inverse %*% t(X_cent) %*% Y
coef_cent_hat; coef(m_cent) 
# Compare with the results from lm

#> [,1]
#> (Intercept) 12.071429
#> I(X − mean(X)) 1.223736
#> (Intercept) I(X − mean(X))
#> 12.071429 1.223736

The fitted values from the two models are the same as the vector of observed values
is projected into the same model vector space χ:

round(fitted(m) − fitted(m_cent), 5) # Differences
#> 1 2 3 4 5 6 7 8 9 10 11 12 13 14
#> 0 0 0 0 0 0 0 0 0 0  0 0 0 0

As will be discussed in Exercise 30, sometimes it is required that the regression 
line passes through the origin, in which case the model is Yi = bXi + εi so that the 
only regression coefficient is the slope b of the line. We can estimate this slope in 
R as follows:

m_through_origin <− lm(Y − X − 1)
coef(m_through_origin)
#> X
#> 1.523054
m_through_origin_2 <− lm(Y ~ X + 0) 
# Alternative formulation

coef(m_through_origin_2)
#> X
#> 1.523054
sum(Y * X) / sum(X * X) # Direct calculation
#> [1] 1.523054

a′ˆ b′ˆ
â b̂ a′ˆ b′ˆ

â b̂
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Note that now the model matrix comprises just one column (X1, . . . ,Xn)
T:

X_through_origin <− model.matrix(m_through_origin)
head(X_through_origin)
#> X
#> 1 1
#> 2 2
#> 3 3
#> 4 4
#> 5 5
#> 6 6
# Use this to estimate the coefficient b via matrix 
# multiplication
solve(crossprod(X_through_origin)) %*% 

t(X_through_origin) %*% Y
#> [,1]
#> X 1.523054

In R it is often very useful to keep related data together in a data frame. In general a
data frame is a rectangular collection of variables in the columns and observations
in the rows. Here is a brief example:

df_strain <− data.frame(X, Y)
head(df_strain) # Show the first six data points
#> X Y
#> 1 1 4.4
#> 2 2 4.9
#> 3 3 6.4
#> 4 4 7.3
#> 5 5 8.8
#> 6 6 10.3

The names of the variables in a data frame can be found using names. The str
function provides a useful, compact display of the internal structure of a data frame.
The values of individual variables can be extracted using $ or [["varia-
ble_name"]]. Here we illustrate these features in the df_strain data frame:

names(df.strain)
#> [1] "X" "Y"
str(df_strain)
#> ’data, frame’:14 obs. of 2 variables:
#> $ X: int 1 2 3 4 5 6 7 8 9 10 …
#> $ Y: num 4.4 4.9 6.4 7.3 8.8 10.3 11.7 13.2 14.8 15.3 …
df _strain$X # Extract X
#> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14
df_strain[["Y"]] 

# Alternative way of extracting a variable
#> [1] 4.4 4.9 6.4 7.3 8.8 10.3 11.7 13.2 14.8 15.3 16.5 
17.2 18.9 19.3
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In practice, data are often supplied as Excel spreadsheets or comma separated variable
files. Many functions, for example read_excel from the readxl package or
read_csv from the readr package, are available to read such data into R as data
frames.

Later we will meet a type of R data frame, called a ‘tibble’, specially designed to
make life easier in certain circumstances. We will also work with the dplyr package
which provides very useful tools for data manipulation including filter to pick
observations by their values, arrange to re-order rows, select to pick variables by
their names, mutate to create new variables and summarize to collapse many values
down to a single summary. For a full discussion of importing data into R, data frames,
tibbles and related R structures, and data manipulation see H. Wickham and G. Grole-
mund, R for Data Science (Beijing, O’Reilly, 2016).

Orthogonal polynomials are sometimes used in engineering to model signals
observed over time. Let us assume that we observe data Yt over a time interval (0, T] at
n equally spaced time points t1 = T/n, t2 = 2T/n, . . . ,tn = nT/n = T. Let ω = 2π/T. An
example of a regression type model that is often used for such data takes the form

Yt = a0 + a1 sin(ωt) + b1 cos(ωt) + a2 sin(2ωt) + b2 cos(2ωt) + a3sin(3ωt) + 
b3cos(3ωt) + ε t, t = t1,t2, . . . ,tn

# Fit a linear model using data in a data frame
m <− lm(Y − X, data = df_strain) 

# Look for Y and X in data, here the data frame df_strain
coef(m)
#> (Intercept) X
#> 2.893407 1.223736

The vectors (1, 1 . . . ,1)T, (cos(ωt1), cos(ωt2), . . . ,cos(ωtn))
T, (sin(ωt1), sin(ωt2), . . . ,

sin(ωtn))
T, (cos(2ωt1), cos(2ωt2), . . . ,cos(2ωtn))

T, (sin(2ωt1), sin(2ωt2), . . . ,sin(2ωtn))
T,

(cos(3ωt1), cos(3ωt2), . . . ,cos(3ωtn))
T and (sin(3ωt1), sin(3ωt2), . . . ,sin(3ωtn))

T can be
taken as a basis for the vector space χ that we met above. These vectors are orthogonal,
as this R example illustrates by showing that the associated model matrix is diagonal:

n <− 12; T <− 7; t <− T * (1:n) / n 
omega <− 2*pi / T
one <− rep(1, n) # Vector of ones
c_1 <− cos(omega * t) 
# Vector of cos(omega t_1), cos(omega t_2),…,cos(omega  t_n)

s_1 <− sin(omega * t) 
# Vector of sin (omega t_1), sin(omega t_2),…,sin(omega t_n)

c_2 <− cos(2 * omega * t) 
# Vector of cos(2 omega t_1), cos(2 omega t_2),…,cos(2  omega t_n)

s_2 <− sin(2 * omega * t) 
# Vector of sin(2 omega t_1), sin(2 omega t_2),…,sin(2 omega t_n)

c_3 <− cos(3 * omega * t) 
# Vector of cos(3 omega t_1), cos(3 omega t_2),…,cos(3 omega t_n)
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Analysing data that are observed over time is beyond the scope of this chapter and so
we do not pursue it further, except to recommend the interested reader to P. S. P. Cowp-
ertwait and A. V. Metcalfe, Introductory Time Series with R (New York, Springer,
2009), G. Nason, Wavelet Methods in Statistics with R (New York, Springer, 2008) and
W. A. Woodward, H. K. Gray and A. C. Elliott, Applied Time Series Analysis with R
(second edition, Boca Raton, FL, Chapman and Hall/CRC, 2017).

11.5.2 Residuals

The process of fitting a straight line through the data by minimizing the sum of squares of
the errors does not involve any statistics as such. However, we often need to test whether
the slope of the regression line is significantly different from zero, because this will reveal
whether there is any dependence between the random variables. For this purpose we must
make the assumption that the unknown errors εi , have a normal distribution:

ε i ~ N(0, σ 2
E)

The unknown errors can be estimated as

and these quantities, which are often denoted ei, are known as residuals. Loosely speak-
ing, residuals represent what is left over in Y once the effect of X has been removed.
The unknown variance σ 2

E can be estimated by defining

Using the earlier result that â = −  gives a more convenient form:

= S 2
Y  − 2 SXY + 2S 2

X 

= S 2
Y  − 2S 2

X,

since SXY = S 2
X.

s_3 <− sin(3 * omega * t) 
# Vector of sin(3 omega t_1), sin(3 omega t_2),…,sin(3 omega t_n)

X_cs <− cbind(one, c_1, s_1, c_2, s_2, c_3, s_3) 
# Put all the columns together in a matrix

round(crossprod(X_cs), 2) 
# works out X^T X; it is diagonal!
#> one c_1 s_1 c_2 s_2 c_3 s_3
#> one 12 0 0 0 0 0 0
#> c_1 0 6 0 0 0 0 0
#> s_1 0 0 6 0 0 0 0
#> c_2 0 0 0 6 0 0 0
#> s_2 0 0 0 0 6 0 0
#> c_3 0 0 0 0 0 6 0
#> s_3 0 0 0 0 0 0 6

εi
ˆ Yi â b̂Xi+( )–=

SE
2  = 1

n
--- εi

ˆ 2

i=1

n

  = 1
n
--- Yi â b̂Xi+( )–[ ]2

i=1

n


Y b̂ X

SE
2  = 1

n
--- Yi Y–( ) b̂ Xi X–( )–[ ]

2

i



= 1
n
--- Yi Y–( )

2
2b̂ Xi X–( ) Yi Y–( )– b̂

2
Xi X–( )

2
+[ ]

i


b̂ b̂

b̂

b̂
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Estimate the residual standard deviation and find a 95% confidence interval for the
regression slope for the data in Example 11.17. Also test the hypothesis that the tension
in the beam is 10 kN when a voltmeter reading of 15 V is obtained.

Solution Using the results obtained in Example 11.17, the residual standard deviation is

SE = 0.418

and, using t0.025,12 = 2.179, the 95% confidence interval for b is

Obviously the regression slope is significant – but this is not in doubt. To test the
hypothesis that the tension is 10 kN, we can use the 95% confidence interval for the
corresponding voltage, which is

= (14.8, 15.4)

The measured value of 15 V lies within this interval, so the hypothesis is accepted at
the 5% level. A better way to approach this would be to reverse the regression (use force
as the Y variable and voltage as the X variable), so that a confidence interval for the
tension in the beam for a given voltage could be obtained and the assumed value tested.
For the present data this gives (9.6, 10.1) at 95%, so again the hypothesis is accepted
(Exercise 27).

Various confidence intervals are derived in more advanced texts covering linear
regression. Here the most useful results will simply be quoted. The 100(1 − α)%
confidence interval for the regression slope b is given by

It is often useful to have an estimate of the mean value of Y for a given value of X,
say X = x. The point estimate is â + , and the 100(1 − α)% confidence interval for
this is

b̂ tα/2, n−2
SE

SX n 2–( )
--------------------------±

 
 
 

b̂x

â b̂x tα /2,n−2 SE
1 x X–( )

2
/SX

2+
n 2–

------------------------------------±+
 
 
 
 

Example 11.18

We can extract the residuals from the linear model object m that we defined above:

epsilon_hat <− residuals(m); epsilon_hat
#> 1 2 3 4
#>  0.28285714 −0.44087912 −0.16461538 −0.48835165
#> 5 6 7 8
#> −0.21208791  0.06417582  0.24043956  0.51670330

1.22 2.179
0.418

4.031( ) 12
----------------------------± 

   = 1.16 1.29,( )

2.89 1.22 10( ) 2.179 0.418( ) 1 10 7.5–( )2/ 4.031( )2+
12

----------------------------------------------------------±+
 
 
 
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#> 9 10 11 12
#> 0.89296703  0.16923077 0.14549451 −0.37824176
#>  13 14
#> 0.09802198 −0.72571129
n <− length(epsilon_hat)

To compute SE:

S_2_E <− S_2_Y − b_hat^2 * S_2_X; S_2_E
#> [1] 0.174314
S_E <− sqrt(S_2_E); S_E
#> [1] 0.4175092
# Direct calculation from the residuals
sum(epsilon_hat^2) / n; sqrt(sum(epsilon_hat^2) / n)
#> [1] 0.174314
#> [1] 0.4175092

This number can be obtained from m by scaling summary(m)$sigma which is
defined using a ; divisor (there are 2 parameters a and b) instead of a 
divisor:

summary(m)$sigma * sqrt((n − 2) / n) 
# sigma has to be scaled

#> [1] 0.4175092

For the confidence interval for b:

alpha <− 0.05
df <− n − 2 # Number of degrees of freedom
t_value <− qt(alpha / 2, df, lower.tail = FALSE); t_value
#> [1] 2.178813
se_b_hat <− S_E / (S_X * sqrt(n − 2))
# Confidence interval
c(b_hat − t_value * se_b_hat, b_hat + t value * se_b_hat)
#> [1] 1.158593 1.288879

We can obtain 95% confidence intervals for a and b directly using the confint
function:

confint(m)
#> 2.5 % 97.5 %
#> (Intercept) 2.338733 3.448080
#> X 1.158593 1.288879

To work out the 95% confidence interval for the voltage when the tension is 10 kN
use the formula:

X_new <− 10
Y_hat <− a_hat + b_hat * X_new; Y_hat 

# Point (single value) estimate
#> [1] 15.13077
se_Y_hat <− S_E * sqrt((1 + (X_new − X_bar)^2 / S_2_X) / 
(n − 2))
c(Y_hat − t_value * se_Y_hat, Y_hat + t_value * se_Y_hat)
#> [1] 14.82177 15.43977

n 2– n
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The reverse regression approach used here is related to the topic of ‘statistical calibra-
tion’, which is discussed briefly in M. Aitkin, B. Francis, J. Hinde and R. Darnell,
Statistical Modelling in R (Oxford, Oxford University Press, 2009), for example.

This can be obtained using the predict function:

predict(m, newdata = data.frame(X = X_new), interval = 
"confidence")
#> fit lwr upr
#> 1 15.13077 14.82177 15.43977

The lower and upper values of the confidence intervals are in the lwr and upr
columns, while the point (single value) estimate of the voltage when the tension is
10 kN is in the fit column.

We can obtain p-values for the test of the null hypothesis H0 : a = 0 against the
alternative hypothesis H1 : a ≠ 0 and for the test of H0 : b = 0 against H1 : b ≠ 0 using
the summary function. The p-values are given in the Pr(>|t|) column. Other
information is provided:

summary(m)
#>
#> Call:
#> lm(formula = Y - X, data = df_strain)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> −0.7257 −0.3367 0.0811 0.2226 0.8930
#>
#> Coefficients:
#> Estimate Std. Error t value  Pr(>|t|)
#> (Intercept) 2.8934 0.2546 11.37 8.84e-08  ***

#> X 1.2237 0.0299 40.93 2.93e-14  ***

#> —
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘’ 1
#>
#> Residual standard error: 0.451 on 12 degrees of 
#> freedom
#> Multiple R-squared: 0.9929, Adjusted R-squared: 
#> 0.9923
#> F-statistic: 1675 on 1 and 12 DF, p-value: 2.929e-14

The reverse regression can be performed as

m_rev <− lm(X ~ Y, data = df_strain)
Y_new <− 15
predict(m_rev, newdata = data.frame(Y = Y_new), 

interval = "confidence")
#> fit lwr upr
#> 1 9.876119 9.627683 10.12455
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11.5.3 Regression and correlation

Both regression and correlation are statistical methods for measuring the linear dependence
of one random variable upon another, so it is not surprising that there is a connection
between them. From the definition of the sample correlation rX,Y (Section 11.4.4) and the
result for the regression slope , it follows immediately that

This result has an important interpretation. S 2
Y is the total variation in the Y values, and

S 2
E is the residual variation after the regression line has been identified, so r 2

X,Y is the
proportion of the total variation in the Y values that is accounted for by the regression
on X : informally, it represents how closely the points are clustered about the line. This
is a measure of goodness-of-fit that is especially useful when the dependence between
X and Y is nonlinear and different models are to be compared.

11.5.4 Nonlinear regression

Sometimes the dependence between two random variables is nonlinear, and this shows
clearly in the scatter plot; see for instance Figure 11.13. Fitting a straight line through
the data would hardly be appropriate. Instead, various models of the dependence can be

b̂

rX Y,  = 
SX Y

SX SY

----------- = b̂SX

SY

--------

Another expression for the residual variance is then

SE
2  = SY

2 SY rX,Y

SX

-------------- 
 

2

S X
2–  = S Y

2 1 rX Y,
2–( )

We can confirm this result in R:

r_XY <− cor(X, Y) # Correlation between X and Y
S_XY / (S_X * S_Y); b_hat * S_X / S_Y # The same
#> [1] 0.9964376
#> [1] 0.9964376
S_2_E 

# Residual variation after regression line has been  identified
#> [1] 0.174314
S_2_Y * (1 − r_XY^2) # The same
#> [1] 0.174314
r_XY^2 
# Proportion of the total variation in Y accounted for by 
# the regression
#> [1] 0.9928878

This important measure of goodness-of-fit is given by summary under Multiple
R-squared. It can be extracted using:

summary(m)$r.squared
#> [1] 0.9928878

We perform further analysis of the data in Example 11.17 in Exercise 74.
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assumed and tested. In each case the value of r2
X,Y indicates the success of the model in

capturing the dependence. One form of nonlinear regression model involves a quadratic
or higher-degree polynomial:

Yi = a0 + a1Xi + a2X 2
i + ε i (i = 1, . . . , n)

The three coefficients a0, a1 and a2 can be identified by a multivariate regression method
that is beyond the scope of this text. 

One way of fitting a quadratic model in R is:

m_quadratic <− lm(Y ~ X + I(X^2)) 
# The calculation of X^2 must be enclosed in I

coef(m_quadratic)
#> (Intercept) X I(X^2)
#> 2.31373626 1.44111264 −0.01449176

Equivalently, we can use the poly function:

m_quadratic_2 <− lm(Y ~ poly(X, degree = 2, raw = TRUE))
coef(m_quadratic_2)
#> (Intercept) poly(X, degree = 2, raw = TRUE)1
#> 2.31373626 1.44111264
#> poly(X, degree = 2, raw = TRUE)2
#> −0.01449176

If we use orthogonal polynomials, the estimated coefficients are different but the
fitted values are the same:

# The default is raw = FALSE for orthogonal polynomials, 
# so we do not need to specify it
m_quadratic_3 <− lm(Y − poly(X, degree =2))
coef(m_quadratic_3)
#> (Intercept) poly(X, degree = 2)1 poly(X, degree = 2)2
#> 12.071429  18.457740  −0.782018
round(fitted(m_quadratic_3) − fitted(m_quadratic), 5)
#> 1 2 3 4 5 6 7 8 9 10 11 12 13 14
#> 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 11.13
Nonlinear regression 
(Example 11.19).
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As mentioned earlier, there are considerable inferential advantages associated with
using orthogonal polynomials; see J. J. Faraway, Linear Models with R (second edition,
Boca Raton, FL, Chapman and Hall/CRC, 2015), for example, for more details.

A simpler approach is to try models of the form

Yi = aX b
iηi (i = 1, . . . , n)

or

Yi = exp(a + bXi)η i (i = 1, . . . , n)

where each ηi is a positive multiplicative error. On taking logarithms, these models
reduce to the standard linear form:

ln Yi = ln a + b ln Xi + ε i (i = 1, . . . , n)

or

ln Yi = a + bXi + ε i (i = 1, . . . , n), in which ε i = ln (ηi)

which can be solved by the usual method.

The following data for atmospheric pressure (P, in mbar) at various heights (H, in km)
have been obtained:

These data are plotted in Figure 11.13. The relationship between height and pressure is
believed to be of the form

P = ea+bH

where a and b are constants. Fit and assess a model of this form and predict the atmos-
pheric pressure at a height of 14 km.

Solution Taking logarithms and setting Y = ln P, leads to a model of the form

Yi = a + bHi + ε i

for which the following results are easily obtained:

 = 10, SH  = 6.831 30,  = 5.431 52, SY  = 1.016 38,  = 47.4081

Hence

 

 = −  = 6.91

Also, r 2
H,Y = 0.99, which implies that the fit is very good (Figure 11.13). In this case there

is not much point in trying other models. Finally, the predicted pressure at a height of
14 km is

P = e6.91−0.148(14) = 126 mbar

Example 11.19

Height H 0 4 8 12 16 20
Pressure P 1012 621 286 141 104 54

H Y HY

b̂ = HY H( ) Y( )–
SH

2
--------------------------------  = −0.148

â Y b̂H
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Here are details of the calculations in R, followed by a full analysis using the lm
function. A plot of the fitted model is also produced.

H <− c(0, 4, 8, 12, 16, 20)
P <− c(1012, 621, 286, 141, 104, 54)
Y <− log(P) # Natural log of P
# Step by step calculations, starting with some sums
H_sum <− sum(H); H_sum; Y_sum <− sum(Y); Y_sum
#> [1] 60
#> [1] 32.58914
H_2_sum <− sum(H^2); H_2_sum; Y_2_sum <− sum(Y^2); Y_2_sum
#> [1] 880
#> [1] 183.2069
HY_sum <− sum(H * Y); HY_sum
#> [1] 284.4483
n <− length(H); n
#> [1] 6
H_bar <− H_sum / n; H_bar; Y_bar <− Y_sum / n; Y_bar
#> [1] 10
#> [1] 5.431524
S_2_H <− (H_2_sum / n) − H_bar ^2; S_2_H 
S_H <− sqrt(S_2_H); S_H
#> [1] 46.66667
#> [1] 6.831301
S_2_Y <− (Y_2_sum / n) − Y_bar ^2; S_2_Y 
S_Y <− sqrt(S_2_Y); S_Y
#> [1] 1.03303
#> [1] 1.016381
HY_bar <− HY_sum / n; HY_bar
#> [1] 47.40805
S_HY <− HY_bar − H_bar * Y_bar; S_HY
#> [1] −6.907184
# Estimate of slope
b_hat <− S_HY /S_2_H; b_hat
#> [1] −0.1480111
# Estimate of intercept
a_hat <− Y_bar − b_hat * H_bar; a_hat
#> [1] 6.911634
# Estimate of r_HY and its square
r_HY <− cor(H, Y) # Correlation between H and Y
S_HY / (S_H * S_Y); b_hat * S_H / S_Y # The same
#> [1] −0.9948122
#> [1] −0.9948122
r_HY^2
#> [1] 0.9896514

It’s easier to use lm, and much more is available:

m <− lm(Y ~ H)
coef(m)
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#> (Intercept) H
#> 6.9116344 −0.1480111
confint(m)
#> 2.5 % 97.5 %
#> (Intercept) 6.6571750 7.1660938
#> H −0.1690224 −0.1269998
summary(m)
#>
#> Call:
#> lm(formula = Y ~ H)
#>
#> Residuals:
#> 1 2 3 4 5 6
#> 0.008049  0.111741  −0.071554  −0.186742  0.100934 0.037571
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 6.911634 0.091649 75.41 1.85e-07 ***

#> H −0.148011 0.007568 −19.56 4.03e-05 ***

#> —
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.1266 on 4 degrees of freedom
#> Multiple R-squared: 0.9897, Adjusted R-squared: 0.9871
#> F-statistic: 382.5 on 1 and 4 DF, p-value: 4.03e-05

We can perform the prediction in two ways. First, we can use the formula:

H_new <− 14
exp(a_hat + b_hat * H_new)
#> [1] 126.4035

Secondly, we can use the predict function, transforming the result to the scale of
P by applying the exponential function:

Y_new <− predict(m, newdata = data.frame(H = H_new))
P_new <− exp(Y_new); P_new 
# Transform to the scale of P by applying the exp 
# function

#> 1
#> 126.4035

The following code produces Figure 11.13.

# Calculate the fitted values of P given by the model
H_seq <− seq(from = min(H), to = max(H), length = 100) 
# 100 equally spaced values along H

Y_pred <− predict(m, newdata = data.frame(H = H_seq)) 
# predict Y at these values

P_pred <− exp(Y_pred) 
# Transform to the scale of P by applying the exp function
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# Plot the data
plot(H, P,
xlab = "H (km)", ylab = "P (mbar)",
xlim = c(0,20), ylim = c(0,1000),

pch = 16)
# Add the fitted curve
lines(H_seq, P_pred)

A similar model

Pi = exp(a + bHi) + errori

can be fitted using the nls function, standing for nonlinear least squares. The algo-
rithm used is iterative and initial values have to be supplied for a and b.

m_similar <− nls(P ~ exp(a + b * H), start = list(a = 1, 
b = −0.1))
summary(m_similar)
#>
#> Formula: P ~ exp(a + b * H)
#>
#> Parameters:
#> Estimate Std. Error t value Pr(>|t|)
#> a 6.935858 0.032709 212.05 2.97e-09 ***

#> b −0.148539 0.009203 −16.14 8.62e-05 ***

#> —
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 35.2 on 4 degrees of freedom
#>
#> Number of iterations to convergence: 10
#> Achieved convergence tolerance: 8.897e-06

Check your calculations using R whenever 
possible.

Ten files of audio data are annotated by a human 
labeller. The time (s) this takes per file is a function 
of the length of the file (s) as follows:

Find the linear regression coefficients.

Measured deflections (in mm) of a structure under a 
load (in kg) were recorded as follows:

Draw a scatter plot of the data. Find the linear 
regression coefficients and predict the deflection 
for a load of 15 kg.

Using the data in Example 11.17, carry out a 
regression of force against voltage, and obtain a 

11.5.5 Exercises

File length 
(X )

5.4 7.9 10.0 14.2 16.1 16.8 19.6 22.0 25.0 26.7

Annotation 
time (Y )

13.1 17.3 23.9 30.1 33.5 40.0 43.6 46.5 52.4 60.7

25
Load X 1 2 3 4 5 6 7 8 9 10 11 12
Deflection Y 16 35 45 74 86 96 106 124 134 156 164 182

26

27
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95% confidence interval for the tension in the beam 
when the voltmeter reads 15 V, as described in 
Example 11.18.

Weekly advertising expenditures Xi and sales Yi for 
a company are as follows (in units of £100):

(a) Fit a regression line and predict the sales for an 
advertising expenditure of £6000.

(b) Estimate the residual standard deviation 
and find a 95% confidence interval for the 
regression slope. Hence test the hypothesis 
that the sales do not depend upon advertising 
expenditure.

(c) Find a 95% confidence interval for the mean 
sales when advertising expenditure is £6000.

A machine that can be run at different speeds 
produces articles, of which a certain number 
are defective. The number of defective items 
produced per hour depends upon machine 
speed (in rev s−1) as indicated in the following 
experimental run:

Find the regression line for number of defectives 
against speed, and a 90% confidence interval for the 
mean number of defectives per hour when the speed 
is 14 rev s−1.

Sometimes it is required that the regression line 
passes through the origin, in which case the only 
regression coefficient is the slope of the line. 

Use the least-squares procedure to show that the 
estimate of the slope is then = (i XiYi)/i X 2

i

A series of measurements of voltage across and 
current through a resistor produced the following 
results:

Estimate the resistance, using the result of the 
previous exercise.

The pressure P of a gas corresponding to various 
volumes V was recorded as follows:

The ideal gas law is given by the equation

PV λ = C

where λ and C are constants. By taking 
logarithms and using the least-squares method, 
estimate λ and C from the data and predict P 
when V = 80 cm3.

The following data show the unit costs of producing 
certain electronic components and the number of 
units produced:

Fit a model of the form Y = aX b and predict the unit 
cost for a lot size of 300.

Xi 40 20 25 20 30 50 40 20 50 40 25 50
Yi 385 400 395 365 475 440 490 420 560 525 480 510

Speed 8 9 10 11 12 13 14 15
Defectives
per hour

7 12 13 13 13 16 14 18

28

29

30

Voltage ( V) 1 2 3 4 5 6 7 8 9 10 11 12
Current (mA) 6 18 27 30 42 48 58 69 74 81 94 99

V (cm3) 50 60 70 90 100
P (kg cm−2) 64.7 51.3 40.5 25.9 7.8

Lot size Xi 50 100 250 500 1000 2000 5000
Unit cost Yi 108 65 21 13 4 2.2 1

b̂

31

32

33



11 .6  GOODNESS-OF-FIT  TESTS 863

Goodness-of-fit tests
The common classes of distributions, especially the binomial, Poisson and normal
distributions, which often govern the data in experimental contexts, are used as the basis
for statistical methods of estimation and testing. A question that naturally arises is whether
or not a given set of data actually follows an assumed distribution. If it does then the
statistical methods can be used with confidence. If not then some alternative should be
considered. The general procedure used for testing this can also be used to test for
dependence between two variables.

11.6.1 Chi-square distribution and test

No set of data will follow an assumed distribution exactly, but there is a general method
for testing a distribution as a statistical hypothesis. If the hypothesis is accepted then it
is reasonable to use the distribution as an approximation to reality.

First the data must be partitioned into classes. If the data consist of observations
from a discrete distribution then they will be in classes already, but it may be appropriate
to combine some classes if the numbers of observations are small. For each class the
number of observations that would be expected to occur under the assumed distribution
can be worked out. The following quantity acts as a test statistic for comparing the
observed and expected class numbers:

where fk is the number of observations in the k th class, ek is the expected number in
the kth class and m is the number of classes. Clearly, χ 2 is a non-negative quantity
whose magnitude indicates the extent of the discrepancy between the discretized
histogram of data and the assumed distribution. For small samples the histogram is
erratic and the comparison invalid, but for large samples the histogram should
approximate the true distribution. It can be shown that for a large sample the random
variable χ 2 has a ‘chi-square’ distribution. This class of distributions is widely used in
statistics, and a typical chi-square probability density function is shown in
Figure 11.14. We are interested in particular in the value of χ 2

α ,n  to the right of which
the area under the density function curve is α, where n is the (single) parameter of
the distribution. These values are extensively tabulated; a typical table is shown in
Figure 11.15.

11.6

Figure 11.14
The chi-square
distribution
with χ 2

α,n .

χ 2 = fk ek–( )2

ek

---------------------
k=1

m


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The hypothesis of the assumed distribution is rejected if

where α is the significance level and t is the number of independent parameters
estimated from the data and used for computing the ek values. The significance level is
the probability of false rejection, as discussed in Section 11.3.4. Sometimes the
hypothesis is deliberately vague, for example a parameter value may be left unspecified.
If the data themselves are used to fix parameter values in the assumed distribution

These tabulated values can be easily calculated in R. Here is an example:

alpha <− 0.05
n <− 1 # Number of degrees of freedom
qchisq(alpha, 1, lower.tail = FALSE)
#> [1] 3.841459

χ2
. χα ,m−t−1

2

n α = 0.05 α = 0.025 α = 0.01 α = 0.005 n

1 3.841 5.024 6.635 7.879 1
2 5.991 7.378 9.210 10.597 2
3 7.815 9.348 11.345 12.838 3
4 9.488 11.143 13.277 14.860 4
5 11.070 12.832 15.086 16.750 5

6 12.592 14.449 16.812 18.548 6
7 14.067 16.013 18.475 20.278 7
8 15.507 17.535 20.090 21.955 8
9 16.919 19.023 21.666 23.589 9

10 18.307 20.483 23.209 25.188 10

11 19.675 21.920 24.725 26.757 11
12 21.026 23.337 26.217 28.300 12
13 22.362 24.736 27.688 29.819 13
14 23.685 26.119 29.141 31.319 14
15 24.996 27.488 30.578 32.801 15

16 26.296 28.845 32.000 34.267 16
17 27.587 30.191 33.409 35.718 17
18 28.869 31.526 34.805 37.156 18
19 30.144 32.852 36.191 38.582 19
20 31.410 34.170 37.566 39.997 20

21 32.671 35.479 38.932 41.401 21
22 33.924 36.781 40.289 42.796 22
23 35.172 38.076 41.638 44.181 23
24 36.415 39.364 42.980 45.558 24
25 37.652 40.646 44.314 46.928 25

26 38.885 41.923 45.642 48.290 26
27 40.113 43.194 46.963 49.645 27
28 41.337 44.461 48.278 50.993 28
29 42.557 45.722 49.588 52.336 29
30 43.773 46.979 50.892 53.672 30

Figure 11.15
Table of the chi-square 
distribution χ 2

α ,n .
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before testing then the test must be strengthened to allow for this in the form of a
correction t in the chi-square parameter.

A useful rule of thumb when using this test is that there should be at most a small
number (one or two) of classes with an expected number of observations less than five.
If necessary, classes in the tails of the distribution can be merged.

A die is tossed 600 times, and the numbers of occurrences of the numbers one to six are
recorded respectively as 89, 113, 98, 104, 117 and 79. Is the die fair or biased?

Solution The expected values are ek = 100 for all k, and the test value is χ 2 = 10.4. This is less
than χ 2

0.05,5 = 11.07, so we should expect results as erratic as this at least once in
20 similar experiments. The die may be biased, but the data are insufficient to justify
this conclusion.

The numbers of trucks arriving per hour at a warehouse are counted for each of
500 h. Counts of zero up to eight arrivals are recorded on respectively 52, 151, 130,
102, 45, 12, 5, 1 and 2 occasions. Test the hypothesis that the numbers of arrivals
have a Poisson distribution, and estimate how often there will be nine or more
arrivals in one hour.

Solution The hypothesis stipulates a Poisson distribution, but without specifying the parameter λ.
Since the mean of the Poisson distribution is λ and the average number of arrivals per

Example 11.20

We can perform the calculation of the χ 2 statistic in R:

f <− c(89, 113, 98, 104, 117, 79)
e <− rep(100, 6) # 100 six times
f − e; (f − e)^2; (f − e)^2 / e
#> [1] −11 13 −2 4 17 −21
#> [1] 121 169 4 16 289 441
#> [1] 1.21 1.69 0.04 0.16 2.89 4.41
chisq <− sum((f − e)^2 / e); chisq
#> [1] 10.4

We can perform the test directly using the chisq.test function. We specify the
probabilities of the six outcomes; here the outcomes are equally likely.

chisq.test(f, p = rep(l/6, 6))
#>
#> Chi-squared test for given probabilities
#>
#> data: f
#> X-squared = 10.4, df = 5, p-value = 0.06466

The expected values ek, k = 1, . . . , 6, can be extracted:

chisq.test(f, p = rep(1/6, 6))$expected
#> [1] 100 100 100 100 100 100

Example 11.21
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hour is 2.02 from the data, it is reasonable to assume that λ = 2. The columns in the table
in Figure 11.16 show the observed counts fk, the Poisson probabilities pk, the expected
counts ek = 500 pk and the individual χ2 values for each class. The last two classes have
been combined because the numbers are so small. One parameter has been estimated
from the data, so the total χ2 value is compared with χ2

0.05,6 = 12.59. The Poisson
hypothesis is accepted, and on that basis the probability of nine or more trucks arriving
in one hour is

This will occur roughly once in every 4200 h of operation.

We can perform this calculation in R (with more accuracy) as follows:

number_hours <− 0:8

f <− c(52, 151, 130, 102, 45, 12, 5, 1, 2)
lambda_hat <− sum(number_hours * f) / sum(f); lambda_hat
#> [1] 2.02
# Set lambda_hat to 2, for simplicity
lambda_hat <− 2
# Work out the probabilities
p <− dpois(number_hours, lambda_hat); p
#> [1] 0.1353352832 0.2706705665 0.2706705665 0.1804470443 
0.0902235222
#> [6] 0.0360894089 0.0120298030 0.0034370866 0.0008592716
# Eight classes only, with probabilities summing to 1
p_comb <− c(p[1:7], 1 − sum(p[1:7])); p_comb
#> [1] 0.135335283 0.270670566 0.270670566 0.180447044 
0.090223522 0.036089409
#> [7] 0.012029803 0.004533806
f_comb <− c(f[1:7], sum(f[8:9])); f_comb
#> [1] 52 151 130 102 45 12 5 3

P 9 or more( ) = 1 2ke−2

k!
------------ 0.000 237=

k=0

8

–

Trucks fk pk ek χ 2

0 52 0.1353 67.7 3.63
1 151 0.2707 135.3 1.81
2 130 0.2707 135.3 0.21
3 102 0.1804 90.2 1.54
4 45 0.0902 45.1 0.00
5 12 0.0361 18.0 2.02
6 5 0.0120 6.0 0.17
7 or more 3 0.0046 2.3 0.24

Totals 500 1.0 500 9.62

Figure 11.16
Chi-square calculation 
for Example 11.21.
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Because so many statistical methods assume normal data, it is important to have a test
for normality, and the chi-square method can be used (Exercise 38 and Section
11.7.4).

11.6.2 Contingency tables

In Section 11.4.3 the correlation was introduced as a measure of dependence between
two random variables. The sample correlation (Section 11.4.4) provides an estimate
from data. This measure only applies to numerical random variables, and then only
works for linear dependence (Exercise 15). The rank correlation (Section 11.4.6) has
more general applicability, but still requires that the data be classified in order of rank.
The chi-square testing procedure can be adapted to provide at least an indicator of
dependence that has the widest applicability of all.

Suppose that each item in a sample of size n can be separately classified as one of A1,
. . . , Ar by one criterion, and as one of B1, . . . , Bc by another (these may be numerical
values, but not necessarily). The number fij of items in the sample that are classified as
‘Ai and Bj’ can be counted for each i = 1, . . . , r and j = 1, . . . , c. The table of these
numbers (with r rows and c columns) is called a contingency table (Figure 11.17). The
question is whether the two criteria are independent. If not then some combinations of
Ai and Bj will occur significantly more often (and others less often) than would be
expected under the assumption of independence. We first have to work out how many
would be expected under an assumption of independence.

# Expected values
e_comb <− 500 * p_comb; e_comb
#> [1] 67.667642 135.335283 135.335283 90.223522 45.111761 
18.044704
#> [7] 6.014901 2.266903
(f_comb − e_comb); (f_comb − e_comb)^2 
(f_comb − e_comb)^2 / e_comb
#> [1] −15.6676416 15.6647168 −5.3352832 11.7764778 
−0.1117611 −6.0447044
#> [7] −1.0149015 0.7330972
#> [1] 245.47499388 245.38335128 28.46524721 138.68543037 
0.01249054
#> [6] 36.53845166 1.03002501 0.53743156
#> [1] 3.6276570013 1.8131513483 0.2103313085 1.5371316377 
0.0002768799
#> [6] 2.0248850184 0.1712455328 0.2370774642
sum((f_comb − e_comb)^2 / e_comb)
#> [1] 9.621756
qchisq(0.05, 8 − 1 − 1, lower.tail = FALSE) 

# t = 1 as lambda is estimated
#> [1] 12.59159
# Probability
1 − ppois(8, lambda_hat); ppois(8, lambda_hat, lower.tail 
= FALSE)
#> [1] 0.0002374473
#> [1] 0.0002374473
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Let the row and column totals be denoted by

If the criteria are independent then the joint probability for each combination can be
expressed as the product of the separate marginal probabilities:

P(Ai ù Bj) = P(Ai)P(Bj)

The chi-square procedure will be used to see how well the data fit this assumption. To
test it, we can estimate the marginal probabilities from the row and column totals,

and multiply the product of these by n to obtain the expected number eij for each com-
bination:

If the value of this is large then the hypothesis of independence is rejected, because the
actual and expected counts differ by more than can be attributed to chance. As
explained in Section 11.6.1, the largeness is judged with respect to χ 2

α ,m−t−1 from the
chi-square table. The number of classes, m, is the number of rows times the number of
columns, rc. The number of independent parameters estimated from the data, t, is the
number of independent marginal probabilities P(Ai) and P(Bj):

t = (r − 1) + (c − 1)

fi+ = fij i 1, . . . , r=( )
j=1

c



f+ j = fij j 1, . . . , c=( )
i=1

r



Figure 11.17
Contingency table.

P Ai( ) . 
fi+

n
----- , P Bj( ) . 

f+j

n
-----

eij = n
fi+

n
----- f+j

n
-----  =  

fi+ f+j

n
------------

The chi-square goodness-of-fit statistic follows from the actual and expected numbers
( fi j and eij) as a sum over all the rows and columns:

χ 2 = 
fi j ei j–( )2

eij

-----------------------
j=1

c


i=1

r


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The number is not r + c, because the row and column totals must equal one, so when
all but one are specified, the last is determined. Finally,

m − t − 1 = rc − (r + c − 2) − 1 = (r − 1)(c − 1)

An accident inspector makes spot checks on working practices during visits to indus-
trial sites chosen at random. At one large construction site the numbers of accidents
occurring per week were counted for a period of three years, and each week was also
classified as to whether or not the inspector had visited the site during the previous
week. The results are shown in bold print in Figure 11.18. Do visits by the inspector
tend to reduce the number of accidents, at least in the short term?

Solution The respective row and column totals are shown in Figure 11.18, together with the
expected numbers ei j in parentheses in each cell. For example, the top left cell has
observed number 20, row total 24, column total 87, n = 156, and hence the expected
number

e11 = (24)(87)/156 = 13.38

The chi-square sum is

= 8.94

With two rows, four columns and a significance level of 5%, the appropriate number
from the chi-square table is χ 2

0.05,3 = 7.815. The calculated value exceeds this, and by
comparing the observed and expected numbers in the table, it seems clear that the visits
by the inspector do tend to reduce the number of accidents. This is not, however, signifi-
cant at the 2.5% level.

The hypothesis of independence is therefore rejected (at significance level α) if

χ2 . χα, r−1( ) c−1( )
2

Example 11.22

Number of accidents

0 1 2 3 Total

Visit
Residual

20 (13.38)
2.96

3 (7.08)
–1.99

1 (2.46)
–1.07

0 (1.08)
–1.16

24

No visit
Residual

67 (73.62)
–2.96

43 (38.92)
1.99

15 (13.54)
1.07

7 (5.92)
1.16

132

Total 87 46 16 7 156

Figure 11.18
Contingency table
for Example 11.22.

χ2 = 20 13.38–( )2

13.38
-------------------------------- . . . 7 5.92–( )2

5.92
--------------------------+ +
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We can perform this analysis using the chisq.test function. First, we need to
specify the contingency table data as a matrix. We will also compute row, column
and overall totals for later use.

f <− matrix(c(20, 3, 1, 0, 67, 43, 15, 7), 
nrow = 2, 

# 2 rows (number of columns follows from this)
byrow = TRUE) # We input the data row by row

# Add row and column names
dimnames(f) <− list("Inspector" = c("Visit", "No Visit"), 

"Accidents" = 0:3)
f
#> Accidents
#> Inspector 0 1 2 3
#> Visit 20 3 1 0
#> No Visit 67 43 15 7
#
# Compute the row, column and overall totals for later use
f_row <− rowSums(f); f_col <− colSums(f) 

# Row and column totals
n <− sum(f) # Overall total
f_row; f_col; n
#> Visit No Visit
#> 24 132
#> 0 1  2 3
#> 87 46 16 7
#> [1] 156
# An alternative way of computing row and column totals, 
# that will be useful later,
# is by means of the apply function
apply (f, MARGIN = 1, FUN = sum) 

# MARGIN 1 corresponds to rows
#> Visit No Visit
#> 24 132
apply(f, MARGIN = 2, FUN = sum) 

# MARGIN 2 corresponds to columns
#> 0 1 2 3
#> 87 46 16 7

Now we can perform and confirm the analysis:
# Test of independence
chi_ind <− chisq.test(f); chi_ind
#>
#> Pearson’s Chi-squared test
#>
#> data: f
#> X-squared = 8.9381, df = 3, p-value = 0.03012
alpha <− 0.05
df <− (nrow(f) − 1) * (ncol(f) − 1); df
#> [1] 3
qchisq(alpha, df, lower.tail = FALSE)
#> [1] 7.814728
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We can extract the expected values eij:

chi_ind$expected

#> Accidents
#> Inspector 0 1 2 3
#> Visit 13.38462 7.076923 2.461538 1.076923
#> No Visit 73.61538 38.923077 13.538462 5.923077

The values of the so-called Pearson residuals ( fij − eij)/  can be obtained from:

chi_ind$residuals

#> Accidents
#> Inspector 0 1 2 3
#> Visit 1.8082237 −1.5325346 −0.9315516 −1.0377490
#> No Visit −0.7710292  0.6534749 0.3972150 0.4424977
# Confirm by rounding the differences to 5 decimal places
# to take account of numerical inaccuracies; 0.00000 
# printed as 0

round(chi_ind$residuals − (f − chi_ind$expected) / 
sqrt(chi_ind$expected), 5)

#> Accidents
#> Inspector 0 1 2 3
#> Visit 0 0 0 0
#> No Visit 0 0 0 0

The individual contributions ( fij − eij)
2/eij to the χ 2 statistic can therefore be

obtained as:

chi_ind$residuals^2

#> Accidents
#> Inspector 0 1 2 3
#> Visit 3.269673 2.3486622 0.8677885 1.0769231
#> No Visit 0.594486 0.4270295 0.1577797 0.1958042

# Confirm

round(chi_ind$residuals^2 − (f − chi_ind$expected)^2 / 
chi_ind$expected, 5)

#> Accidents

#> Inspector 0 1 2 3
#>  Visit 0 0 0 0
#> No Visit 0 0 0 0

These figures tell us that, after a visit by the inspector, 0 accidents occur more often
(( f11 − e11)) /  is positive) and 1, 2 and 3 accidents occur less often (( f12 − e12))/ ,
(( f13 − e13)) /  and (( f14 − e14)) /  are negative) than would be expected were the
number of accidents independent of whether or not the inspector had visited.

eij

e11 e12

e13 e14
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A significant chi-square value does not by itself reveal what part or parts of the table
are responsible for the lack of independence. A procedure that is often helpful in this
respect is to work out the adjusted residual for each cell, defined as

Under the assumption of independence, these are approximately standard normal, so a
significant value for a cell suggests that that cell is partly responsible for the depend-
ence overall. The adjusted residuals for the contingency table in Example 11.22 are
shown in Figure 11.18, and support the conclusion that visits by the inspector tend to
reduce the number of accidents.

For a useful survey of procedures for analysing contingency tables, see B. S. Everitt,
The Analysis of Contingency Tables, (second edition, Chapman & Hall, London, 1992).
Chapter 6 of J. J. Faraway Extending the Linear Model with R (second edition, Boca
Raton, Chapman and Hall / CRC, FL, 2016) provides a very detailed modern treatment
based on statistical modelling.

The residuals provided by R take the form ( fij − eij) / . These can be transformed to
adjusted residuals dij by first creating a matrix with clement (i, j) element (1 − fi+/n)
(1 − fj+/n) and then calculating ( fij − eij)/  using the
outer function:

# We have already computed the row, column and overall 
totals

f_row; f_col; n
#> Visit No Visit
#> 24 132
#> 0 1 2 3
#> 87 46 16 7
#> [1] 156
# Required matrix
M <− outer((1 − f_row / n) , (1 − f_col / n))
# Adjusted residuals
chi_ind$residuals / sqrt(M)

#> Accidents
#> Inspector 0 1 2 3
#> Visit 2.955733 −1.984045 −1.069007 −1.154348
#> No Visit −2.955733 1.984045 1.069007 1.154348

# These are available directly
chi_ind$stdres

#> Accidents

#> Inspector 0 1 2 3
#> Visit 2.955733 −1.984045 −1.069007 −1.154348
#> No Visit −2.955733 1.984045 1.069007 1.154348

dij = fi j ei j–
eij 1 fi+ /n–( ) 1 f+j /n–( )[ ]

----------------------------------------------------------------

eij

eij 1 fi + n⁄–( ) 1 fj + n⁄–( )
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Check your calculations using R whenever possible.

In a genetic experiment, outcome A is expected to 
occur twice as often as outcome B, which in turn is 
expected to occur twice as often as outcome C, and 
exactly one of these three outcomes must occur. In 
a sample of size 100, outcomes A, B, C occurred 63, 
22, 15 times respectively. Test the hypothesis at 5% 
significance.

The number of books borrowed from a library 
that is open five days a week is as follows: Monday 
153, Tuesday 108, Wednesday 
120, Thursday 114, Friday 145. Test (at 
5% significance) whether the number of 
books borrowed depends on the day of 
the week.

A new process for manufacturing light fibres is 
being tested. Out of 50 samples, 32 contained no 
flaws, 12 contained one flaw and 6 contained two 
flaws. Test the hypothesis that the number of flaws 
per sample has a Poisson distribution.

In an early experiment on the emission of 
α-particles from a radioactive source, Rutherford 
obtained the following data on counts of particles 
during constant time intervals:

Test the hypothesis that the number of particles 
emitted during an interval has a Poisson 
distribution.

Two samples of 100 data have been grouped into 
classes as shown in Figure 11.19. The sample 
average and standard deviation in each case 
were 10.0 and 2.0 respectively.

(a) Draw the histogram for each sample.
(b) Test each sample for normality using the 

measured parameters.

Figure 11.19 Data classification for 
Exercise 38.

See also Section 11.7.4

Shipments of electronic devices have been received 
by a firm from three sources: A, B and C. Each 
device is classified as either perfect, intermediate 
(imperfect but acceptable), or unacceptable. From 
source A 89 were perfect, 23 intermediate and 12 
unacceptable. Corresponding figures for source B 
were 62, 12 and 8 respectively, and for source C 119, 
30 and 21 respectively. Is there any significant 
difference in quality between the devices received 
from the three sources?

Cars produced at a factory are chosen at random 
for a thorough inspection. The number inspected 
and the number of those that were found to be 
unsuitable for shipment were counted monthly 
for one year as follows:

Is there a significant variation in quality through 
the year?

11.6.3 Exercises

Number of
particles

0 1 2 3 4 5 6 7 8 9 10 . 10

Number of
intervals

57 203 383 525 532 408 273 139 45 27 10 6

34

35

36

37

38

Class Sample 1 Sample 2

< 6.5 4 3
6.5–7.5 6 6
7.5–8.5 16 16
8.5–9.5 16 13
9.5–10.5 17 26

10.5–11.5 20 7
11.5–12.5 12 19
12.5–13.5 6 5

> 13.5 3 5

Month Jan. Feb. Mar. Apr. May Jun.

Inspected 450 550 550 400 600 450
Defective 8 14 6 3 7 8

Month Jul. Aug. Sep. Oct. Nov. Dec.

Inspected 450 200 450 600 600 550
Defective 16 5 12 6 15 9

39

40
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Customers ordering regularly from an on-line 
clothing catalogue are classed as low, medium and 
high spenders. Considering four products from the 
catalogue (a jacket, a shirt, a pair of trousers, and a 
pair of shoes), the numbers of customers in each 
class buying these products over a fixed period of 
time are given in the following table:

Does this table provide evidence that customers 
with different spending levels tend to choose 
different products?

A quality control engineer takes daily samples of 
four television sets coming off an assembly line. 
In a total of 200 working days he found that on 
110 days no sets required adjustments, on 73 days 
one set requires adjustments, on 16 days two sets 
and on 1 day three sets. Use these results to test 
the hypothesis that 10% of sets coming off the 
assembly line required adjustments, at 5% and 1% 
significance levels. Also test this using the 
confidence interval for proportion (Section 11.3.6), 
using the total number of sets requiring adjustments.

Spending level Jacket Shirt Trousers Shoes

Low 21 94 57 113
Medium 66 157 94 209
High 58 120 41 125

41

42

Engineering application: analysis of engine 
performance data

11.7.1 Introduction

Statistical methods are often used in conjunction with each other. So far in this chapter
the examples and exercises have almost always been designed to illustrate the various
topics one at a time. This section contains an example of a more extended problem to
which several topics are relevant, and correspondingly there are several stages to the
analysis.

The background to the problem is this. Suppose that the fuel consumption of a car
engine is tested by measuring the time that the engine runs at constant speed on a litre
of standard fuel. Two prototype engines, A and B, are being compared for fuel
consumption. For each engine a series of tests is performed in various ambient
temperatures, which are also recorded. Figure 11.20 contains the data. There are 30
observations each for the four random variables concerned:

A, running time in minutes for engine A;

T, ambient temperature in degrees Celsius for engine A;

B, running time in minutes for engine B;

U, ambient temperature in degrees Celsius for engine B.

The histograms for the running times are compared in Figure 11.21(a) and those for the
temperatures in Figure 11.21(b). The overall profile of temperatures is very similar for
the two series of tests, differing only in the number of unusually high or low figures
encountered. The profiles of running times appear to differ rather more markedly. It is
clear that displaying the data in this way is useful, but some analysis will have to be
done in order to determine whether the differences are significant.

11.7 Engineering application:
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It is good practice to input data such as these into R using separate variables for the
running time, the ambient temperature and the engine:

run_time <− c(27.7, 24.3, 23.7, 22.1, 21.8, 24.7, 23.4, 21.6, 
24.5, 26.1, 24.8, 23.7, 25.0, 26.9, 23.7, 24.1, 
23.1, 23.4, 23.1, 24.1, 28.6, 20.2, 25.7, 24.6, 
24.0, 24.9, 21.9, 25.1, 25.7, 23.5, 24.9, 21.4, 
24.1, 27.5, 27.5, 25.7, 24.9, 23.3, 22.5, 28.5, 
25.9, 26.9, 27.7, 25.4, 25.3, 24.3, 24.5, 26.1, 
27.7, 24.3, 26.1, 24.0, 24.9, 26.7, 27.3, 23.9, 
23.1, 25.5, 24.9, 25.9)

amb_temp <− c(24, 25, 18, 15, 19, 16, 17, 14, 18, 20, 15, 15, 
22, 18, 19, 7, 14, 16, 9, 14, 23, 14, 18, 18, 12, 
18, 20, 16, 16, 11, 13, 19, 18, 19, 21, 17, 17, 
19, 21, 12, 17, 13, 17, 23, 30, 17, 16, 18, 14, 
19, 5, 17, 18, 23, 28, 18, 10, 25, 22, 16)

# Generate two levels, each repeated 30 times, to a total 
# length of 60
engine <− gl(2, 30, 60, labels = ("engine A","engine B"))
engine[c(1, 2, 31, 32)] # Show four elements
#> [1] engine A engine A engine B engine B
#> Levels: engine A engine B
levels(engine)
#> [1] "engine A","engine B""))

The R object engine is a factor with two levels (or possible labels), engine A and
engine B. R uses factors to deal with categorical variables that are represented as
descriptions rather than numbers.

Engine A Engine B

A T A T B U B U

27.7 24 24.1 7 24.9 13 24.3 17
24.3 25 23.1 14 21.4 19 24.5 16
23.7 18 23.4 16 24.1 18 26.1 18
22.1 15 23.1 9 27.5 19 27.7 14
21.8 19 24.1 14 27.5 21 24.3 19
24.7 16 28.6 23 25.7 17 26.1 5
23.4 17 20.2 14 24.9 17 24.0 17
21.6 14 25.7 18 23.3 19 24.9 18
24.5 18 24.6 18 22.5 21 26.7 23
26.1 20 24.0 12 28.5 12 27.3 28
24.8 15 24.9 18 25.9 17 23.9 18
23.7 15 21.9 20 26.9 13 23.1 10
25.0 22 25.1 16 27.7 17 25.5 25
26.9 18 25.7 16 25.4 23 24.9 22
23.7 19 23.5 11 25.3 30 25.9 16

Figure 11.20 Data for 
engine case study.
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We can then store these data together using a data frame:

engine_performance <− data.frame(run_time, amb_temp, engine)
head(engine_performance) # Show the first six rows
#> run_time amb_temp engine
#> 1 27.7 24 engine A
#> 2 24.3 25 engine A
#> 3 23.7 18 engine A
#> 4 22.1 15 engine A
#> 5 21.8 19 engine A
#> 6 24.7 16 engine A

As mentioned in Section 11.1, many useful R functions and interesting data sets can
be found in R packages that have been contributed by generous individuals or com-
panies. The ggplot2 R package by Hadley Wickham provides us with state of the
art tools for graphing data such as these. Packages can be installed from RStudio
using the Packages tab or, from the command line, use install.packages:

install.packages( "ggplot2",
repos ="http://www.stats.bris .ac.uk/R/")

If you do not specify an R package repository, a dialogue box will ask you to specify one.
For R to use a package it has to be installed. This can be achieved by using the

function require:

require(ggplot2)

citation(" ggplot2")will provide a citation for the package ggplot2 so that
credit can be given. ggplot2 forms part of the so-called ‘tidyverse’ (https://
github.com/tidyverse/tidyverse), a collection of useful R packages that share com-
mon philosophies and that are designed to work together. dplyr for data manipula-
tion also belongs to the tidyverse, as do readr and readxl for data input and tidyr
for data tidying (not used here).

Here is commented R code to produce Figure 11.21(a), using ggplot2:

ggplot(engine_performance, 
# Use data from the data frame engine_performance

aes(x = run_time, fill = engine)) +
# Specify the aesthetics or features of the graph:
# On the x axis we plot run_time
# We fill using a colour determined by engine

geom_histogram(breaks = 20:30, closed = "left") +

# Show the data as a histogram
# with breaks 20, 21,...,30
# defined as [20, 21), [21, 22),…

facet_grid(engine ~ .) +
# A separate panel or facet for each engine
# arranged in rows, with no columns

labs(x = "Running time (minutes)", y = "Number") 
# Axes labels

https://github.com/tidyverse/tidyverse
https://github.com/tidyverse/tidyverse
http://www.stats.bris.ac.uk/R/
https://github.com/tidyverse/tidyverse
https://github.com/tidyverse/tidyverse
http://www.stats.bris.ac.uk/R/
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When planning the analysis, it is as well to consider the questions to which most
interest attaches. Do the mean running times for the two engines differ? Does the running
time depend on temperature? If so, and if there is a difference in the temperatures for the
test series on engines A and B, can this account for any apparent difference in fuel
consumption? More particularly, are the data normally distributed? This has a bearing on
the methods used, and hence on the conclusions drawn.

11.7.2 Difference in mean running times and temperatures

The sample averages and both versions of standard deviation for the data in Figure 11.20
are as follows:

= 24.20,  = 16.70,  = 25.36,   = 18.07

SA = 1.761, ST = 4.001, SB = 1.657, SU = 4.932

SA,n−1 = 1.791, ST,n−1 = 4.070, SB, n−1 = 1.685, SU, n−1 = 5.017

The average running time for engine B is slightly higher than for engine A. The sample
standard deviations are very similar, so we can assume that the true standard deviations

Figure 11.21(b) is produced in a similar way:

ggplot(engine_performance, aes(x = amb_temp, fill = engine)) + 

geom_histogram(breaks = c(5, 10, 12.4, 15, 17.5, 20, 22.5, 
25, 27.5, 30), closed = "left") + 

facet_grid(engine ~ .) + 
labs(x = "Ambient temperature (degrees C)", y = "Number")

In Section 2.3 of H. Wickham, ggplot2: Elegant Graphics for Data Analysis
(second edition, New York, Springer-Verlag, 2016) the three key components of
every ggplot2 chart are stated as ‘data, a set of aesthetic mappings between
variables in the data and visual properties, and at least one layer which describes how
to render each observation. Layers are usually created with a geom function.’ In the
above code we can clearly see the specification of the data, the aesthetics and the
histogram geometry. We also label the axes.

Figure 11.21
Histograms of engine data: (a) running times; (b) temperatures.

A T B U
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are equal and use the method for comparing means discussed in Section 11.3.5. The
pooled estimate of the variance is

and the relevant value from the t-table is t0.025,58 ≈ 1.960. In fact the sample is large
enough for the value for the normal distribution to be taken.

The 95% confidence interval for the difference μB − μA is approximately

(  − ± 1.96Sp / ) = (0.28, 2.04)

We may conclude that the difference in mean running times is significant.
Following the same procedure for the temperatures gives the 95% confidence interval
for the difference μU − μT to be approximately (−0.94, 3.68). Superficially, this is not
significant – and even if the running times do depend on temperature, the similarity of
the two test series in this respect enables this factor to be discounted. If so, the fuel
performance for engine B is superior to that for engine A. However, if the temperature
sensitivity were very high then even a difference in the average too small to give a
significant result by this method could create a misleading difference in the fuel
consumption figures. This possibility needs to be examined.

We can use the summarize function from the dplyr package to compute the above
summary statistics for each engine. You will probably have to install the dplyr
package. We also show an example of how we can write a function in R to compute
the sample standard deviation s of a sample of data x1, x2, . . . , xn from the alternative
sample standard deviation sn−1, using the fact that  with the
consequence that . Here,  (version with
divisor n) and  (version with divisor n − 1). 
# This function takes in data x_1, x_2,…,x_n using the argument x

# and returns the sample standard deviation s (defined using 
# the divisor n)
# The body of an R function is contained in {...}
sd_n <− function(x){sd(x) * sqrt((length(x) − 1) / length(x))}
# sd uses the n − 1 divisor version of the standard deviation
# The function sd_n that we have created uses
# the n divisor version of the standard deviation
#
# Now for some summary statistics
# In the following %>% can be thought of as a ’pipe’,
# with the left side being sent to the right side
require(dplyr)
engine_performance %>% # The data gets

group_by(engine) %>% # grouped by engine, and
summarize(m_r_t = mean(run_time), # summarized

sd_r_t = sd_n(run_time),
sd_r_t_n_1 = sd(run_time),

Sp
2 = 

n 1–( ) S A ,n−1
2 S B ,n−1

2+( )
2 n 1–( )

--------------------------------------------------------  = 3.208 2.839+
2

---------------------------------  = 3.023

B A 15

s2 sn 1–
2 n 1–( )× n⁄( )=  

s sn 1– n 1–( ) n⁄×=  s2 Σi 1–
n x1 x–( )2

n⁄=  
sn 1–

2 Σi 1–
n x1 x–( )2

n 1–( )⁄=  
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m_a_t = mean(amb_temp),
sd_a_t = sd_n(amb_temp),
sd_a_t_n_1 = sd(amb_temp))

#> # A tibble: 2 × 7
#> engine m_r_t sd_r_t sd_r_t_n_1 m_a_t sd_a_t sd_a_t_n_1
#> <fctr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 engine A 24.20000 1.76106 1.791166 16.70000 4.001250 4.069652
#> 2 engine B 25.35667 1.65664 1.684961 18.06667 4.932432 5.016754

We can perform a t-test to see whether there is a difference in the underlying mean running time 
between the two engines. The factor engine has levels (or labels) engine A followed 
by engine B. We need to create a new factor with levels engine B followed by 
engine A so that we can get confidence intervals for population meanB − population 
meanA.

engine_performance_2 <− engine_performance %>% # Take the data and
mutate(engine_rev = factor(engine, 

levels = c("engine B", "engine A")))
# add the required variable
#
# t-test and confidence interval for running time mean_B − mean_A,
# testing mean_B − mean_A = 0 or mean_B = mean_A
t.test(run_time ~ engine_rev,

data = engine_performance_2,
var.equal = TRUE,
conf.level = 0.95) # 95% confidence interval

#>
#> Two Sample t-test
#>
#> data: run_time by engine_rev
#> t = 2.5762, df = 58, p-value = 0.01256
#> alternative hypothesis: true difference in means is not
#> equal to 0
#> 95 percent confidence interval:
#> 0.2579447 2.0553886
#> sample estimates:
#> mean in group engine B mean in group engine A
#> 25.35667 24.20000
#
# t-test and confidence interval for ambient temperature 
# mean_B − mean_A,
# testing mean_B − mean_A = 0 or mean_B = mean_A
t.test(amb_temp − engine_rev,

data = engine_performance_2,
var.equal = TRUE,
conf.level = 0.95) # 95% confidence interval

#>
#> Two Sample t-test
#>
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11.7.3 Dependence of running time on temperature

The simplest way to test for dependence is to correlate times and temperatures for each
engine. To compute the sample correlations, we need the following additional results
from the data:

= 407.28, = 457.871

The sample correlations (Section 11.4.4) of A and T and of B and U are then

and the respective 95% confidence intervals (Section 11.4.5) are

(0.10, 0.69), (−0.39, 0.33)

This is a quite definitive result: the running time for engine A depends positively upon
the ambient temperature, but that for engine B does not. The confidence intervals are
based on the assumption that all the variables A, T, B and U are normal. The histograms
have this character, and a test for normality will be covered later.

#> data: amb_temp by engine_rev
#> t = 1.1588, df = 58, p-value = 0.2513
#> alternative hypothesis: true difference in means is not
#> equal to 0
#> 95 percent confidence interval:
#> −0.994169 3.727602
#> sample estimates:
#> mean in group engine B mean in group engine A

#> 18.06667 16.70000

The difference between the intervals produced by R and the ones that we calculated
above is due to the normal approximation to the t distribution (t0.025,58 = 2.0017 ≈
1.960) that we have adopted.

These calculations and confidence intervals can be easily obtained in R:

engine_performance %>% # The data gets

group_by(engine) %>% # grouped by engine, and
summarize(mean_of_prod = mean(run_time * amb_temp)) 

# summarized
#> # A tibble: 2 × 2
#> engine mean_of_prod
#> <fctr> <dbl>
#> 1 engine A 407.2767
#> 2 engine B 457.8700
# Sample correlations and 95% confidence intervals

AT BU

rA ,T = AT A( ) T( )–
SAST

--------------------------------  = 0.445, rB,U
BU B( ) U( )–

SB SU

-------------------------------- −0.030= =
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Linear regression also reveals the dependence of running time on temperature. Here
we assume that the variables are related by a linear model as follows:

where cA, dA, cB and dB are constants, and the random variables εi and ηi represent errors.
Using the results of the least-squares analysis in Section 11.5.1, for engine A we have

# Extract the data from engine A
engine_performance_A <− engine_performance %>% 

filter(engine == "engine A")
# Filter out the rows for which engine takes the value engine A
# Note the use of == for ʻdoes it equal?ʼ

# Use the function cor.test with just these data:
# here, cor.test is applied to the variables run_time and

# amb_temp that are found
# in the data frame engine_performance_A
with(engine_performance_A, cor.test(run_time , amb_temp))
#>
#> Pearson’s product-moment correlation
#>
#> data: run_time and amb_temp
#> t = 2.6305, df = 28, p-value = 0.0137
#> alternative hypothesis: true correlation is not equal to 0
#> 95 percent confidence interval:
#> 0.1010835 0.6940980
#> sample estimates:
#> cor
#> 0.4451419
# Extract the data from engine B and use the function cor.test

# with just these data
engine_performance_B <− engine_performance %>% 

filter(engine == "engine B")
with(engine_performance_B, cor.test(run_time , amb_temp))
#>
#> Pearson’s product-moment correlation
#>
#> data: run_time and amb_temp
#> t = −0.15577, df = 28, p-value = 0.8773
#> alternative hypothesis: true correlation is not equal to 0
#> 95 percent confidence interval:
#> −0.3856070 0.3343885
#> sample estimates:
#> cor
#> −0.02942561

Ai = cA dATi εi+ +
 Bi = cB dBUi ηi+ + 




i 1, . . . , n=( )

d̂A = AT A( ) T( )–
S T

2
-------------------------------  = 0.196, ĉA A d̂AT– 20.9= =



882 APPLIED PROBABILITY AND STATISTICS

Likewise, for engine B

= −0.010, ĉB = 25.5

We can obtain these intercepts and slopes, together with the other visual output,
using the lm function:

m_A <− lm(run_time ~ amb_temp, 

# How does run_time depend on amb_temp?
data = engine_performance, 

# Use the data in the data frame engine_performance
subset = engine == "engine A") 

# Work with just the data corresponding to engine A
summary(m_A)
#>
#> Call:
#> lm(formula = run_time ~ amb_temp, data = engine_performance,
#>  subset = engine == "engine A")
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> −3.4710 −0.8328 0.2769 1.0111 3.1657
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 20.92815 1.27904 16.36 7.28e-16 ***

#> amb_temp 0.19592 0.07448 2.63 0.0137 *

#> —
#> Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
#>
#> Residual standard error: 1.632 on 28 degrees of freedom
#> Multiple R-squared: 0.1982, Adjusted R-squared: 0.1695
#> F-statistic: 6.919 on 1 and 28 DF, p-value: 0.0137
m_B <− lm(run_time ~ amb_temp,

data = engine_performance,
subset = engine == "engine B")

summary(m_B)
#>
#> Call:
#> lm(formula = run_time ~ amb_temp, 
#> data = engine_performance,
#> subset = engine == "engine B")
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> −3.9474 −1.0623 0.0767 1.2297 3.0834
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)

d̂B
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Figure 11.22 contains scatter plots of the data with these regression lines drawn. The
points are well scattered about the lines. The residual variances, using the results in
Sections 11.5.2 and 11.5.3, are

S 2
E = S 2

A  − S 2
T = S 2

A(1 − r 2
A,T) = 2.49

S 2
F = 2.74

As explained in Section 11.5.3, the respective values of r 2 indicate the extent to which the
variation in running times is due to the dependence on temperature. For engine B there
is virtually no such dependence. For engine A we have r 2

A,T = 0.198, so nearly 20% of
the variation in running times is accounted for in this way.

If we assume that the errors εi and ηi are normal, we can obtain confidence intervals
for the regression slopes. The appropriate value from the t table is tα /2,n−2 = t0.025,28 =
2.048, so the 95% confidence interval for dA is

#> (Intercept) 25.535221 1.188197 21.491 <2e-16 ***

#> amb_temp −0.009883 0.063445 −0.156 0.877
#> —
#> Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
#>
#> Residual standard error: 1.714 on 28 degrees of freedom

#> Multiple R-squared: 0.0008659, Adjusted R-squared:
#> −0.03482

#> F-statistic: 0.02427 on 1 and 28 DF, p-value: 0.8773

d̂A

d̂A 2.048
SE

ST 28
---------------±

 
 
   = 0.04 0.35,( )

Figure 11.22 Regression of running time against temperature for engine A and engine B. 95% confidence limits 
(Section 11.5.2) are also shown.
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The significance shown here confirms that found for the correlation. The 95% confidence
interval for dB is (−0.14, 0.12) that contains 0.

Figure 11.22 can be produced as follows:

ggplot(engine_performance, aes(x = amb_temp, y = run_time)) + 
geom_point() + # Show the data as points
geom_smooth(method = "lm") +  

# Add a regression line with confidence intervals
# Specify the scale on the y axis

scale_y_continuous(breaks = c(20, 22, 24, 26, 28, 30), 
# Where the breaks should be 
minor_breaks = NULL, 
limits = c(20,30)) + # no breaks in-between

facet_grid(. ~ engine) + 
# A separate facet for each engine arranged in columns, with 
# no rows
labs(x = " Ambient temperature (degrees C) " 
y = "Running time (minutes) ") + 
xlim(0, 30) # x axis limits

The values of S2
E and S2

F can be found from the linear model objects, as can 95%
confidence intervals:
n_A <− nrow(engine_performance_A) # Number of data points
n_B <− nrow(engine_performance_B)
S_2_E <− summary(m_A)$sigma^2 * (n_A − 2) / n_A 

# sigma has to be scaled
S_2_E
#> [1] 2.4868
S_2_F <− summary(m_B)$sigma^2 * (n_B − 2) / n_B
S_2_F
#> [1] 2.742079
confint(m_A)
#> 2.5 % 97.5 %
#> (Intercept) 18.30816036 23.5481378
#> amb_temp 0.04335172 0.3484867
confint(m_B)
#> 2.5 % 97.5 %
#> (Intercept) 23.101310 27.9691318
#> amb_temp −0.139845 0.1200788

Figure 11.23 illustrates the different relationships between running time and ambient
temperature for the two engines. It can be generated using the following code:

ggplot(engine_performance, 
aes(x = amb_temp, y = run_time, col = engine)) + 
geom_point() + 
geom_smooth(method = "lm", fullrange = TRUE) + 

# Extend lines to the full range
scale_y_continuous(breaks = c(20, 22, 24, 26, 28, 30),

minor_breaks = NULL, limits c(20,30)) + 
labs(x = "Ambient temperature (degrees C)", 

y = "Running time (minutes)") + 
xlim(0, 30)
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In order to quantify these differences we use all the data to fit both regression lines
simultaneously. The following R code provides estimates of the intercept cA ( A =
20.9) and slope dA (  = 0.196) for engine A and estimates of the differences cB − cA

( B− A = 25.5−20.9 = 4.6) and dB − dA (  −  = −0.010−0.196 = −0.206). Since
cB = cA + (cB − cA) and dB = dA + (dB − dA), these differences represent the additional
intercept and slope for engine B:

m_interaction <− lm(run_time − amb_temp * engine, data = 
engine_performance)
# * allows for an interaction between amb_temp and engine
# That is, * allows different intercepts and slopes for the
# two engines

summary(m_interaction)
#>
#> Call:
#> lm(formula = run_time − amb_temp * engine, data = 

engine_performance)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> −3.9474 −0.9748 0.1187 1.0892 3.1657
#>
#> Coefficients:
#> Estimate Std.Error t value Pr(>|t|)
#>(Intercept) 20.92815 1.31145 15.958 <2e-16 ***
#> amb_temp 0.19592 0.07637 2.565 0.0130 *
#> engineengine B 4.60707 1.75100 2.631 0.0110 *
#> amb_temp:engineengine B−0.20580 0.09834 −2.093 0.0409 *

Figure 11.23 Regression of running time against temperature for both engines on 
the same graph.

ĉ
d̂A

ĉ ĉ d̂B d̂A
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#> ---
#> Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
#>
#> Residual standard error: 1.674 on 56 degrees of freedom
#> Multiple R-squared: 0.1974, Adjusted R-squared: 0.1544
#> F-statistic: 4.59 on 3 and 56 DF, p-value: 0.006075

95% confidence intervals for cA, dA, cB − cA and dB − dA are obtained in the usual way:

confint(m_interaction)
#> 2.5 % 97.5 %
#> (Intercept) 18.3009974  23.555300790
#> amb_temp 0.0429346  0.348903836
#> engineengine B 1.0993996  8.114744294
#> amb_temp:engineengine B −0.4027943  −0.008810298

Because these last two confidence intervals do not contain 0, we can conclude that,
for the linear relationship between running time and ambient temperature, there is a
significant difference in intercept and a significant difference in slope between the
two engines. The same conclusion follows by noting that the corresponding p-valucs
are less than 0.05.

We will now use this model to produce point estimates and 95% confidence inter-
vals for the running time for both engines at 10 °C and 20 °C:

predict(m_interaction,
newdata = data.frame(amb_temp = 10, engine = "engine A"),
interval = "confidence")

#> fit lwr upr
#> 1 22.88734 21.69347  24.08121

predict(m_interaction,
newdata = data.frame(amb_temp = 10, engine = "engine B"),
interval = "confidence")

#> fit lwr upr
#> 1 25.43639 24.26298  26.6098

predict(m_interaction,
newdata = data.frame(amb_temp = 20, engine = "engine A"),
interval = "confidence")

#> fit lwr upr
#> 1 24.84653  24.05308  25.63999

predict(m_interaction,
newdata = data.frame(amb_temp = 20, engine = "engine B"),
interval = "confidence")

#> fit lwr upr
#> 1 25.33756  24.68009 25.99503

The 95% confidence intervals do not overlap at 10 °C suggesting that there is a significant
difference between the engines at this temperature. The intervals do overlap at 20 °C.
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This can be properly quantified by providing 95% confidence intervals for (cB +
dBt) − (cA + dAt) = (cB − cA) + (dB − dA)t at t = 10 and t = 20 using the multcomp
package, which you will probably have to install:

require(multcomp)
K_10 <− matrix(c(0, 0, 1, 10), nrow = 1)
# c_B − c_A is the third and d_B − d_A is the fourth parameter
# of the model
# We are interested in (c_B − c_A) + 10 (d_B − d_A) = 
# 1 (c_B − c_A) + 10 (d_B − d_A)
interval_10 <− glht(m_interaction, linfct = K_10)
confint(interval_10)
#>
#> Simultaneous Confidence Intervals
#>

#> Fit: lm(formula = run_time − amb_temp * engine, data = 
engine_performance)

#>
#> Quantile = 2.0032
#> 95% family-wise confidence level
#>
#>
#> Linear Hypotheses:

#> Estimate lwr upr
#> 1 == 0 2.5490 0.8751 4.2230
K_20 <− matrix(c(0, 0, 1, 20), nrow = 1)
interval_20 <− glht(m_interaction, linfct = K_20)
confint(interval_20)
#>
#> Simultaneous Confidence Intervals
#>
#> Fit: lm(formula = run_time − amb_temp * engine, data =

#> engine_performance)
#>
#> Quantile = 2.0032
#> 95% family-wise confidence level
#>
#>
#> Linear Hypotheses:
#> Estimate lwr upr
#> 1 == 0 0.4910 −0.5394 1.5215

The first interval is entirely positive, while the second contains zero. Hence, we may
be confident that the difference in running times between engine B and engine A is
positive for a low ambient temperature, such as 10°C, but that there is no significant
difference when t = 20°C.
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11.7.4 Test for normality
The confidence interval statistics are all based on the assumption of normality of the
data. Although the sample sizes are reasonably large, so that the central limit theorem
can be relied upon to weaken this requirement, it is worth applying a test for normality
to see whether there is any clear evidence to the contrary. Here the regression residuals
εi and ηi will be tested using the method described in Section 11.6.1.

Figure 11.24 shows the histogram of all 60 ‘standardized’ residuals. The residuals
have zero mean in any case, and are standardized by dividing by the alternative form
of the standard deviation so that they can be compared with a standard normal
distribution. It is convenient to use intervals of width 0.4, and the comparison is
developed in Figure 11.25.

The normal probabilities for each interval are obtained from the standard normal table
of the cumulative distribution function Φ (z), Figure 11.2, taking successive differences:

P(z1 , Z , z2) = Φ(z2) − Φ (z1)

These probabilities are multiplied by 60 to obtain the expected number in each interval,
and the difference between the observed and expected number for each interval is
squared and then divided by the expected number to give the contribution to the total
chi-square:

Figure 11.24
Histogram of 
standardized residuals.

Interval Observed ( fk) Probability Expected (ek) Chi-square

(−∞, −1.4) 5 0.0808 4.845 0.005
(−1.4, −1.0) 4 0.0779 4.674 0.097
(−1.0, −0.6) 6 0.1156 6.936 0.126
(−0.6, −0.2) 10 0.1465 8.789 0.167
(−0.2, +0.2) 8 0.1585 9.511 0.240
(+0.2, +0.6) 11 0.1465 8.789 0.556
(+0.6, +1.0) 5 0.1156 6.936 0.540
(+1.0, +1.4) 8 0.0779 4.674 2.367
(+1.4, +∞) 3 0.0808 4.845 0.703

Totals 60 1.0 60 4.801

Figure 11.25 Table of 
the test for normality.

χ2 = 
fk ek–( )2

ek

---------------------  4.8≈
k=1

m


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This is small compared with χ 2
0.05,8 = 15.507, so the hypothesis of normality is accepted.

It is unwise when applying this test in general to have many classes with expected
numbers less than five, so the intervals in the tails of the histogram have been merged.

We can reproduce this analysis in R as follows:

r_A <− residuals(m_A) # epsilon_i_hat
r_A <− r_A / sd(r_A) 

# Divide by the alternative form of the standard deviation
r_B <− residuals(m_B)
r_B <− r_B / sd(r_B) # eta_i_hat
r_AB <− c(r_A, r_B) # Collect all the residuals together
# Breaks; use −10 and 10 as end points
breaks_AB <− c(−10, seq(from = −1.4, to = 1.4, by = 0.4), 10)
# Cut at these breaks
r_AB_in_intervals <− cut(r_AB, breaks = breaks_AB)
head(r_AB_in_intervals) # Residuals are assigned to an interval
#> [1] (1,1.4] (−1,−0.6] (−0.6,−0.2] (−1.4,−1] (−10,−1.4] (0.2,0.6]
#> 9 Levels: (−10,−1.4] (−1.4,−1] (−1,−0.6] (−0.6,−0.2] ... (1.4,10]
head(r_AB) # To check
#> 1 2 3 4 5 6
#> 1.2904589 −0.9515012 −0.4705323 −1.1016384 −1.7772822 0.3972420
# Tabulate
f <− table(r_AB_in_intervals); f
#> r_AB_in_intervals
#> (−10,−1.4] (−1.4,−1] (−1,−0.6] (−0.6,−0.2] (−0.2,0.2] (0.2,0.6]
#> 5 4 6 10 8 11
#> (0.6,1] (1,1.4] (1.4,10]
#> 5 8 3
prob <− diff(pnorm(breaks_AB)); prob # Probabilities
#> [1] 0.08075666 0.07789859 0.11559786 0.14648717 0.15851942 

0.14648717
#> [7] 0.11559786 0.07789859 0.08075666

# pnorm provides Phi, then diff takes lag 1 differences
e <− 60 * prob; e # Expected values
#> [1] 4.845400 4.673916 6.935872 8.789230 9.511165 8.789230 

6.935872 4.673916
#> [9] 4.845400
(f − e)^2 / e # Chi-square values
#> r_AB_in_intervals
#> (−10,−1.4] (−1.4,−1] (−1,−0.6] (−0.6,−0.2] (−0.2,0.2] (0.2,0.6]
#>0.004932782 0.097169563 0.126279162 0.166790838 0.240098876 0.556078537
#> (0.6,1] (1,1.4] (1.4,10]
#>0.540321366 2.366931208 0.702831516
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11.7.5 Conclusions

All the questions posed in Section 11.7.1 have now been answered. Engine B has an
average running time that is significantly higher than that for engine A, showing that it
has the advantage in fuel consumption. However, this statement requires qualification.
The running time for engine A depends upon ambient temperature. The temperature
difference between the two test series was not significant, and does not account for the
difference in average running times. However, engine B will only maintain its fuel
advantage up to a certain point. This point cannot be identified very precisely because
of considerable residual scatter in the data. There are many potential sources of this
scatter, such as errors in measuring out the fuel, or variations in the quantity and

sum((f − e)^2 / e) # Chi-square statistic
#> [1] 4.801434
qchisq(0.05, length(f) − 1, lower.tail = FALSE)
#> [1] 15.50731
# Alternatively, using chisq.test
chisq.test(f, p = prob)
#>
#> Chi-squared test for given probabilities
#>
#> data: f
#> X-squared = 4.8014, df = 8, p-value = 0.7786

A quantile-comparison plot (see Figure 11.26) provides a graphical way of checking
normality. We do not go into the details, except to say that if most of the points lie
in the confidence envelope, then we would accept the hypothesis of normality. Here
all the points lie in the confidence envelope.

Figure 11.26 can be generated using the car package (which you will probably
need to install):

require(car)
qqPlot(r_AB, ylab = "Standardized residuals")

Figure 11.26 Quantile-comparison plot of the standardized residuals.
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consistency of the engine oil. The scatter has a normal distribution, which justifies
the statistics behind the conclusions reached. We will discuss this example further in
Section 11.10.3.

Engineering application: statistical quality control

11.8.1 Introduction

Every manufacturer recognizes the importance of quality, and every manufacturing
process involves some variation in the quality of its output, however that is to be
measured. Experience shows that tolerating a lack of quality tends to be more
costly in the end than promoting a quality approach. It follows that quality control is a
major and increasing concern, and methods of statistical quality control are more
important than ever. The domain of these methods now extends to the construction and
service industries as well as to manufacturing – wherever there is a process that can be
monitored in quantitative terms. Internet traffic can also be monitored by statistical
quality control methods to ensure stable performance.

Traditionally, quality control involved the accumulation of batches of manufactured
items, the testing of samples extracted from these batches, and the acceptance or
rejection (with appropriate rectifying action) of these batches depending upon the
outcome. The essential problem with this is that it is too late within the process: it is
impossible to inspect or test quality into a product. More recently the main concern has
been to design the quality into the product or service and to monitor the process to
ensure that the standard is maintained, in order to prevent any deficiency. Assurance can
then be formally given to the customer that proper procedures are in place.

Control charts play an important role in the implementation of quality. The idea of
these is introduced in Section 13.6 in MEM, where Shewhart charts for counts of defec-
tives are described. In order for this section to be as self-contained as possible, some of
that material is repeated here. This section then covers more powerful control charts and
extends the scope of what they monitor.

First note that there are two main alternative measures of quality: attribute and var-
iable. In attribute measure, regular samples from the process are inspected and for each
sample the number that fail according to some criterion is plotted on a chart. In variable
measure, regular samples are again taken, but this time the sample average for some
numerical measure (such as dimension or lifetime) is plotted.

11.8.2 Shewhart attribute control charts

A Shewhart control chart provides a plot of the count of ‘defectives’ (the number in the
sample failing according to some chosen criterion) against sample number. It is
assumed that a small (specified) proportion of ‘defective’ items in the process is
permitted. It will also show the two limits on the count of defectives, corresponding to
probabilities of one in 40 and one in 1000 of a sample count falling outside if the
process is ‘in control’; that is, conforming to the specification. These are called
warning and action limits respectively, and are denoted by cW and cA.

11.8 Engineering application:
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Any sample point falling outside the action limit would normally result in the
process being suspended and the problem corrected. Roughly one in 40 sample points
will fall outside the warning limit purely by chance, but if this occurs repeatedly or if
there is a clear trend upwards in the counts of defectives then action may well be taken
before the action limit itself is crossed.

To obtain the warning and action limits, we use the Poisson approximation to the
binomial. If the acceptable proportion of defective items is p, usually small, and the
sample size is n then for a process in control the defective count C, say, will be a
binomial random variable with parameters n and p. Provided that n is not too small, this
binomial random variable can be approximated by a Poisson random variable with
mean parameter np. From this approximation we can obtain:

P(C > c) .  

Equating this to and then to gives equations that can be solved for the warning
limit cW and the action limit cA respectively, in terms of the product np. 

Regular samples of 50 are taken from a process making electronic components, for
which an acceptable proportion of defectives is 5%. Successive counts of defectives in
each sample are as follows:

At what point would the decision be taken to stop and correct the process?

Solution The control chart is shown in Figure 11.27. Taking np to be 2.5, the warning limit cW =
5.5 and action limit cA = 8.5 can be read from the table in Figure 11.28. The half-integer
values are to avoid ambiguity when the count lies on a limit. There are warnings at
samples 6, 10, 11, 15 and 16 before the action limit is crossed at sample 18. Strictly, the
decision should be taken at that point, but the probability of two consecutive warnings
is less than one in 1600 by the product rule of probabilities assuming independence,
which would justify taking action after sample 11.

Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Count 3 5 2 2 1 6 4 4 2 6 7 4 5 5 8 6 5 9 7 8

np( )k e−np

k!
-----------------------

k=c

∞


1
40
------ 1

1000
------------

Example 11.23

Figure 11.27
Attribute control chart 
for Example 11.23.
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cW or cA np for cW np for cA

1.5 <0.44 <0.13
2.5 0.44–0.87 0.13–0.32
3.5 0.87–1.38 0.32–0.60
4.5 1.38–1.94 0.60–0.94
5.5 1.94–2.53 0.94–1.33
6.5 2.53–3.16 1.33–1.77
7.5 3.16–3.81 1.77–2.23
8.5 3.81–4.48 2.23–2.73
9.5 4.48–5.17 2.73–3.25

10.5 5.17–5.87 3.25–3.79
11.5 5.87–6.59 3.79–4.35
12.5 6.59–7.31 4.35–4.93
13.5 7.31–8.05 4.93–5.52
14.5 8.05–8.80 5.52–6.12
15.5 8.80–9.55 6.12–6.74
16.5 9.55–10.31 6.74–7.37
17.5 10.31–11.08 7.37–8.01
18.5 11.08–11.85 8.01–8.66
19.5 11.85–12.63 8.66–9.31
20.5 12.63–13.42 9.31–9.98
21.5 13.42–14.21 9.98–10.65
22.5 14.21–15.00 10.65–11.33
23.5 15.00–15.80 11.33–12.02
24.5 15.80–16.61 12.02–12.71
25.5 16.61–17.41 12.71–13.41
26.5 17.41–18.23 13.41–14.11
27.5 18.23–19.04 14.11–14.82
28.5 19.04–19.86 14.82–15.53
29.5 19.86–20.68 15.53–16.25
30.5 16.25–16.98
31.5 16.98–17.70
32.5 17.70–18.44
33.5 18.44–19.17
34.5 19.17–19.91
35.5 19.91–20.66

Figure 11.28
Shewhart attribute 
control limits: n is 
sample size, p is 
probability of defect, 
cW is warning limit and 
cA is action limit.

We can perform the calculations and produce Figure 11.27 in R:
count <− c(3, 5, 2, 2, 1, 6, 4, 4, 2, 6, 7, 4, 5, 5, 8, 
6, 5, 9, 7, 8)
N <− length(count)
n <− 50; p <− 0.05; n * p
#> [1] 2.5
c_W <− 5.5; c_A <− 8.5 # Warning and Action limits
plot(1:N, count,

type = "b", # Both points and lines
pch = 16, # Filled dots as plotting characters
xlab = "Sample number", ylab = "Count of defectives",
xlim = c(0, 20), ylim = c(0, 10))

abline(h = c(c_W, c_A), lty = "dashed")
# Dashed horizontal lines at Warning and Action limits
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An alternative practice (especially popular in the USA) is to dispense with the
warning limit and to set the action limit (called the upper control limit, UCL) at three
standard deviations above the mean. Because the count of defectives is binomial with
mean np and variance np(1 − p), this means that

UCL = np + 3

Find the UCL and apply it to the data in Example 11.23.

Solution From n = 50 and p = 0.05 we infer that UCL = 7.1, which is between the warning limit
cW and the action limit cA in Example 11.23. The decision to correct the process would
be taken after the 15th sample, the first to exceed the UCL.

11.8.3 Shewhart variable control charts

Suppose now that the appropriate assessment of quality involves measurement on a
continuous scale rather than success or failure under some criterion. This arises whenever
some dimension of the output is critical for applications. Again we take samples, but this
time we measure this critical dimension and average the results. The Shewhart chart for
this variable measure is a plot of successive sample averages against sample number.

The warning and action limits cW and cA on a Shewhart chart are those points for
which the probabilities of a false alarm (where the result exceeds the limit even though

abline(h = 0) # Horizontal line at 0
text(2, c_W + 0.3, "Warning limit") # Text at (2, c_W + 0.3)
text(2, c_A + 0.3, "Action limit")

np 1 p–( )[ ]

Example 11.24

The R packages qcc and spc provide functions to produce a range of control
charts. We shall mainly use functions from qcc; see L. Serucca, ‘qcc: An R package
for quality control charting and statistical process control’, R News, 4, 11–17, 2004
(https://www.r-project.org/doc/Rnews/Rnews_2004-1.pdf), for a brief description.

Figure 11.29 shows the UCL and LCL (lower control limit, here is zero) with
coloured points used to highlight problems. It is generated using the following
code:

sample_sizes <− rep(50, N) # 20 samples of size 50
require(qcc) 

# Load the package, which you will probably have to install
np_chart <− qcc(count, type = "np",

sizes = sample_sizes,
center = 0.05, # Target value
confidence.level = 1 − 1/1000, # 
Corresponds to 1 / 1000
ylim = c(0, 10),
xlab = "Sample number", 
ylab = "Count of defectives")

https://www.r-project.org/doc/Rnews/Rnews_2004-1.pdf
https://www.r-project.org/doc/Rnews/Rnews_2004-1.pdf
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the process is in control) are one in 40 and one in 1000 respectively. For variable measure
the critical quantity can be either too high or too low, so the sample average must be tested
in each direction with the stated probability of exceedance for each limit. It follows that
the limits are determined by

P(  . μX + cW) = P(  , μX − cW) =

P(  . μX + cA) = P(  , μX − cA) =

where  is the sample average and μX the design mean.
Provided that the sample size n is not too small, the central limit theorem allows the

sample average to be assumed normal (Section 11.3.2),

 ~ N(μX, σ 2
X /n)

and the normal distribution table (Figure 11.2) then gives

Measurements of sulphur dioxide concentration (in μg m−3) in the air are taken daily at
five locations, and successive average readings are as follows:

64.2, 56.9, 57.7, 67.9, 61.7, 59.7, 55.6, 63.7
58.3, 66.4, 67.2, 65.2, 63.1, 67.6, 64.1, 66.7

It is suspected that the mean increased during that time. Assuming normal data with a
long-term mean of 60.0 and standard deviation of 8.0, investigate whether an increase
occurred.

Solution From n = 5 and σX = 8 we have cW = 7.0 and cA = 11.1 (Figure 11.30). The warning limit
is 67.0, which is exceeded by sample numbers 4, 11 and 14. The action limit is 71.1,
which is not exceeded. The readings are suspiciously high – but not sufficiently so for
the conclusion to be justified.

Figure 11.29 Attribute control chart for Example 11.23 produced by the R package qcc.

X X 1
40
------

X X 1
1000
------------

X

X

cW = 
1.96σX

n
----------------, cA = 

3.09σX

n
----------------

Example 11.25
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We can perform the calculations and produce Figure 11.30 in R:

# Sulphur dioxide
SO2 <− c(64.2, 56.9, 57.7, 67.9, 61.7, 59.7, 55.6, 63.7, 

58.3, 66.4, 67.2, 65.2, 63.1, 67.6, 64.1, 66.7)
N <− length(SO2)
n <− 5; mu_X <− 60; sigma_X <− 8
# Warning and Action limits
c_W <− qnorm(1 / 40, lower.tail = FALSE) * sigma_X / 
sqrt(n) ; c_W
#> [1] 7.01218
c_A <− qnorm(1 / 1000, lower.tail = FALSE) * sigma_X / 
sqrt(n); c_A
#> [1] 11.05595
# Plot; the plot needs more space on left side for axis 
# label superscript
p <− par(mar = c(5.1, 4.1 + 1, 4.1, 2.1))
# original parameters can be restored using par(p)
plot(1:N, SO2,

type = "b", pch = 16,
xlab = "Sample number",
ylab = expression(paste("Concentration (", mu * g ~ 

m^−3, ")")), 
# Axis label using Greek letter and power

xlim = c(0,16), ylim = c(48, 72))
abline(h = mu_X) # Horizontal line at the long-term mean
# Dashed horizontal lines at Warning and Action limits
abline(h = c(mu_X − c_W, mu_X + c_W, mu_X − c_A, mu_X + 
c_A), lty = "dashed")
abline(h = 0) # Horizontal line at 0
text(2, mu_X − c_W + 0.75, "Warning limit")
text(2, mu_X + c_W + 0.75, "Warning limit")

Figure 11.30 Variable control chart for Example 11.25.
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As discussed in Section 11.8.2, the practice in the USA is somewhat different: there
are no warning limits, only action limits at three standard deviations on either side of the
mean. For a variable chart this allows a deviation from the mean of at most 3σX / , which
is very close to the action limit usually used in the UK.

text(2, mu_X − c_A + 0.75, "Action limit")
text(2, mu_X + c_A + 0.75, "Action limit")

The following code uses the qcc package to produce Figure 11.31 on which the
UCL and LCL are shown:

sample_sizes <− rep(5, N) # 16 samples of size 5
# Plot needs more space on left side for axis label 
# supers"cript
p <− par(mar = c(5.1, 4.1 + 1, 4.1, 2.1))
xbar_chart <− qcc(SO2, type = "xbar",

sizes = sample_sizes,
center = 60.0, # Target value
std.dev = 8, # Assumed standard deviation
confidence.level = 1 − 2 / 1000,

# Corresponds to 1 / 1000 (two limits); 
# alternatively specify nsigmas

xlim = c(0,16), ylim = c(48, 72),
xlab = "Sample number",
ylab = expression(paste("Concentration (", 

mu * g ~ m^−3, ")")))

Figure 11.31 Variable control chart for Example 11.25 produced by the R package qcc.

n
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11.8.4 Cusum control charts

The main concern in designing a control chart is to achieve the best compromise between
speedy detection of a fault on the one hand and avoidance of a proliferation of false alarms
on the other. If the chart is too sensitive, it will lead to a large number of unnecessary
shutdowns. The Shewhart charts, on the other hand, are rather conservative in that they
are slow to indicate a slight but genuine shift in performance away from the design level.
This derives from the fact that each sample point is judged independently and may well
lie inside the action limits, whereas the cumulative evidence over several samples might
justify an earlier decision. Rather informal methods involving repeated warnings and trends
are used, but it is preferable to employ a more powerful control chart. The cumulative
sum (cusum) chart achieves this.

Suppose that we have a sequence {Y1, Y2, . . . } of observations, which may be either
counts of defectives or sample averages. From this a new sequence {S0, S1, . . . }
is obtained by setting

S0 = 0,

Sm = max{0, Sm−1 + Ym − r} (m = 1, 2, . . . )

where r is a constant ‘reference value’. This gives a cumulative sum of values of Ym − r,
which is reset to zero whenever it goes negative. The out-of-control decision is made when

Sm . h

where h is a constant ‘decision interval’. This will detect an increasing mean; a
separate but similar procedure can be used to detect a decreasing mean. Values of
r and h for both attribute and variable types of control can be obtained from tables such
as those in J. Murdoch, Control Charts (London, Macmillan, 1979), from which the
attribute table in Figure 11.32 has been extracted. For variable measure (with process
design mean μX and standard deviation σX) the following are often used:

r = μX + , h =

np r h np r h

0.22 1 1.5 2.35 4 4.5
0.39 1 2.5 2.60 4 5.5
0.51 2 1.5 2.95 5 4.5
0.62 1 4.5 3.24 5 5.5
0.69 1 5.5 3.89 6 5.5
0.79 2 2.5 4.16 6 6.5
0.86 3 1.5 5.32 7 8.5
1.05 2 3.5 6.07 8 8.5
1.21 3 2.5 7.04 9 9.5
1.52 3 3.5 8.01 10 10.5
1.96 3 5.5 9.00 11 11.5
2.16 5 2.5 10.00 12 12.5

Figure 11.32 Cusum 
attribute chart control 
data.

σX

2 n
---------- 5

σX

n
-------



11.8  ENGINEERING A PPLICATION:  STATISTICAL QUALITY CONTROL 899

Regular samples of 50 are taken from a process making electronic components, for which
an acceptable proportion of defectives is 5%. Successive counts of defectives in each
sample are as follows:

At what point would the decision be taken to stop and correct the process?

Solution The acceptable proportion of defectives is p = 0.05 and the regular sample size is
n = 50. From the table in Figure 11.32, with np = 2.5 the nearest figures for refer-
ence value and decision interval are r = 4 and h = 5.5. The following shows the
cusum Sm for 1 < m < 20 below each count of defectives Ym, and the cusum is also
plotted in Figure 11.33:

For example,

S13 = S12 + Y13 − r = 5 + 5 − 4 = 6

and because this exceeds h = 5.5, the decision to take action would be made after the
13th sample. This result can be compared with that of a Shewhart chart applied to the
same data (Example 11.23), which suggests that action should be taken after 18 samples.

Example 11.26

Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Count 3 5 2 2 1 6 4 4 2 6 7 4 5 5 8 6 5 9 7 8

Count 3 5 2 2 1 6 4 4 2 6 7 4 5 5 8 6 5 9 7 8
Cusum 0 1 0 0 0 2 2 2 0 2 5 5 6 7 11 13 14 19 22 26

We can perform the calculations and produce Figure 11.33 in R:

n <− 50; p <− 0.05; n * p
#> [1] 2.5
r <− 4; h <− 5.5
# Set-up space for S
N <− length(count)
S <− rep(NA, N + 1)
S[1] <− 0 # R starts indexing at 1, not 0

Figure 11.33
Cusum control chart 
for Example 11.26.
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Construct a cusum chart for the sulphur dioxide data in Example 11.25.

Solution From μX = 60, σX = 8 and n = 5 we have 

r = 60 + = 61.8, h = = 17.9

The following table shows the sample average Xm and cusum Sm for 1 < m < 16, and
the cusum is also plotted in Figure 11.34:

Because S14 = 20.5 exceeds h = 17.9, this chart suggests that the SO2 concentration did
increase during the experiment, a stronger result than that obtained from the Shewhart
chart in Example 11.25.

# Note the indexing on count, due to different range of m 
# (1 to N + 1, not 0 to N)
for(m in 2:(N + 1)) {
S[m] <− max(0, S[m-1] + count[m-1] − r)}
S # First value was set to 0
#> [1] 0 0 1 0 0 0 2 2 2 0 2 5 5 6 7 11 13 14 19 22 26
plot(0:N, S,

type = "b", pch = 16,
xlab = "Sample number m", ylab = expression(S[m]),
xlim = c(0, 20), ylim = c(0, 26))

abline(h = h, lty = "dashed")
abline(h = 0)
text(0, h + 1.5, "h")

Example 11.27

8

2 5
---------- 5

8

5
-------

Average 64.2 56.9 57.7 67.9 61.7 59.7 55.6 63.7
Cusum 2.4 0 0 6.1 6.0 3.9 0 1.9

Average 58.3 66.4 67.2 65.2 63.1 67.6 64.1 66.7
Cusum 0 4.6 10.0 13.4 14.7 20.6 22.9 27.8

Figure 11.34
Cusum control chart 
for Example 11.27.
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It can be shown that the cusum method will usually detect an out-of-control
condition (involving a slight process shift) much sooner than the strict Shewhart
method, but with essentially the same risk of a false alarm. For instance, the cusum
method leads to a decision after 13 samples in Example 11.26 compared with 18
samples in Example 11.23 for the same data. The measure used to compare the two
methods is the average run length (ARL), which is the mean number of samples
required to detect an increase in proportion of defectives (or process average) to some
specified level. It has been shown that the ARL for the Shewhart chart can be up to four
times that for the cusum chart (J. Murdoch, Control Charts, London, Macmillan, 1979).

11.8.5 Moving-average control charts

The cusum chart shows that the way to avoid the relative insensitivity of the Shewhart
chart is to allow the evidence of a shift in performance to accumulate over several
samples. There are also moving-average control charts, which are based upon a
weighted sum of a number of observations. The best of these, which is very similar to the
cusum chart in operation, is the geometric moving-average (GMA) chart. This will be
described here for variable measure, but it also works for attribute measure (Exercise 51).

We can perform the calculations and produce Figure 11.34 in R:

mu_X <− 60; sigma_X <− 8; n <− 5
r <− mu_X + sigma_X / (2 * sqrt(n)); r
#> [1] 61.78885
h <− 5 * sigma_X / sqrt(n); h
#> [1] 17.88854
# Set-up space for S
N <− length(SO2)
S <− rep(NA, N + 1)
S[1] <− 0
for(m in 2:(N + 1)) {S[m] <− max(0, S[m−1] + SO2[m−1] − r)}
S # First value was set to 0
#> [1] 0.000000 2.411146 0.000000 0.000000 6.111146 
6.022291 3.933437
#> [8] 0.000000 1.911146 0.000000 4.611146 10.022291 
13.433437 14.744582
#> [15] 20.555728 22.866874 27.778019
plot(0:N, S,

type = "b", pch = 16,
xlab = "Sample number m", ylab = expression(S[m]),
xlim = c(0, 16), ylim = c(0, 30))

abline(h = h, lty = "dashed") 
# A dashed horizontal line at h

abline(h = 0) # Horizontal line at 0
text(0, h + 1.5, "h")

Cusum control charts for measurements on a continuous scale can be produced in R
from raw data using the qcc package for example.
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Suppose that the successive sample averages are 1, 2, . . . , each from a sample of
size n. Also suppose that the design mean and variance are μX and σ 2

X . Then the GMA
is the new sequence given by

S0 = μX

Sm = r m + (1 − r)Sm−1 (m = 1, 2, . . . )

where 0 , r < 1 is a constant. The smaller the value of r the smaller is the contribution
of new data points to Sm . The statistical properties of this sequence are simpler than for
the cusum sequence. First, by successively substituting for Sm−1, Sm−2 and so on, we can
express Sm directly in terms of the sample averages:

Then, using the summation formula

it is easy to show (Exercise 52) that the mean and variance of Sm are

μS m
 = E(Sm) = μX

After the first few samples the variance of Sm tends to a constant value:

as 0 < 1 − r < 1

If US practice is followed then the upper and lower control limits can be set at
(μX ± 3σS m

). If UK practice is followed then, from the approximate normality of the
sample averages and the fact that sums of normal random variables are also normal, it
follows that Sm is approximately normal, so the warning and action limits can be set at
(μX ± 1.96σS m

) and (μX ± 3.09σS m
) respectively (although the warning limits now have

less significance).
It remains to choose a value for r. If we set r = 1, the whole approach reduces to the

standard Shewhart charts. Small values of r (say around 0.2) lead to early recognition
of small shifts of process mean, but if r is too small, a large shift may remain undetected
for some time.

Construct GMA charts for the sulphur dioxide data in Example 11.25, using r = 0.2
and r = 0.4.

Solution The control charts can be seen in Figure 11.35. Clearly the warning and action limits
converge fairly quickly to constant values, so little is lost by using those values in
practice. The warning limit is exceeded from sample 11 for both values of r. The action
limit is exceeded from sample 14 for r = 0.2 (as for the cusum chart in Example 11.27)
and at sample 16 for r = 0.4.

X X

X

Sm = r 1 r–( )iXm−i[ ] 1 r–( )mμX+
i=0

m−1



xi = 1 xm–
1 x–
--------------

i=0

m−1



σ Sm

2  = Var Sm( ) = r
2 r–
----------- 1 1 r–( )2m–[ ]

σ X
2

n
------

σ Sm

2 →  
r

2 r–
-----------
 
  σ X

2

n
------ as m ∞→  

Example 11.28
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We can perform the calculations and produce Figure 11.35 in R. To experiment with
different values of r, we create an R function GMA_chart, the construction and use
of which we describe in detail.

GMA_chart <− function(sample_averages, n, mu_X, sigma_X, r,
x_lims = c(0, length(sample_averages)),
y_lims = c(mu_X − 4 * sqrt(r / (2 − r)) *

sigma_X / sqrt(n), mu_X + 4 *
sqrt(r / (2 − r)) * sigma_X /
sqrt(n)),

text_shift = 0.3){
#
# Function to construct a GMA chart
# sample_averages: vector of sample averages
# n: sample size, mu_X: design mean 
# sigma_X: design standard deviation
# r: constant, r and (1 − r) provide the weights for the 
# sample average and moving average
# x_lims: limits for the x axis, default: 0 to length of 
# sample_averages
# y_lims: limits for the y axis, default: 4 standard 
# deviations of S_m from the center
# text_shift: how much to shift the text on the chart, 
# default: 0.3
#

Figure 11.35 Moving-
average control chart 
for Example 11.28: for 
r = 0.2 (top) and r = 0.4 
(bottom).
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# Set-up space for S
N <− length(sample_averages)
S <− rep(NA, N + 1)
S[1] <− mu_X 

# Assigm S_0, remembering that in R we start indexing at 1
# Iteratively compute S
for(m in 2:(N + 1)) {S[m] <− r * sample_averages[m − 1] + 
(1 − r) * S[m-1]}
# Variance of S_m
m <− 0:N # Values of m from 0 to N
sigma_2_S_m <− (r / (2 − r)) * (1 − (1 − r)^(2 * m)) * 
sigma_X^2 / n
sigma_S_m <− sqrt(sigma_2_S_m) # Standard deviation
# Multiplicative constants
q_W <− qnorm(1 / 40, lower.tail = FALSE)
q_A <− qnorm(1 / 1000, lower.tail = FALSE)
plot(0:N, S,

type = "b", pch = 16,
main = paste("r = ", r), 

# Main title giving the value of r
xlab = "Sample number m", ylab = expression(S[m]),
xlim = x_lims, ylim = y_lims) 

# Limits on the x and y axis
abline(h = mu_X) # Central line
action_upper <− mu_X + q_A * sigma_S_m # Action limits
action_lower <− mu_X − q_A * sigma_S_m
warning_upper <− mu_X + q_W * sigma_S_m # warning limits
warning_lower <− mu_X − q_W * sigma_S_m
lines(0:N, action_upper); lines(0:N, action_lower) 

# Draw the lines
lines(0:N, warning_upper); lines(0:N, warning_lower)
text_position <− floor(N/2) # Text approximately half way
text(text_position, action_upper[text_position + 1] + 
text_shift, "Action")
text(text_position, action_lower[text_position + 1] − 
text_shift, "Action")
text(text_position, warning_upper[text_position + 1] + 
text_shift, "Warning")
text(text_position, warning_lower[text_position + 1] − 
text_shift, "Warning")
}
#
# Use the function
# Plot in matrix format, two rows, one column; reduce space 
# below and above
p <− par(mfrow = c(2,1), mar = c(5.1 − 1, 5.1, 4.1 − 2, 

2.1))
#
GMA_chart(sample_averages = SO2,

n = 5, mu_X = 60, sigma_X = 8, r = 0.2)
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11.8.6 Range charts 

The sample range is defined as the difference between the largest and smallest values
in the sample. The range has two functions in quality control where the quality is of
the variable rather than the attribute type. First, if the data are normal then the range
(R, say) provides an estimate º of the standard deviation σ by 

= R/d

where d is a constant that depends upon the sample size n as follows:

It is clearly quicker to evaluate this than the sample standard deviation S, and for the
small samples typically used in quality control the estimate is almost as good.

The other reason why the range is important is because the quality of production can
vary in dispersion as well as (or instead of) in mean. Control charts for the range R are
more commonly used than charts for the sample standard deviation S when monitoring
variability within the manufacturing process, and all three types of chart discussed
above (Shewhart, cusum and moving-average) can be applied to the range. Range
charts (or R charts) are designed using tables that can be found in specialized books
on quality control, for example D. C. Montgomery, Introduction to Statistical Quality
Control (seventh edition, New York, Wiley, 2012).

GMA_chart(sample_averages = SO2,
n = 5, mu_X = 60, sigma_X = 8, r = 0.4,
text_shift = 0.4) 
# Change text_shift for better text placement

Try also running the code that produced Figure 11.35 for r = 1 and compare the
result with Figure 11.33. What happens when r > 0 is set to a very small number?
Moving-average control charts can be produced in R from raw data using the qcc
package for example.

σ̂

n 2 3 4 5 6 7 8 9 10 11 12
d 1.128 1.693 2.059 2.326 2.534 2.704 2.847 2.970 3.078 3.173 3.258

Range charts can be produced in R from raw data using the qcc package for example.

We conclude our discussion of statistical quality control by briefly illustrating some
of the above techniques using real data supplied with the qcc package. In particular,
we will work with the pistonrings data frame:

Piston rings for an automotive engine are produced by a forging process. The
inside diameter [stored in the variable diameter] of the rings manufactured by
the process is measured on 25 samples [stored in the variable sample], each of
size 5, for the control Phase I, when preliminary samples from a process being
considered ‘in control’ are used to construct control charts. Then, a further 15
samples, again each of size 5, are obtained for Phase II.
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The variable trial takes the value TRUE for Phase I data and the value FALSE for
Phase II data.

We now reproduce two of the many examples in the qcc help file. This code
produces the variable control chart shown in Figure 11.36:

data("pistonrings") # To access the data
str(pistonrings)
#> ’data.frame’: 200 obs. of 3 variables:
#> $ diameter: num 74 74 74 74 74 …
#> $ sample : int 1 1 1 1 1 2 2 2 2 2 …
#> $ trial : logi TRUE TRUE TRUE TRUE TRUE TRUE …
# Arrange the data in samples of size 5
diameter <− with(pistonrings, qcc.groups(diameter, sample))
head(diameter)
#> [,1] [,2] [,3] [,4] [,5]
#> 1 74.030 74.002 74.019 73.992 74.008
#> 2 73.995 73.992 74.001 74.011 74.004
#> 3 73.988 74.024 74.021 74.005 74.002
#> 4 74.002 73.996 73.993 74.015 74.009
#> 5 73.992 74.007 74.015 73.989 74.014
#> 6 74.009 73.994 73.997 73.985 73.993
# Variable control chart based on Phase I data (25 samples, 
# samples 1 to 25),
# also showing Phase II data (15 samples, samples 26 to 40)
c1 <− qcc(diameter[1:25,], type = "xbar", 

newdata = diameter[26:40,])

Figure 11.36 Variable control chart for the pistonrings data produced by the qcc 
package. The chart computations are performed using the Phase I ‘in control’ data. The chart 
can then be used to monitor the Phase II data.
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We finish by noting that a recent book-length treatment of statistical quality control
using R is provided by P. Qiu, Introduction to Statistical Process Control (Boca Raton,
FL, Chapman and Hall/CRC, 2014). In addition to a deep coverage of the Shewhart,
cusum, moving-average and range charts described in this section, this book also
reviews change-point detection and multivariate statistical process control. Non-
parameter process control methodology for when underlying assumptions about
normality do not hold is also discussed, as is profile monitoring when the stability of
the relationship between variables over time is important. Five R pacakges are
mentioned, and data sets and R code are supplied on a website.

This code produces the range chart shown in Figure 11.37:

# R chart based on Phase I data, also showing Phase II data
c2 <− qcc(diameter[1:25,], type = "R", 

newdata = diameter[26:40,])

Figure 11.37 Range chart for the pistonrings data produced by the qcc package.

Confirm your work using R wherever 
possible.

It is intended that 90% of electronic devices 
emerging from a machine should pass a simple 
on-the-spot quality test. The numbers of defectives 
among samples of 50 taken by successive shifts are 
as follows:

5, 8, 11, 5, 6, 4, 9, 7, 12, 9, 10, 14

Find the action and warning limits, and the sample 
number at which an out-of-control decision is 
taken. Also find the UCL (US practice) and the 
sample number for action.

Thirty-two successive samples of 100 castings 
each, taken from a production line, contained the 
following numbers of defectives

3, 3, 5, 3, 5, 0, 3, 1, 3, 5, 4, 2, 4, 3, 5, 4

3, 4, 5, 6, 5, 6, 4, 4, 7, 5, 4, 8, 5, 6, 6, 7

If the proportion that are defective is to be 
maintained at 0.02, use the Shewhart method 
(both UK and US standards) to indicate 
whether this proportion is being maintained, and if 
not then give the number of samples after which 
action should be taken.

11.8.7 Exercises

43

44
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A bottling plant is supposed to fill bottles with 
568 ml (one imperial pint) of liquid. The standard 
deviation of the quantity of fill is 3 ml. Regular 
samples of 10 bottles are taken and their contents 
measured. After subtracting 568 from the sample 
averages, the results are as follows:

−0.2, 1.3, 2.1, 0.3, −0.8, 1.7, 1.3, 0.6, 2.5, 
1.4, 1.6, 3.0

Using a Shewhart control chart, determine whether 
the mean fill requires readjustment.

Average reverse-current readings (in nA) for 
samples of 10 transistors taken at half-hour 
intervals are as follows:

12.8, 11.2, 13.4, 12.1, 13.6, 13.9, 12.3, 12.9, 
13.8, 13.1, 12.9, 14.0, 13.7, 13.4, 14.2, 13.1, 
14.0, 14.0, 15.1, 14.3

The standard deviation is 3 nA. At what point, if 
any, does the Shewhart control method indicate that 
the reverse current has increased from its design 
value of 12 nA?

Using the data in Exercise 45, apply (a) a cusum 
control chart and (b) a moving-average control 
chart with r = 0.3.

Using the data in Exercise 46, apply (a) a cusum 
control chart and (b) a moving-average control chart 
with r = 0.3.

Apply a cusum control chart to the data in 
Exercise 43.

Apply a cusum control chart to the data in 
Exercise 44.

The diameters of the castings in Exercise 44 are 
also important. Twelve of each sample of 100 were 
taken, and their diameters measured and averaged. 

The differences (in mm) between the successive 
averages and the design mean diameter of 125 mm 
were as follows:

0.1, 0.3, −0.2, 0.4, 0.1, 0.0, 0.2, −0.1, 0.2, 
0.4, 0.5, 0.1, 0.4, 0.6, 0.3, 0.4, 0.3, 0.6, 0.5, 
0.4, 0.2, 0.3, 0.5, 0.7, 0.3, 0.1, 0.6, 0.5, 0.6, 
0.7, 0.4, 0.5

Use (a) Shewhart, (b) cusum and (c) moving-
average (with r = 0.2) control methods to test for 
an increase in actual mean diameter, assuming a 
standard deviation of 1 mm.

Prove that the mean and variance of the geometric 
moving-average Sm defined in Section 11.8.5 for 
variable measure are given by

E(Sm) = μX

Suppose that the moving-average control chart is to 
be applied to the counts of defectives in attribute 
quality control. Find the mean and variance of Sm 
in terms of the sample size n, the design proportion 
of defectives p and the coefficient r. Following 
US practice, set the upper control limit at three 
standard deviations above the mean, and apply the 
method to the data in Example 11.26, using r = 0.2.

The design diameter of a moulded plastic 
component is 6.00 cm, with a standard deviation 
of 0.2 cm. The following data consist of successive 
averages of samples of 10 components:

6.04, 6.12, 5.99, 6.02, 6.04, 6.11, 5.97, 6.06, 
6.05, 6.06, 6.17, 6.03, 6.13, 6.05, 6.17, 5.97, 
6.07, 6.14, 6.03, 5.99, 6.10, 6.01, 5.96, 6.12, 
6.02, 6.20, 6.11, 5.98, 6.02, 6.12

After how many samples do the Shewhart, cusum 
and moving-average (with r = 0.2) control methods 
indicate that action is needed? 

45

46

47

48

49

50

51

52

σ Sm

2  = Var Sm( ) = r
2 r–
----------- 1 1 r–( )2m–[ ]

σ X
2

n
------

53

54

Poisson processes and the theory of queues
Probability theory is often applied to the analysis and simulation of systems, and this
can be a valuable aid to design and control. This section, which is therefore applied
probability rather than statistics, will illustrate how understanding of systems can be
gained from an initial mathematical model using probability-based analysis and com-
puter simulation.

11.9
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11.9.1 Typical queueing problems

Queues are everywhere: in banks and shops, at airports and seaports, traffic
intersections and hospitals, and in computer and communication networks. Somebody
has to decide on the level of service facilities. The problem, in essence, is that it is costly
to keep customers waiting for a long time, but it is also costly to provide enough service
facilities so that no customer ever has to wait at all. Queues of trucks, aeroplanes or
ships may be costly because of the space they occupy or the lost earnings during the
idle time. Queues of people may be costly because of lost productivity or because
people will often go elsewhere in preference to joining a long queue. Queues of jobs or
packets of data in computer networks are costly in loss of time-efficiency. Service
facilities are costly in capital, staffing and maintenance. Probabilistic modelling,
combined with simulation, allows performance evaluation for queues and networks,
which can be of great value in preparing the ground for design decisions.

The mathematical model of a simple queueing system is based on the situation shown
in Figure 11.38. Customers join the queue at random times that are independent of
each other – the inter-arrival time (between successive arrivals) is a random variable.
When a service channel is free, the next customer to be served is selected from the
queue in a manner determined by the service discipline. After being served the customer
departs from the queueing system. The service time for each customer is another
random variable. The distributions of inter-arrival time and service time are usually
assumed to take one of a number of standard patterns. The commonest assumption
about service discipline is that the next customer to be served is the one who has been
queueing the longest time (first in, first out).

The queueing system may be regarded from either a static or a dynamic viewpoint.
Dynamically, the system might start from an initial state of emptiness and build up with
varying rates of arrivals and varying numbers of service channels depending upon
queue length. This is hard to deal with mathematically, but can be treated by computer
simulation. Useful information about queues can, however, be obtained from the static
viewpoint, in which the rate at which arrivals occur is constant, as is the number of
service channels, and the system is assumed to have been in operation sufficiently long
to have reached a steady state. At any time the queue length will be a random variable,
but the distribution of queue length is then independent of time.

We need to find the distributions of queue length and of waiting time for the
customer, and how these vary with the number of service channels. Costs can be worked
out from these results.

11.9.2 Poisson processes

Consider the arrivals process for a queueing system. We shall assume that the customers
join the queue at random times that are independent of each other. Other assumptions

Figure 11.38
A typical queueing 
system.
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about the pattern of arrivals would give different results, but this is the most common
one. We can therefore think of the arrivals as a stream of events occurring at random
along a time axis, as depicted in Figure 11.39. The inter-arrival time T, say, will be
a continuous random variable with probability density function fT (t) and cumulative
distribution function FT (t).

One way to formulate the assumption of independent random arrivals is to assert that
at any moment the distribution of the time until the next arrival is independent of the
time elapsed since the previous arrival (because arrivals are ‘blind’ to each other). This
is known as the memoryless property, and can be expressed as 

P(T < t + h | T . t) = P(T < h) (t , h > 0)

where t denotes the actual time since the previous arrival and h denotes a possible time
until the next arrival. Using the definition of conditional probability (Section 11.2.1),
we can write this in terms of the distribution function FT (t) as 

Rearranging at the second equality and then dividing through by h gives

Letting h → 0, we obtain a first-order linear differential equation for FT (t):

where 

With the initial condition FT (0) = 0 (because inter-event times must be positive), the
solution is

FT (t) = 1 − e−λ t (t > 0)

and hence the probability density function is

This is the density function of an exponential distribution with parameter λ , and it

follows by integrating  that the mean time between arrivals is 1/λ .

The parameter λ is the rate of arrivals (number per unit time).

A factory contains 30 machines of a particular type, each of which breaks down every
100 operating hours on average. It is suspected that the breakdowns are not
independent. The operating time intervals between 10 consecutive breakdowns (of any
machine) are measured and the shortest such interval is only six minutes. Does this lend
support to the suspicion of non-independent breakdowns?

T Time  t

Figure 11.39
Random events (×)
on a time axis.
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Example 11.29
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Solution Collectively, the machines break down at the rate of 30/100 or 0.3 per hour. If the break-
downs are independent then the interval between successive breakdowns will have an
exponential distribution with parameter 0.3. The probability that such an interval will
exceed six minutes is

and the probability that all nine intervals (between 10 breakdowns) will exceed this time
is (0.9704)9 = 0.763. Hence the probability that the shortest interval will be six minutes
or less is one minus this, or 0.237. This is quite likely to have happened by chance, so
it does not support the suspicion of non-independent intervals.

The assumption of independent random arrivals therefore leads to a particular
distribution of inter-arrival time, parametrized by the rate of arrivals. Two further
conclusions also emerge. First, the number of arrivals that occur during a fixed interval
of length H has a Poisson distribution with parameter λH:

P(k arrivals during interval of length H ) = (k = 0, 1, 2, . . . )

This will not be proved here, but is easily seen to be consistent with an exponential
distribution of inter-arrival time T because

FT (t) = P(T < t) = 1 − P(T . t)

= 1 − P (no event during interval of length t)

= 1 − e−λ t

using the Poisson distribution. Because of this distribution, events conforming to these
assumptions are known as a Poisson process.

The other conclusion is that the probability that an arrival occurs during a short inter-
val of length h is equal to λh + O(h 2), regardless of the history of the process. Suppose
that a time t has elapsed since the previous arrival, and consider a short interval of length
h starting from that point:

P(arrival during (t, t + h)) = P(T < t + h | T . t) = FT(h)

= 1 − e−λh = λh + O(h 2)

using the memoryless property and the expansion of eλh to first order. Furthermore, the
probability of more than one arrival during a short interval of length h is O(h 2).

We may perform these calculations in R:

p_interval <− pexp(0.1, rate = 0.3, lower.tail = FALSE) 
p_interval
#> [1] 0.9704455
p_interval^9; 1 − p_interval^9
#> [1] 0.7633795
#> [1] 0.2366205

P interval . 0.1( ) = #
0.1

∞

0.3 e−0.3t dt = e−0.3 0.1( ) = 0.9704

λH( )k e−λH

k!
-------------------------
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A computer receives on average 60 batch jobs per day. They arrive at a constant rate
throughout the day and independently of each other. Find the probability that more than
four jobs will arrive in any one hour.

Solution The assumptions for a Poisson process hold, so the number of jobs arriving in an inter-
val of one hour (H = 1) is a Poisson random variable with parameter λH = 60/24. Hence

P(more than four jobs) = 1 − P(0 or 1 or 2 or 3 or 4 jobs)

= 1 − e−λH  = 0.109

Example 11.30

We may perform these calculations in R:

lambda_H <− 60 / 24
1 − sum(dpois(0:4, lambda = lambda_H)); 
ppois(4, lambda = lambda_H, lower.tail = FALSE)
#> [1] 0.108822
#> [1] 0.108822

We will now simulate and display realizations of the Poisson process described in
Example 11.30. Please note that in general every time simulation code is run a dif-
ferent simulated process results. We can make the results from simulations reproduc-
ible by using set.seed; please read the help file. Here is a very simple example
based on generating five random numbers from a standard normal distribution:

set.seed(23); rnorm(5)
#> [1] 0.1932123 −0.4346821 0.9132671 1.7933881 0.9966051
set.seed(23); rnorm(5) # The same
#> [1] 0.1932123 −0.4346821 0.9132671 1.7933881 0.9966051
rnorm(5) # Different
#> [1] 1.10749049 −0.27808628 1.01920549 0.04543718 1.57577959
set.seed(seed = NULL) 

# re-initializes as if no seed had yet been set

We now simulate a Poisson process with λ =60 / 24 over a 4 hour period. Let N(t)
be the number of arrivals up to time t. We know that N(t) ~ Po(λt), where ~ means
‘is distributed as’. Our simulation strategy will be to generate n arrivals where n is
sufficiently large to cover a 4 hour period with high probability; that is, n is such that
P(N(4) ≤ n) = 0.95 say. This number n is said to be the 0.95-quantile of a Po(λ × 4)
random variable. Let us find n:

lambda <− 60 / 24
# qpois is the quantile function for the Poisson distribution
n <− qpois(0.95, lambda = lambda * 4); n
#> [1] 15

1 + λH + 
λH( )2

2!
--------------  + λH( )3

3!
-------------- + λH( )4

4!
--------------
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We will now simulate n inter-arrival times, which we know follow an exponential
distribution with parameter λ. We use set.seed to allow the results to be repro-
duced:

set.seed(39) 
# Set the seed of the random number generator for reproducibility

inter_arrival_times <− rexp(n = n, rate − lambda)

The arrival times themselves are the cumulative sums of these inter-arrival times,
where the cumulative sums of x1, x2, x3, . . . are x1, x1 + x2, x1 + x2 + x3, . . . . Cumulative
sums can be found using the cumsum function. Here is a simple example:

x <− c(1, 3, 2, −7)
cumsum(x)
#> [1] 1 4 6 −1

We now work out the arrival times:

arrival_times <− cumsum(inter_arrival_times)

The corresponding values of the number of arrivals N(t) are 1, 2, . . . , n:

N_t <− 1:n

We can also include the fact that N(0) = 0:

arrival_times_0 <− c(0, arrival_times); N_t_0 <− c(0, N_t)

We can display this Poisson process by plotting N(t) against t, as shown in 
Figure 11.40, for which the R code is:

p <− par(mar = c(5.1, 4.1 + 1, 4.1, 2.1)) 
# Plot need more space on left side for axis label

plot(arrival_times_0, N_t_0,
type = "s", # We plot using stair steps
xlab = "t", ylab = expression(paste("Number of arrivals", 

~ N(t))))
abline(v = c(1, 4)) # A vertical line at 1 and 4 hours
abline(h = 4) 

# A horizontal line at 4, corresponding to 4 jobs as in
# Example 11.30 

text(1, 15, "t = 1") # Text "t = 1" at (1, 15)

Figure 11.40
A simulated Poisson 
process. The number 
of arrivals N(t) is 
plotted against time t.
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We will now generate 500 Poisson processes, using the replicate function. We will
plot the resulting matrix of arrival times as shown in Figure 11.41, in which we shade
Poisson processes that have five arrivals by time t = 1 in grey:

N_paths <− 500 # Number of Poisson process paths
# Replicate (repeat) the code in {} N_paths times
arrival_times_0_mat <− replicate(N_paths, 

{c(0, cumsum(rexp(n = n, rate = lambda)))})
# Plot need more space on left side for axis label
p <− par(mar = c(5.1, 4.1 + 1, 4.1, 2.1))
# We will plot the Poisson processes with five arrivals by time 
# t = 1 after the other processes to make them stand out better
# To achieve this, we first define the plotting axes, without
# plotting anything
matplot(arrival_times_0_mat, N_t_0,

# matplot plots matrices (here, a matrix and a vector)
type = "n", # Plot nothing
xlab = "t", ylab = expression(paste("Number of arrivals", 
~ N(t))))

#
# Identify the Poisson processes with five arrivals before time
# t = 1
# That is, the time of the 5th arrival is before 1
five_arrivals_before_1 <− arrival_times_0_mat[N_t_0 == 5,] < 1 

# Logical vector five_arrivals_before_1[1:10]
#> [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE 

FALSE
all_processes <− seq_len(N_paths) 

# Sequence of path labels 1, 2,…,N_paths
# Indicies of Poisson processes with five arrivals before time
# t = 1
# Think of [] as ’such that’
processes_five_arrivals_before_1 <− 

all_processes[five_arrivals_before_1]

Figure 11.41
Five hundred 
simulated Poisson 
processes. Processes 
for which there have 
been five arrivals 
before t = 1 are 
shaded in grey.
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# Indicies of the other Poisson processes; ! (’not’) turns 
# TRUE/FALSE to FALSE/TRUE
processes_not_five_arrivals_before_1 <− 

all_processes[!five_arrivals_before_1]
# First, add these Poisson processes to the plot
matlines(arrival_times_0_mat[, 

processes_not_five_arrivals_before_1],
# Select the required columns; matrices are indexed using
# [row,column]
# all rows are required

N_t_0,
type = "s", lty = 1, 
# We plot using stair steps and line type 1 (continuous)
col = "black") # Use black

# Now, add on top the Poisson processes with five arrivals
# before time t = 1
matlines(arrival_times_0_mat[, 

processes_five_arrivals_before_1], # Select columns
N_t_0,
type = "s", lty = 1,
col = "grey") # Use grey

# Lines and text as before
abline(v = c(1, 4), h = 4, lwd = 3) # Increased line width
text(1, 15, "t = 1")

Let us confirm the results of Example 11.30 by extracting the number of events at
time t = 1. We will use a much larger number of simulated Poisson processes for this.
We will again use the function apply which will allow us to apply a function to
every column of a matrix:

N_paths <− 10000 # 10000 Poisson process paths
arrival_times_0_mat <− replicate(N_paths, {c(0, cumsum(rexp(n 

= n, rate = lambda)))})
# Show the arrival times of the first five Poisson processes
arrival_times_0_mat[1:10,1:5]
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.000000 0.0000000 0.000000 0.0000000 0.0000000
#> [2,] 1.010416 0.1326435 1.021045 0.3315623 0.5446702
#> [3,] 1.053304 0.1473250 1.042809 0.4019004 0.8778008
#> [4,] 1.604397 0.1693694 1.278456 0.4834921 0.9221729
#> [5,] 1.631006 0.3054541 2.535763 0.5296068 1.4048160
#> [6,] 1.639120 0.5941504 2.571398 1.2126070 1.6758765
#> [7,] 1.968432 0.9050178 2.970899 1.4489347 1.9070222
#> [8,] 2.108633 1.4639267 3.899057 1.7042519 1.9995854
#> [9,] 2.662620 1.5898577 4.125454 1.8247135 2.1912819
#> [10,] 2.964361 1.8224266 4.362871 2.0112748 2.2430705
# Find the subscript of the largest arrival_time no greater 
# than t = 1
subscript_t <− function(arrival_times_0, t = 1){ # Default 

value of t is 1



916 APPLIED PROBABILITY AND STATISTICS

11.9.3 Single service channel queue

Consider a queueing system with a Poisson arrival process with mean rate λ per unit
time, and a single service channel. The behaviour of the queueing system depends not
only on the arrival process but also upon the distribution of service times. A common

# The coordinate of the first value of arrival_times_0 that is
# greater than t

first_greater <− which(arrival_times_0 > t)[1]
# Return the previous coordinate

first_greater − 1
}
# Apply subscript_t to the columns (MARGIN = 2) of
# arrival_times_0_mat
subscripts_at_1 <− apply(arrival_times_0_mat, 

MARGIN = 2, FUN = subscript_t, t = 1)
# t = 1 not needed as default value

# Subscripts of the largest arrival_time no greater than t = 1,
# shown for first five Poisson processes
subscripts_at_1[1:5]
#> [1] 1 7 1 5 4
# Find the corresponding values of N(t), the number of arrivals
# up to time t
N_t_at_1 <− N_t_0[subscripts_at_1]
N_t_at_1[1:5] # For the first five Poisson processes
#> [1] 0 6 0 4 3
# Find the proportions
proportions <− prop.table(table(N_t_at_1)) ; proportions
#> N_t_at_1
#> 0 1 2 3 4 5 6 7
#> 0.0760 0.2068 0.2574 0.2107 0.1356 0.0692 0.0306 0.0099 
#> 8 9 10 11
#> 0.0028 0.0006 0.0003 0.0001
# Compare with Po(lambda) probabilities
round(dpois(0:max(N_t_at_1), lambda = lambda * 1), 4) # Rounded
#> [1] 0.0821 0.2052 0.2565 0.2138 0.1336 0.0668 0.0278 

0.0099 0.0031 0.0009
#> [11] 0.0002 0.0000
# Approximate probability in Example 11.30; R starts indexing
# from 1
1 − sum(proportions[1 + (0:4)]) ; ppois(4, lambda = lambda * 1, 

lower.tail = FALSE)
#> [1] 0.1135
#> [1] 0.108822
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assumption here is that the service time distribution (like that of inter-arrival time) is
exponential. Thus the probability density function of service time S is 

fS(s) = μ e−μs (s > 0)

Unlike the inter-arrival time distribution in Section 11.9.2, this is not based on an
assumption of independence or the memoryless property, but simply on the fact that in
many queueing situations most customers are served quickly but a few take a lot longer,
and the form of the distribution conforms with this fact. This assumption is therefore on
much weaker ground than that for the arrival time distribution. The parameter μ is the
mean number of customers served in unit time (with no idle periods), and the mean
service time is 1/μ. With this service distribution, the probability that a customer in the
service channel will have departed after a short time h is equal to μh + O(h2), independent
of the time already spent in the service channel.

Distribution of the number of customers in the system

We can now derive the distribution of the number of customers in the queueing system.
Considering the system as a whole (queue plus service channel), the number of
customers in the system at time t is a random variable. Let pn(t) be the distribution of
this random variable:

pn(t) = P(n customers in the system at time t) (n = 0, 1, 2, . . . )

Consider the time t + h, where h is small. The probability of more than one arrival or
more than one departure during this time is O(h2), and will be ignored. There are four
ways in which there can be n (assumed greater than zero) customers in the system at
that time:

(1) there are n in the system at t, and no arrival or departure by t + h; the probability
of this is given by

pn(t)(1 − λh)(1 − μh) + O(h2) = pn(t)(1 − λh − μh) + O(h2)

(2) there are n in the system at t, and one arrival and one departure by t + h; the
probability is given by

pn(t)(λh)( μh) + O(h2) = O(h2)

(3) there are n − 1 in the system at t, and one arrival but no departure by t + h; the
probability is given by

pn−1(t)(λh)(1 − μh) + O(h2) = pn−1(t)(λh) + O(h2)

(4) there are n + 1 in the system at t, and no arrivals but one departure by t + h; the
probability is given by

pn+1(t)(1 − λh)(μh) + O(h2) = pn+1(t)( μh) + O(h2)

Summing the probabilities of these mutually exclusive events gives the probability of n
customers in the system at time t + h as

pn(t + h) = pn(t)(1 − λh − μh) + pn−1(t)(λh)

+ pn+1(t)( μh) + O(h 2) (n = 1, 2, . . . ) (11.1)
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Similarly, there are two ways in which the system can be empty (n = 0) at time t + h:
empty at t and no arrival before t + h, or one customer at t who departs before t + h.
This gives

p0(t + h) = p0(t)(1 − λh) + p1(t)( μh) + O(h2) (11.2)

Rearranging equations (11.1) and (11.2) and taking the limit as h → 0, we obtain

= − (λ + μ)pn( t ) + λpn−1( t ) + μpn+1( t ) (n = 1, 2, . . . )

This is a rather complex set of recursive differential equations for the probabilities pn(t).
If we assume that the arrival and service parameters λ and μ are constant and that the
system has been in operation for a long time then the distribution will not depend upon t;
the derivatives therefore vanish, and we are left with the following algebraic equations
for the steady-state distribution pn:

0 = − (λ + μ)pn + λpn−1 + μpn+1 (n = 1, 2, . . . )

0 = −λp0 + μp1

Defining the ratio of arrival and service parameters λ and μ as ρ = λ /μ and dividing
through by μ, we have

pn+1 = (1 + ρ)pn − ρpn−1 (n = 1, 2, . . . )

p1 = ρp0

To solve these, we first assume that pn = ρ np0. Clearly this works for n = 0 and n = 1.
Substituting,

pn+1 = (1 + ρ)ρ np0 − ρρ n−1p0 = ρ n+1p0

so the assumed form holds for n + 1, and therefore for all n by induction. It remains only
to identify p0 from the fact that the distribution must sum to unity over n = 0, 1, 2, . . . :

 provided ρ , 1

Hence p0 = 1 − ρ and

pn = (1 − ρ)ρn (n = 0, 1, 2, . . . )

This is known as the geometric distribution, and is a discrete version of the exponential
distribution (Figure 11.42). Note that this result requires that ρ , 1, or equivalently λ , μ.
If this condition fails to hold, the arrival rate swamps the capacity of the service channel,
the queue gets longer and longer, and no steady-state condition exists.

Queue length and waiting time

The queue length distribution now follows easily:

P(queue empty) = p0 + p1

= 1 − ρ 2

d
dt
----- pn t( ) = lim

h 0→
1
h
--- pn t h+( ) pn t( )–[ ]

d
dt
----- p0 t( ) = −λp0 t( ) μp1 t( )+

1 = p0 ρn

n=0

∞

  = 
p0

1 ρ–
------------
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P(n in queue) = P(n + 1 in system)

= (1 − ρ)ρ n+1 (n = 1, 2, . . . )

Denoting the mean numbers of customers in the system and in the queue by NS and NQ

respectively,

(Exercise 57). From this it follows that NS = NQ + ρ0. Since in the steady state the mean
time between departures must equal the mean time between arrivals (1/λ), it is plausible
that the mean total time in the system for each customer, WS say, is given by

WS = mean number in system × mean time between departures

The mean waiting time in the queue, WQ say, is then

WQ = mean time in system − mean service time

These results for WS and WQ can be derived more formally from the respective waiting
time distributions. For example, the distribution of total time in the system can be
shown to be exponential with parameter μ − λ, and the waiting time in the queue can
be expressed as

P(waiting time in queue > t) = ρ e−(μ−λ)t (t . 0)

If customers in a shop arrive at a single check-out point at the rate of 30 per hour and if
the service times have an exponential distribution, what mean service time will ensure
that 80% of customers do not have to wait more than five minutes in the queue and
what will be the mean queue length?

Figure 11.42
Geometric distribution 
(with ρ = 0.75).

NS = npn

n=0

∞

  = 
ρ

1 ρ–
------------ , NQ = n 1–( )pn

n=1

∞

  = 
ρ2

1 ρ–
------------

= 
ρ/λ

1 ρ–
------------  = 1

μ λ–
------------

= WS
1
μ
---–  = 

ρ
μ λ–
------------

Example 11.31
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Solution With λ =  0.5 and t = 5, the queue waiting time gives

0.2 = ρ e− (μ−λ)t

that is,

0.2μ = 0.5 e2.5−5μ

This is a nonlinear equation for μ, which may be solved by standard methods to give
μ = 0.743. The mean service time is therefore 1/μ or 1.35 min, and the mean queue
length is

Handling equipment is to be installed at an unloading bay in a factory. An average of
20 trucks arrive during each 10 h working day, and these must be unloaded. The fol-
lowing three schemes are being considered:

Truck waiting time is costed at £30 per hour. Assuming an exponential distribution of
truck unloading time, find the best scheme.

We can perform these calculations in R. This code illustrates how to solve the equa-
tion f(μ) = 0.2μ − 0.5e2.5−5μ = 0.

lambda <− 30/60; percent <− 80; time_min <− 5
f <− function(mu, lambda, percent, time_min){(1 − percent 

/ 100) * mu − lambda * exp(lambda * time_min − 
time_min * mu)

}
# Solve f(mu) = 0; we need to supply an interval of 
# possible mu values
solution_info <− uniroot(f, interval = c(0, 1), lambda = 
lambda, percent = percent, time_min = time_min) 

# Specify the other values
mu <− solution_info$root; mu; 1 / mu
#> [1] 0.7427287
#> [1] 1.346387
rho <− lambda / mu; rho
#> [1] 0.6731933
N_Q <− rho^2 / (1 − rho); N_Q
#> [1] 1.38672

30
60
------ =

NQ = 
ρ2

1 ρ–
------------  = 1.39, using ρ = λμ

---  = 0.673

Example 11.32

Scheme Fixed cost/
£ per day

Operating cost/
£ per hour

Mean handling rate/
trucks per hour

A 90 45 3
B 190 50 4
C 450 60 6
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Solution Viewing this as a queueing problem, we have

λ = arrival rate per hour = 2.0

μ = unloading rate per hour

mean waiting time for each truck = 1/(μ − λ)

Hence the mean delay cost per truck is

and the mean delay cost per day is

 = 

The proportion of time that the equipment is running is equal to the probability that the
system is not empty (the utilization), which is

Hence the mean operating cost per day is 10ρ times operating cost per hour. The total
cost per day (in £) is the sum of the fixed, operating and delay costs, as follows:

Hence scheme B minimizes the total cost.

11.9.4 Queues with multiple service channels

For the case where there are c service channels, all with an exponential service time
distribution with parameter μ, a line of argument similar to that in Section 11.9.3 can
be found in many textbooks on queueing theory. In particular, it can be shown that the
distribution pn of the number of customers in the system is 

where ρ = λ /μ and

30
μ 2–
------------

20 30×
μ 2–

------------------ 600
μ 2–
------------

1 p0–  = 1− (1−ρ ) ρ=

Scheme μ ρ Fixed Operating Delay Total

A 3 0.6667 90 300 600 990
B 4 0.5 190 250 300 740
C 6 0.3333 450 200 150 800

pn = 

ρn

n!
----- p0 0 n c< <( )

ρn

cn−cc!
-------------- p0 n . c( )









p0 = 
ρn

n!
----- ρc

c 1–( )! c ρ–( )
------------------------------------+

n=0

c−1


−1
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The mean numbers in the queue and in the system are

and the mean waiting times in the queue and in the system are

For the unloading bay problem in Example 11.32 a fourth option would be to install two
sets of equipment under scheme A (there is space available to do this). The fixed costs
would then double but the operating costs per bay would be the same. Evaluate this
possibility.

Solution With two bays under scheme A, we have λ = 2, μ = 3 and c = 2, so that ρ = , and the
probability that the system is empty at any time is

The probabilities of one truck (one bay occupied) and of two or more trucks (both bays
occupied) are then

p1 = ρp0 = 

P(two or more trucks) = 

The total operating cost per day is the operating cost for when one or other bay is working
(£45 per hour) plus that for when both bays are working (£90 per hour), which is

10[ (45) + (90)] = 300

The mean number in the queue is

so that the mean total time in the system for each truck is 

(0.083 33) + = 0.375

Multiplying by the cost per hour and the number of trucks gives the delay cost per day:

20(30)(0.375) = 225

The total cost per day of this scheme is therefore

2(90) + 300 + 225 = £705

This is less than the £740 under scheme B, the best of the single-bay options.

O. Jones, R. Maillardet and A. Robinson, Introduction to Scientific Programming and
Simulation Using R (second edition, Boca Raton, FL, Chapman and Hall/CRC, 2014)
provide a detailed treatment of a class of random processes called Markov chains, the
future behaviour of which depends only on the present state and not on the past

NQ = 
ρc+1

c 1–( )! c ρ–( )2
-------------------------------------- p0, NS = NQ ρ+

WQ = NQ

λ
------ , WS = WQ

1
μ
---+

Example 11.33

2
3
---

p0 = 1 ρ ρ2

2 ρ–
------------+ + 

 
−1

 = 1
2
---

1
3
---

1 1
2
---– 1

3
--- 1

6
---=–

1
3
--- 1

6
---

ρ3

2 ρ–( )2
------------------- p0 = 0.083 33

1
2
--- 1

3
---
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behaviour before the present. They discuss a range of continuous-time Markov chains,
including engineering and queueing examples, using mathematical analysis based on
matrices and simulation performed in R. An in-depth mathematical analyses of queues
and many related random processes is supplied by G. R. Grimmett and D. R.
Stirzaker, Probability and Random Processes (third edition, Oxford, Clarendon Press,
2001). In their Chapter 11 these authors discuss a notation for queueing systems, due
to D. G. Kendall. The notation takes the form A / B /s  in which A and B describe the
distribution of the inter-arrival and the service times, respectively, and s is the number
of service channels. The multiple service channel queue described in this section would
be denoted M/ M/c or, more fully, M(l)/M(m)/c. Here M stands for Markovian or
memoryless, the use of this notation being related to the memoryless property of the
exponential distribution.

11.9.5 Queueing system simulation

The assumption that the service time distribution is exponential, which underlies the
results in Sections 11.9.3 and 11.9.4, is often unrealistic. It is known that it leads to
predicted waiting times that tend to be pessimistic, as a result of which costs based on
these predictions are often overestimated. Theoretical results for other service
distributions exist (see, for example, E. Page, Queueing Theory in OR., London,
Butterworth, 1972 or the book by Grimmett and Stirzaker mentioned above), but it is
often instructive to simulate a queueing system and find the various answers
numerically. It is then easy to vary the arrival and service distributions, and the transient
(non-steady-state) behaviour of the system also reveals itself.

Annotated R code to simulate a single-channel queueing system is provided in
Figure 11.43. We think of the states of the system as being the number of customers
in the queue. Each event consists of either an arrival or a departure. The variables
next_arrival and next_departure are used to represent the times until the next
arrival and the next departure, and the type of the next event is determined by which-
ever is smaller. A limit is placed on the number of customers in the system, as often
happens in practice. A different simulated queueing system will result every time that
the code is run, unless set.seed is used, which it is here for reproducibility.

set.seed(78) 
# Set the seed of the random number generator for 
# reproducibility

# Arrival and departure rates based on Example 11.31
lambda <− 0.5; mu <− 0.743; rho <− lambda / mu; rho
#> [1] 0.6729475
# Maximum number of customers in system
number_max <− 20
# Number of events to be simulated
N <− 500000
# Space to save event times and number of customers (state of
# the system)

Figure 11.43 R code 
listing for the queuing 
system simulation.
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event_times <− rep(NA, N)
number_of_customers <− rep(NA, N)
# System starts with *** no customers *** (an initial arrival must 
# be forced)
# number holds current number of customers in system
initial_number <− 0; number <− initial_number
# Define big arrival or departure times to force arrivals or 
# departures
big_arrival <− 1000; big_departure <− 1000
# Initialize time
initial_time <− 0; time <− initial_time 

# time holds the current time
# Randomly generate the time until the next arrival (system
# starts with no customers)
# Assume distribution is exponential, rate lambda
next_arrival <− rexp(1, rate = lambda)
# Set the time until the next departure to a large number to 
# force an arrival next_departure <− big_departure
# Set space to monitor the generated arrival and departure times
arrival_intervals <− rep(NA, N); departure_intervals <− rep(NA, N)
# Loop to generate events
for(i in 1:N){ # Number of events to be simulated

if(next_arrival < next_departure){
# The next arrival event occurs before the next 
# departure event
time <− time + next_arrival 

# Time of the next (arrival) event
if(number == 0){

# If system is empty, there is no existing time until 
# next departure
# and so one needs to be randomly generated
# Assume distribution is exponential, rate mu
next_departure <− rexp(1, rate = mu)
departure_intervals[i] <− next_departure # Monitor it

} else {
# Existing time until next departure needs to be reduced
# after the arrival
next_departure <− next_departure − next_arrival

}
# Number in the system increases by 1 because of the arrival
number <− number + 1
if(number == number_max){

# If system is now at its limit, a departure has to be 
# forced
next_arrival <− big_arrival

Figure 11.43 (Continued)
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} else{
# A new time until the next arrival is randomly generated
next_arrival <− rexp(1, rate = lambda)
arrival intervals[i] <− next arrival # Monitor it

}
} else {
# The next departure event occurs before the next arrival 
# event
time <− time + next_departure 

# Time of the next (departure) event
if(number == number_max){

# If system was at its limit, there is no existing time
# until the next arrival
# and so one needs to be randomly generated
next_arrival <− rexp(1, rate = lambda)
arrival_intervals[i] <− next_arrival # Monitor it

} else {
# Existing time until the next arrival needs to be
# reduced after the departure
next arrival <− next arrival − next departure

}
# Number in the system decreased by 1 because of the
# departure
number <− number − 1
if(number == 0){

# If the system is empty, the next event must be forced
# to be an arrival
next_departure <− big_departure

} else {
# Randomly generate a new time until the next departure
next_departure <− rexp(1, rate = mu)
departure_intervals[i] <− next departure # Monitor it

}
}

# Save event times and associated number of customers
event_times[i] <− time
number_of_customers[i] <− number
}
# Include initial time (0) and number of customers (0)
event_times <− c(initial_time, event_times)
number_of_customers <− c(initial_number, number_of_customers)
# Record state of system (number of customers) and compute time
# between states
state <− number_of_customers[−(N + 1)] 

# Time in final state not known
Figure 11.43 (Continued)



926 APPLIED PROBABILITY AND STATISTICS

The initial transient (non-steady-state) behaviour of the system can be seen from
Figure 11.44. The steady-state value ρ/(1 − ρ) of the mean number of customers in
the queue is indicated. If convergence to the steady-state is slow, the steady-state
results may be of limited value.

time_between_state <− diff(event_times)
# Compute at each time the mean state of (mean number of
# customers in) the system
running_mean_state <− cumsum(time_between_state * state) / 

cumsum(time_between_state)
# Plot this against time
plot(event_times[−(N + 1)] / 60, # No result for final state, 

time converted to hours
running_mean_state, type = "1",
xlab = "Time (hours)", ylab = "Running customer number mean")

# Show the long-term or steady-state limit
abline(h = rho / (1 − rho), lwd = 3)

Figure 11.44
The running mean of 
the number of 
customers in the 
simulated system 
against time. The 
steady-state value 
ρ/(1 − ρ) is also shown 
by the horizontal line.

This code can be modified to use other service time distributions by changing
rexp(1, rate = mu) to generate a realization from the required distribution.
An example could be to use the gamma distribution instead of this exponential
Exp (rate = μ) distribution. A gamma distribution has two parameters, shape and
rate; sometimes scale is used instead of rate where scale = 1/rate. The exponen-
tial distribution is a special case of the gamma distribution with shape parameter
set to 1: if X ~ Gamma(shape = 1,rate = μ), then X follows an Exp(rate = μ)
distribution and has mean E[X] = 1/μ and variance Var[X] = 1/μ2. If, for example,
X ~ Gamma(shape = 2, rate = 2μ), then E[X] = 2/(2μ) = 1/μ and variance
Var[X] = 2/(2μ)2 = 1/(2μ2), so that the mean is maintained, but the variance is
reduced (since high values occur less often). The R code rgamma(1, shape
= 2, rate = 2 * mu) would generate a realization from this distribution.

Figure 11.43 (Continued)
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We can use the output from the above code to check some of the theoretical
results presented in Section 11.9.3. First, we work with the second half of the simu-
lated values in the hope that these are consistent with the steady-state form of the
distribution.

# Work with the second half of the simulation
event_times_second_part <− event_times[(N / 2 + 1):(N + 1)]
number_of_customers_second_part <− number_of_customers[(N 
/ 2 + 1):(N + 1)]
length_second_part <− length(event_times_second_part)
# Time between each state
time_between_state_second_part <− 
diff(event_times_second_part)
# Omit final value
state_second_part <− number_of_customers_second_part[-
length_second_part]

Now we can check the steady-state results that the eventual probability of being
in state n (n customers) is pn = (1 − ρ)ρn, that the mean number in the system is NS

= ρ/(1 − ρ), and that the mean number in the queue is NQ = ρ2/(1 − ρ). We can make
use of the dplyr package to find the proportion of time spent in each state. You
may have to install the dplyr package.

require(dplyr) # Load package
# Put state and time data into a data frame
state_time_second_part <− data.frame(state_second_part, 
time_between_state_second_part)
# Work out total time in each state
summary_by_state <− state_time_second_part %>%

group_by(state_second_part) %>% 
# Separate, results for each state

summarize(total_time = 
sum(time_between_state_second_part))

total_time_by_state <− summary_by_state$total_time
# Turn this into a proportion
proportion_time_by_state <− total_time_by_state / 
sum(total_time_by_state)
# Compare with theoretical values p_n = (1 − rho) rho^n, 
n = 0, 1, 2
proportion_time_by_state[1:6]
#> [1] 0.32848925 0.22168018 0.14906167 0.09949540 
0.06705024 0.04613191
(1 − rho) * rho^(0:5)
#> [1] 0.32705249 0.22008916 0.14.810845 0.09966921 
0.06707215 0.04513604
#> Mean number in system N_S
sum(time_between_state_second_part * state_second_part)/
sum(time_between_state_second_part)
#> [1] 2.015726
# Compare with theoretical value rho / (1 − rho)
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rho / (1 − rho)
#> [1] 2.057613
#> Mean number in queue N_Q
# If no customer is in the system, there is no customer in 
# the queue!
# If there are n > = 1 customers in the system, all but 
# one is in the queue
# ifelse(test, yes, no) returns yes if test (which can be 
# a vector) is TRUE, and no otherwise
number_in_queue <− ifelse(state_second_part == 0, 0, 

state_second_part − 1)
sum(time_between_state_second_part * number_in_queue)/
sum(time_between_state_second_part)
#> [1] 1.344216
# Compare with theoretical value rho^2 / (1 − rho)
rho^2 / (1 − rho)
#> [1] 1.384666

Checking that the mean total time in the system for each customer is WS = 1/(μ − λ)
and that the mean waiting time in the queue is WQ = ρ/(μ − λ) is considerably more
difficult. We work with the largest possible set of simulated values for which the
queue is empty at the beginning and will be straight after the end. If customer i
arrives at time ta

i and departs at time td
i, then customer i will be in the system for time

. From this it follows that average tin = average td − average ta. The mean
waiting time in the queue WQ = WS − mean service time, which can be found from
the estimate of WS and the values of arrival_intervals monitored above.
Sometimes these approximations can be poor.

# Start and finish with an empty queue; identify the 
# indicies corresponding to zero
zero_indices <− which(state_second_part == 0)
first_zero <− min(zero_indices); last_zero <− 
max(zero_indices)
# Select out the corresponding states and event times, 
# omitting the final zero state point
state_0_0 <− state_second_part[first_zero:(last_zero − 1)]
event_times_0_0 <− 
event_times_second_part [first_zero:(last_zero − 1)]
# Identify the arrivals (+1) and departures (−1)
# Last state is a departure as queue empty after
arrival_departure <− c(diff(state_0_0), −1)
# Identify times of arrivals and departures
t_a <− event_times_0_0[arrival_departure == 1] 

# Arrival times
t_d <− event_times_0_0[arrival_departure == −1] 

# Departure times
# Estimate mean time in system W_S
t_bar_in <− mean(t_d) − mean(t_a); t_bar_in

ti
in

ti
d ti

a–=
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#> [1] 4.427089
# Compare with theoretical value 1 / (mu − lambda)
1 / (mu − lambda)
#> [1] 4.115226
# Estimate mean service time
mean_service_time <− mean(departure_intervals, na.rm = 
TRUE) # Remove NAs
mean_service_time; 1 / mu # Theoretical value
#> [1] 1.343691
#> [1] 1.345895
# Estimate W_Q mean time in queue
t_bar_in − mean_service_time
#> [1] 3.083398
# Compare with theoretical value rho / (mu − lambda)
rho / (mu − lambda)
#> [1] 2.769331

The complexity of the above code indicates that writing more general queueing
system simulators may be difficult. The R package simmer for example may be
used to simulate a range of queueing situations; see I. Ucar and B. Smeets, simmer;
Discrete-Event Simulation for R, R package version 3.6.1, https://CRAN.R-
project.org/package=simmer (2017). The Simul8 simulation software https://
www.simul8.com/ is frequently used to simulate queues and many other engineering
processes from organization schemes that are drawn using the computer.

A sea area has on average 15 gales annually, evenly 
distributed throughout the year. Assuming 
that the gales occur independently, find the 
probability that more than two gales will occur 
in any one month. 

Suppose that the average number of telephone calls 
arriving at a call centre is 30 per hour, and that they 
arrive independently. What is the probability that no 
calls will arrive in a three-minute period? What is 
the probability that more than five calls will arrive 
in a five-minute period?

Show that for a single-channel queue with Poisson 
arrivals and exponential service time distribution 
the mean numbers of customers in the system and in 
the queue are

where ρ is the ratio of arrival and service rates. 
(Hint: Differentiate the equation

with respect to ρ.)

Patients arrive at the casualty department of a 
hospital at random, with a mean arrival rate of 
three per hour. The department is served by one 
doctor, who spends on average 15 minutes with 
each patient, actual consulting times being 
exponentially distributed. Find

(a) the proportion of time that the doctor is idle;
(b) the mean number of patients waiting to 

see the doctor;
(c) the probability of there being more than three 

patients waiting;

11.9.6 Exercises
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NS = 
ρ

1 ρ–
------------ , NQ = 

ρ2

1 ρ–
------------

ρn = 1
1 ρ–
------------

n=0

∞


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(d) the mean waiting time for patients;
(e) the probability of a patient having to wait 

longer than one hour.

A small company operates a cleaning and 
re-catering service for passenger aircraft at an 
international airport. Aircraft arrive requiring this 
service at a mean rate of λ per hour, and arrive 
independently of each other. They are serviced one 
at a time, with an exponential distribution of service 
time. The cost for each aircraft on the ground is put 
at c1 per hour, and the cost of servicing the planes at 
a rate μ is c2μ per hour. Prove that the service rate 
that minimizes the total cost per hour is

The machines in a factory break down in a Poisson 
pattern at an average rate of three per hour during 
the eight-hour working day. The company has two 
service options, each involving an exponential 
service time distribution. Option A would cost 
£20 per hour, and the mean repair time would 

be 15 min. Option B would cost £40 per hour, with 
a mean repair time of 12 min. If machine idle time 
is costed at £60 per hour, which option should be 
adopted?

Ships arrive independently at a port at a mean 
rate of one every three hours. The time a ship 
occupies a berth for unloading and loading has an 
exponential distribution with a mean of 12 hours. 
If the mean delay to ships waiting for berths is to be 
kept below six hours, how many berths should there 
be at the port?

In a self-service store the arrival process is 
Poisson, with on average one customer arriving 
every 30 s. A single cashier can serve customers 
every 48 s on average, with an exponential 
distribution of service time. The store managers 
wish to minimize the mean waiting time for 
customers. To do this, they can either double the 
service rate by providing an additional server to 
pack the customer’s goods (at a single cash desk) 
or else provide a second cash desk. Which option 
is preferable?

59
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Bayes’ theorem and its applications
To end this chapter, we return to the foundations of probability and inference. The
definition of conditional probability is fundamental to the subject, and from it there
follows the theorem of Bayes, which has far-reaching implications. This Bayesian
approach to statistical inference has become very popular. It will be discussed in
Section 11.10.3.

11.10.1 Derivation and simple examples

The definition in Section 11.2.1 of the conditional probability P(B | A) of an event B
given that another event A occurs can be written as

P(A > B) = P(B | A)P(A)

If A and B are interchanged then this becomes

P(A > B) = P(A | B)P(B)

The left-hand sides are equal, so we can equate the right-hand sides and rearrange,
giving

11.10

P A | B( ) = P B | A( )P A( )
P B( )

--------------------------------
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Now suppose that B is known to have occurred, and that this can only happen if one of
the mutually exclusive events

{A1, . . . , An}, Ai > Aj = \ (i ≠ j)

has also occurred, but which one is not known. The relevance of the various events Ai

to the occurrence of B is expressed by the conditional probabilities P(B |Ai). Suppose
that the probabilities P(Ai) are also known. The examples below will show that this is a
common situation, and we should like to work out the conditional probabilities

To find the denominator, we sum from 1 to n:

The sum is equal to 1 by virtue of the assumption that B could not have occurred without
one of the Ai occurring. We therefore obtain a formula for P(B):

which is sometimes called the rule of total probability. Hence we have the following
theorem.

Bayes’ theorem

Effectively, Bayes’ theorem allows us to reverse the conditioning: from P(B |Ai) (and
other probabilities) we may find P(Ai |B). In some applications it is only necessary to
know P(Ai |B) up to a multiplicative constant. This means that a common statement of
Bayes’ theorem is

P(Ai |B) ∝ P(B |Ai)P(Ai)

in which ∝ means proportional to: if f(x) ∝ g(x), then f(x) = cg(x) for a constant c. For
the expression P(Ai |B) ∝ P(B |Ai)P(Ai), c would equal 1/P(B). Often in Bayesian statis-
tical inference, which we will meet in Section 11.10.3, we will only know probabilities
(or probability density functions) up to a multiplicative constant because the so-called
‘normalization constant’ P(B) cannot be calculated.

Three machines produce similar car parts. Machine A produces 40% of the total output,
and machines B and C produce 25% and 35% respectively. The proportions of the
output from each machine that do not conform to the specification are 10% for A, 5%

P Ai |B( ) = P B | Ai( )P Ai( )
P B( )

-----------------------------------

P Ai |B( ) = 1 = 1
P B( )
------------ P B| Ai( )P Ai( )

i=1

n


i=1

n



P B( ) = P B | Ai( )P Ai( )
i=1

n



Theorem 11.1

If {A1, . . . , An} are mutually exclusive events, one of which must occur given that
another event B occurs, then

P Ai |B( ) = P B| Ai( )P Ai( )

P B| Aj( )P Aj( )
j=1

n


------------------------------------------ i 1, . . . , n=( )

end of theorem

Example 11.34
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for B and 1% for C. What proportion of those parts that do not conform to the
specification are produced by machine A?

Solution Let D represent the event that a particular part is defective. Then, by the rule of total
probability, the overall proportion of defective parts is

P(D) = P(D |A)P(A) + P(D |B)P(B) + P(D |C )P(C )

= (0.1)(0.4) + (0.05)(0.25) + (0.01)(0.35) = 0.056

Using Bayes’ theorem,

so that machine A produces 71.4% of the defective parts.

Suppose that 0.1% of the people in a certain area have a disease D and that a mass
screening test is used to detect cases. The test gives either a positive or a negative result
for each person. Ideally, the test would always give a positive result for a person who
has D, and would never do so for a person who has not. In practice the test gives a
positive result with probability 99.9% for a person who has D, and with probability
0.2% for a person who has not. What is the probability that a person for whom the test
is positive actually has the disease?

Solution Let T represent the event that the test gives a positive result. Then the proportion of
positives is 

P(T ) = P(T |D)P(D) + P(T | )P( )

= (0.999)(0.001) + (0.002)(0.999) . 0.003

and the desired result is

Despite the high basic reliability of the test, only one-third of those people receiving a
positive result actually have the disease. This is because of the low incidence of the
disease in the population, which means that a positive result is twice as likely to be a
false alarm as it is to be correct.

In connection with Example 11.35, it might be wondered why the reliability of the
test was quoted in the problem in terms of

P(positive result | disease) and P(positive result | no disease)

instead of the seemingly more useful

P(disease | positive result) and P(disease | negative result)

The reason is that the latter figures are contaminated, in a sense, by the incidence of the
disease in the population. The figures quoted for reliability are intrinsic to the test can
be found experimentally, and may be used anywhere the disease occurs, regardless of
the level of incidence.

P A|D( ) = P D | A( )P A( )
P D( )

--------------------------------  = 0.1( ) 0.4( )
0.056

-------------------------  = 0.714

Example 11.35

D D

P D | T( ) = P T | D( )P D( )
P T( )

--------------------------------- = 0.999( ) 0.001( )
0.003

------------------------------------- = 1
3
---
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11.10.2 Applications in probabilistic inference

The scope for applications of Bayes’ theorem can be widened considerably if we assume
that the calculus of probability can be applied not just to events as subsets of a sample
space but also to more general statements about the world. Events are essentially
statements about facts that may be true on some occasions and false on others. Scientific
theories and hypotheses are much deeper statements, which have great explanatory
and predictive power, and which are not so much true or false as gaining or lacking in
evidence. One way to assess the extent to which some evidence E supports a hypothesis
H is in terms of the conditional probability P(H | E ). The relative frequency interpretation
of probability does not normally apply in this situation, so a subjective interpretation is
adopted. The quantity P(H | E ) is regarded as a degree of belief in hypothesis H on the
basis of evidence E. In an attempt to render the theory as objective as possible, the rules
of probability are strictly applied, and an inference mechanism based on Bayes’ theorem
is employed.

Suppose that there are in fact two competing hypotheses H1 and H2. Let X represent all
background information and evidence relevant to the two hypotheses. The probabilities
P(H1 | X ) and P(H1 | X > E ) are called the prior and posterior probabilities of H1, where
E is a new piece of evidence. The probabilities P(H1 | X) and P(H1 | X > E) represent our
degrees of belief about the hypothesis H1 before and after seeing the new evidence E.
Similarly, there are prior and posterior probabilities of H2. Applying Bayes’ theorem to
both H1 and H2 and cancelling the common denominator P(E ) gives

The left-hand side and the second factor on the right-hand side are called the posterior
odds and prior odds respectively, favouring H1 over H2. The first factor on the right-
hand side is called the likelihood ratio, and it measures how much more likely it is that
the evidence event E would occur if the hypothesis H1 were true than if H2 were true.
The new evidence E therefore ‘updates’ the prior odds, and the process can be repeated
as often as desired whenever new evidence become available, provided that the likeli-
hood ratios can be calculated.

From experience it is known that when a particular type of computer fails, this is twice
as likely to be caused by a short on the serial interface (H1) as by a faulty memory
circuit (H2). The standard diagnostic test is to measure the voltage at a certain point on
the board, and from experience it is also known that a drop in voltage there occurs nine
times out of ten when the memory circuit is faulty but only once in six occasions of an
interface short. How does the observed drop in voltage (E ) affect the assessment of the
cause of failure?

Solution Here we do not need to be concerned about background information. The prior odds are
two to one in favour of H1, and the likelihood ratio is (1/6)/(9/10), so the posterior odds
are given by

The evidence turns the odds around to about 2.7 to one in favour of H2, since 1 / 0.370 ≈ 2.7

P H1 |X > E( )
P H2 |X > E( )
--------------------------------  = P E | H1 > X( )

P E | H2 > X( )
--------------------------------- P H1 | X( )

P H2 | X( )
----------------------

Example 11.36

P H1 | E( )
P H2 | E( )
---------------------  = 10

54
------( ) 2( ) = 0.370
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An oil company is prospecting for oil in a certain area, and is conducting a series of
seismic experiments. It is known from past experience that if oil is present in the rock
strata below, then there is on average one chance in three that a characteristic pattern
will appear on the trace recorded by the seismic detector after a test. If oil is absent
then the pattern can still appear, but is less likely, appearing only once in four tests on
average. After 150 tests in the area the pattern has been seen on 48 occasions. Assuming
prior odds of 3:1 against the presence of oil, find the updated odds. Also find the 90%
confidence interval for the true probability of the pattern appearing after a test, and
hence consider whether oil is present or not.

Solution Let H1 and H2 represent the hypotheses that oil is present and that it is absent respect-
ively. There were effectively 150 pieces of evidence gathered, and the odds need to be
multiplied by the likelihood ratio for each. Each time the pattern is present the likeli-
hood ratio is

and each time it is absent the likelihood ratio is

The updated odds, letting E represent the total evidence, become 

The odds that there is oil present are therefore raised to 2:1 in favour.
Confidence intervals for proportions were covered in Section 11.3.6. The proportion

of tests for which the pattern was observed is 48/150 or 0.32, so the 90% confidence
interval for the probability of appearance is

The hypothesis that oil is absent is not compatible with this, because the pattern should
then appear with probability 0.25, whereas the hypothesis that oil is present is fully
compatible.

For the problem in Example 11.36 it is conceivable that there could be enough
repetitions for the relative frequency interpretation to be placed on the probabilities of
the two hypotheses. In contrast, in Example 11.37 the probability of the presence or
absence of oil is not well suited to a frequency interpretation, but the subjective inter-
pretation is available.

Example 11.37 also provides a contrast between the ‘Bayesian’ and ‘classical’ inference
approaches. The classical confidence interval appears to lead to a definite result: H1

is true and H2 is false. This definiteness is misleading, because it is possible (although
not likely) that the opposite is the case, but the evidence supports one hypothesis more

Example 11.37

P pattern | H1( )
P pattern | H 2( )
----------------------------------- = 1

3
--- 1

4
--- = 4

3
---

P no pattern | H1( )
P no pattern | H2( )
------------------------------------------ = 2

3
--- 3

4
--- = 8

9
---

P H1 | E( )
P H2 | E( )
--------------------- = 4

3
---( )48 8

9
---( )102 1

3
---( ) = 2.01

0.32 1.645
0.32( ) 0.68( )

150
-------------------------------±

 
 
 
 

 = 0.26 0.38,( )



11.10  BAYES’  THEOREM AND ITS A PPLICATIONS 935

than the other. The Bayesian approach has the merit of indicating this relative support
quantitatively.

In Section 11.10.3 we discuss briefly the Bayesian approach to statistical interence.
This approach now enjoys considerable popularity. For a recent, excellent discussion of
the Bayesian and frequentist inference approaches see B. Efron and T. Hastie, Com-
puter Age Statistical Inference: Algorithms, Evidence, and Data Science (Cambridge,
Cambridge University Press, 2016).

One area where Bayesian inference is very important is in decision support and
expert systems. In classical decision theory Bayesian inference is used to update the
probabilities of various possible outcomes of a decision, as further information becomes
available. This allows an entire programme of decisions and their consequences to be
planned (see D. V. Lindley, Making Decisions, second edition, London, Wiley, 1985).
Expert systems often involve a process of reasoning from evidence to hypothesis with a
Bayesian treatment of uncertainty (see, for example, R. Forsyth, ed., Expert Systems,
Principles and Case Studies, London, Chapman & Hall, 1984, and R. G. Cowell,
P. Dawid, S. L. Lauritzen and D. J. Spiegelhalter, Probabilistic Networks and Expert
Systems, Berlin, Springer, 1999). See, also M. Seutari and J.-B. Denis, Bayesian Net-
works: With Examples in R (Boca Raton, FL, Chapman and Hall/CRC, 2015) for a
modern R-based treatment of Bayesian networks.

11.10.3 Bayesian statistical inference

The Bayesian approach to statistical inference has become mainstream due to the
increasing availability of computational power. It is discussed in many books; see, for
example, I. Ntzoufras, Bayesian Modeling Using WinBUGS (Hoboken, NJ, Wiley,
2009) and D. Lunn, C. Jackson, N. Best, A. Thomas and D. Spiegelhalter, The BUGS
Book: A Practical Introduction to Bayesian Analysis (Boca Raton, FL, CRC Press,
2013). Our aim here is to provide a flavour of what can be done and an illustration of
the flexibility of the Bayesian approach. We will revisit the analysis of engine perfor-
mance data discussed in Section 11.7. In Section 11.7.3 we worked with two regression
models, which we will state again here using somewhat different notation more suited
to the present purpose. For the data from engine A, we adopted the model

running timei = c1 + d1 ambient temperaturei + errori (i = 1, . . . ,30)

while for engine B, the model was

running timei = c2 + d2 ambient temperaturei + errori (i = 31, . . . ,60)

Here, we use 1 for engine A and 2 for engine B because R and related code indexes
objects using numbers rather than characters. We also assumed that the errors are inde-
pendent and follow a N(0, σ 2 ) distribution. In Bayesian statistical inference we tend to
work with precision τ  instead of variance σ 2 , where τ = 1/σ 2 . This does not matter as
it is just a reparameterization of the model. So, we can now write our data model as

running timei ~ N(c1 + d1 ambient temperaturei, precision = τ) for engine A
running timei ~ N(c2 + d2 ambient temperaturei, precision = τ) for engine B

in which ~ means ‘is distributed as’. We wish to learn or make inference about the
unknown parameters c1, d1, c2, d2 and τ from the data. We will see that conclusions that
we make about τ can be transformed into conclusions about σ 2  = 1/τ and σ = 1/ .τ
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In the Bayesian approach to statistical inference, the parameters are considered to be
random variables and inference is based on the distribution of the parameters given the
observed data, which is called the posterior distribution (as it is defined after observing
the data). This is similar to the approach taken in Section 11.10.2, where we assigned
probabilities to hypotheses. The posterior probability density function of the parameters
c1, d1, c2, d2 and τ given the data is often written as π (c1, d1, c2, d2, τ | data). The poste-
rior probability density function can be found mathematically using Bayes’ theorem as

π (c1, d1, c2, d2, τ | data) ∝ π (data | c1, d1, c2, d2, τ) π (c1, d1, c2, d2, τ)

in which the ‘likelihood’ π (data | c1, d1, c2, d2,τ) can be found from the above data
model using independence by multiplying all the normal probability density functions
for running times. We also have to specify the prior probability density function
π (c1, d1, c2, d2, τ) which expresses our degree of belief about the parameters before see-
ing the data. It is common practice to assume that the parameters are independent
before seeing the data so that π (c1, d1, c2, d2, τ) = π (c1) π (d1) π (c2) π (d2) π (τ). Often,
our prior beliefs are very vague and so we choose π (c1), π (d1), π (c2), π (d2) and π (τ)
to reflect this. For example, π (c1) may be chosen to be a normal probability density
function with very low precision, that is very high variance.

Usually, the posterior distribution is too complicated to be handled mathematically.
Here it is five-dimensional and so a mathematical expression for the normalization con-
stant π (data) cannot be found. It is, therefore, common practice to understand and sum-
marize the posterior distribution by randomly sampling values from it. Markov chain
Monte Carlo algorithms such as the Gibbs Sampler have been developed to perform this
sampling and these iterative algorithms can be used even though π (c1, d1, c2, d2,
τ | data) is only known up to a multiplicative constant. They produce sets of values

which are eventually distributed according to the posterior distribution π (c1,d1,c2,d2,τ | data).
 is called the the initial set of values. These sets of values are

realizations of a Markov chain because  is produced using only
knowledge of . It is common practice to run a sampling
algorithm several times to assess whether the memory of the initial set of values has been
lost. This is illustrated in Figure 11.45, in which the sequences  and  are plotted
against iteration number j = 1, . . . ,1000. In each panel, there are three traceplots, each of
which comes from a different initial set of values. These traceplots seem indistinguishable
even for small iteration numbers, suggesting that, there is no effective influence due to the
initial set of Markov chain values. In practice, far more than 1000 iterations would be
used, for example 100 000 iterations, with the samples being produced by the first 50 000
(say) iterations being discarded so that the initial value has no influence. The discarded
values are said to come from the ‘burn-in’ phase. Values after burn-in are then considered
to be distributed according to the posterior distribution. Because Markov chain Monte
Carlo algorithms are iterative, they produce a correlated or dependent sequence of
values, since  depends on ,
which depends on  etc. To reduce this dependence,

c 1
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‘thinning’ is often applied to the output. Thinning may involve taking every 50th
sampled value, for example. Although thinning reduces computational costs, there is no
theoretical requirement to use it.

Several programs are available for implementing Gibbs Sampler-type algorithms
including jags (Just Another Gibbs Sampler), with which we will work. You will have
to install the jags computational engine from http://meme-jags.sourceforge.net/. The
R package R2jags, which you also have to install, allows jags to be run from R.
We will specify our model in the BUGS (Bayesian inference Using Gibbs Sampling)
language; see D. Lunn, C. Jackson, N. Best, A. Thomas and D. Spiegelhalter, The
BUGS Book: A Practical Introduction to Bayesian Analysis (Boca Raton, FL, Chapman
and Hall/CRC, 2013) for a very detailed treatment.

Mathematically, the marginal posterior probability density functions π (c1 | data),
π (d1 | data), π (c2 | data), π (d2 | data) and π (τ | data) can be derived from the joint
posterior probability density function π (c1, d1, c2, d2, τ | data) by multi-dimensional
integration. These marginal posterior distributions tell us about the individual
parameters on their own, while the joint posterior distribution tells us about all the
parameters together. In practice, the individual elements of the sampled values

 from the joint posterior distribution provide us with samples
from the marginal posterior distributions. For example, the sampled c1 values, some of
which are shown in the top panel of Figure 11.45, would eventually be distributed
according to the marginal posterior distribution π (c1 | data). Moreover, a sample from
the marginal posterior distribution π (σ | data) can be easily obtained by transforming
the sampled τ values using σ = 1/ .

In the Bayesian framework we work with credible intervals rather than confidence
intervals. A 95% credible interval (c1,l, c1,u) for c1 would have the property that

P(c1,l < c1 < c1,u | data) = 0.95

c 1
j( ) d 1

j( ) c 2
j( ) d 2

j( ) τ j( ), , , ,( )

τ

Figure 11.45
Traceplots of 
simulated values of c1 
(labelled c[1]) and c2 
(labelled c[2]). The 
colours correspond to 
the three sets of initial 
Markov chain values.

http://meme-jags.sourceforge.net/
http://meme-jags.sourceforge.net/
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so that c1 lies in the interval (c1,l, c1,u) with high probability. Many people find the defi-
nition of a credible interval to be more natural than that of a confidence interval. Such
a credible interval can be approximated from the sample of c1 values.

We now explain code that performs Bayesian inference about the parameters of the
above model. Running this code provides us with 95% credible intervals for the
model parameters and other quantities of interest such as c2 − c1 (difference in inter-
cepts), d2 − d1 (difference in slopes) and (c2 + d2t) − (c1 + d1t) (difference in regres-
sion line values) for t = 10°C and t = 20°C. In addition, we can obtain a 95% credible
interval for the point at which the two lines intersect tintersect = −(c2 − c1)/(d2 − d1).

In Section 11.7 we saved the data in R objects called run_time, amb_temp and
engine. We need to recode engine using 1 for engine A and 2 for engine B.

engine_12 <− ifelse(engine == "engine A", 1, 2)

# If the condition is TRUE, return 1, else return 2

engine_12

#> [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

#> [26] 1 1 1 1 1 2 2 2 2 2

#> [36] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Now we write our model using the BUGS language:

engine_model <− function(){

# Define the data model (and hence the likelihood) as 
# stated above

for(i in 1:n){

run_time[i] ~ dnorm(mu[i], tau)

Figure 11.46
Approximations of 
π(c1 | data) (labelled 
c[1]), π(c2 | data) 
(labelled c[2]) and 
π(c2 − c1 | data) (labelled 
c_diff). The colours 
correspond to the three 
sets of initial Markov 
chain values.
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# Parametrized by the precision tau = 1 / sigma^2

mu[i] <− c[engine_12[i]] + d[engine_12[i]] * 
amb_temp[i]

# Different intercept and slope for each of the two 
engine

}

# Prior (i.e. before seeing the data) beliefs about the 
# unknown parameter

c[1] ~ dnorm(0.0, 1.0E-4) 
# Low precision, so vague belief

d[1] ~ dnorm(0.0, 1.0E-4)

c[2] ~ dnorm(0.0, 1.0E-4)

d[2] ~ dnorm(0.0, 1.0E-4)

tau ~ dgamma(1. 0E-3, 1.0E-3) 
# We allow tau to take a large range of possible values

#

sigma <− 1.0 / sqrt(tau) 
# Definition of sigma, a transformation of tau

# Other quantities to monitor

c_diff <− c[2] − c[1] # Difference in intercepts

d_diff <− d[2] − d[1] # Difference in slopes

run_diff_1 <− (c[2] + d[2] * t_new_1) − (c[1] + d[1] * 
t_new_1)

# Difference in regression line values at t_new_1

run_diff_2 <− (c[2] + d[2] * t_new_2) − (c[1] + d[1] * 
t_new_2)

# Difference in regression line values at t_new_2

t_intersect <− −(c[2] − c[1]) / (d[2] − d[1])

# Point at which the regression lines intersect

# There would be a problem if d[2] − d[1] were zero!

# This could be overcome using an ifelse construction

# to ensure that the divisor is never actually zero

}

We need to specify the data that this BUGS code uses:

n <− length(run_time)

t_new_1 <− 10 
# Value of t at which to evaluate the difference in 
# regression line values

t_new_2 <− 20



940 APPLIED PROBABILITY AND STATISTICS

# All the required data

engine_data <− list("run_time", "amb_temp", "engine_12", 
"n", "t_new_1", "t_new_2")

Now we use the jags function to randomly sample from the posterior
π (c1, d1, c2, d2, τ | data) in the way described above. You should read the jags func-
tion help file carefully. Here is the code. We use set.seed for reproducibility.
Three sets of initial Markov chain values ) are used.

require(R2jags)

set.seed(14) 
# Set the seed of the random number generator for 
# reproducibility

# Specify arbitrary initial points for the unknown 
# parameters c, d and tau

# Here we specify three sets, each provided in a list

# d[2] − d[1] must not be zero to prevent division by zero

initial_points <− list(list(c = c(15, 20), d = c(0.01, 
−0.1), tau = 0.1), list(c = c(25, 30), d = c(0.01, −0.1), 
tau = 0.2), list(c = c(25, 30), d = c(0.4, 0.2), tau = 
0.6))

# Obtain samples from the posterior distribution

engine_posterior <− jags(data = engine_data,

# Specify the initial values

inits = initial_points,

# Parameters of interest to be monitored

parameters.to.save = c("c", "d", "sigma", "c_diff", 
"d_diff", "run_diff_1", "run_diff_2", "t_intersect"),

# Number of samples (some are not used)

n.iter = 100000,

# Repeat sampling algorithm three times from the three

# initial points

n.chains = 3,

# Function containing the BUGS code

model.file = engine_model)

We can display the results, part of which we will discuss below:

print(engine_posterior, intervals = c(0.025, 0.5, 0.975))

#> fit using jags,

#> 3 chains, each with 1e+05 iterations (first 50000 
#> discarded), n.thin = 50

#> n.sims = 3000 iterations saved

c1
0( ) d1

0( ) c2
0( ) d2

0( )τi
0( )(
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#> mu.vect sd.vect 2.5% 50% 97.5% Rhat n.eff

#> c[1] 20.932 1.351 18.238 20.932 23.532 1.0013000

#> c[2] 25.540 1.176 23.274 25.537 27.917 1.0013000

#> c_diff 4.608 1.771 1.086 4.584 8.025 1.002 1800

#> d[1] 0.196 0.079 0.043 0.195 0.351 1.001 3000

#> d[2] −0.010 0.063 −0.135 −0.010 0.113 1.001 3000

#> d_diff −0.206 0.100 −0.399 −0.207 −0.013 1.001 2000

#> run_diff_1 2.549 0.843 0.918 2.530 4.156 1.002 1900

#> run_diff_2 0.490 0.522 −0.522 0.484 1.561 1.001 3000

#> sigma 1.693 0.164 1.415 1.681 2.055 1.002 1000

#> t_intersect 32.931 518.858 17.015 22.188 49.711 1.291 3000

#> deviance 233.148 3.293 228.829 232.439 241.233 1.003 1400

#>

#> For each parameter, n.eff is a crude measure of 
#> effective sample size,

#> and Rhat is the potential scale reduction factor (at 
#> convergence, Rhat=1).

#>

#> DIC info (using the rule, pD = var(deviance)/2)

#> pD = 5.4 and DIC = 238.6

#> DIC is an estimate of expected predictive error (lower 
#> deviance is better).

We can obtain a 95% credible interval for each parameter by looking at the values
in the 2.5% and 97.5% columns. These can be extracted for future use, for example:

engine_posterior$BUGSoutput$summary[c("c[1]", "c[2]"), 
c("2.5%", "97.5%")]

#> 2.5% 97.5%

#> c[1] 18.23815 23.53192

#> c[2] 23.27416 27.91698

The mean of the marginal posterior distribution for each parameter (available from
the column mu.vect) and the median (available from the column 50%) provide one
number posterior summaries. These results will be slightly different each time the
code is run as they are based on randomly sampled values from the posterior
distribution.

The results here are in line with those that we saw in Section 11.7. We are also
able to perform inference about tintersect, which we did not do before, although some
extreme values may be generated when the divisor d2 − d1 is close to zero. This
illustrates the flexibility of the simulation-based Bayesian approach to statistical
inference.
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A range of R packages including ggmcmc allow us to provide graphical visuali-
zations of jags output. For example, traceplots, such as the one shown in
Figure 11.46, can be produced using the following procedure:

First, the jags output has to be turned into a so-called ‘mcmc’ object:

engine_posterior.mcmc <− as.mcmc(engine_posterior)

The sampled values can be extracted from an ‘mcmc’ object, if required:

head(engine_posterior.mcmc[[1]] [,"c[1]"])

#> Markov Chain Monte Carlo (MCMC) output:

#> Start = 50001

#> End = 50301

#> Thinning interval = 50

#> [1] 21.79822 19.94469 19.21991 20.71384 21.12518 
20.21288 23.18128

Next, this ‘mcmc’ object has to be turned into a so-called ‘ggs’ object. You will
probably need to install the ggmcmc package:

require(ggmcmc)

engine_posterior.ggs <− ggs(engine_posterior.mcmc)

Finally, traceplots (not shown because of space considerations) can be produced.
These can be used to assess Markov chain convergence.

ggs_traceplot(engine_posterior.ggs) # A lot of plots

ggs_traceplot(engine_posterior.ggs, family = "^c") 
# Parameters starting with c

ggs_density(engine_posterior.ggs, family = "^c") 
# Parameters starting with c

Density plots provide approximations of marginal posterior density functions. The
following code produces Figure 11.46 which shows approximations of π (c1 | data),
π (c2 | data) and π (c2 − c1 | data).

These posterior probability density functions express our beliefs about c1, c2 and
c2 − c1 after seeing the data. The colours correspond to the three sets of initial
Markov chain values provided to jags. The similarity of density functions suggests
that the memory of these initial values has been lost and that the algorithm is indeed
producing samples from the posterior.

Caterpillar plots show posterior medians, and 90% and 95% narrowest credible
intervals. Figure 11.47 presents caterpillar plots for (c2 + d2t) − (c1 + d1t) (difference
in regression line values) at t = 10°C and t = 20°C. As before, the first interval is
entirely positive, while the second provides posterior support for zero. Hence, we
may conclude that the underlying difference in running times between engine B and
engine A is probably positive for a low ambient temperature, such as 10°C, while
there is probably no effective difference when t = 20°C.

ggs_caterpillar(engine_posterior.ggs, family = "^r") + 
geom_vline(xintercept = 0, lty = "dashed") 

# Dashed vertical line at zero
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Figure 11.47
Caterpillar plots for 
(c2 + d2t) − (c1 + d1t) 
(difference in regression 
line values) at t = 10°C 
(upper caterpillar) and 
t = 20°C (lower 
caterpillar).

In addition to the references already mentioned in this section, A. Gelman, J. B. Carlin,
H. S. Stern, D. B. Dunson, A. Vehtari and D. B. Rubin, Bayesian Data Analysis (second
edition, Boca Raton, FL, Chapman and Hall/CRC, 2013), R. McElreath, Statistical
Rethinking: A Bayesian Course with Examples in R and Stan (Boca Raton, FL, Chap-
man and Hall/CRC, 2016), R. Christensen, W. Johnson, A. Branseum and T. E. Hanson,
Bayesian Ideas and Data Analysis: An Introduction for Scientists and Statisticians
(Boca Raton, FL, Chapman and Hall/CRC, 2011), and many others, provide excellent
treatments. The MCMCpack package contains easy to use functions to perform Bayesian
inference using posterior simulation for a number of statistical models. Finally, tech-
niques for determining the number of iterations and the burn-in length to use, and for
assessing whether the sampled values really do come from the posterior distribution are
referred to as ‘convergence diagnostics’ and are discussed in detail in I. Ntzoufras,
Bayesian Modeling Using WinBUGS (Hoboken, NJ, Wiley, 2009), for example.
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A telephone-based automated customer care system 
has three main menu options: 45% of customers 
choose option 1, 32% choose option 2, and 23% 
choose option 3. Of those who choose option 1, 
28% eventually get routed to a service agent, as do 
41% of those who choose option 2 and 16% of those 
who choose option 3. What is the overall proportion 
of customers who eventually get 
routed to a service agent?

An explosion at a construction site could have 
occurred as a result of (a) static electricity, 
(b) malfunctioning of equipment, (c) carelessness or 
(d) sabotage. It is estimated that such an explosion 
would occur with probability 0.25 as a result of (a), 
0.20 as a result of (b), 0.40 as a result of (c) and 0.75 
as a result of (d). It is also judged that the prior 
probabilities of the four causes of the explosion 
are (a) 0.20, (b) 0.40, (c) 0.25, (d) 0.15. Find the 
posterior probabilities and hence the most likely 
cause of the explosion.

Three marksmen (A, B and C) fire at a target. Their 
success rates at hitting the target are 60% for A, 
50% for B and 40% for C. If each marksman fires 
one shot at the target and two bullets hit it, then 
which is more probable: that C hit the target, or did 
not?

An accident has occurred on a busy highway 
between city A, of 100 000 people, and city B, of 
200 000 people. It is known only that the victim 
is from one of the two cities and that his name is 
Smith. A check of the records reveals that 10% of 
city A’s population is named Smith and 5% of city 
B’s population has that name. The police want to 
know where to start looking for relatives of the 
victim. What is the probability that the victim is 
from city A?

In a certain community, 8% of all adults over 50 
have diabetes. If a health service in this community 
correctly diagnoses 95% of all persons with 
diabetes as having the disease, and incorrectly 
diagnoses 2% of all persons without diabetes as 
having the disease, find the probabilities that

(a) the community health service will diagnose an 
adult over 50 as having diabetes,

(b) a person over 50 diagnosed by the health service
as having diabetes actually has the disease.

A stockbroker correctly identifies a stock as being a 
good one 60% of the time and correctly identifies a 
stock as being a bad one 80% of the time. A stock 
has a 50% chance of being good. Find the 
probability that a stock is good if

(a) the stockbroker identifies it as good,
(b) k out of n stockbrokers of equal ability 

independently identify it as good.

On a communications channel, one of three 
sequences of letters can be transmitted: AAAA, 
BBBB and CCCC, where the prior probabilities 
of the sequences are 0.3, 0.4 and 0.3 respectively. 
It is known from the noise in the channel that the 
probability of correct reception of a transmitted 
letter is 0.6, and the probability of incorrect 
reception of the other two letters is 0.2 for 
each. It is assumed that the letters are distorted 
independently of each other. Find the most 
probable transmitted sequence if ABCA is 
received.

The number of accidents per day occurring at 
a road junction was recorded over a period of 
100 days. There were no accidents on 84 days, 
one accident on 12 days, and two accidents on 
four days. One hypothesis is that the number of 
accidents per day has a Poisson distribution with 
parameter λ (unspecified), and another is that the 
distribution is binomial with parameters n = 3 
and p (unspecified). Use the average number of 
accidents per day to identify the unspecified 
parameters and compare the hypotheses assuming 
that the binomial is initially thought to be twice as 
likely as the Poisson.

The following multinomial distribution is a 
generalization of the binomial distribution. Suppose 
that there are k distinct possible outcomes of an 
experiment, with probabilities p1, . . . , pk, and that 
the experiment is repeated n times. The probability 
of obtaining a number n1 of occurrences of the first 
possible outcome, n2 of the second, and so on up to 
nk of the k th is

Suppose now that there are two competing 
hypotheses H1 and H2. H1 asserts that the 
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probabilities are p1, . . . , pk as above, and H2 
asserts that they are q1, . . . , qk. Prove that the 
logarithm of the likelihood ratio is

According to the design specification, of the 
components produced by a machine, 92% should 
have no defect, 5% should have defect A alone, 
2% should have defect B alone and 1% should 
have both defects. Call this hypothesis H1. The 
user suspects that the machine is producing more 
components (say a proportion pB) with defect B 
alone, and also more components (say a proportion 
pAB) with both defects, but is satisfied that 5% have 
defect A alone. Call this hypothesis H2. Of a sample 
of 1000 components, 912 had no defects, 45 had 
A alone, 27 had B alone and 16 had both. Using 
the multinomial distribution (as in Exercise 71), 
maximize ln P(912, 45, 27, 16 |H2) with respect 
to pB and pAB, and find the posterior odds assuming 
prior odds of 5:1 in favour of H1.

It is suggested that higher-priced cars are assembled 
with greater care than lower-priced cars. To 
investigate this, a large luxury model A and a 
compact hatchback B were compared for defects 
when they arrived at the dealer’s showroom. All 

cars were manufactured by the same company. The 
numbers of defects for several of each model were 
recorded:

A: {5, 4, 3, 5, 3, 4}

B: {8, 6, 8, 9, 5}

The number of defects in each car can be 
assumed to be governed by a Poisson distribution 
with parameter λ. Compare the hypothesis H1 that 
λA ≠ λB with H2 that λ A = λB = λ, using the average 
numbers of defects to identify the λ values and 
assuming no initial preference between the 
hypotheses.
Perform Bayesian inference about the parameters of 
the linear regression model

Yi = a + bXi + εi
εi ~ N(0, σ2)

for the strain gauge data of Example 11.17.
Estimate (Y − a)/b when Y is 13.8 V. Estimate the
voltmeter measurement when the tension or force is
8.5 kN and 10 kN. Also, monitor the standardized
residual quantities

, in which the precision τ = 1/σ 2,
and produce a caterpillar plot of corresponding
credible intervals. (Hint: Construct your BUGS
code step by step so that it performs one inference
task at a time.)

ln
P n1, . . . , nk |H1( )
P n1, . . . , nk |H2( )
-----------------------------------------  = ni ln

pi

qi

---- 
 

i=1

k



72

73

74

rs i, Yi a– bXi–( ) σ⁄= =
τ Yi a– bXi–( )

Eight cases each of 12 bottles of wine from a 
vineyard were tested for evidence of oxidation 
in the wine. Five of the cases were bottled using 
standard corks and, of these, six bottles were 
found to have oxidized. The remaining cases 
were bottled using plastic bungs and, of these, 
three bottles were found to have oxidized. Test
the hypothesis that there is no difference in the 
proportion of bottles oxidized for the different 
types of cork.

The amplitude d of vibration of a damped pendulum 
is expected to diminish by 

d = d0 e−λt

Successive amplitudes are measured from a trace as 
follows:

Find a 95% confidence interval for the damping 
coefficient λ.

Successive masses of 1 kg were hung from a 
wire, and the position of a mark at its lower 
end was measured as follows:

It is expected that the extension Y is related to the 
force X by 

Y = LX /EA

where L = 101.4 cm is the length, 
A = 1.62 × 10−5 cm2 is the area and E is the 
Young’s modulus of the material. Find a 95% 
confidence interval for the Young’s modulus.

11.11 Review exercises (1–10)

t 1.01 2.04 3.12 4.09 5.22 6.30 7.35 8.39 9.44 10.50
d 2.46 1.75 1.26 0.94 0.90 0.79 0.52 0.49 0.31 0.21

1

2

Load/kg 0 1 2 3 4 5 6 7
Position/cm 6.12 6.20 6.26 6.32 6.37 6.44 6.50 6.57

3
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The table in Figure 11.48 gives the intervals, in 
hours, between arrivals of cargo ships at a port 
during a period of six weeks. It is helpful to the 
port authorities to know whether the times of 
arrival are random or whether they show any 
regularity. Fit an exponential distribution to the 
data and test for goodness-of-fit.

When large amounts of data are processed, there 
is a danger of transcription errors occurring (for 
example, a decimal point in the wrong place), which 
could bias the results. One way to avoid this is to 
test for outliers in the data. Suppose that X1, . . . , Xn 
are independent exponential random variables, 
each with a common parameter λ. Let the random 
variable Y be the largest of these divided by the sum:

It can be shown (V. Barnett and T. Lewis, Outliers 
in Statistical Data, Wiley, Chichester, 1978) that the 
distribution function of Y is given by 

where [1/y] denotes the integer part of 1/y. For the 
data in the Review exercise 4 (Figure 11.48) test 
the largest value to see whether it is reasonable 
to expect such a value if the data truly have an 
exponential distribution. Find 95% confidence 
intervals for the mean inter-arrival time with this 
value respectively included and excluded from 
the data.

Language courses in French, German and Spanish 
are offered by an adult learning institute. At the end 
of each course, the students are asked to grade 
their response to the course as either very satisfied, 

fairly satisfied, neutral, fairly dissatisfied, or very 
dissatisfied. After gathering data for several terms 
the results are as follows:

Is there evidence of different levels of satisfaction 
with the different courses?

A surgeon has to decide whether or not to 
perform an operation on a patient suspected of 
suffering from a rare disease. If the patient has 
the disease, he has a 50:50 chance of recovering 
after the operation but only a one in 20 chance of 
survival if the operation is not performed. On the 
other hand, there is a one in five chance that a 
patient who has not got the disease would die as 
a result of the operation. How will the decision 
depend upon the surgeon’s assessment of the 
probability p that the patient has the disease? 
(Hint: Use P(B | A) = P(B | A > C )P(C ) + 
P(B | A > )P( ), where A and C are 
independent.)

A factory contains 200 machines, each of which 
becomes misaligned on average every 200 h of 
operation, the misalignments occurring at random 
and independently of each other and of other 
machines. To detect the misalignments, a quality 
control chart will be followed for each machine, 
based on one sample of output per machine per 
hour. Two options have been worked out: option 
A would cost £1 per hour per machine, whereas 

4

5

Y = Xmax   Xi

i


FY y( ) = −1( )k n

k 
  1 ky–( )n−1

k=0

1/y[ ]


1
n
--- y 1< < 
 

6

Grade French German Spanish

Very satisfied 16 6 22
Fairly satisfied 63 13 76
Neutral 40 27 60
Fairly dissatisfied 10 13 32
Very dissatisfied 3 5 12

7

C C

8

Figure 11.48 Time interval data for Review exercise 4.

6.8 2.1 1.0 28.1 5.8 19.7 2.9 16.3 10.7 25.3 12.5 1.6 3.0 9.9 15.9
21.3 9.1 6.9 5.6 2.0 2.2 10.2 6.5 6.8 42.5 2.9 7.3 3.1 2.6 1.0
3.8 14.7 3.8 13.9 2.9 4.1 22.7 5.8 7.6 6.4 11.3 51.6 15.6 2.6 7.6
1.2 0.7 1.9 1.8 0.7 0.4 72.0 10.7 8.3 15.1 3.6 6.0 0.1 3.1 12.9
2.2 17.6 3.6 2.4 3.2 0.4 4.4 17.1 7.1 10.1 18.8 3.4 0.2 4.9 12.9
1.8 22.4 11.6 4.2 18.0 3.0 16.2 6.8 3.7 13.6 15.7 0.7 2.7 18.8 29.8
4.9 6.8 10.7 0.9 2.4 3.8 9.0 8.8 4.8 0.3 4.6 4.9 6.1 33.0 6.5
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option B would cost £1.50 per hour per machine. 
The control charts differ in their average run 
lengths (ARLs) to a signal of action required. 
Option A (Shewhart) has an ARL of 20 for a 
misaligned machine, but will also generate false 
alarms with an ARL of 1000 for a well-adjusted 
machine. Option B (cusum) has an ARL of four 
for a misaligned machine and an ARL of 750 for 
a well-adjusted machine.

When a control chart signals action required, 
the machine will be shut down and will join a 
queue of machines awaiting servicing. A single 
server will operate, with a mean service time 
of 30 min and standard deviation of 15 min, 
regardless of whether the machine was actually 
misaligned. This is all that is known of the 
service time distribution, but use can be made 
of the Pollaczek–Khintchine formula, which 
applies to single-channel queues with arbitrary 
service distributions:

(the notation is as in Section 11.9.3, with σS the 
standard deviation of service time).

During the time that a machine is in the 
queue and being serviced, its lost production is 
costed at £200 per hour. In addition, if the 
machine is found to have been misaligned then 
its output for the previous several hours (given 
on average by the ARL) must be examined 
and if necessary rectified, at a cost of £10 per 
production hour.

Find the total cost per hour for each option, 
and hence decide which control scheme should be 
implemented.

A transmission channel for binary data connects 
a source to a receiver. The source emits a 0 with 

probability α and a 1 with probability 1 − α , each 
symbol independent of every other. The noise in 
the channel causes some bits to be interpreted 
incorrectly. The probability that a bit will be 
inverted is p (whether a 0 or a 1, the channel is 
‘symmetric’).

(a) Using Bayes’ theorem, express the four 
probabilities that the source symbol is a 0 or a 
1 given that the received symbol is a 0 or a 1.

(b) If p is small and the receiver chooses to 
deliver whichever source symbol is the more 
likely given the received symbol, find the 
conditions on α such that the source symbol 
is assumed to be the same as the received 
symbol.

If discrete random variables X and Y can take 
possible values {u1, . . . , um} and {v1, . . . , vn} 
respectively, with joint distribution P(uk, vj) 
(see Section 11.4.1), the mutual information 
between X and Y is defined as 

Show that for the binary symmetric transmission 
channel referred to in Review exercise 9, if X is 
the source symbol, Y the received symbol and 
α =  then

I (X; Y ) = 1 + p log2 p + (1 − p) log2(1 − p)

The interpretation of this quantity is that it 
measures (in ‘bits’) the average amount of 
information received for each bit of data 
transmitted. Show that I (X; Y ) = 0 when p =
and that I (X; Y ) → 1 as p → 0 and as p → 1. 
Interpret this result.

NS = ρ λσS( )2 ρ2+
2 1 ρ–( )

----------------------------+

9

10

I X; Y( ) = P uk, vj( ) log2

j=1

n


k=1

m


P uk, vj( )

P X = uk( )P Y = vj( )
-----------------------------------------------

1
2
---

1
2
---





CHAPTER 1

Exercises

1 (a)

2

The transformation rotates the e1, e2 plane through π/4 
about the e3 axis.

3 (a), (c) and (d)

4 The set of all odd quintic polynomials; it has dimension 3.

5 (a) λ3 − 12λ2 + 40λ − 35
(b) λ4 − 4λ3 + 2λ2 + 5λ + 2

6 (a) 2, 0; [1 1]T, [1 −1]T

(b) 4, −1; [2 3]T, [1 −1]T

(c) 9, 3, −3; [−1 2 2]T, [2 2 −1]T, [2 −1 2]T

(d) 3, 2, 1; [2 2 1]T, [1 1 0]T, [0 −2 1]T

(e) 14, 7, −7; [2 6 3]T, [6 −3 2]T, [3 2 −6]T

(f ) 2, 1, −1; [−1 1 1]T, [1 0 −1]T, [1 2 −7]T

(g) 5, 3, 1; [2 3 −1]T, [1 −1 0]T, [0 −1 1]T

(h) 4, 3, 1; [2 −1 −1]Τ, [2 −1 0]Τ, [4 1 −2]Τ

7 (a) 5, [1 1 1]T; 1 (repeated) with two linearly 
independent eigenvectors, e.g. [0 1 2]T, 
[1 0 −1]T

(b) −1, [8 1 3]T; 2 (repeated) with one linearly 
independent eigenvector, e.g. [1 −1 0]T

(c) 1, [4 1 −3]T; 2 (repeated) with one linearly 
independent engenvector, e.g. [3 1 −2]T

(d) 2, [2 1 2]T; 1 (repeated) with two linearly 
independent eigenvectors, e.g. [0 2 −1]T, 
[2 0 3]T

8 1, [−3 1 1]T

9 2, e.g. [1 0 1]T, [0 1 1]T

12 −6, 3, 2; [2 1 1]T, [−1 1 1]T, [0 1 −1]T

13 [1 −1 0]T

14 8.59, [0.61 0.71 0.35]T

15 (a) 3.62, [0.62 1 1]T

(b) 7, [0.25 0.5 1]T

(c) 2.62, [1 −0.62 −0.62 1]T

16 λ1 = 6; λ 2 = 3, e2 = [1 1 −1]T; 
λ 3 = 2, e3 = [1 −1 0]T

17 10.132, 4.491, 0.373

18 (b) 0.59

19 5, 2, −1; [−1 5 3]T, [0 2 1]T, [1 0 0]T

20 6, 3, 1; [1 2 0]T, [0 0 1]T, [2 −1 0]T

21 18, 9, −9; [2 1 2]T, [1 2 −2]T, [−2 2 1]T

22 2, 1, −1; [1 3 1]T, [3 2 1]T, [1 0 1]T

23 −9, 6, 3; [1 2 −2]T, [2 1 2]T, [−2 2 1]T 

L = M, M modal matrix

24 [0 0 1]T,  

25

26 λ = −2: [0 1 1 0]T, [1 0 0 1]T

λ = 4: [0 1 −1 0]T, [6 −1 0 −6]T

A = 

1
2
--- 1

2
--- 0

1
2
--- − 1

2
--- 0

0 0  1

1
3
---

2 2 0

2 5 0

0 0 3

J = 
1 1 0

0 1 1

0 0 1

J = 

2– 0 0 0

0 −2 0 0

0 0 4 1

0 0 0 4

Answers to 
Exercises
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27

28 (a) Positive-definite
(b) Positive-semidefinite (c) Indefinite

29 (a) 2a . 1, (b) 2b2 , 6a − 3

30 Positive-semidefinite, eigenvalues 3, 3, 0

31 k . 2; when k = 2 Q is positive-semidefinite

32 a . 2

33 λ . 5

35 (a) (b) (c) 

36

37

38

40

41

42 (a) 3, 3 (b) Yes

43 (a)

(b)

44

45 (a) 1

(b)

(c)

(d) x = , y = −

46 (a) x = y = 

47 (b)

48 (a) (i) x = y =1 (ii) x = y = 1.0909
(b) (i) x = y =1 (ii) x = y = 1.4785
(c) (i) x = y =1 (ii) x = y = 1.4998

49 m = 0.5, c = 0.8

50 (a)  

 y = [1 0 0]x

(b)

  y = [1 0 0 0]x

51 (a)

y = [5 3 1]x

(b) y = [2 3 1]x

52

y = [0 R2 0]x

53 A possible model is

y = [1 0 0 0]x

y2
1
--- y2

2
--- y2

3
---+ +

3 4

2 3

7 10

5 7

17 24

12 17

(a)
1
3
--- 2 −1

−1 2
(b)

1
11
------

−2 5 −1

−1 −3 5

7 −1 −2

47 231 47342 47270

47342 47195 47306

47270 47306 47267

(a)
et 0

t et et
(b)

et 0

e2t et– e2t

(a)
2t 2

−1 2t − 1
(b)

10
3
------ 0

7
2
--- 23

6
------

t4 2t2 t  4– t3 t2– t 1–+ + +
5t2 5+ 5t 5–

3

10
---------- 1

10
----------

1

10
---------- 3

10
----------–

6 10 0 0

0 3 10 0

1
3
--- 2

3
--- 2

3
---

2
3
---– 1

3
---– 2

3
---

2
3
--- 2

3
---– 1

3
---

1
180
---------

1– 13

4 8

10 10–

1
141
--------- 13 30 17– 6 4–

18 9 9 30 27

1
3
--- 0 2

5
-------

2
3
---– 1

2
------- 1

5
-------

2
3
--- 1

2
------- 0

3 2 0

0 0

0 0

1

2
------- 1

2
-------–

1

2
------- 1

2
-------

1
18
------ 1 2– 2

1– 2 2–
1
6
--- 1

6
---

2
3
---

1
15
------

4 5 1 6

2 10 8 3

3– 0 3 3

x·
0 1 0

0 0 1

−4 −5 −4

x

0

0

1

u,+=

x·

0 1 0 0

0 0 1 0

0 0 0 1

0 −4 −2 0

x

0

0

0

5

u,+=

x· = 
0 1 0

0 0 1

−7 −5 −6

x
0

0

1

u,+

x· = 
0 1 0

0 0 1

0 −3 −4

x
0

0

1

u,+

x· = 
−R1/L1 −R1/L1  −1/L1

−R1/L1 − R1 R2+( )/L2 −1/L2

1/C 1/C 1/C

x + 
1/L1

1/L2

0

u,

x· = 

B M1 M+( )/MM1 1 0 0

− K1M KM1 KM+ +( )/MM1 0 1 0

−K1B/MM1 0 0 1

−K1K/MM1 0 0 0

x

+ 

0

0

K1B/MM1

K1K2/MM1

u,
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54

α = R1R3 + (R1 + R3)(R2 + R4) 
−2.6 × 102, −1.1 × 102

55

56 , y = e−t(1 + 2t)

57 [et et(t + 1)]T

58 x1 = 2 − 4 e−2 t + 3 e−3t, x2 = 8 e−2 t − 9 e−3 t

59 x1 = 4t e−2 t + e−2 t − e−t, x2 = 3 e− t − 2 e−2 t − 4t e− t

60

61 x(t) = et[3 2]T − e−3 t[1 −2]T

62

63 x(t) = e−2t{(cos 2t − sin 2t)[2 1]T 

− (cos 2t + sin 2t)[0 1]T}

64

y = [1 −4 −2]z

65 α0 = , α1 = − , α 2 = 

66 6, 1, [4 1]T, [1 −1]T

x1 = 4 e6 t − 3et, x2 = e6 t + 3et

67 Same as Exercise 60

68 Asymptotically stable

69 Asymptotically stable

70 a > 0, b > 0

1.10 Review exercises

1 (a) 5, 2, −1; [11 5 3]T, [8 2 1]T, [1 0 0]T

(b) 3, 2, 1; [1 2 1]T, [2 1 0]T, [1 0 −1]T

(c) 3, 1, 0; [1 −2 1]T, [1 0 −1]T, [1 1 1]T

2 6, 3, 1; [1 1 1]T, [1 1 −2]T, [1 −1 0]T

3 b = 1, c = 2; λ = 2, 4, 1;
[1 −2 −1]T, [1 1 −1]T

4 (a) 4.56; [0.72 0.84 1]T (b) 1.75
(c) (i) 1.19 (ii) 1.75

5 [0 −1 1]T

6 3, 2, 1; [2 1 1]T, [3 2 1]T, [4 3 2]T

7 [ − − ]T, [ − ]T, [ − ]T

8 −6, −4, −2, 0; [1 −3 3 −1]T, [0 1 −2 1]T,
[0 0 1 −1]T, [0 0 0 1]T;
C − C e−6 t + 3C e−4t − 3C e−2t

9 (a) (i) (ii)

(b)

10 e1 = [1 0 0]T, e*2 = [ 0]T, e*3 = [0 0 ]T

11 2, 2 ±2; 1:0:−1, 1:−2:1, 1:2:1

12 (a) Positive-semidefinite (b) Positive-definite
(c) Indefinite (d) Negative-semidefinite
(e) Negative-definite

13 1; 3, [1 1 0]T; −1, [0 −1 1]T

14 (a)

(b)

x·1

x·2

 = 
−

R1 R2 R4+ +( )
αC1

---------------------------------- R1

αC1

----------

R1

αC2

---------- −
R1 R3+

αC2

-----------------

x1

x2

R2 R4+
αC1

-----------------

R3

αC2

----------
u+

y1

y2

 = 

R1

α
----- −

R1 R3+
α

-----------------

−
R3

α
----- R1 R2 R4+ +( ) R1R3

α
-----------

+ 

R3

α
-----

R3

α
----- R4 R2+( )

u,

et 0

t et et

e t– 1 t+( ) t e− t

−t e−t e− t 1 t–( )

x t( ) = 
−5 8

3
--- e− t 10

3
------ e5t+ +

3 8
3
--- e−t 5

3
--- e5t+–

x t( ) = 1
5
--- 14 e−t − 4 e−6t

7 e− t + 8 e−6t

z
· = 

2 0 0

0 1 0

0 0 −1

z

1
3
---

0

−4
3
---

u,+

1
2
--- 1

2
--- 1

2
---

1
3
--- 2

3
--- 2

3
--- 2

3
--- 2

3
--- 1

3
--- 2

3
--- 1

3
--- 2

3
---

−29 0

−32 3

2k 0

2k 1– 1

1 1
2
--- 1 e−2t–( )

0 e−2t

3
8
--- 1

2
--- 1

8
---

−0.8 0.6

0.6 0.8

5 0 0

0 2.5 0

0 0  1

0.8 0.6 0

0.6– 0.8 0

i
125
---------

24 32

18 24

20– 15

 = 
0.192 0.256

0.144 0.192

0.16– 0.12
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15 (c)

16 , b1 = [ 0 − ]T,

c = [1 −4 −2]T

The system is uncontrollable but observable; it is stable

17 M = 

x(t) = 

18 (a) 6, [3 2 1]T; 3, [1 −1 0]T, [ ]T

(c)

19 x1 = cos t + 2 sin t − cos 2t

x2 = cos t + 2 sin t + cos 2t

CHAPTER 2

Exercises

1 X(0.3) = 0.985 05

2 X(1.1) = 0.094 913

3 X(1) = 1.1571

4 X(0.5) = 2.1250

5 Xa(2) = 2.811 489, Xb(2) = 2.819 944,
x(t) = 2

6 Xa(2) = 1.573 065, Xb(2) = 1.558 541,
x(t) = 

7 Xa(1.5) = 2.241 257, Xb(1.5) = 2.206 232,
x(t) ln x(t ) − x(t) = t − 1.981 214

8 (a) X(0.5) = 0.1238 (b) X(1.2) = 1.3740

9 X(0.5) = 1.7460

10 (a) X(0.5) = 0.7948 (b) X(1) = −1.3511

14 X(0.5) = 0.1353

15 (a) X(0.75) = 3.2345
(b) X(2) = 2.2771

16 (a) X0.2(2) = 2.242 408, X0.1(2) = 2.613 104
Richardson extrapolation estimates the error 
as 0.123 565 so a step less than 0.0064 should 
be used.

(b) X0.2(2) = 2.788 158, X0.1(2) = 2.863 456
Richardson extrapolation estimates the error 
as 0.025 099 so a step less than 0.014 should 
be used.

(c) X0.4(2) = 2.884 046, X0.2(2) = 2.897 402
Richardson extrapolation estimates the error 
as 0.000 890 so a step less than 0.057 should 
be used.
x(2) = 2.898 51 to 5 dp

17 X(3) = 1.466 47

18 (a) dx/dt = v, x(0) = 1
dv/dt = 4xt − 6(x2 − t )v, v(0) = 2

(b) dx/dt = v, x(1) = 2
dv/dt = −4(x 2 − t 2), v(1) = 0.5

(c) dx/dt = v, x(0) = 0
dv/dt = −sin v − 4x, v(0) = 0

(d) dx/dt = v, x(0) = 1
dv/dt = w, v(0) = 2
dw/dt = e2t + x 2t − 6 etv − tw, w(0) = 0

(e) dx/dt = v, x(1) = 1
dv/dt = w, v(1) = 0
dw/dt = sin t − x 2 − tw, w(1) = −2

(f ) dx/dt = v, x(2) = 0
dv/dt = w, v(2) = 0
dw/dt = (x2t 2 + tw)2, w(2) = 2

(g) dx/dt = v, x(0) = 0
dv/dt = w, v(0) = 0
dw/dt = u, w(0) = 4
du/dt = ln t − x 2 − xw, u(0) = −3

(h) dx/dt = v, x(0) = a
dv/dt = w, v(0) = 0
dw/dt = u, w(0) = b
du/dt = t 2 + 4t − 5 +  − v − (v − 1)tu,
u(0) = 0

19 X(0.3) = 0.299 90

20 X(0.3) = 0.299 64

21 X(0.65) = −0.826 03

22 X0.4(1.6) = 1.220 254, X0.2(1.6) = 1.220 055
Richardson extrapolation estimates the error as 
0.000 013 so, to obtain an error less than 5 × 10−7, 
a step less than 0.088 should be used.

1
3
---

2
3
---–

2
3
---

18 1

2
------- 1

2
-------–

1
18
------ 1 2– 2

1– 2 2–
,

Λ = 
2 0 0

0 1 0

0 0 −1

1
3
--- 4

3
---

2– 1 2–
1 0 4–
1– 0 1–

14– e t– 127
4

---------e 2t– 58
9

------e 3t–– 1
6
---t 47

36
------–+ +

7e t– 29
9

------e 3t–– 1
3
---t 11

9
------+ +

−7e t– 29
3

------e 3t– 2
3
---–+

1
3
--- 1

3
--- 1

3
---

1
3
---

−3 3t+( ) e3t 3 e6t+
1 3t+( ) e3t 2 e6t+

−e3t e6t+

5
3
--- 2

3
---

5
3
--- 1

3
---

2 t2+( ) 3⁄

1 2 tln+( )

xt( )



ANSWER S TO EXERCISES 953

23 X0.1(2.2) = 2.923 350 36, X0.05(2.2) = 2.925 417 56
Richardson extrapolation estimates the error as 
0.000 295 so, to obtain an error less than 5 × 10−7, 
a step less than 0.0060 should be used.

2.7 Review exercises

1 X(0.5) = 1.548 860

2 X(1.2) = 0.524 465

3 X0.1(0.4) = 1.125 583, X0.05(0.4) = 1.142 763
Richardson extrapolation estimates the error as 
0.017 180 so, to obtain an error less than 5 × 10−3, 
a step less than 0.0146 should be used.

4 X0.05(0.25) = 2.003 749, X0.025(0.25) = 2.004 452
Richardson extrapolation estimates the error as 
0.000 703 so, to obtain an error less than 5 × 10−4, 
a step less than 0.0178 should be used.

5 X1(1.2) = 2.374 037, X2(1.2) = 2.374 148,
X3(1.2) = 2.374 176

6 X(1) = 5.194 323 accurate to 6dp.

8 X0.025(2) = 0.847 035, X0.0125(2) = 0.844 066
Richardson extrapolation estimates the error as 
0.002 969 so we have X(2) = 0.84.

9 X(4) = 0.1458 (using step size 0.002)

10 X(2.5) = −0.6532 (using step size 0.025)

CHAPTER 3

Exercises

1 (a) Circles centre (0, 0), x 2 + y 2 = 1 + eC

(b) Straight lines through (−1, 0), y = (x + 1) tan C

2 (a) Family of curves y 2 = 4x 2(x − 1) + C

(b) Family of curves y 2 = x 2(x 2 − 12) + C

3 (a) z − xy = C
(b) xy = ln(C + z)

4 (a) (A sec(t + B), tan(t + B), C et), curves on 
hyperbolic cylinders (x /A)2 − y 2 = 1

(b) Curves defined by the intersections of 
mutually orthogonal hyperbolic cylinders, 
x 2 − y2 = c, x 2 − z 2 = k

5 (a) fx = yz − 2x, fy = xz + 1, fz = xy − 1,

fxx = −2, fxy = z, fxz = y, fyy = 0, fyz = x, fzz = 0

(b) fx = 2xyz 3, fy = x 2z 3, fz = 3x 2yz 2, fxx = 2yz 3, 

fxy = 2xz 3, fxz = 6xyz 2, fyy = 0, fyz = 3x 2z 2, fzz = 6x 2yz

(c) fx = −yz /(x 2 + y 2), fy = zx /(x 2 + y 2), 

fz = tan−1( y/x), fxx = 2xyz /(x 2 + y 2)2, 

fxy = z( y2 − x 2) /(x 2 + y 2)2, fxz = −y /(x 2 + y 2), fzz = 0, 

fyy = −2xyz /(x 2 + y 2)2, fyz = x /(x 2 + y 2)

6 (a) 6t2(t 3 − 1) + 8t  + 

(b) t e−2t(cos 2t − sin 2t) + e−2t sin 2t

7

8 A/r + B

13 e2u, 

14 ±1

15 9, v 2 = u + 2w

17

18 (a) xy 2 + x 2y + x + c (b) x 2y 2 + y sin 3x + c
(c) Not exact (d) z3x − 3xy + 4y3 + c

19 −1, y sin x − x cos y + (y 2 − 1)

20 m = 2
8x 5 + 36x 4y + 62x 3y 2 + 63x 2y3 + 54xy 4 + 27y5 + c

21 (36, 9, 12) (a) − (b) 39,  (12, 3, 4)

22 (a) (2x, 2y, −1)
(b) (−yz /(x 2 + y 2), xz /(x 2 + y 2), tan−1( y /x))

(c)

(−x 3 − y 2 − x 2, −x 3 − y 2 −y, x 3 + y 2)
(d) ( yz sin π(x + y + z) + πxyz cos π(x + y + z),

xz sin π(x + y + z) + πxyz cos π(x + y + z),
xy sin π(x + y + z) + πxyz cos π(x + y + z))

23 3

24 (5i + 4j + 3k) /

25 (a) r/r (b) −r/r 3

26 φ = x 2y + z 2x + zy

27 −9j + 3k, 

1
12
------

1

t – 1( )2
-----------------

1
2
---

∂ f
∂ y
----- ∂ f

∂ r
-----= θsin φsin

∂ f
∂θ
------ φsin θcos

r
------------------------ ∂ f

∂φ
------ φcos

r θsin
--------------+ +

∂ f
∂ z
----- ∂ f

∂ r
-----= θcos  − 

∂ f
∂θ
------ θsin

r
-----------

1

x2 y2+
---------------

2– 1 + 1 − 4u2v2( )[ ]

u 1 − 4u2v2( )
------------------------------------------------------, 

2 1 + 1 − 4u2v2( )[ ]

v 1 − 4u2v2( )
--------------------------------------------------, 

v

1 − 4u2v2( )
-------------------------------- , 

u

1 − 4u2v2( )
--------------------------------

1
2
---

117
7

--------- 1
13
------

e−x−y+z

x3 y2+( )3/2
-------------------------- ×

3
2
---

50

36
7

------
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28 54°25′

29 (a) x + 2y + 3z = 6, x − 1 = ( y − 1) = (z −1)
(b) 2x + 2y − 3z = −3,

(x −1) = ( y − 2) = (3 − z)

(c) 2x + 4y − z = 6, (x − 1) = ( y − 2) = 4 − z

31 (a) 6xy (b) 4

32 −61

33 a, a, 3a

35 −13

38 ( y, 6xz − 1, 0)

40 x 2 + y 2 + z 2 + xyz

42 a = 2, b = 2, c = 3; φ = 2x 2y + 2z 3x + 3zy + const

43 rad s−1

44 d = −a, c = b

47 (a) 2y 2z 3 + 2x 2z 3 + 6x 2y 2z
(b) 2y(1 + z)i + 2(x + xz − z) j + 2y(x − 1)k
(c) 2yzi + 2(x − z) j + 2yxk

56 156

57 −

58

59 (a) (b) 10 (c) 8

60 10.5 + 4π

61 (a) 16 (b) 16
(c) Not necessarily. The value has to be the same for 

all possible paths.

62 35

63 −

64 4π(7i + 3j )

65 (a) 24 (b) 76 (c) 16

66 ln 2

67

68 (a) (ln 2) tan−1( ) (b) (c) 1

69 −8/(3π2)

70 (a) (  − 1) (b) [(1 − k 2)3/2 − 1]/3k 2

71 2(  − 1)

73 1

74 2a(1 − π)

75 (6π − 20)

77 π + 2/π − 1

78 0

79

80 0

81 a(1 − π)

83 π

84 (a) (b) π

85 (a) (b) 0

87 (a) π (b) π (c) π

88 24π

90 90

91 0

92 (a) (b)

94 π2 − 2

95

96

97 π

98

99 (1 − e−1)/6

100 ; 

101

102

103

104 16π

105 84π

109 2πab

110 16π

3.7 Review exercises

2 sin(x + 3y)

7

8 (a) (b) 4

9

1
2
--- 1

3
---

1
2
--- 1

2
--- 1

3
---

1
2
--- 1

4
---

11

1
3
---

16
3

------

288
35

---------

9
10
------i 2

3
--- j– 7

5
---k+

8
3
---

1
6
---

1
3
--- 1

3
---

1
4
--- 2

2

1
4
---

1
3
---

1
4
---

11
60
------

1
2
--- 1

4
---

13
3

------

183
4

--------- 1
4
---

27
4

------

13
3

------ 149
30
--------- 37

10
------

8
3
--- 448

3
---------

1
2
---

1
720
---------

11
30
------

1
24
------

1
50 400
----------------

2
15
------ ( 5

16
------, 5

16
------, 11

16
------)

1
8
---π
1

16
------πa4

3
2
---

1
3
---x3 y2x– 1

2
---x2 – 1

2
--- y2 c+ +

8
3
---

5
6
---
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10 I

11 0

12

13

l = 

14

15 πq2
0r 2l /4EI

16

17 0

19 0

20

CHAPTER 4

Exercises

1 (a) (b)

2 z = 2, 

3 u = 6v

6 Semi-infinite strip v . 0, | u | , 1

7 (a) u = v  − 4
(b) v = −u
(c) (u + 1)2 + (v − )2 = 4
(d) u2 + v2 = 8

8 (a)
(b) u + 2v , 3
(c) (5u − 3)2 + (5v − 6)2 , 20
(d)

9 Interior of circle, centre (0, −1/2c), radius 1/2c; 
half-plane v , 0; region outside the circle, centre 
(0, −1/2c), radius 1/2c

10 Circle, centre ( ), radius 

11 Re(w) = 1/2a, half-plane Re(w) . 1/2a

12 ,

Re(z) = const(k) to circles

 plus v = −1 (k = 1)

Im(z) = const(l ) to circles 

plus u = 0 (l = 0)

13 (a) 1 + j, j, ∞
(b) | w | . 
(c) v = 0, (u − 1)2 + v2 = 1
(d) ±21/4e jπ /8

14 Segment of the imaginary axis | v | > 1

15 (a) Upper segment of the circle, centre ( ), radius 
, cut off by the line u − 3v = 1

16 Circle, centre ( ), radius 

17 z0 = j, θ0 = π

18 | w − 1 | , 1; 

19 , where θ 0 is any real number

20 Region enclosed between the inverted parabola 
v = 2 − (u2/8) and the real axis

21 u = 0, 2mu = (1 − m2)v

23 ; v = 0; ellipses, 

u2 + v2 = r 2 and x2 + y2 = r 2, r large

24 (a) ez(z + 1) (b) 4 cos 4z (c) Not analytic 
(d) −2 sin 2z

25 a = −1, b = 1
w = z2 + jz2, dw/dz = 2(1 + j)z

26 v = 2y + x2 − y2

27 ex(x sin y + y cos y), z ez

28 cos x sinh y, sin z

29 (a) x4 − 6x2y2 + y4 = β
(b) 2 e−x sin y + x2 − y2 = β

30 (a) (x2 − y 2) cos 2x − 2xy sin 2y
+ j[2xy cos 2x + (x2 − y2) sin 2y]

(b) sin 2x cosh 2y + j cos 2x sinh 2y

31 u = cos−1{2y2{x2 + y2 − 1 + }}

v = sinh−1

33 (a) 0
(b) 3, 4
(c)

34 z = ± j

35 (a) Region outside unit circle
(b) 1 < u2 + v2 , e2, 0 < v < u tan 1
(c) Outside unit circle, u and v of opposite sign

4
3
--- j

13
80
------ kc6

2
3
---ha2 1

2
---π − c

a
---

 
 

−1
sin  − 

1
3
---hcl − 

hc3

3a
-------- h−1 l

a
--- 
 tan

a2 c2–( )
16
3

------a3

1
3
---

13
240
---------

y = 5
2
--- x 5

4
---+ y = 14---x − 3

4
---

1
2
--- π

3
3

3

α = 1
5
--- −2 j+( ) β , = 3

5
--- 1 2j+( )

3
10
------ 1 3j+( )

1
2
--- , −2

3
--- 7

6
---

w = 
z 1+
jz j–
------------

u2 + v − 
k

1 k–
------------

 
 
 2

 = 
1

1 − k( )2
--------------------

u
1

l
---+

 
 
 2

v 1+( )2+  = 
1

l2
---

2

2
3
--- , −2

3
---

1
3
--- 5

5
3
--- , 0 4

3
---

w − 4
3
---  . 2

3
---

w = e
jθ 0 z − z0

z0
* z − 1

------------------

u = x
x

x2 y2+
--------------- ,+  v = y y

x2 y2+
---------------–

x2 y2 1–+( )2
4y2+[ ]

1
2
--- x2 y2 1–+( ) 1

2
--- x2 y2 1–+( )2 4y2+[ ]+{ }

1
2
---, 1

4
--- −1 j 3+( ), 1

4
--- −1 − j 3( )
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36

37 4a, ellipse centred at origin, semi axes are 

and

38 (a) j + z − jz2 − z3 + jz4 + . . .

(b)

(c) 1 − (z − 1 − j) + (z − 1 − j)2 − (z − 1 − j)3 + . . .

39 (a) 1 − 2z2 + 3z4 − 4z6 + . . .

(b) 1 − 3z2 + 6z4 − 10z6 + . . .

40 (a) ; 2

(b) ; 2

(c)

; 

41 1 − z + z3 + . . .

42 1, 1, ; f is singular at z = j

43

44 (a)

(b)

45 (a)

(b)

(c)

46 (a)

(b)

(c)

(d)

(e)

+ (z − 2)4 − . . .

47 (a) z = 0, double pole
(b) z = j, simple pole; z = − j, double pole
(c) z = ±1, ± j, simple poles
(d) z = jnπ (n an integer), simple poles
(e) z = ± jπ, simple poles
(f ) z = 1, essential singularity
(g) Simple zero at z = 1 and simple poles at z = ± j
(h) Simple zero at z = − j, simple pole at z = 3 and a 

pole of order 3 at z = −2
(i) Simple poles at z = 2 + j, 2 − j and a pole of order 

2 at z = 0

48 (a)  (removable singularity)

(b) (pole of order 3)

(c)  (essential singularity)

(d)  (analytic point)

49 2axV0/(x2 + y2)

50 (a) (0, 0), (0, 1), (0, 7), (7, 0)
(b) v = 0 (c) u = 0

51 H(x, y) = 2y − y2 + x2; 
W = 2z − jz2

52 (a) (0, 0), (1, 0), (−1, 0)
(b) u = 0 (c) v = 0

4.8 Review exercises

1 (a) 3j (b) 7 + j4 (c) 1 (d) j2

2 (a) y = 2x gives 3u + v = 3, u + 2v = 3 and 3v − u = 1 
respectively

(b) x + y = 1 gives v = 1, v − u = 3 and u = 1 respectively

3 (a) α = , β = 3 + j

(b) 13 ø 3u + 4v

(c) | w − 3 − j | ø 1 (d)

4 (a) u2 + v2 + u − v = 0 (b) u = 3v
(c) u2 + v2 + u − 2v = 0 (d) 4(u2 + v2) = u

a2 + b2

b
---------------

b2 − a2

b
--------------------

1

z
--- + 

j

z2
---- − 

1

z3
---- − 

j

z4
---- + 

1

z5
---- + . . .

1
2
--- − 14--- z − 1( ) + 18--- z − 1( )2 − 1

16
------ z − 1( )3

1
4
--- − 1

16
------ z − 2j( )2 + 1

64
------ z − 2j( )4 − 1

256
--------- z − 2j( )6

− 1
2
---j 1

2
--- 1 j+( ) z 1– j–( ) 3

4
--- z 1– j–( )2+ +

1
2
--- j 1–( ) z 1– j–( )3+ 2

5

z 1
3
---z2 2

15
------z5 . . . ; 1

2
---π+ + +

1
z
---  + 2 + 3z + 4z2 . . . 0 , z  , 1( )+

1

z 1–( )2
----------------- − 

1

z 1–
----------- 1 z 1–( )– z 1–( )2 . . .–+ +

0 , z 1–  , 1( )

. . . 1

5!z3
---------  − 

1

3!z
--------  + z+

z
1

3!z
-------- + 

1

5!z3
--------- . . .––

a2 1
a
---  + zf ′ a( ) + z2f ″ a( ) . . .+sin

1
2
---z + 3

4
---z2 + 7

8
---z3 + 15

16
------z4 + . . .

. . .− 
1

z2
----  − 

1

z
---  − 1 − 

1

2
---z − 

1

4
---z2− 

1

8
---z3 . . .–

1

z
--- 3

z2
---- 7

z3
---- 15

z4
------ . . .+ + + +

1

z 1–
----------- 2

z 1–( )2
----------------- 2

z 1–( )3
----------------- . . .+ + +

−1
2

z 2–
----------- z 2–( ) z 2–( )2– z 2–( )3+ + +

z
2!
----- z3

4!
-----– z5

5!
----- . . .–+

1

z3
---- 1

z
--- z

2!
----- z3

3!
----- z5

4!
----- z7

5!
----- . . .+ + + + + +

1

z
--- 1

2!z3
--------- 1

4!z5
--------- . . .–+ +

2−1 2
5
---z

6
25
------z2– . . .+ +tan

−1
5
--- 3 j4+( )

1
4
--- 7 j–( )
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5

Fixed points: 1 ±  

6 Fixed points z = ±
r = 1  u = 0

7 u = x3 − 3xy2, v = 3x2y − y3

8 (z sin z) v = y sin x cosh y + x cos x sinh y

9 w = 1/z

10 Ellipse is given by 

11 1 − z3 + z6 − z9 + z12 − . . . ;
1 − 2z3 + 3z6 − 4z9 + . . .

12 (a) 1 − 2z + 2z2 − 2z3; 1
(b) ; 

(c) ;

13 1, 1, 1, ,  respectively

14 (a)

(b)  (| z − 1 | , 1)

15 (a) Taylor series
(b) and (c) are essential singularities, the principal 

parts are infinite

16 (a)
(b) cos 2x cosh 2y − j sin 2x sinh 2y
(c)

(d)

17 (a) Conformal (b) j, −1 − j (c)  ±0.465, ± j0.465

18

x = k → hyperbolas, 

y = l → ellipses, 

19 (a) Simple pole at z = 0
(b) Double poles at z = 2, 2e2π j/3, 2e4π j/3

(c) Simple poles at z = +1, ±j, removable singularity 
at z = −1

(d) Simple poles at 
(n = 0, ±1, ±2, . . . )

(e) No singularities in finite plane (entire)
(f ) Essential singularity at z = 0
(g) Essential (non-isolated) singularity at z = 0

CHAPTER 5

Exercises

1 f (t ) = tH(t) − tH(t − 1)

2 (a) f(t) = 3t 2 − [3(t − 4)2 + 22(t − 4) + 43]H(t − 4)
− [2(t − 6) + 4]H(t − 6)

(b) f(t) = t − 2(t − 1)H(t − 1) + (t − 2)H(t − 2)

3 (a)

(b)

(c) [t − cos(t − 1) − sin(t − 1)]H(t − 1)

(d)

(e)

(f) [t − cos(t − 1) − sin(t − 1)]H(t − 1)

x k u k

k 1–
-----------–

 
 
 

2

→ v2+ 1

k 1–( )2
------------------= =

y l u 1–( )2→ v
1

l
------+

 
 
 

2

+ 1

l2
---= =

2

2/2

x2

R a2/4k+( )2
----------------------------- y2

R a2/4k–( )2
-----------------------------+ 1=

1
2
--- 1

2
--- z 1–( )– 1

4
--- z 1–( )2 1

6
--- z 1–( )4–+ 2

1
2
--- 1 j+( ) 1

2
--- j z j–( ) 1

4
--- 1 j+( ) z j–( )2– 1

8
--- z j–( )3–+

2

1
2
--- 5 2 2

1
z
--- z– z3 z5– . . .0 , | z | , 1+ +

1
2
--- z 1–( )– 5

4
--- z 1–( )2 . . .+ +

1
2
--- e2x cos 2y 1–( ) j1

2
--- e2x sin 2y+

xsinxcosh y ycos xsinh y j xcosxsinhy ysin x coshy–( )+ +
x2 y2+

-------------------------------------------------------------------------------------------------------------------------------------------

tan x 1 tanh2y–( ) j tanh y 1 tan2x+( )+
1 tan2x tanh2y+

-------------------------------------------------------------------------------------------

u2

cos2k
------------ v2

sin2k
-----------– 1=

u2

cosh2l
-------------- v2

sinh2l
-------------+ 1=

z 1
2
--- 2n 1+( )πj=

F s( ) 6

s3
---- 6

s3
------ 22

s2
------ 43

s
------+ +

 
 
 

e 4s–– 2

s3
------ 4

s
---+

 
 
 

e 6s––=

F s( ) 1

s2
---- 2

s2
---- e s–– 1

s2
---- e 2s–+=

1
6
--- t 5–( )3 e2 t−5( )H t 5–( )
3
2
--- e t−2( )– e 3 t−2( )––[ ]H t 2–( )

1
3
--- e t−π( )/2– { 3 1

2
--- 3 t π–( )[ ]cos

+ sin 1
2
--- 3 t π–( )[ ]}H t π–( )

H t 4
5
---π–( ) cos 5t
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4 x(t) = e−t + (t − 1)[1 − H(t − 1)]

5

6

7 f (t) = 3 + 2(t − 4)H(t − 4)

x(t) = 3 − 2 cos t + 2[ t − 4 − sin(t − 4)]H(t − 4)

8

9

11

12

13 (a) 2δ(t) + 9e−2t − 19e−3t

(b)

(c)

14 (a)

(b)

(c) x(t) = 5 e−3t − 4 e−4t + (e−3(t−3) − e−4(t−3))H(t − 3)

15 (a) f ′(t) = g′(t) − 43δ(t − 4) − 4δ(t − 6)

 

(b)

(c) f ′(t) = g′(t) + 5δ(t) − 6δ(t − 2) + 15δ(t − 4)

16

18  , 

19

− 4(M + W )x3 + (2M + 3W )l 2x]

20

− (x − x2)
4H(x − x2)]

ymax = wl 4/8EI

21

 

22 (a)

(b) s2 + 2s + 5 = 0, order 2

(c)

23 , s3 + 5s2 + 17s + 13 = 0

order 3, zeros −3, −2, poles −1, −2 ± j3

24 (a) Marginally stable (b) Unstable
(c) Stable (d) Stable (e) Unstable

25 (a) Unstable
(b) Stable
(c) Marginally stable
(d) Stable
(e) Stable

28

29 (a) 3e−7t − 3e−8t (b)

(c) (d)

30

33

x t( ) 2 e t/2– cos 1
2
--- 3t( ) t 1– 2H t 1–( )–+=

{t 2– e t−1( ) /2– {cos[1
2
--- 3 t 1–( )]+

1
3
--- sin 1

2
--- 3 t 1–( )[ ]}}–

H t 2–( ){t 3– e t−2( ) /2–+ +
{cos 1

2
--- 3 t 2–( )[ ] 1

3
--- sin 1

2
--- 3 t 2–( )[ ]}}–

x t( ) e t– 1
10
------(sin t 3 cos t– 4 eπ e 2t–+ +=

− 5 eπ/2 e t– )H t 1
2
---π–( )

F s( ) 3

s
--- 2

s2
---- e− 4s+=

θ0 t( ) 3
10
------ 1 e 3t– cos t– 3e 3t– sin t–( )=
− 3

10
------[1 e3a e 3t– cos t a–( )–

− 3e3a e 3t– sin t a–( )]H t a–( )

θ0 t( ) 1
32
------ 3 2t– 3e− 4t– 10t e−4t–( )=
+ 1

32
------ 2t 3– 2t 1–( ) e−4 t−1( )+[ ]H t 1–( )

3 3e 2s–– 6s e− 4s–
s2 1 e− 4s–( )

------------------------------------------

K

T
----  

1

s2
---- K

s
----  

e sT–

1 e sT––
-----------------–

δ t( ) 5
2
--- sin 2t–

δ t( ) e t– 2 cos 2t 1
2
--- sin 2t+( )–

x t( ) 1
6
--- 2

3
--- e 3t–– 1

2
--- e−4t+( )=

+ e 3 t−2( )– e− 4 t−2( )–( )H t 2–( )
x t( ) 1

2
--- e6πe 3t– H t 2π–( ) sin 2t=

g′ t( ) = 
6t 0 (  t ,  4 )

2 4(   t ,  6 )

0 t   (  6  )



  <  

<

>

g′ t( ) = 
1 0 (  t , 1 )

−1 1 (  t , 2 )

0 t( 2  )





>

<

<

g′ t( ) = 
2 0(  t , 2 )

−3 0(  t , 4 )

2t 1 t (  4  )–



 <

<

>

x t( ) −19
9

------ e 5t– 19
9

------ e 2t– 4
3
---t e 2t––+=

q t( ) E

Ln
------- e μt– sin nt,= n2 1

LC
-------- R2

4L2
--------–= μ R

2L
-------=

i t( ) E
Ln
------ e μt– n cos nt μ sin nt–( )=

y x( ) 1
48EI
------------[2Mx4/l 8W x 1

2
---l–( )3

H x 1
2
---l–( )+=

y x( ) w x 2
2 x1

2–( )x2

4EI
----------------------------- w x2 x1–( )x3

6EI
-----------------------------–=

+ w
24EI
------------[ x x1–( )4H x x1–( )

y x( ) W
EI
------ 1

6
---x3 1

6
--- x b–( )3H x b–( )– 1

2
---bx2–[ ]=

−Wx2

6EI
---------- 3b x–( ) 0 ,  x   b( )

−Wb2

6EI
---------- 3x b–( ) b ,  x   l( )









=
<

<

3s 2+
s2 2s 5+ +
-------------------------

Poles −1 j2; zero −2
3
---±

s2 5s 6+ +
s3 5s2 17s 13+ + +
---------------------------------------------

K . 2
3
---

1
3
--- e−4t sin 3t

2
3
--- e4t e 2t––( ) 1

3
--- e2t sin 3t

s 8+
s 1+( ) s 2+( ) s 4+( )

--------------------------------------------------

2
7
--- 4

5
---,
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35 (a)

(b)

(c)

37 e−3t − e−4t

+ 3 e−4(t−T ))H(t − T )]

38 e−2t sin t, 

39

40

41 (a)

y = [5 3 1]x

(b) y = [2 3 1]x

43

44 x1 = x2 = 2 e−2 t − e−3 t

45

46 y = [2 9 22]z

The system is stable, controllable and observable.

47 y = [5 3 15]z

The system is marginally stable, controllable and 
observable.

48  − t + e−2 t − 6 e− t

49

G(s) = 

50 (a)

(b) G(s) = 

 

(c) y1(t) = 1 + 0.578e−8.12t − 1.824e−0.56t + 0.246e−1.32t

y2(t) = 0.177e−8.12t + 0.272e−0.56t − 0.449e−1.32t

51 u(t) = [− − ]x(t) + uext

52 u(t) = [− − ]x(t) + uext

53 u(t) = [− − ]x(t) + uext

u(t) = [−31 −11]x(t) + uext

54 M = , rank 1, M = , rank 2

5.7 Review exercises

1 (a) (ii) 

(b)

 

− 2sin t]H(t − π)

2

+ 2H(t − T ) e−40(t−T )

Yes, since time constant is large compared with T

1
54
------ 2 e– 3t– 9t2 6t 2+ +( )[ ]

1
125
--------- e 3t– 5t 2+( ) e2t 5t 2–( )+[ ]
1

16
------ 4t 1– e 4t–+( )

x t( ) 1
12
------A[1 4 e 3t–– 3 e 4t– (1– 4 e 3 t−T( )––+=

1
5
--- 1 e 2t– cos t 2 sin t+( )–[ ]

x·1

x·2

5– 1–
3 1–

x1

x2

2
5

u y 1 2[ ]
x1

x2

=,+=

G s( ) 12s 59+
s 2+( ) s 4+( )

---------------------------------=

x·1

x·2

7– 1

6– 0

x1

x2

1

1
u y,+ 1 0[ ]

x1

x2

= =

x· = 
0 1 0

0 0 1

−7 −5 −6

x
0

0

1

u,+

x· = 
0 1 0

0 0 1

0 −3 −4

x

0

0

1

u,+

x t( ) = 
−5 8

3
--- e−t 10

3
------ e5t+ +

3 8
3
--- e−t 5

3
--- e5t+–

x t( ) = 4t e−t e−2t+

−4t e− t 2e−2t 2e−t+–

z·
−1 0 0

0 −2 0

0 0 −3

z

1
2
---

−1
1
2
---

u,+=

z·
0 0 0

0 −1 0

0 0 −5

z

1
5
---

−1
4
---

1
20
------

u,+=

15
4

------ 5
2
--- 9

4
---

x·1

x·2

x·3

x·4

0 1 0 0

1– 1– 0 1

0 0 0 1

0 1 1– 1–

x1

x2

x3

x4

0 0

1 0

0 0

0 1

u1

u2

+=

y1

y2

1 0 0 0

0 0 1 0

x1

x2

x3

x4

=

1

s 1+( )2 s2 1+( )
------------------------------------- s2 s 1+ + s

s s2 s 1+ +

x·1

x·2

x·3

1– 1– 1–
1– 3– 3–
1– 3– 6–

x1

x2

x3

1– 1

1– 1

1– 1

u1

u2

+=

y1

y2

0 2 2

0 0 1

x1

x2

=

1
Δ
--- 2s– 2s 3+( ) 2s 2s 3+( )

s2– s2
,

Δ s3= 10s2 16s 6+ + +

33
2
------ 17

2
------

99
4
------ 35

4
------

35
6
------ 31

6
------

2 −2

1 −1

0 1

1 1
2
---

e t−α( )– cos 2 t α–( ) 1
2
--- sin 2 t α–( )–[ ]H t α–( )

y t( ) 1
10
------ e t– cos 2t 1

2
--- sin 2t–( ) 2 sin t cos t–+[ ]=

+ 1
10
------[e t−π( )– cos 2t 1

2
--- sin 2t–( ) cos t+

i t( ) 1
250
--------- [e

− 40t
2H 1 1

2
---T–( ) e− 40 t−T/2( )–=

− 2H t 3
2
---T–( ) e 40 t−3T/2( )– . . . ]+
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3 e−t sin t, 

4

y(0) = y′(0) = y(4) = y(2)(5) = y(3)(0) = 0

y(x) =

(4 < x < 5)
25.5 kN, 18 kN m

5 (a) f(t) = H (t − 1) − H(t − 2)
x(t) = H(t − 1)(1 − e−(t−1)) − H(t − 2)(1 − e−(t−2))

(b) 0, E/R

7 (a) t − 2 + (t + 2) e−t

(b) y = t + 2 − 2et + 2t et, 

8

9 (a) x(t) =

10 (a) No (b) (d) K . 3

11 (a) 4 (b)

12 (c) 4 e−2t − 3e−3t, y(t ) = 1 (t > 0)

13

e−t(cos t + sin t)

14 1, −1, −2; [1 0 −1]T, [1 −1 0]T, [0 0 1]T

u(t) = −6{x1(t ) + x2(t )}

15 (a)

 y = [1 0]

(b) G(s) = 

16 (a)

(c) K = 12.5, K1 = 0.178 (d) 0.65 s, 2.48 s, 1.86 s

17 (a) K2 = M2ω 2

18 (b) Unstable (c) β = 2.5 × 10−5, 92 dB
(d) −8 dB, 24°

(e) K = 106, τ1 = 10−6, τ2 = 10−7, τ3 = 4 × 10−8

(f ) s3 + 36 × 106s2 + 285 × 1012s 
 + 25 × 1018(1 + 107β ) = 0

CHAPTER 6

Exercises

1 (a) , (b) , 

(c) , (d) , 

(e) , 

2

4

5 (a) (b)

6

8 (a)

(b)

(c)

11 (a) 1 (b) (−1)k (c) (d)
(e) jk (f ) (− j )k

(g) 0 (k = 0), 1 (k . 0)
(h) 1 (k = 0), (−1)k+1 (k . 0)

12 (a) (b)

(c) (d)

(e) (f )

(g) (h)

13 (a) {0, 1, 0, 0, 0, 0, 0, 2}
(b) {1, 0, 3, 0, 0, 0, 0, 0, 0, −2}
(c) {5, 0, 0, 1, 3} (d)

(e) 1(k = 0),  

(f )

(g)

1
2
--- 1 e t– cos t sin t+( )–[ ]

EI
d4y

dx4
-------- 12 12H x 4–( ) Rδ x 4–( ),–+=

1
2
---x4 4.25x3– 9x2 0(  x 4 )+
1
2
---x4 4.25x3– 9x2 1

2
--- x 4–( )4 7.75 x 4–( )3–+ +


  

<  <

y t( ) 1
2
--- t2 y1+=

EIy −2
9
---Wlx2 10

81
------Wx3 W x l–( )3

6
----------------------H x l–( )–+=

EI
d 4y

dx4
-------- −Wδ x l–( ) − w H x( ) H x l–( )–[ ]=

1
6
--- 1 e3 t−a( )/2 3 sin 1

2
--- 3t( ) cos 1

2
--- 3t( )–[ ]H t a–( )+{ }

1

s2 2s K 3–( )+ +
---------------------------------------

1
10
------

x t( ) = 
e− t tsin

1 e−t tcos tsin+( )–

H s( ) = s 2+
s 1+( )2 1+

---------------------------

x·1

x·2

 = 2– 4

0 1

x1

x2

1

1
u+

x1

x2

s 3+
s 2+( ) s 1–( )

---------------------------------

K

s2 1 KK1+( )s K+ +
------------------------------------------------

4z
4z – 1
--------------- | z | . 1

4
--- z

z 3–
----------- | z | . 3

z
z 2+
----------- | z | . 2

z–
z 2–
----------- | z | . 2

3
z

z 1–( )2
----------------- | z | . 1

e 2ω kT– z

z e 2ωT––
-------------------↔

1

z3
---- 2z

2z 1–
--------------- 2

z2 2z 1–( )
-----------------------=

5z
5z 1+
-------------- z

z 1+
-----------

2z

2z 1–
---------------,

2z

2z 1–( )2
--------------------

e 4kT–{ } z

z e 4T––
-----------------↔

ksin T{ } z Tsin

z2 2z Tcos– 1+
---------------------------------------↔

2cos kT{ } z z 2cos T–( )
z2 2z 2cos T– 1+
-------------------------------------------↔

1
2
---( )k 1

3
--- −1

3
---( )k

2

1
3
--- 1 − −2( )k[ ] 1

7
--- 3k − −1

2
---( )k[ ]

1
3
--- 1

6
--- −1

2
---( )k+ 2

3
--- 1

2
---( )k 2

3
--- −1( )k+1+

sin 1
2
---kπ 2k sin 1

6
---kπ

5
2
---k 1

4
--- 1 − 3k( )+ k 2 1

3
---

1
3
---k − 3

2
---π( )cos+

0 0 1 1, , ,{ } −1
3
---( )k{ }+

5
2
--- k 1=( ) 5

4
--- k 2=( ) −1

8
--- −1

2
---( )k 3–

k   3( ) > 

0 k 0=( )
3 2k– 2k−1 k 1( )+




 >

0 k 0=( )
2 2k−1 k 1( )–




>
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14

15 (a) yk = k (b)

(c) (d)

16 (a)

(b)

(c)

(d)

(e)

(f )

17 (b) 7, £4841

18

19 As k → ∞, Ik → 2G as a damped oscillation

21 (a)

(b)

(c)

22

23 (a) (b)

(c) (d) 4k+1 + 2k

24

25 (a), (b) and (c) are stable; (d) is unstable; 
(e) is marginally stable

26

28

30 (a)

(b)

(c)

31 x(k) = 5k(cos kθ + sin kθ ), y(k) = 5k(2 cos kθ), 

cos θ = −

32

33

34

35 (a)

y(kT ) = [1 0] x(kT )

(b) x[(k + 1)T ] = Gx(kT ) + Hu(kT )
y(kT ) = [1 0] x(kT )

G = 

H = 

37 (a) x(k + 1) = 

(b) x(k + 1) = 

(c) x1(t ) = x1(0)[1.1 − 2.15e−1/4t + 2.05e−3/4t]
x2(t ) = kc + x1(0)[−5.867 + 8.6e−1/4t − 2.71e−3/4t]

yk+2
1
2
--- yk+1+ xk yk+2

1
4
--- yk+1

1
5
--- yk–+, xk= =

yk
3
10
------ 9k( ) 17

10
------ −1( )k+=

2k−1 1
2
---sin kπ 2 −1

2
---( )k

3k+

yk
2
5
--- −1

2
---( )k − 9

10
------ 1

3
---( )k 1

2
---+=

yk
7
2
--- 3k( ) − 6 2k( ) 5

2
---+=

yn
2
5
--- 3n( ) − 2

3
--- 2n( ) 4

15
------ 1

2
---( )n+=

yn −2 3( )n−1 1
6
---sin nπ 1+=

yn −2
5
--- −1

2
---( )n + 12

5
------ 2( )n − 2n − 1=

yn −1
2
--- 2n −2( )n+[ ] 1 − n+=

yk 2k − 1
2
--- 3k( ) 1

2
---+=

1

z2 3z– 2+
-------------------------

z 1–
z2 3z– 1+
-------------------------

z 1+
z3 z2– 2z 1+ +
------------------------------------

1
2
--- −1

4
---( )k − −1

2
---( )k{ } 2 3k( ) 1

6
---sin k 1+( )π

2
3
--- 0.4( )k 1

3
--- −0.2( )k+

0 k 0=( )
2k−1 1 k 1( )–




 >

0 k 0=( )
2k−1 k   1( )




 > 

2 − 1
2
---( )k

yn −4 1
2
---( )n

2 1
3
---( )n

2 2
3
---( )n+ +=

2k

4
---- 2 1

4 2

−2( )k

4
------------- 2 −1

−4 2
+

−4( )k

2
------------- 1 −1

−1 1
2k−1 1 1

1 1
+

−1( )k 1 −k

0 1

3
5
---

x k( ) = 
25
18
------ 17

6
------ −0.2( )k– 22

9
------+ −0.8( )k

7
18
------ 3.4/6( ) −0.2( )k– 17.6/9( ) −0.8( )k–

y k( ) = 1

5
------- 1 5+

2
----------------
 
 
 

k

1 5–
2

----------------
 
 
 

k

–

x1 k 1+( )T[ ]
x2 k 1+( )T[ ]

 = 1 1
2
--- 1 e 2T––( )

0 e 2T–

x1 kT( )
x2 kT( )

+ 
1
2
---T 1

4
--- e 2T–

1–( )+
1
2
--- 1 e 2T––( )

u kT( )

x1 k 1+( )T[ ]
x2 k 1+( )T[ ]

 = 1 T

T– 1 T–
x1 kT( )
x2 kT( )

0

T
u kT( )+

e T– /2
( 3

2
-------T ) 1

3
------- ( 3

2
-------T )sin+cos

2

3
------- ( 3

2
-------T )sin–

2

3
------- ( 3

2
-------T )sin

( 3
2

-------T ) 1

3
------- ( 3

2
-------T )sin–cos

1 e T– /2 ( 3
2

-------T ) 1

3
------- e T– /2 ( 3

2
-------T )sin–cos–

2

3
------- e T– /2 ( 3

2
-------T )sin

0.368 0

0.632 1
x k( )

0.632k1 0

0.368k1 1–
u k( )+

0.368 0.1185–
0.632 1

x1 k( )
x2 k( )

0.1185 0
0.069 1–

+
kc

1.1x1 0( )
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38 q form:
(Aq2 + Bq + C )yk = Δ2(q2 + 2q + 1)uk

δ form:
[AΔ2δ 2 + (2ΔA + ΔB)δ + (A + B + C )]yk

= Δ2(4 + 4Δδ + Δ2δ 2)uk

A = 2Δ2 + 6Δ + 4
B = 4Δ2 − 8
C = 2Δ2 − 6Δ + 4

39

[(Δ3 + 4Δ2 + 8Δ + 8)δ 3 + (6Δ2 + 16Δ + 16)δ 2 
 + (12Δ + 16)δ + 8] yk = (2 + Tδ )3uk

41

6.12 Review exercises

4 3 + 2k

5

7

8 (a)

(b) (i) 3k−1k (ii)

9

10 (−1)k

13

17 [1 3 1]T, [3 2 1]T, [1 0 1]T

18 (i)

(ii) (iii) vT = [0 − ]

(iv) (v)

α = −5, β = 4

CHAPTER 7

Exercises

2

3 (a)  

(b)

× sin(2n − 1)πt 

(c)

4

5

6

7

8

9

10

12 (a)

1

s3 2s2 2s 1+ + +
---------------------------------------

12 z2 z–( )
12 5Δ+( )z2 8Δ 12–( )z Δ–+

-----------------------------------------------------------------------

12γ 1 Δγ+( )
Δ 12 5Δ+( )γ 2 8Δ 12–( )γ 12+ +
------------------------------------------------------------------------------

1
6
--- 1

3
--- −2( )k 1

2
--- −1( )k–+

2z

z e–( )3T
-------------------- z

z e 2T––
-----------------–

1
a b–
------------ an bn–( )

 
 
 

2 1
3
--- 1

3
---sin kπ 

3
2
--- − 1

2
--- −1( )k − 2k

1
2
---A 2 2 1

2
---( )n– n 1

2
---( )n−1–[ ]

x k( ) = 
−1

6
--- −1( )k 1

3
--- 2k( )– 3

2
---+

1 2k–
−1

6
--- −1( )k 1

3
--- 2k( )– 1

2
---+

D z( ) = z 3+
z2 4z 5–+
------------------------- Mc = 1 −3

0 −2

M c
−1 = 

1 −3
2
---

0 −1
2
---

1
2
---

T
0 −1

2
---

1 1
2
---

= T −1 = 
1 1

−2 0

f t( ) − 8

π2
----- 1

2n 1–( )2
--------------------- 2n 1–( )cos πt

n=1

∞

=

f t( ) 2

3
--- 1

π2
----- 1

n2
----- cos 2nπt

n=1

∞

–=

+ 
1
π
--- 1

n
--- sin 2nπt

n=1

∞



f t( ) 1
π
--- 1

n
--- 2sin nπt

n=1

∞

=

+ 
2

π
--- 1

2n 1–
--------------- 4

π2 2n 1–( )3
---------------------------+

n=1

∞



f t( ) 2

3
--- 4

π2
----- −1( )n+1

n2
----------------- cos nπt

n=1

∞

+=

f t( ) 1

6
---π2 1

n2
----- cos 2nt

n=1

∞

–=

f t( ) 8

π
--- 1

2n 1–( )3
--------------------- sin 2n 1–( )t

n=1

∞

=

f x( ) 8a

π2
------ −1( )n+1

2n 1–( )2
--------------------- sin

2n 1–( )πx

l
--------------------------

n=1

∞

=

f x( ) 2l

π2
----- −1( )n+1

2n 1–( )2
--------------------- sin

2 2n 1–( )πx

l
-----------------------------

n=1

∞

=

f t( ) 1

2
--- sin t

4

π
--- n −1( )n+1

4n2 1–
-------------------- sin 2nt

n=1

∞

+=

f x( ) −1

2
---A

4A

π2
------- 1

2n 1–( )2
--------------------- cos

2n 1–( )πx

l
--------------------------

n=1

∞

–=

T x( ) 8KL2

π3
------------- 1

2n 1–( )3
--------------------- sin

2n 1–( )πx

L
--------------------------

n=1

∞

=

f t( ) 1

2
--- 1

2
--- πt

4

π
--- 1

4n2 1–
----------------- sin 2nπt

n=1

∞

+cos+=

− 2
π
--- 1

2n 1–
--------------- sin 2n 1–( )πt

n=1

∞



1

6
---π2 2

n2
----- −1( )n cos nt

n=1

∞

+

+ 1

π
--- −π2

n
----- −1( )n 2

n3
----- −1( )n 2

n3
-----–+ sin nt

n=1

∞


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(b) an = 0

,

(c)

(d)

13

iss(t) . 0.008 cos(100πt − 1.96) 
+ 0.005 cos(300πt − 0.33)

14

xss(t) . 0.14 sin(πt − 0.1) + 0.379 sin(3πt − 2.415) 
+ 0.017 sin(5πt − 2.83)

15

xss(t) . 0.044 sin(2πt − 3.13) − 0.0052 sin(4πt − 3.14)

16

iss(t) . 0.78 cos(50πt + (−0.17)) 
− 0.01 sin(100πt + (−0.48))

18

19 (a)

(b)

(c)  

(d)

21 (b) (i) 17.74, (ii) 17.95
(c) 18.14; (i) 2.20%, (ii) 1.05%

22 (a) c0 = 15, 

15, , , , 0, 

(b) 15 W, 24.30 W, 12.16 W, 2.70 W, 0.97 W
(c) 60 W
(d) 91.9%

23 0.19, 0.10, 0.0675

24 (c) c0 = 0, , c2 = 0, 

25 (c) , , , c3 = 0

26 (b) c0 = 0, c1 = , c2 = 0, MSE = 0

7.7 Review exercises

1

Taking T = π gives the required sum.

2

3 (a)

(b)

(c) Taking  gives 

5

8

10 (a)

(b)

bn
4

nπ
------ cos nπ cos

1
2
---nπ– 

 =

+ 2 3π
4n2
-------- sin

1

2
---nπ π2

8n
------ 1

2
---cos nπ–





+ 3

n3
----- cos

1

2
---nπ 6

πn4
-------- sin

1

2
---nπ–

 


 

1
π
--- 3

2
---π2 16– 
  sin t

1
8
--- 32 π3 6π–+( ) sin 2t+

− 1
3
--- 32

9
------ 1

2
---π2+ 

  sin 3t . . .+

− 4

π2
----- 2n 1–( )cos πt

2n 1–( )2
--------------------------------- 2

π
--- 2n 1–( )sin t

2n 1–( )
-----------------------------

n=1

∞

+
n=1

∞


1

4
--- 2

π2
----- 1

2n 1–( )2
--------------------- cos 2 2n 1–( )πt

n=1

∞

+

e t( ) 5
20

π
------ 1

2n 1–
--------------- sin 2n 1–( )100πt

n=1

∞

+=

f t( ) 400
π

--------- 1
2n 1–
--------------- sin 2n 1–( )t

n=1

∞

=

f t( ) 100
π

--------- −1( )n+1

n
----------------- sin 2πnt

n=1

∞

=

e t( ) 100

π
--------- 50 sin 50πt

200

π
--------- 100cos πnt

4n2 1–
--------------------------

n=1

∞

–+=

f t( ) 1
2
--- j

2nπ
---------- −1( )n 1–[ ] ejnπt/2

n=−∞
n  0

∞

+=

 Þ 

3

4
---π 1

2π
------- jπ

n
----- 1

n2
----- 1 −1( )n+[ ]–

 
 
 

ejnt

n=−∞
n  0

∞

+

 Þ

a

2
--- sin ωt

a

2π n2 1–( )
------------------------- −1( )n 1+[ ] ejnωt

n=−∞

∞

–

3
2
--- j

2πn
---------- 1 −1( )n–[ ] ejnt

n=−∞
n 0≠

∞

+

2

π
--- 1

1 4n– 2
----------------- e2jnt

n=−∞

∞



cn
30
jnπ
-------- 1 e−jnπ /2–( )=

30
π
------ 1 j–( ) −30

π
------j −10

π
------ 1 j+( ) 6

π
--- 1 − j( )

c1
3
2
---= c3 −7

8
---=

c0
1
4
---= c1

1
2
---= c2

5
16
------=

2π( )

f t( ) 1

6
---π2 2

n2
----- −1( )n cos nt

n=1

∞

+=

+ 
π

2n 1–
--------------- 4

π 2n 1–( )3
-------------------------– 2n 1–( )sin t

n=1

∞



− π
2n
------ sin 2nt

n=1

∞



f t( ) = 
1

9
---π 2

π
--- 1

n2
----- cos

1

3
---nπ 1

3
--- 2 −1( )n+[ ]–

 
 
 

cos nt,
n=1

∞

+

2
9
---π

f t( ) 2T

π2
------ −1( )n+1

2n 1–( )2
--------------------- 2 2n 1–( )πt

T
----------------------------sin

n=1

∞

=

−1
4
---T

t 1
4
---T= S 1

8
---π2=

f t( ) 4

π
--- −1( )n 2n 1–( )sin t

2n 1–( )2
-------------------------------------------

n=1

∞

=

f x( ) 4

π
--- −1( )n+1

2n 1–( )2
--------------------- sin 2n 1–( )x

n=1

∞

=

f x( ) 1

4
---π 2

π
--- cos 2 2n 1–( )x

2n 1–( )2
-----------------------------------

n=1

∞

–=

f t( ) 2
n
--- nsin t

n=1

∞

=

f t( ) 1

2
---π 4

π
--- 1

2n 1–( )2
--------------------- 2n 1–( )cos t

n=1

∞

+=
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13 (a)

(b)

15 (a)

(b) 2.5 W, 9.01%

16 (b)

f(t) = 1 + g(t)

18 (b)

α = (4n − 2)π/T

19 (c) T0 = 1, T1 = t1, T2 = 2t 2 − 1, T3 = 4t 3 − 3t

(d)

(e) , , t = −1

CHAPTER 8

Exercises

1

2

3

4 8K sinc 2ω, 2K sinc ω, 2K (4 sinc 2ω − sinc ω)

5 4 sinc ω − 4 sinc 2ω

7

10 , 

12

13 4 sinc 2ω − 2 sinc ω

14

15

16 j[sinc(ω + 2) − sinc(ω − 2)]

18 4AT cos ωτ sinc ωT

19 High-pass filter

20 π e−a | ω |

21 T[sinc(ω − ω 0)T + sinc(ω + ω 0)T ]

26

28 {2, 0, 2, 0}

29 {2, 0, 2, 0}

32 D(z) = 0.06366 − 0.10660z−2 + 0.31831z−4 + 0.5z−5 
+ 0.31831z−6 − 0.010660z−8 + 0.06366z−10

33 D(z) = 0.00509(1 + z−10) − 0.04221(z−2 + z−8)
+ 0.29035(z−4 + z−6) + 0.5z−5

8.10 Review exercises

1

2

7 (a)

(b) (i) t e2tH(t) (ii) (t − 1 + e−t)H(t)

8 (a) (b) cos ω 0t

(c) (d)

17 (a)

(b)

CHAPTER 9

Exercises

1 a2 = b2c2

2 α = ±c

5 For α = 0: V = A + Bx
For α . 0:
V = A sinh at + B cosh at, where a2 = α /κ
or C eat + D e−at

For α , 0:
V = A cos bt + B sin bt, where b2 = −α /κ

6 n = −3, 2

f t( ) 1

2
---π 4

π
--- 1

2n 1–( )2
--------------------- 2n 1–( )cos t

n=1

∞

–=

g t( ) 4
π
--- 1

2n 1–
--------------- 2n 1–( )sin t

n=1

∞

=

v t( ) = 
10

π
------ 5

2πt

T
-------- − 20

π
------ 1

4n2 1–
----------------- cos

4nπt

T
------------

n=1

∞

sin+

g t( ) 4
π
--- 1

2n 1–
--------------- 2n 1–( )sin t

n=1

∞

=

sin ωt ω cos ωt–
1 ω2+

---------------------------------------- 4

π
--- sin αt α αcos t–

2n 1–( ) 1 α2+( )
-----------------------------------------

n=1

∞



1
16
------T5

5
8
---T4– 33

16
------T3

5
2
---T2– 95

5
------T1

79
8

------T0–+ +
33
4
------t3 5t2– 91

16
------t 59

8
------–+ 11

16
------

2a

a2 ω2+
-----------------

AT 2jω sinc2 ωT
2

-------

AT sinc2ωt
2

------

ω0

a jω+( )2 ω0
2+

----------------------------------

Fs
x

x2 a2+
----------------= Fc

x

x2 a2+
----------------=

1

1 ω2–( ) 3jω+
-----------------------------------

1
2
---T sinc 1

2
--- ω0 ω–( )T sinc 1

2
--- ω0 ω+( )T+[ ]

1
2
---T e jωT/2– [ ejω 0T/2 sinc 1

2
--- ω ω0–( )T

+ e jω 0T/2– sinc 1
2
--- ω ω0+( )T ]

1

2
---πj δ ω ω0+( ) δ ω ω0–( )–[ ] − 

ω0

ω 0
2 ω2–

-------------------

sin ω
ω2

----------- cos 2ω
ω

----------------–

−πj
ω
----- sinc 2ω

1
a b–
------------ eat ebt–( )H t( )

−sin ω0 t 1
4
---π+( )

je
jω0t −je

− jω0t

a 2πs+
a2 4π2s2+
------------------------

1
2πs
--------- sin 2πsT cos 2πsT– 1+( )
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8 a = −3

10 (a) Ixx = (Lc)Itt

(b) vxx = (rg)v + (rc)vt and (rc)Wt = Wxx

(c) wxx = (Lc)wtt

12 g(z) = (1 + 2z)/(1 + z)4

15 u = sin x cos ct

16 u = (sin x sin ct + sin 2x sin 2ct)

19

20 u = [exp{−(x − ct)2} − exp{−(x + ct)2}]

21 u = F(x − ct) + F(x + ct), where

22 x + (−3 −  )y = constant
and
x + (−3 + )y = constant

23 u = [4(x + 2t)2 + (x − 3t)2 − 5]

25

26

28 Explicit with λ = 0.5

Implicit with λ = 0.5

29 Explicit

30 Explicit

Implicit (symmetric as in the explicit case)

1
c
---- 1

4
---

u = 2l

π2
----- π x ct–( )

l
---------------------sin  − 

1
9
--- 3π x ct–( )

l
------------------------sin





1
25
------ 5πx ct–

l
--------------------sin  + . . .+  + π x ct+( )

l
---------------------sin

             
1
9
--- 3πx ct+

l
--------------------sin + 

1
25
------ 5πx ct+

l
--------------------sin . . .+–





1
4c
------

1
2
--- 1

2
---

F z( ) = 
1 z– 0 < z < 1( )
1 z −1 < z < 0( )+
0 z  > 1( )






6

6

1
5
---

x f (x) u(x, 0) u(x, 0.5) u(x, 1) u(x, 1.5) u(x, 2)

−3.0 0.024 893 0 0.025 943 0.058 509 0.106 010 0.180 570
−2.5 0.041 042 0 0.042 774 0.096 466 0.174 781 0.297 710
−2.0 0.067 667 0 0.070 522 0.159 046 0.288 166 0.490 842
−1.5 0.111 565 0 0.116 272 0.262 222 0.475 106 0.681 635
−1.0 0.183 939 0 0.191 700 0.432 332 0.655 692 0.791 166
−0.5 0.303 265 0 0.316 060 0.585 169 0.748 392 0.847 392
0 0.5 0 0.393 469 0.632 120 0.776 869 0.864 664
0.5 0.696 734 0 0.316 060 0.585 169 0.748 392 0.847 392
1.0 0.816 060 0 0.191 700 0.432 332 0.655 692 0.791 166
1.5 0.888 434 0 0.116 272 0.262 222 0.475 106 0.681 635
2.0 0.932 332 0 0.070 522 0.159 046 0.288 166 0.490 842
2.5 0.958 957 0 0.042 774 0.096 466 0.174 781 0.297 710
3.0 0.975 106 0 0.025 943 0.058 509 0.106 010 0.180 570

u = 8

π
--- 1

2n 1–( )3
----------------------

n =1

∞

 (2n 1– )x (2n 1)– ctcossin

x t = 0 t = 0.25 t = 0.5 t = 1 t = 1.5

0 0 0 0 0 0
0.25 0 0.0625 0.125 0.179 687 0.210 937
0.50 0 0.125 0.218 75 0.265 625 0.269 531
0.75 0 0.0625 0.125 0.179 687 0.210 937
1.00 0 0 0 0 0

x t = 0 t = 0.25 t = 0.5 t = 1

0 0 0 0 0
0.25 0 0.0625 0.122 45 0.174 07
0.50 0 0.125 0.224 49 0.281 5
0.75 0 0.0625 0.122 45 0.174 07
1.00 0 0 0 0

x t = 0 t = 0.02 t = 0.04 t = 0.06 t = 0.08

0 0 0.031 410 0.062 790 0.094 108 0.125 333
0.2 0 0 0.000 314 0.001 249 0.003 101
0.4 0 0 0 0.000 003 0.000 018
0.6 0 0 0 0 0.000 000
0.8 0 0 0 0 0
1.0 0 0 0 0 0

x t = 0 t = 0.2 t = 0.4 t = 0.6

0 0 0 0 0
0.2 0.16 0.19 0.2725 0.388 75
0.4 0.24 0.27 0.36 0.508 125
0.6 0.24 0.27 0.36 0.508 125
0.8 0.16 0.19 0.2725 0.388 75
1.0 0 0 0 0

x t = 0 t = 0.2 t = 0.4 t = 0.6

0 0 0 0 0
0.2 0.16 0.19 0.2319 0.2785
0.4 0.24 0.27 0.3191 0.3849
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31 Explicit

32 u = a[exp(− κπ2t) cos πx 

+ exp(− κπ2t) cos πx]

33 AN = 2/πN

34 α = − , κ = −

35 β = 2, u = −u0e
−xsin(x − 2t)

36 The term represents heat loss at a rate proportional to 
the excess temperature over θ0.

37

where

39 u(0, t) = u(l, t) = 0 for all t
u(x, 0) = 10 for 0 , x , l

41

42 At t = 1 with λ = 0.4 and Δ t = 0.05
Explicit

Implicit

43

44

46 φ = x 2y + sin πx

47 u(r, θ) = sin(3θ )

48 v = const gives circles with centre  and 
radius 1/| v − 1 |
u = const gives circles with centre  and 
radius 1/|u |

50

× {sinh nπy + (−1)n sinh nπ(1 − y)}

51 Boundary conditions are u(0, y) = u(a, y) = 0, 
0 < y , a; and u(x, 0) = 0, 0 < x < a, u(x, a) = u0, 
0 , x , a

54

55 For Δx = Δy = 0.5 u(0.5, 0.5) = 0.3125
For Δx = Δy = 0.25 u(0.5, 0.5) = 0.3047

56 At two sample points
For Δx = Δy = , u(0.5, 0.5) = 0.6429 and 
u(0.5, 1) = 0.5714
For Δx = Δy = , u(0.5, 0.5) = 0.6379 and 
u(0.5, 1) = 0.5602

57 u(1, 1) = 10.674, u(2, 1) = 12.360, u(3, 1) = 8.090, 
u(1, 2) = 10.337, u(2, 2) = 10.674

x t = 0 t = 0.2 t = 0.4 t = 0.6

0 0 0.03 0.12 0.27
0.2 0.16 0.19 0.28 0.43
0.4 0.24 0.27 0.36 0.51
0.6 0.24 0.27 0.36 0.51
0.8 0.16 0.19 0.28 0.43
1.0 0 0.03 0.12 0.27

Implicit (symmetric as in the explicit case)

x t = 0 t = 0.2 t = 0.4 t = 0.6

0 1 0.03 0.08 0.1495
0.2 0.16 0.19 0.24 0.3099
0.4 0.24 0.27 0.32 0.39

x 0 0.2 0.4 0.6 0.8 1.0
u 0 0.1094 0.2104 0.2939 0.3497 0.3679

1
2
--- 9

4
--- 3

2
---

1
4
--- 1

2
---

1
2
--- 1

4
---

u = an

−κ n + 1
2
---( )2π2t

l 2
---------------------------------- n + 1

2
---

 
 
  πx

l
------cosexp

n=0

∞



an = u0
8

2n + 1( )2π2
-----------------------------  − 2 −1( )n

2n + 1( )π
-------------------------

x t = 0 t = 0.02 t = 0.04 t = 0.06 t = 0.08 t = 0.1

0 0 0 0 0 0 0
0.2 0.04 0.08 0.1 0.12 0.135 0.1475
0.4 0.16 0.2 0.24 0.27 0.295 0.315
0.6 0.36 0.4 0.44 0.47 0.495 0.515
0.8 0.64 0.68 0.7 0.72 0.735 0.7475
1.0 1 1 1 1 1 1

x 0 0.2 0.4 0.6 0.8 1.0
u 0 0.1082 0.2095 0.2954 0.3551 0.3679

x t = 0 t = 0.02 t = 0.04 t large

0 0 −0.04 −0.0799 → −1
0.2 0.16 0.12 0.0803 → −0.8
0.4 0.24 0.2002 0.1613 → −0.6
0.6 0.24 0.2012 0.1657 → −0.4
0.8 0.16 0.1269 0.1034 → −0.2
1 0 0 0 → 0

u = 5
8
--- e−πy πx 5

16
------ e−3πy 3πx 1

16
------ e−5πy 5sin πx+sin–sin

πysinh
πsinh

-----------------

3
4
---

r
a
--- θsin  − 1

4
--- r

a
--- 
 

3

−v
v 1–
----------- , 0
 
 

1, 
−1
u

------
 
 

u = x 2
π
--- nπxsin

n nπsinh
---------------------

n=1

∞

+

V = 2α
3

-------
1 a

r
---–

 
 

1 a
b
---–

 
 
----------------- α

3
--- 2 3 θ2sin–( )

r2 a5

r3
-----–

 
 
 

b2 a5

b3
-----–

 
 
 
----------------------–

1
2
---

1
4
---
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58 h = 1/2 gives φ(0.5, 0.5) = 1.8611 and 
φ(0.5, 1) = 1.3194
For h = 1/4 φ is given in the table

59 φ(0, 0) = 1.5909, φ(0, ) = 2.0909, φ(0, ) = 4.7727, 
φ( , 0) = 1.0909, φ( , 0) = 0.7727 and other values 
can be obtained by symmetry.

60 (a) u1 = 1/35, u2 = 6 /35
(b) u1 = 0.1024, u2 = 0.0208, u3 = 0.2920, u4 = 0.2920, 

u5 = 0.0208

61 Has the same solution as Exercise 57.

62 u(0, 0) = 1.6818, u(0, ) = 2.2485, u(0, ) = 5.3121, 
u( , 0) = 1.1152, u( , 0) = 0.7727 and other values by 
symmetry. Compare with Exercise 59.

63 T(r, θ) = 

64

66 T (x, y, z) = 

68 Parabolic; r = x − y and s = x + y gives uss = 0 
Elliptic; r = −3x + y and s = x + y gives 
8(uss + urr) − 9ur + 3us + u = 0
Hyperbolic; r = 9x + y and s = x + y gives 49urr − uss = 0

69 u = f (2x + y) + g(x − 3y)

71 (a) Elliptic
(b) Parabolic
(c) Hyperbolic
For y , 0 characteristics are (−y)3/2 ± x = constant

72 Elliptic if | y | , 1;
parabolic if x = 0 or y = ±1;
hyperbolic if | y | . 1

73 p . q or p , −q then hyperbolic; p = q then parabolic; 
−q , p , q then elliptic

9.11 Review exercises

3

5 A2n+1 = 8θ0l /π2(2n + 1)2

6 T = T0 + φ0[1 − erf(x /2 )]

7 Explicit

Implicit

9

11 k = −

12 z = x − y, valid in the region x > y

14

y
1 2 1.601 566 6 1.286 764 7 1.056 521 6 1
0.75 2.4375 1.967 955 1 1.581 801 5 1.257 228 7 1
0.5 2.75 2.266 577 2 1.846 507 3 1.437 466 9 1
0.25 2.9375 2.517 471 5 2.131 433 8 1.693 006 4 1
0.0 3 2.75 2.5 2.25 1

x 0 0.25 0.5 0.75 1

1
3
--- 2

3
---

1
3
--- 2

3
---

1
3
--- 2

3
---

1
3
--- 2

3
---

T0

π
-----  1– α r+

α r–
------------ θ

2
---tan 

   1– α r+
α r–
------------ θ

2
---cot 

 tan+tan

2
π
---  1– x0

y0
---- 
 tan

qL

4ρcκ π
----------------- h 1– z L+

x a– 2 y2+
------------------------
 
 
 

sin

− h 1–sin
z L–

x a– 2 y2+
------------------------
 
 
 

qL

4ρcκ π
-----------------– h 1– z L+

x a+ 2 y2+
-------------------------
 
 
 

 sin

− h 1–sin
z L–

x a+ 2 y2+
-------------------------
 
 
 

3
2
---

x t = 0 t = 0.004 t = 0.008

0 1.0000 0.9600 0.9296
0.2 1.0000 1.0000 0.9960
0.4 1.0000 1.0000 1.0000
0.6 1.0000 1.0000 1.0000
0.8 1.0000 1.0000 0.9960
1.0 1.0000 0.9600 0.9296

x t = 0 t = 0.004 t = 0.008

0 1.0000 0.9641 0.9354
0.2 1.0000 0.9984 0.9941
0.4 1.0000 0.9999 0.9996
0.6 1.0000 0.9999 0.9996
0.8 1.0000 0.9984 0.9941
1.0 1.0000 0.9641 0.9354

y = 4 e−t /2τ 3πx
l
-- 

  ω 3tcos  + 1
2ω3τ
----------- ω 3tsin

 
 
 

sin

where ω3 = 3πc

l
-- 1

l2

36π2c2τ 2
---------------------–

 
 
 

1/2

κt( )

y = 1 1 0.928 592 5
y = 0.5 0.987 574 3 0.956 962 1 0.937 999 5
y = 1 1 0.984 980 8 0.964 774 6 0.960 193 4

x = 0 x = 0.5 x = 1 x = 1.5

3
2
---

A2n+1 = 32a2(–1) n+1

π3(2n 1)+ 3 (2n 1)+ πb
2a

---------------------------cosh

--------------------------------------------------------------------------
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15

17 φ = A cos( px)e−Kt/2cos ω t, where ω 2 = c2p2 − K 2

18 On r = a, vr = 0, so there is no flow through 
the cylinder r = a. As r → ∞, vr → U cos θ and 
vθ → −U sin θ, so the flow is steady at infinity and 
parallel to the x axis.

CHAPTER 10

Exercises

1 x = 1, y = 1, f = 9

3 Original problem:
20 of type 1, 50 of type 2, profit = £1080, 70 m 
chipboard remain

Revised problem:
5 of type 1, 75 of type 2, profit = £1020, 5 m chipboard 
remain

4 4 kg nails, 2 kg screws, profit 14 p

5 9 of CYL1, 6 of CYL2 and profit £54

6 LP solution gives x1 = 66.67, x2 = 50, f = £3166.67. 
Profit is improved if more cloth is bought, up to a 
maximum when the amount of cloth is increased to 
600 m then x1 = 0, x2 = 150 and f = £4500.

7 For k > 60: x1 = , x2 = 0, z = k

For 60 > k > 10: x1 = 6, x2 = 7, z = 140 + 6k
For k < 10: x1 = 0, x2 = 10, z = 200

8 x1 = 1, x2 = 0.5, x3 = 1, x4 = 0, f = 6.5

9 B1, 0; B2, 15 000; B3, 30 000; profit £21 000

10 Long range 15, medium range 0, short range 0, 
estimated profit £6 million

11 Many solutions of the form x1 = 1.5 − 1.5t, x2 = 0, 
x3 = 2.5 − 1.5t, x4 = 3t where 0 < t < 1 giving f = 14

12 x = 1, y = 4, f = 9

13 x1 = 1, x2 = 10, f = 20

14 Boots 50, shoes 150, profit £1150

15 B1, 0; B2, 10 000; B3, 40 000; profit is down to 
£20 000

16 x = 3, y = 0, z = , f = 

17 x1 = 2, x2 = 0, x3 = 2, x4 = 0, f = 12

18 36.63% of A, 44.55% of B, 18.81% of C, profit per 
100 litres £134.26

19 6 of style 1, 11 of style 2, 6 of style 3, total profit 
£37 500

20 x1 = 2500 m2, x2 = 1500 m2, x3 = 1000 m2, profit £9500

21 x = , y = 

22 x = ±a and y = 0

23 x = a/ , y = b/ , area = 2ab

24 Several possible optima: (0, 3, 0); ( ); 
(6 − 3t, 0, t) for any t

25 (0, 1, 1); (0, −1, −1); (2, −1, 1) / ; −(2, −1, 1) /

26 For given surface area S, b = c = 2a, where a2 = S and 
V = 4a3

27 A = −1.83, B = 0.609, I = 81.4

28 For α > 0 minimum at (0, 0); for α , 0 minimum at 
(2α, −3α) /5

29 (a) Bracket (without using derivatives) 0.7 , x , 3.1
(b) Iteration 1:

Iteration 2:

gives b = 1.5127 and f (b) = 1.9497

gives x = 1.1684 and f = 1.9009

30 (a) Iteration 1:

u x, t( ) = 2
π
--- 1

n
--- nπx nπtcossin

n=1

∞


1
4
---

25
3

------ 25
3
------

4
3
--- 13

3
------

a 0.7 f (a) 2.7408
b 1.9 f (b) 2.177
c 3.1 f(c) 3.2041

a 0.7 f (a) 2.7408
b 1.7253 f (b) 2.0612
c 1.9 f (c) 2.177

(c)
Iteration 1 Iteration 2

x 0.7 3.1 0.7 1.5129
f(x) 2.7408 3.2041 2.7408 1.9498
f ′(x) −4.8309 0.9329 −4.8309 0.4224

a 0 f(a) 0
b 1 f(b) 0.420 74
c 3 f(c) 0.014 11

1
2
--- 1

2
---

2 2

3
2
---, 3

2
---, 1

2
---

7 7

1
12
------
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Iteration 2:

gives x = 0.989 79 and f = 0.422 24

gives x = 0.8242, f = 0.4371, f ′ = −0.0247

31 (a) Iteration 1:

Iteration 2:

gives x = 1.4784 and f = 0.260 22

(b) Iteration 1:

Iteration 2:

gives x = 1.4462, f = 0.260 35, f ′ = −0.000 14
(c) Convergence in 6 and 3 iterations to x = 1.446, 

f = 0.2603

32 x = 1, λmax = 2; x = 0, λmax = 1.414 21; x = −1, 
λ max = 1.732 05. One application of the quadratic 
algorithm gives x = −0.148 26 and λmax = 1.3854.

34 (a) After five iterations x = 2.0492 and f = 1.8191.
(b) After five iterations x = 2.1738, f = 0.0267059.

35 Iteration 1:

Iteration 2:

Iteration 3:

36 Steepest descent gives the point (−0.382, −0.255) and 
f = −0.828

37

38

39 y = 0.2294x and y = 0.5x − 0.2706, cost = 5.974

40 (a) After step 1

After step 2 the exact solution x = 1, y = 1 is obtained
(b) After cycle 1

After cycle 2

a 0 f (a) 0
b 1 f (b) 0.420 74
c 1.5113 f (c) 0.303 96

(b)
Iteration 1 Iteration 2

x 0 1 0 0.8667
f (x) 0 0.4207 0 0.4352
f ′(x) 1 −0.1506 1 −0.0612

a 1 f (a) 0.232 54
b 1.6667 f (b) 0.255 33
c 3 f (c) 0.141 93

a 1 f (a) 0.232 54
b 1.6200 f (b) 0.257 15
c 1.6667 f (c) 0.255 33

x 1 3
f (x) 0.232 54 0.141 93
f ′(x) 0.135 34 −0.087 18

x 1 1.507 7
f (x) 0.232 54 0.259 90
f ′(x) 0.135 34 −0.013 68

a
1

1
,= f 3

2
---= , ∇f

1

1
=

a
−1

−1
,= f −1

2
---= , ∇f

1

−1
=

a
−7

5
---

−3
5
---

,= f −0.9= , ∇f
1
5
---

1
5
---

=

f −29.0000 −1.5023 −0.4523 −0.0764 −0.0248 −0.0165 → 0
x 2.0000 1.1523 0.5022 0.6214 0.4948 0.5185 → 0.5
y 2.0000 2.1695 1.8214 1.7539 1.6654 1.6394 → 1.5
z 2.0000 0.4741 0.7943 0.9630 1.0170 1.0301 → 1

f 29.0000 1.2448 0.1056 0.0026 0.0000 → 0
x 2.0000 0.2727 0.4245 0.4873 0.4995 → 0.5
y 2.0000 1.7273 1.5755 1.5127 1.5005 → 1.5
z 2.0000 1.4545 1.1510 1.0253 1.0009 → 1

a = 
1.2

2
, f 0.8= , g

0

1.6
=

H = 0.1385 0.1923

0.1923 0.9615

a1

0.5852

0

0.2926

,= f 1.0662,= g1

−0.3918

−1.7557

0.7822

=

H1 = 
0.3681 0.1593 −0.4047

0.1593 0.9632 0.1002

−0.4047 0.1002 0.7418

a2

1.0190

0.9813

−0.0372

,= f 2.999 10− 6× ,=

g2 = 
0.0046

−0.0012

0.0027
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41 (a) After cycle 1

After cycle 2 the minimum at x = 0, y = 0 is 
obtained

(b) After cycle 1

After cycle 2

The method converges to x = 0, y = 1, z = 0.

43 (a) (0, 0) 

(b)

10.7 Review exercises

1 x1 = 250, x2 = 100, F = 3800

2 x1 = 22, x2 = 0, x3 = 6, profit £370

3 Standard 20, super 10, deluxe 40, profit £21 000

4 2 kg bread and 0.5 kg cheese, cost 210 p

5 Maximum at (1, 1) and (−1, −1), with distance =  
Minimum at  and , with 
distance = 

6 Sides are 3  and 2

7 ( , 0, ), with distance 2.683

8 (1, 2, 3) with F = 14, and (−1, −2, −3) with F = −14. 
(1, 2, 3) gives the global maximum and (0, 0, 0) gives 
the global minimum.

9 (i) b = c (ii) a = b = c

10 h2 = 3π2/b, r 2 = 3a2/2b

11 k = 2.19

12 Bracket:

Quadratic algorithm gives R = 6.121 and cost = 802, 
so R = 5.5 still gives the best result. After many 
iterations R = 4.4 and cost = 579

13 Quadratic algorithm always gives x = 0.5 for any 
intermediate value. However,

14 Maximum at θ = 5.01 rad, minimum at θ = 1.28 rad

15 44 mph

16 At iteration 2 
(a) x = −0.0916, y = −0.1375, f = 0.0326 
(b) x = −0.1023, y = −0.1534, f = 0.0323 
(c) x = −0.1007, y = 0.1519, f = 0.0323. The exact 

minimum is at x = −0.1026, y = −0.1540, f = 0.0323.

17 Maximum of 1.056 at X = 0, Y = 0.4736, minimum of 
0.5278 at X = ±0.25, Y = 2

18 Partan

Steepest descent

a
0.485

−0.061
,= f 0.2424= , g

0.970

−0.242
=

H = 0.995 −0.062

−0.062 0.258

a1

–0.0732

0.8344

0.4522

,= f 0.1563,= g1

0.0386

0.1564

0.6296

=

H1 = 
0.4425 0.3669 0.0998

0.3669 0.7585 −0.0657

0.0198 −0.0657 0.9821

a2

–0.1628

0.7747

0.0525

,= f 0.0321,= g2

–0.2006

–0.1207

0.0630

=

H2 = 
0.2820 0.1819 –0.0498

0.1819 0.5452 –0.2380

–0.0498 –0.2380 0.8429

f 1.3125 0.0764 0.0072 0.0007 0.0004 0.0000 → 0
x 0.5000 −0.0950 0.0057 −0.0251 −0.0079 −0.0032 → 0
y 0.5000 0.9165 0.9276 0.9633 0.9742 0.9978 → 1
z 0.5000 0.7380 0.9674 1.0009 1.0044 1.0014 → 1

2
1
3
--- 1

3
---–, 

  1
3
---– 1

3
---, 

 

2
3
---

R 3.5 5.5 9.5
Cost 1124 704 1418

f 0.7729 0.7584 0.7524 0.7508 → 0.7500
a 0.3147 0.5000 0.5629 0.6051
b 0.5000 0.5629 0.6051 0.6243 → 0.6514
c 1.0000 1.0000 1.0000 1.0000

1
10
------ 1

10
------

17
5

------ 6
5
---

x1

0

0
= , f 1= x2

0.5

0
= , f 0.5=

z2

0.5

0.5
= , f 0.25= x3

1

1
= , f 0=

x1

0

0
= , f 1= x2

0.5

0
= , f 0.5=
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19 Start values:

λ = 0:

(no improvement)

λ = 1:

(ready for next iteration)

20 (a)

(b)

21

23

24 Bracket gives

Quadratic algorithm gives α* = 1.5218 and f = 9 × 10−5

CHAPTER 11

Exercises

1 (a) (762, 798) (b) 97

2 76.1, (65.7, 86.5)

3 (8.05, 9.40)

4 (71.2, 75.2), accept

5 (2.92, 3.92)

6 (24.9, 27.9)

7 95% confidence interval (53.9, 58.1), criterion 
satisfactory

8 (−1900, 7500), reject

9 90%: (34, 758), 95%: (−45, 837), reject at 10% but 
accept at 5%

10 90%: (0.052, 0.089), 95%: (0.049, 0.092), reject at 
10% but accept at 5%. Test statistic leads to rejection 
at both 10% and 5% levels, and is more accurate

11 203, (0.223, 0.327)

12 90%: (−0.28, −0.08), 95%: (−0.30, −0.06), accept at 
10% but reject at 5%

13 (0.003, 0.130), carcinogenic

14 (a) X: (0.34, 0.53, 0.13), Y: (0.25, 0.31, 0.44)
(b) 0.472, (c) E(X ) = 1.79, Var(X ) = 0.426, 

E(Y ) = 2.19, Var(Y ) = 0.654, ρX,Y = −0.246

17 (a) 0.552 (b) 0.368

18 0.934

19 0.732

20 (0.45, 0.85)

21 (0.67, 0.99)

22 0.444, 90%: (0.08, 0.70), 95%: (0.00, 0.74), just 
significant at 5%, rank correlation 0.401, significant 
at 10%

x3

0.5

0.5
= , f 0.25=

x4

0.75

0.5
= , f 0.125=

a0

1

1
= , f 1=

a1

1.5

1
= , f 1=

a1
3

2
= , f −5=

a0

0

0
= , F 0.0625=

a1

−0.25

−0.25
= , F 0.0039=

a2

−0.375

−0.375
= , F 0.0002=

a0

1

1
= , F 0.3125=

a1

0.333

3.667
= , F 0.0664=

a0

1

0
= , F 1.29=

a1

1.07

0.27
= , F 0.239=

amin
0.987

0.956
= , Fmin 0.032=

a0

0

0
= , f 1=

a1

0.5

0
= , f 0.5=

a2

0.5

0.5
= , F 0.25=

α [F(α) − 3]2

1.4 0.0776
1.5 0.0029
1.6 0.0369
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23 (a) 6 (b) 0.484

(c) fX(x) = 6(  − x + x 2), fY( y) = 6(1 − y)y

24 0.84

25 a = 1.22, b = 2.13

26 a = 6.315, b = 14.64, y = 226

28 (a) a = 343.7, b = 3.221, y = 537

(b) (0.46, 5.98), reject (c) (459, 615)

29 a = 0.107, b = 1.143, (14.4, 17.8)

31 120 Ω

32 λ = 2.66, C = 2.69 × 106, P = 22.9

33 a = 7533, b = −1.059, y = 17.9

34 χ 2 = 2.15, accept

35 χ 2 = 12.3, significant at 5%

36 χ 2 = 1.35, accept Poisson

37 χ 2 = 12.97, accept Poisson

39 χ 2 = 1.30, not significant

40 χ 2 = 20.56, significant at 5%

41 χ 2 = 20.7, significant at 0.5%

42 χ 2 = 11.30, significant at 5% but not at 1%, for 
proportion 95%: (0.111, 0.159), 99%: (0.104, 0.166), 
significant at 1%

43 Warning 9.5, action 13.5, sample 12, UCL = 11.4, 
sample 9

44 UK sample 28, US sample 25

45 Action 2.93, sample 12

46 Action 14.9, sample 19 but repeated warnings

47 (a) Sample 9  (b) Sample 9

48 (a) Sample 10 (b) Sample 12

49 Sample 10

50 Sample 16

51 (a) Repeated warnings (b) Sample 15

(c) Sample 14

53 Sample 11

54 Shewhart, sample 26; cusum, sample 13; 
moving-average, sample 11

55 0.132

56 0.223, 0.042

58 (a) (b) 2 (c) 0.237

(d) 45 min (e) 0.276

60 Mean costs per hour: A, £200; B, £130

61 6

62 Second cash desk

63 29.4%

64 Sabotage

65 P(C | two hits) = 0.526

66  

67 (a) 0.0944 (b) 0.81

68 (a) (b) [1 + ]−1

69 AAAA

70 1.28:1 in favour of Poisson

72 2.8:1 in favour of H2

73 12.8:1 in favour of H1

1
2
--- 1

2
---

1
4
--- 1

4
---

1
2
---

3
4
--- 1

3
---( )k2n−k

74 R and BUGS code that perform the required Bayesian inference tasks and the resulting caterpillar plot of the posterior 
distribution of the residuals are as follows:
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X <- 1:14 # Integer sequence from 1 to 14
Y <- c(4.4, 4.9, 6.4,7.3, 8.8, 10.3, 11.7,

13.2, 14.8, 15.3, 16.5, 17.2, 18.9, 19.3)
# New values of X
X_new <- 8.5
X_new_2 <- 10
# Required value of Y
Y_required <- 13.8
# Regression model
reg_model <- function(){

# Define the model as stated above
for(i in 1:n){

Y[i] ~ dnorm(mu[i], tau)
# Parametrized by the precision tau = 1 / sigma^2

mu[i] <- a + b * X[i]
r_s[i] <- sqrt(tau) * (Y[i] - a - b * X[i]) # Define r_si

}
# Priors

a ~ dnorm(0.0, 1.0E-4)
b ~ dnorm(0.0, 1.0E-4)
tau ~ dgamma(1.0E-3, 1.0E-3) 
# We allow tau to take a large range of possible values

#
sigma <- 1.0 / sqrt(tau) # Definition of sigma, a transformation of tau
# Monitor a + b * X_new and a + b * X_new_2
mu_new <- a + b * X_new
mu_new_2 <- a + b * X_new_2
# and (Y_required - a) / b
tension <- (Y_required - a) / b
# There would be a problem if b were zero!
# This could be overcome using an ifelse construction
# to ensure that the divisor is never actually zero

}
# Regression data
n <- length(X)
reg_data <- list("Y", "X", "n", "X_new", "X_new_2", "Y_required")
# Load package
require(R2jags)
set.seed(14) 
# Set the seed of the random number generator for reproducibility
#> DIC is an estimate of expected predictive error 
#> (lower deviance is better).
# Plot
reg_posterior.mcmc <- as.mcmc(reg_posterior)
require(ggmcmc)
reg_posterior.gss <- ggs(reg_posterior.mcmc)
ggs_caterpillar(reg_posterior.gss, family = "^r_s") + 

geom_vline(xintercept = c(-2, 0, 2), lty = "dashed")
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11.12 Review exercises

1 Z = 0.27, accept

2 (0.202, 0.266)

3 (96.1 × 106, 104.9 × 106)

4 χ 2 = 3.35 (using class intervals of length 5, with a 
single class for all values greater than 30), accept 
exponential

5 Outlier 72 significant at 5%, outlier included 
(7.36, 11.48); excluded (7.11, 10.53)

6 χ 2 = 20.0, significant at 2.5%

7 Operate if p . 

8 Cost per hour: A, £632.5; B, £603.4

9 (a) P(input 0 |output 0) =

(b) p , α , 1 − p

We can see from the caterpillar plot that the posterior medians of τs,i lie between −2 and 2.

–3

r–s[9]

r–s[8]

r–s[1]

r–s[7]

r–s[10]

r–s[11]

r–s[13]

r–s[6]

r–s[3]

r–s[5]

r–s[12]

r–s[2]

r–s[4]

r–s[14]

–2 –1 0 1 2 3

4
13
------

pα
pα pα+
-------------------- etc.



abscissa of convergence of Laplace 
transforms 361–2

AC circuits (application) 304–5
action limits in control charts 891
Adams–Bashforth formulae 131
Adams–Morton formulae 138
addition of matrices 4
addition rule 801
adjoint matrix 5
adjusted residual 872
algebraic multiplicity of eigenvalues 22
aliasing error 587
alternative solutions in linear 

programming 746
amplified gain 392
amplified input 392
amplitude gain 392
amplitude ratio 392
amplitude spectrum 515, 548, 604
analogue filters 471

application 599–601
analytic function 275
applied probability 800
arbitrary constant 627
arbitrary function 627–32
arbitrary inputs in transfer 

functions 374–7
Argand diagram 251
artificial variable 754
associative law 4
asymptotically stable system 101
attenuated input 392
attribute 891
augmented matrix 8
average power 521

basic variables 741
Bayes’ theorem 930–43, 931

applications 933–5
derivation 930–2
statistical inference 935–43

beams, bending of 352–5
bending of beams 352–5
Bernoulli distribution 804–5
Bessel’s equality 528
Best, N. 937
BFGS method 784
bilateral Laplace transform 558
bilinear mappings of complex 

functions 265–71
bilinear transform 473
bilinear transform method 475
binding constraints 741
binomial distribution 804–5
Blackman window 609–11
block diagram algebra 357
blood-flow model (application) 726–9
Bode plots 394
Boole, George 408
boundary conditions in partial differential 

equations 718–22
boundary-value problems in differential 

equations 159–60
bracket 770
bracketing procedure 770–2
bracketing triple 772
Branseum, A. 943
breakpoint 395
Brigham, E.E. 592
Broyden 784
Burgers’ equation 632
Butterworth approximation 599
Butterworth filter 471

A B

Index
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Butterworth filter 471

canonical form of matrices, reduction to 
36–50

diagonal form 36–9
Jordan canonical form 39–42
quadratic forms 44–50

canonical representation of equations 96
capacitor microphone (application) 104–7
Carlin, J.B. 943
Carslaw, H.S. 715
Cauchy–Riemann equations 275–9, 284
Cauchy’s conditions in partial differentiation 

equations 718, 719
causal sequences 409
Cayley–Hamilton theorem 53
central difference scheme 138
central limit theorem 806
chain rule 181
Chapman, M.J. 471, 475, 601, 602
characteristic curves 628
characteristic equation 357, 436
characteristic polynomial 14
characteristics in partial differential 

equations 637
chemical processing plant 

(application) 790–2
Chi-square distribution and test 863–7
Christensen, R. 943
circular frequency 486
closed boundary 718
column rank matrix 63, 64
column vector 3
columns 653
commutative law 4

not satisfied 4
companion form 80
complement of event 801
complementary function of matrices 87
complex differentiation 274–86

Cauchy–Riemann equations 275–9, 284
conjugate functions 280–2
harmonic functions 280–2
mapping 282–6

complex form of Fourier series 509
complex frequency domain 548
complex functions 251–74

bilinear mappings 265–71
inversion 260–5
linear mappings 253–9
polynomial mappings 272–74

complex series 287–99
Laurent series 295–9
power series 287–91
Taylor series 291–4

composite-function rule 181
conditional distribution 829

conditional probability 802
confidence interval for mean 812–15, 813
conformal mapping 282
conjugate functions 280–2
conjugate-gradient methods 782
conservative force 210, 238
contingency tables 867–72
continuity correction 806
continuity equation 240
continuous Fourier spectra 548–50
continuous Fourier transform 583–91
continuous random variables 802
continuous source 713
continuous variables 802
control charts 891
controllable modes in matrix 97
convergence rate of eigenvalues 31
convolution

in discrete-linear systems 450–4
in Fourier transforms 572–4
for Laplace transforms 372–4

convolution integral 371
convolution sum 451
Cooley, J.W. 538, 592
corner frequency 395
correlation 829–33, 831

partial 832
rank 838–40
and regression 856
sample 833–5

coupled first order equations 149–54
Courant, Fredricks and Levy (CFL) 

condition 657
covariance 829–33
Cowell, R.G. 935
Crank–Nicolson method for solution of 

heat-conduction/diffusion 
equation 674

cumulative distribution function 802
curl of a vector field 199–201
curl-free motion 201
current in field-effect transistor 

(application) 307–9
customers 909
Cusum control charts 898–901

D’Alembert solution in partial differential 
equations 634–43, 637

Danzig 739
Davidon 782
Dawid, P. 935
decision variables 740
deflation methods in matrices 33

C

D
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degeneracy of a matrix 25
degree of belief 933
degrees of freedom 817
delay theorem 325
delta (shift) operator 474–5
delta function 341
delta operator (application) 473–9

q (shift) operator 474–5
delta operator 474–5
$ transform 479
Denis, J.-B. 935
dependent variable 251
derivatives

Laplace transforms of 318–19
of scalar point function 192–5
of vector point function 196–206

curl of a vector field 199–201
divergence of a vector field 196–8
vector operator 202–6

determinants
of mappings 266
of a matrix 5

DFP method 782, 783–4
diagonal matrix 3, 37, 63
diagonalization 37
difference between means 819–21
difference equation 408

in discrete-time systems 428–9
solutions 430–4

differential 189
differential equations 114

Laplace transform methods on 331–5
step and impulse functions 320–56

numerical solution of 
boundary-value problems 159–60
coupled first order equations 149–54
first order 115–49

on engineering problems 123–5
Euler’s method 116–22
local and global truncation errors 

132–4
multi-step methods 126–32
predictor–corrector methods 134–9
Runge–Kutta methods 139–42
software libraries on 147–9
stiff equations 145–7

higher order systems, state-space 
representation of 154–7

method of shooting 160–2
see also partial differential equations

diffusion equation in partial differential 
equations 617, 620–3

solution of 660–76
Laplace transform method 664–9
numerical solution 671–6
separation method 660–4
sources and sinks for 712–15

digital filters (application) 602–7
and windows 607–11

digital replacement filters 472–3
Dirac delta function 341
direct form of state equations 86–8
directional derivative 193
directional field 116
Dirichlet’s conditions

for Fourier integral 541
in partial differentiation equations 

718, 720, 721
discrete Fourier transform (DFT) pair 582
discrete Fourier transform 579–83
discrete frequency spectra 515, 539
discrete variables 802
discrete-linear systems 435–54

convolution 450–4
impulse response 441–4
stability 444–50

discrete-time Fourier transform (DTFT) 603
discrete-time signal 408
discrete-time system

constructing 475–7
Delta transform 479

design of (application) 470–3
analogue filters 471
digital replacement filters 472–3
difference equations in 428–9

implementation 477–9
discretization of continuous-time state-space 

models 464–9
Euler’s method 464–6
step-invariant method 466–9, 467

disjoint events 801
dissipative force 210
distensibility 728
distribution 342, 802

of sample average 810–12
distributive law 4
divergence of vector 197
divergence theorem see Gauss’s divergence 

theorem
domain of dependence 638
domain of function 251
domain of influence 638
dominant eigenvalue 30
double integrals 211–16, 212
duality property 556
Duhamel integral 371
Dunson, D.B. 943
Dyke, Phil 538
dynamic equations 81

echelon form of a matrix 8
Efron, B. 935

E
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978 INDEX

eigenvalues 2, 13–29, 16
characteristic equation 14–16

method of Faddeev 15
and eigenvectors 16–22
pole location 398–9
and poles 398
repeated 22–6
useful properties 26–8

eigenvectors 2, 13, 16
electrical fuse, heating of (application) 

167–71
element of a matrix 3
elliptic equations 716
energy 563
energy signals 568
energy spectral density 564
energy spectrum 564
engine performance data (application) 874–91

dependence of running time on temperature 
880–7

mean running times and temperatures 
877–80

normality test 888–90
entire function 294
equal matrices 3
equality-constrained optimization 736
equality constraints in Lagrange multipliers 

764–7
equivalent linear systems 96
error function 246
essential singularity 300
Euler’s formula 487
Euler’s method 464–6
Euler’s method on differential equations 

116–22, 118
analysis 120–2

even periodic extension 494
events 801
Everitt, B.S. 872
exact differential 190
expected value 802
explicit formula for solution of heat-

conduction/diffusion equation 671
explicit methods in partial differential 

equations 657
exponential distribution with parameter 910
exponential form of Fourier series 509

Faddeev method on eigenvalues 15
faltung integral 371
Fannin, D.R. 609
feasible basic solution 741
feasible region 739

Fermat, Pierre de 765
Feshbach, H. 722
Fick’s law 621
field-effect transistor (application) 307–9
filter length 605
filters 471
final-value theorem 367–70
finite calculus 408
finite difference methods 408
finite-difference representation 654
finite elements in partial differential equations 

694–706
finite impulse response (FIR) 607
first harmonic 487
first order method on differential 

equations 121
first shift property of z transforms 416–17
first shift theorem in inverse Laplace 

transform 318
fixed point 253
Fletcher, R. 782, 784
fluid dynamics, streamline in (application) 

240–2
folding integral 371
Forbeniuc, G. 53
Forsyth, R. 935
Forsythe, W. 474
Fourier coefficients 487
Fourier cosine integral 542
Fourier integral representation 541
Fourier law 621
Fourier series 486

complex forms 508–23
complex representation 508–12
discrete frequency spectra 515–21
multiplication theorem 512–13
Parseval’s theorem 512, 514–15
power spectrum 521–3, 522

functions of period 2B 488–92
of jumps at discontinuities 499–502
orthogonal functions 524–9

convergence of generalized series 
527–9

definitions 524–6
generalized series 526–7

periodic functions 486
Fourier series expansion 487
Fourier sine integral 542
Fourier transforms 538, 539–50, 544

continuous Fourier spectra 548–50
in discrete time 575–98

continuous transform 583–91
fast Fourier transform 592–8
sequences 575–9

Fourier integral 539–43
Fourier transform pair 544–8
frequency response 560–2
and Laplace transform 558–60
properties of 552–7

F
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frequency-shift 554–5, 555
linearity 552
time-differentiation 552–3, 553
time-shift 553–4

step and impulse functions 563–74
convolution 572–4
energy and power 563–72

Fourier’s theorem 487–8
Fredricks 657
frequency 486
frequency components in Fourier 

series 515
frequency-domain portrait 548
frequency response (applications) 

390–7, 392
frequency response plot 397
frequency response

in Fourier series 502–6
in Fourier transform 560–2

frequency-shift property 554–5, 555
frequency spectrum 515
frequency transfer function 561, 578
Fryba, L. 723
full-rank matrix 63, 64, 74
functions 251

describing functions (application) 
532–3

of period 2B 488–92
fundamental mode 487

Gabel, R.R. 346–7
Gauss’s divergence theorem 233–6
Gelman, A. 943
generalized calculus 342
generalized derivatives 348
generalized form of Parseval’s theorem 528
generalized Fourier coefficients 527
generalized Fourier series 527
generalized Fourier transforms 566
generalized functions 341
generating function 410
geometric distribution 918
geometric moving-average (GMA) 

charts 901
geometric multiplicity of eigenvalue 25
Gibbs’ phenomenon 606
Gill, K.F. 370
global truncation errors on differential 

equations 132–4
Golden search algorithm 772
Goldfarb 784
Goodall, D.P. 471, 475, 601, 602
Goodall, R.M. 474

goodness-of-fit tests 863–74
Chi-square 863–7
contingency tables 867–72

Goodwin, G.C. 474, 479
gradient of scalar point function 

192–5, 193
Green’s functions 684, 711
Green’s theorem 217–21, 218, 721
Grimmett, G.R. 923

Haberman, R. 617, 711
half-range cosine series expansion 495
half-range Fourier series expansion 495
half-range sine series expansion 495
Hamming window 609–10
Hanson, T.E. 943
harmonic components in Fourier 

series 515
harmonic functions (application) 305–9
harmonic functions 280–2
Hastie, T. 935
heat-conduction in partial differential 

equations 617, 620–3
solution of 660–76

Laplace transform method 664–9
numerical solution 671–6
separation method 660–4
sources and sinks for 712–15

heat transfer (application) 242–6
using harmonic functions 305–7

heating fin (application) 792–4
Heaviside step function 320–3

and impulse function 346–51
Heaviside theorem 325
Helmholtz equation 626
Hessian matrix 778
higher order systems, state-space 

representation of 154–7
hill climbing 769–89

advanced multivariable searches 
782–5

least squares 786–9
single multivariable searches 775–81
single-variable search 769–74

holomorphic function 275
Householder methods 34
Howsion, S. 723
Hunter, S.C. 704
Hush, D.R. 609
hyperbolic equations 717
hypothesis tests 810

simple, testing 815–16

G
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ideal low-pass filter 471
identity matrix 3
Ifeachor, E.C. 609
image set 251
implicit formula for solution of 

heat-conduction/diffusion 
equation 674

implicit methods in partial differential 
equations 657

impulse forces 341
impulse functions 341–2

in Fourier transforms 563–74
Laplace transforms on 343–6

impulse invariant technique 473
impulse response in transfer 

functions 364–5
impulse sequence 412, 441
indefinite quadratic forms 46
independent events 802, 828
independent variable 251
inequality constraints in Lagrange 

multipliers 768
inequality-constrained optimization 736
infinite sequence 409
initial-value theorem

of Laplace transforms 365–7
of z transforms 419

inner (scalar) product 28
in-phase quadrature components 487
input-output block diagram 356
instantaneous source 713
integral equations 114
integral solutions to partial differential 

equations 707–15
separated solutions 707–9
singular solutions 709–12

integrals, Laplace transforms of 319
integration

in vector calculus 206–39
double integrals 211–16
Gauss’s divergence theorem 233–6
Green’s theorem 217–21
line integral 207–10
Stokes’ theorem 236–9
surface integrals 222–8
volume integrals 229–32

integro-differential equations 114
inter-arrival time 909
interval and test

for correlation 835–7
for proportion 821–4

interval estimate 810
inverse mapping 253

with respect to the circle 263
of complex functions 260–5

inverse matrix 5–6
properties 6

inverse Nyquist approach 397
inverse polar plot 397
inverse z transform operator 420
inverse z transformation 420
inverse z transforms 420–7

techniques 421–7
inversion of complex functions 260–5
irrotational motion 201, 238

Jackson, C. 937
Jackson, L.B. 609
Jacobi methods 34
Jacobian 219
Jacobian matrix 185, 778
Jaeger, J.C. 715
Jervis, B.W. 609
Johnson, W. 943
joint density function 827
joint distributions 825–8, 826

independence 828–9
and marginal distributions 825–8, 826

Jones, O. 922
Jong, M.T. 607
Jordan, Marie Ennemond Camille 40
Jordan canonical form 39–42
Jordan normal form 40
jump discontinuities, coefficients of Fourier 

series at 499–502
Jury stability criterion 446–8
Jury, E.I. 446

Kirchhoff’s laws 84
Kraniauskas, P. 453
Kuhn 768

Lagrange interpolation formula 772
Lagrange multipliers 764–8

equality constraints 764–7

I

J

K
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inequality constraints 768
Laplace equation in partial differential 

equations 617, 623–5
solution of 677–693

numerical solution 686–693
separated solutions 677–84

Laplace transform 316–89
bending of beams 352–5
definition and notation 316–18
derivative of 318–19
differential equations 331–5
and Fourier transform 558–60
frequency response (application) 390–7
Heaviside step function 320–3

and impulse functions 346–51
impulse functions 341–2, 343–6

and Heaviside step function 346–51
periodic functions 335–9
pole placement (application) 398–9
second shift theorem 325–8

inversion 328–31
sifting property 342–3
solution to wave equation 648–51
state-space equations, solution of 378–89
transfer functions 356–77

and arbitrary inputs 374–7
convolution 371–4
definitions 356–9
final-value theorem 367–70
impulse response 364–5
initial-value theorem 365–7
stability in 359–64

unit step function 320, 323–5
and z transforms 455–6

Laplace transform method for solution of 
heat-conduction/diffusion 
equation 664–9

Laplacian operator 203
Laurent series 295–9, 300
Lauritzen, S.L. 935
leading diagonal 3
leading principle minor of matrices 47
least squares in hill climbing 786–9
left inverse matrix 74
left singular vector matrix 68
Levy 657
Lewis, P.E. 694
likelihood ratio 933
limit-cycle behaviour 532
Lindley, D.V. 935
line integral 207–10
line spectra 515
linear dependence 10
linear equations of matrices 7–8
linear independence of vector spaces 10–11
linear mappings of complex functions 253–9
linear operator

in Fourier transforms 552
on z transforms 415

linear programming 739–62
equality constraints/variables, unrestricted 

in sign 761–2
simplex algorithm 741–51
two-phase method 753–61

linear regression 843
linearity property

of Fourier transforms 552
of z transforms 415–16

local truncation errors on differential 
equations 132–4

LR methods in matrices 35
Lunn, D. 937
Lyapunov function 101, 102
Lyapunov stability analysis (application) 

101–3

Maclaurin series expansion 292
magnification 255, 256
Maillardet, R. 922
main lobe 608
main lobe width 608
MAPLE

on Fourier transforms 571
on Laplace transforms 318, 324, 325, 328, 

329, 334, 344–5, 346, 650
on linear programming 748, 758, 761
on matrices 9, 20, 24, 36, 77–8, 91
on ordinary differential equations 115–16, 

119, 120, 123, 124, 137, 142, 147, 
148, 152, 154, 157, 167, 171

on partial differentiation equations 625, 
630, 631, 666, 668

on vector calculus 179, 184, 198, 201
on z transforms 413, 414, 423, 425, 431, 

432, 434, 443
mapping 251

in complex differentiation 282–6
determinants of 266
polynomial mapping 272–4

marginal density function 827
marginal distributions 825–8, 826
marginally stable linear system 359–60
marginally stable system 445
MATLAB

on Fourier transforms 547–8, 566, 569, 
571–2

on hill climbing 769–72, 773, 774, 776, 781 
784, 785, 787, 788–9

on Laplace transforms 318, 323–4, 325, 
328, 329, 334, 344–5, 346, 359, 
365, 387, 388, 397, 650

on linear programming 748, 758, 761

M
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on matrices 2, 6, 7, 9, 20, 21, 23–4, 35, 36, 
42, 61, 76–7, 91

on ordinary differential equations 115–16, 
125, 132, 147, 148–9, 171

on partial differentiation equations 631, 
656, 659, 668, 673, 676, 694, 698, 
699, 701, 703, 704, 705

on vector calculus 179, 184, 198, 201, 
216, 232

on z transforms 412, 414, 422–3, 424, 425, 
426, 425, 431, 432, 434, 443, 468–9

matrices 2–111
eigenvalues 13–29

characteristic equation 14–16
method of Faddeev 15

and eigenvectors 16–22
functions 51–62
repeated 22–6
useful properties 26–8

matrix 3
matrix algebra 2–9

adjoint matrix 5
basic operations 3–4
definitions 3
determinants 5
inverse matrix 5–6

properties 6
linear equations 7–8

rank 8–9
numerical methods 29–35

power method 29–35
reduction to canonical form 36–50

diagonal form 36–9
Jordan canonical form 39–42
quadratic forms 44–50

singular value decomposition 63–78
pseudo inverse 72–8
SVD 69–72

singular values 65–9
solution of state equation 86–99

canonical representation 95–9
direct form 86–8
spectral representation of response 92–5
transition matrix 88

evaluating 89–91
state-space representation 79–85

multi-input-multi-output (MIMO) 
systems 84–5

single-input-single-output (SISO) 
systems 79–83

symmetric 28–9
vector spaces 9–12

linear dependence 10–11
transformation between bases 11–12

maximum of objective function 745
McElreath, R. 943
mean 802

when variance unknown 817–19
mean square error in Fourier series 527

means, difference between 819–21
memoryless property 910
meromorphic poles 301
method of separation of variables 643
Middleton, R.M. 474, 479
minimal form 385
modal form in matrix 93
modal matrix 36
modes in matrix 93
modulation in Fourier transforms 555
Moore-Penrose pseudo inverse square 

matrix 73
Morse, P.M. 722
motion in a viscous fluid (application) 

114–15
moving-average control charts 901–5
multi-input-multi-output (MIMO) systems

in Laplace transforms 383–4
in matrices 84–5

multiple service channels queues 921–3
multiplication by scalar, matrix 3
multiplication of matrices 4
multiplication theorem in Fourier series 

512–13
multi-step methods on differential equations 

126–32, 129
Murdoch, J. 898, 901

negative-definite quadratic forms 46, 48
negative-semidefinite quadratic forms 46, 48
net circulation integral 210
Neumann conditions in partial differentiation 

equations 718, 720, 721
Newton method 776, 778
Newton-Raphson methods 778
Nichols diagram 397
nodes 653
non-basic variables 741, 746
non-binding constraints 741
non-conservative force 210
nonlinear regression 856–61
non-negative eigenvalues 65
non-square matrix 63
non-trivial solutions of matrices 8
normal distribution 804–8
normalizing eigenvectors 19
nth harmonic 487
Ntzoufras, I. 935, 943
null matrix 25
Nyquist approach 397
Nyquist interval 587
Nyquist–Shannon sampling theorem 

587, 591

N
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objective function 740
observable state of matrix 97
odd periodic extension 495
offsets 368
one-dimensional heat equation 621
open boundary 718
Oppenheim, A.V. 609
optimization

chemical processing plant (application) 
790–2

heating fin (application) 792–4
hill climbing 769, 769–89
Lagrange multipliers 764–8
linear programming 739–62

order of pole 300
order of the system 357, 436
orthogonal functions 524–9
orthogonal matrix 12
orthogonal set 524
orthonormal set 525
oscillating systems (application) 502–6
oscillations of a pendulum (application) 

162–7
over determined matrix 72, 75

Page, E. 923
parabolic equations 717
parameters 804

estimating 810–24
confidence interval for mean 

812–15, 813
difference between means 819–21
distribution of sample average 810–12
hypothesis tests 810
interval and test for proportion 821–4
interval estimate 810
mean when variance unknown 817–19
testing simple hypotheses 815–16

parasitic solutions in differential 
equations 130

Parseval’s theorem 512, 514, 564
partial correlation 832
partial derivative 179
partial differential equations 616

arbitrary functions and first-order equations 
627–32

boundary conditions 718–22
finite elements 694–706
formal classification of 716–18

heat-conduction or diffusion equation 
617, 620–3

solution of 660–76
Laplace transform method 664–9
numerical solution 671–6
separation method 660–4
sources and sinks for 712–15

Helmholtz equation 626
integral solutions 707–15

separated solutions 707–9
singular solutions 709–12

Laplace equation 617, 623–733
solution of 677–693

numerical solution 686–693
separated solutions 677–84

Poisson equation 626
Reynolds number 625
Schrôdinger equation 626
wave equation 617–20

solution of 634–59
D’Alembert solution 634–43, 637
Laplace transform solution 648–51
numerical solution 653–9
method of separation of variables 

643–8
particular integral 87
Paterson, Colin 474
path of line integral 207
pendulum, oscillations of (application) 

162–7
period 486
periodic extension 492
periodic functions 335–9, 486–7
phase angle 487
phase plane 80
phase quadrature components 487
phase shift 392
phase spectrum 515, 548, 604
phases in linear programming 753–61
point at infinity 295
Poisson distribution 804–5
Poisson equation 626
Poisson process in queues 909–16, 911
polar plot 397
pole placement (application) 398–9, 399
poles 300, 436

and eigenvalues 399
pole-zero plot 357
polynomial approximation 772
polynomial mapping 272–4
population 808
population mean 810–11
positive constant in matrices 101
positive definite function 101
positive-definite quadratic forms 46, 48
positive-semidefinite quadratic forms 

46, 48
posterior odds 933
posterior probabilities 933

O
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Powell 782
power 565
power method on matrices 29–35, 31
power series 287–91
power signals 568
power spectrum 521–3, 522
practical signal 541
predictor–corrector methods on differential

equations 134–9, 136
principal diagonal 3
principal part of Laurent series 296
principle minor of matrices 47
principle of superposition 374
prior odds 933
prior probabilities 933
probability density function 802
probability theory 800–8

Bernoulli distribution 804–5
binomial distribution 804–5
central limit theorem 806
normal distribution 806–8
Poisson distribution 804–5
random variables 802–4
rules 801–2
sample measures 808–10

product of eigenvalues 27
product rule 801
proportion, interval and test for 821–4
pseudo inverse square matrix 72–8, 73
punctured disc 297

QR methods in matrices 35
quadratic forms of matrices 44–50, 102
quadratic polynomial 772
quasi-Newton method 782
queues 908–29

multiple service channels queue 921–3
Poisson process in 909–16
problems 909
simulation 923–9
single service channel queue 916–21

quiescent state 356

radius of convergence 288
random variables 802–4
range (R) charts 905–7
range of function 251

rank correlation 838–40
rank of a matrix 8–9
rate of arrival 910
real vector space 9
realization problem 385
reciprocal basis vectors of matrix 92
rectangular matrix 63
rectangular window 605
reduction to Jordan normal 40
regression 841–61, 842

and correlation 856
least squares method 842–52
linear 843
nonlinear 856–61
residuals 852–5

regression coefficients 843
regular function 275
regular point of f(z) 300
removable singularity 301
repeated eigenvalues 22–6
residuals in regression 852–5
resonance 503
Reynolds number in partial differential 

equations 625
Richardson extrapolation 134
Riemann sphere 295
right inverse matrix 74
right singular vector matrix 68
Roberts, R.A. 346–7
Robinson, A. 922
robust methods 800
root mean square (RMS) 514
rotation 255, 256
rotational motion 201
Routh–Hurwitz criterion 362
row rank matrix 63–4
row vector 3
rows 653
Rubin, D.B. 943
rule of total probability 931
Runge–Kutta methods on differential 

equations 139–42

sample 808
sample average 808

distribution of 810–12
sample correlation 833–5
sample measures in probability theory 

808–10
sample range 905
sample space 801
sample variance 808
sampling 408, 413–14

Q
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sampling function 521
scalar field 177, 202
scalar Lyapunov function 101
scalar point function 176

derivatives of 192–5
gradient 192–4

scalar product 28
scatter diagrams 833
Schafer, R.W. 609
Schrôdinger equation 626
Schwarzenbach, J. 370
second shift property of z transforms 

417–18
second shift theorem 325–8

inversion 328–31
separation method for solution of heat-

conduction/diffusion equation 
660–4

separation of variables method
in Laplace equation method 677–84
of partial differential equations 707–9
to wave equation 643–8

service channel 909
service discipline 909
service time 909
set of vectors 10
Seutari, M. 935
Shanno 784
Shewart attribute control charts 891–4
Shewart variable control charts 894–7
shooting method in differential equations 

160–2, 162
sifting property 342–3
significance levels 816
signum function 571
similarity transform 36
simple pole 301
simplex algorithm 741–4, 742, 745

general theory 745–51
simplex method 740
simplification 2
simulation, queues 923–9
simultaneous differential equations, Laplace 

transform on 318–19
sine function 520
Singer, A. 727
single-input-single-output (SISO) systems 

79–83
in Laplace transforms 378–82
in matrices 79–83

single multivariable searches in hill climbing 
775–81

single service channel queue 916–21
distribution of number of customers in the 

system 917–18
queue length and waiting time 918–21

single-variable search in hill climbing 
769-74

singular points 765

singular solutions of partial differential 
equations 709–12

singular value decomposition of matrices 
63–78, 69

pseudo inverse 72–8
singular value matrix 65
singularities 289, 295, 300–3
sinks in solution of heat-conduction/diffusion 

equation 712–15
skew symmetric matrix 3
slack variables 741
Snell’s law 766
solenoidal vectors 198
sources in solution of heat-conduction/

diffusion equation 712–15
Spearman rank correlation coefficient 838
spectral form in matrics 93
spectral leakage 606
spectral matrix 36
spectral pairs in matrix 92
spectral representation of response of state 

equations 92–5
Spiegelhalter, D.J. 935, 937
square matrix 3, 65
square non-singular matrix 73
stability

in differential equations 130
in discrete-linear systems 444–50
in transfer functions 359–64

stable linear system 359
standard deviation 802
standard form of transfer function 394
standard normal distribution 806
standard tableau 745
state equation 80
state equation, solution of 86–99

canonical representation 95–9
direct form 86–8
spectral representation of response 92–5
transition matrix 88

evaluating 89–91
state feedback 398
state variables 80
state vector 80
state-space 2, 80
state-space form 478
state-space model 81
state-space representation

of higher order systems 154–7
in Laplace transforms 378–89

multi-input-multi-output (MIMO) 
systems 383–9

single-input-single-output (SISO) 
systems 378–82

in matrices
multi-input-multi-output (MIMO) 

systems 84–5
single-input-single-output (SISO) 

systems 79–83
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statistical quality control (application) 
891–907

Cusum control charts 898–901
moving-average control charts 901–5
range charts 905–7
Shewart attribute control charts 891–4
Shewart variable control charts 894–7

statistics 800
steady-state erors 368
steady-state gain 368
Stearns, S.J. 609
Steele, N.C. 471, 475, 601, 602
steepest ascent/descent 776
step functions

in Fourier transforms 563–74
Laplace transforms on 320–56

step size in Euler’s method 118
step-invariant method 466–9, 467
Stern, H.S. 943
stiff differential equations 145–7
stiffness matrix 698
Stirzaker, D.R. 923
Stokes’ theorem 236–9, 237
stream function 240
streamline in fluid dynamics (application) 

240–2
subdominant eigenvalue 30
successive over-relaxation (SOR) method 

689–90
sum of eigenvalues 27
superposition integral 371
superposition principle 374
surface integrals 222–8
surplus variable 754
Sylvester’s conditions 47, 48, 102
symmetric matrix 28–9, 65
symmetry property 555–7, 556
system discrete 436
system frequency response 561

tableau form 742
Taylor series 291–4
Taylor series expansion 292
Taylor theorem 778
testing simple hypotheses 815–16
text statistic 815
thermal diffusivity 243, 621
thermally isotropic medium 242
Thomas, A. 937
Thomas algorithm 658
time-differentiation property 552–3, 553
time-shift property 553–4, 554

top hat function 321
total differential 189

in vector calculus 188–91
trace 3
trajectory 80
transfer functions 356–77

and arbitrary inputs 374–7
convolution 371–4
definitions 356–9
final-value theorem 367–70
impulse response 364–5
initial-value theorem 365–7

transfer matrix 384
transformations 185, 251

in vector calculus 185–7
of vector spaces 11–12

transition matrix 88
in discrete-time state equations 459
evaluating 89–91

transition property 88
translation 255, 256
transmission line 728
transposed matrix 3, 4, 65

properties 4
Tranter, W.H. 609
travelling waves 636
triangular window 609
Tucker 768
Tukey, J.W. 538, 592
Tustin transform 473, 475
two phase strategy 756
two-dimensional heat equation 623
two-phase method 753–61
two-sided Laplace transform 317
type I error 815
type II error 815

unbounded region 746
uncontrollable modes in matrix 97
under determined matrix 72
unilateral Laplace transform 558
unit impulse function 341
unit matrix 3
unit pulse 412
unit step function 320, 323–5
unitary matrix 65
unobservable state of matrix 97
unrestricted in sign in linear programming 

761–2
upper control limit (UCL) in control charts 

894
utilization 921

T

U

Z02_JAMES4341_05_SE_IDX.fm  Page 986  Tuesday, April 17, 2018  6:36 PM



INDEX 987

variable 891
variance 802

unknown, mean when 817–19
variational problems 793
vector calculus 175–239

basic concepts 177–84
derivatives of scalar point function 192–5

gradient 192–5, 193
derivatives of vector point function 

196–206
curl of a vector field 199–201
divergence of a vector field 196–8
vector operator 202–6

domain 176
integration 206–39
double integrals 211–16

Gauss’s divergence theorem 233–6
Green’s theorem 217–21
line integral 207–10
Stokes’ theorem 236–9
surface integrals 222–8
volume integrals 229–32

rule 176
total differential 188–91
transformations 185–7

vector field 177, 202
divergence of 196–8

vector-matrix differential equation 80
vector point function 176

derivatives of vector point function 
196–206

curl of a vector field 199–201
divergence of a vector field 196–8
vector operator 202–6

vector spaces in matrices 9–12
linear independence 10–11
transformation between bases 11–12

vectors 9
Vehtari, A. 943
viscous fluid, motion in (application) 114–15
volume integrals 229–32
vortex 242

Ward, J.P. 694
warning in control charts 891
wave equations in partial differential 

equations 617–20
solution of 634–60

D’Alembert solution 634–43

Laplace transform solution 648–51
numerical solution 653–9
method of separation of variables 643–8

wave propagation under moving load 
(application) 723–6

’weak’ form 696
weighting factor 76
weighting function 364

in transfer functions 364
window functions 605, 607–11

z transform function 436
z transform method for solving linear 

constant-coefficient difference 
equations 431

z transform operator 409
z transform pair 409
z transforms 409

definition and notation 409–13
discrete-linear systems 435–54

convolution 450–4
impulse response 441–4
stability 444–50

discrete-time state equations 459–63
discrete-time state-space equations in 

456–63
discrete-time systems in 428–34

design of (application) 470–3
state-space model in 456–8

discretization of continuous-time state-
space models 464–9

Euler’s method 464–6
inverse see inverse z transforms
and Laplace transform 455–6
properties 414–19

final-value theorem 419
first shift property 416–17
initial-value theorem 419
linearity 415–16
multiplication 418–19
second shift property 417–18

sampling 413–14
table of 419

zero crossing 522
zero matrix 3
zero of f(z) 300–3
zero-order hold device 408
zeros of discrete transfer function 436
zeros of transfer function 357
Ziemer, R.E. 609

V

W

Z

Z02_JAMES4341_05_SE_IDX.fm  Page 987  Tuesday, April 17, 2018  6:36 PM



www.pearson-books.comCover image © TommL/E+/Getty Images

ADVANCED MODERN 
ENGINEERING 
MATHEMATICS
Fifth Edition

Glyn James & Phil Dyke

A
D

V
A

N
C

E
D

 M
O

D
E

R
N

 
E

N
G

IN
E

E
R

IN
G

 M
A

T
H

E
M

A
T

IC
S

Fifth Edition

Jam
es

D
yke

Building on the foundations laid in the companion text Modern Engineering Mathematics, this book gives 
an extensive treatment of key advanced areas of mathematics that have applications in various fi elds of 
engineering, particularly as tools for computer-based system modelling, analysis and design.

The philosophy of learning by doing is retained throughout this advanced level text, with continuing emphasis 
on the development of students’ ability to use mathematics with understanding to solve engineering problems.

Key features of this new edition:
• A set of new, relevant engineering examples are incorporated to develop an applied understanding 

of these mathematical techniques

• Exercises with worked solutions, and review exercises at the end of each chapter, help you 
to test your understanding and master these techniques

• A wide range of MATLAB and MAPLE examples, along with basic commands and illustrations, 
are included throughout the book

• Examples in R are integrated in the Applied Probability and Statistics section

• Includes state-of-the-art tools for data manipulation and visualization 
• Emphasises learning by doing through repeated practice

• Lecturer solutions manual and PowerPoint slides are available to download from 
www.pearsoned.co.uk/james

About the authors: 
Professor Glyn James is currently Emeritus Professor in Mathematics 
at Coventry University, having previously been Dean of the School of 
Mathematical and Information Sciences. 

Professor Phil Dyke is a Professor of Applied Mathematics 
at the School of Computing, Electronics and Mathematics, 
University of Plymouth.

CVR_JAMES_05_74341.indd   1 16/04/2018   11:16


	Front Cover
	Half Title Page
	Title Page
	Copyright Page
	Contents
	Preface
	 About the Authors
	 Publisher’s Acknowledgements
	Chapter 1 Matrix Analysis
	1.1 Introduction
	 1.2 Review of matrix algebra
	 1.2.1 Definitions
	 1.2.2 Basic operations on matrices
	 1.2.3 Determinants
	 1.2.4 Adjoint and inverse matrices
	 1.2.5 Linear equations
	 1.2.6 Rank of a matrix

	 1.3 Vector spaces
	 1.3.1 Linear independence
	 1.3.2 Transformations between bases
	 1.3.3 Exercises (1–4)

	 1.4 The eigenvalue problem
	 1.4.1 The characteristic equation
	 1.4.2 Eigenvalues and eigenvectors
	 1.4.3 Exercises (5–6)
	 1.4.4 Repeated eigenvalues
	 1.4.5 Exercises (7–9)
	 1.4.6 Some useful properties of eigenvalues
	 1.4.7 Symmetric matrices
	 1.4.8 Exercises (10–13)

	 1.5 Numerical methods
	 1.5.1 The power method
	 1.5.2 Exercises (14–18)

	 1.6 Reduction to canonical form
	 1.6.1 Reduction to diagonal form
	 1.6.2 The Jordan canonical form
	 1.6.3 Exercises (19–26)
	 1.6.4 Quadratic forms
	 1.6.5 Exercises (27–33)

	 1.7 Functions of a matrix
	 1.7.1 Exercises (34– 41)

	 1.8 Singular value decomposition
	 1.8.1 Singular values
	 1.8.2 Singular value decomposition (SVD)
	 1.8.3 Pseudo inverse
	 1.8.4 Exercises (42–49)

	 1.9 State-space representation
	1.9.1 State-space representation
	1.9.2 Multi-input–multi-output (MIMO) systems
	1.9.3 Exercises

	 1.10 Solution of the state equation
	 1.10.1 Direct form of the solution
	 1.10.2 The transition matrix
	 1.10.3 Evaluating the transition matrix
	 1.10.4 Exercises (55–60)
	 1.10.5 Spectral representation of response
	 1.10.6 Canonical representation
	 1.10.7 Exercises (61–67)

	 1.11 Engineering application: Lyapunov stability analysis
	 1.11.1 Exercises (68–72)

	 1.12 Engineering application: capacitor microphone
	 1.13 Review exercises (1–19)

	Chapter 2 Numerical Solution of Ordinary Differential Equations
	 2.1 Introduction
	 2.2 Engineering application: motion in a viscous fluid
	 2.3 Numerical solution of first-order ordinary differential
	 2.3.1 A simple solution method: Euler’s method
	 2.3.2 Analysing Euler’s method
	 2.3.3 Using numerical methods to solve engineering problems
	 2.3.4 Exercises (1–7)
	 2.3.5 More accurate solution methods: multistep methods
	 2.3.6 Local and global truncation errors
	 2.3.7 More accurate solution methods: predictor–corrector
	 2.3.8 More accurate solution methods: Runge–Kutta methods
	 2.3.9 Exercises (8–17)
	 2.3.10 Stiff equations
	 2.3.11 Computer software libraries

	 2.4 Numerical methods for systems of ordinary differential
	 2.4.1 Numerical solution of coupled first-order equations
	 2.4.2 State-space representation of higher-order systems
	 2.4.3 Exercises (18–23)
	 2.4.4 Boundary-value problems
	 2.4.5 The method of shooting

	 2.5 Engineering application: oscillations of a pendulum
	 2.6 Engineering application: heating of an electrical fuse
	 2.7 Review exercises (1–12)

	Chapter 3 Vector Calculus
	 3.1 Introduction
	 3.1.1 Basic concepts
	 3.1.2 Exercises (1–10)
	 3.1.3 Transformations
	 3.1.4 Exercises (11–17)
	 3.1.5 The total differential
	 3.1.6 Exercises (18–20)

	 3.2 Derivatives of a scalar point function
	 3.2.1 The gradient of a scalar point function
	 3.2.2 Exercises (21–30)

	 3.3 Derivatives of a vector point function
	 3.3.1 Divergence of a vector field
	 3.3.2 Exercises (31–37)
	 3.3.3 Curl of a vector field
	 3.3.4 Exercises (38–45)
	 3.3.5 Further properties of the vector operator ∇
	 3.3.6 Exercises (46–55)

	 3.4 Topics in integration
	 3.4.1 Line integrals
	 3.4.2 Exercises (56–64)
	 3.4.3 Double integrals
	 3.4.4 Exercises (65–76)
	 3.4.5 Green’s theorem in a plane
	 3.4.6 Exercises (77–82)
	 3.4.7 Surface integrals
	 3.4.8 Exercises (83–91)
	 3.4.9 Volume integrals
	 3.4.10 Exercises (92–102)
	 3.4.11 Gauss’s divergence theorem
	 3.4.12 Stokes’ theorem
	 3.4.13 Exercises (103–112)

	 3.5 Engineering application: streamlines in fluid dynamics
	 3.6 Engineering application: heat transfer
	 3.7 Review exercises (1–21)

	Chapter 4 Functions of a Complex Variable
	 4.1 Introduction
	4.2 Complex functions and mappings
	 4.2.1 Linear mappings
	 4.2.2 Exercises (1–8)
	 4.2.3 Inversion
	 4.2.4 Bilinear mappings
	 4.2.5 Exercises (9–19)
	 4.2.6 The mapping w = z2
	 4.2.7 Exercises (20–23)

	 4.3 Complex differentiation
	 4.3.1 Cauchy–Riemann equations
	 4.3.2 Conjugate and harmonic functions
	 4.3.3 Exercises (24–32)
	 4.3.4 Mappings revisited
	 4.3.5 Exercises (33–37)

	 4.4 Complex series
	 4.4.1 Power series
	 4.4.2 Exercises (38–39)
	 4.4.3 Taylor series
	 4.4.4 Exercises (40–43)
	 4.4.5 Laurent series
	 4.4.6 Exercises (44– 46)

	 4.5 Singularities and zeros
	 4.5.1 Exercises (47–49)

	 4.6 Engineering application: analysing AC circuits
	 4.7 Engineering application: use of harmonic functions
	 4.7.1 A heat transfer problem
	 4.7.2 Current in a field-effect transistor
	 4.7.3 Exercises (50–56)

	 4.8 Review exercises (1–19)

	Chapter 5 Laplace Transforms
	 5.1 Introduction
	 5.1.1 Definition and notation
	 5.1.2 Other results from MEM

	 5.2 Step and impulse functions
	 5.2.1 The Heaviside step function
	 5.2.2 Laplace transform of unit step function
	5.2.3 The second shift theorem
	 5.2.4 Inversion using the second shift theorem
	 5.2.5 Differential equations
	 5.2.6 Periodic functions
	 5.2.7 Exercises (1–12)
	 5.2.8 The impulse function
	 5.2.9 The sifting property
	 5.2.10 Laplace transforms of impulse functions
	 5.2.11 Relationship between Heaviside step and impulse functions
	 5.2.12 Exercises (13–18)
	 5.2.13 Bending of beams
	 5.2.14 Exercises (19–21)

	 5.3 Transfer functions
	 5.3.1 Definitions
	 5.3.2 Stability
	 5.3.3 Impulse response
	 5.3.4 Initial- and final-value theorems
	 5.3.5 Exercises (22–33)
	 5.3.6 Convolution
	 5.3.7 System response to an arbitrary input
	 5.3.8 Exercises (34–38)

	 5.4 Solution of state-space equations
	 5.4.1 SISO systems
	 5.4.2 Exercises (39–47)
	 5.4.3 MIMO systems
	 5.4.4 Exercises (48–50)

	 5.5 Engineering application: frequency response
	 5.6 Engineering application: pole placement
	 5.6.1 Poles and eigenvalues
	 5.6.2 The pole placement or eigenvalue location technique
	 5.6.3 Exercises (51–56)

	 5.7 Review exercises (1–18)

	Chapter 6 The z Transform
	 6.1 Introduction
	 6.2 The z transform
	 6.2.1 Definition and notation
	 6.2.2 Sampling: a first introduction
	 6.2.3 Exercises (1–2)

	 6.3 Properties of the z transform
	 6.3.1 The linearity property
	 6.3.2 The first shift property (delaying)
	 6.3.3 The second shift property (advancing)
	 6.3.4 Some further properties
	 6.3.5 Table of z  transforms
	 6.3.6 Exercises (3–10)

	 6.4 The inverse z transform
	 6.4.1 Inverse techniques
	 6.4.2 Exercises (11–13)

	 6.5 Discrete-time systems and difference equations
	 6.5.1 Difference equations
	 6.5.2 The solution of difference equations
	 6.5.3 Exercises (14–20)

	 6.6 Discrete linear systems: characterization
	 6.6.1 z  transfer functions
	 6.6.2 The impulse response
	 6.6.3 Stability
	 6.6.4 Convolution
	 6.6.5 Exercises (21–29)

	 6.7 The relationship between Laplace and z transforms
	 6.8 Solution of discrete-time state-space equations
	 6.8.1 State-space model
	 6.8.2 Solution of the discrete-time state equation
	 6.8.3 Exercises (30–33)

	 6.9 Discretization of continuous-time state-space models
	 6.9.1 Euler’s method
	 6.9.2 Step-invariant method
	 6.9.3 Exercises (34–37)

	 6.10 Engineering application: design of discrete-time systems
	 6.10.1 Analogue filters
	 6.10.2 Designing a digital replacement filter
	 6.10.3 Possible developments

	 6.11 Engineering application: the delta operator and the $  transform
	 6.11.1 Introduction
	 6.11.2 The q or shift operator and the δ  operator
	 6.11.3 Constructing a discrete-time system model
	 6.11.4 Implementing the design
	 6.11.5 The $  transform
	 6.11.6 Exercises (38–41)

	 6.12 Review exercises (1–18)

	Chapter 7 Fourier Series
	 7.1 Introduction
	 7.1.1 Periodic functions
	 7.1.2 Fourier’s theorem
	 7.1.3 Functions of period 2π
	 7.1.4 Functions defined over a finite interval
	 7.1.5 Exercises (1–10)

	 7.2 Fourier series of jumps at discontinuities
	7.2.1 Exercises (11–12)

	 7.3 Engineering application: frequency response and oscillating systems
	 7.3.1 Response to periodic input
	 7.3.2 Exercises (13–16)

	 7.4 Complex form of Fourier series
	 7.4.1 Complex representation
	 7.4.2 The multiplication theorem and Parseval’s theorem
	 7.4.3 Discrete frequency spectra
	 7.4.4 Power spectrum
	 7.4.5 Exercises (17–22)

	 7.5 Orthogonal functions
	 7.5.1 Definitions
	 7.5.2 Generalized Fourier series
	 7.5.3 Convergence of generalized Fourier series
	 7.5.4 Exercises (23–29)

	7.6 Engineering application: describing functions
	 7.7 Review exercises (1–20)

	Chapter 8 The Fourier Transform
	 8.1 Introduction
	 8.2 The Fourier transform
	 8.2.1 The Fourier integral
	 8.2.2 The Fourier transform pair
	 8.2.3 The continuous Fourier spectra
	 8.2.4 Exercises (1–10)

	 8.3 Properties of the Fourier transform
	 8.3.1 The linearity property
	 8.3.2 Time-differentiation property
	 8.3.3 Time-shift property
	 8.3.4 Frequency-shift property
	 8.3.5 The symmetry property
	 8.3.6 Exercises (11–16)

	 8.4 The frequency response
	 8.4.1 Relationship between Fourier and Laplace transforms
	 8.4.2 The frequency response
	 8.4.3 Exercises (17–21)

	 8.5 Transforms of the step and impulse functions
	 8.5.1 Energy and power
	 8.5.2 Convolution
	 8.5.3 Exercises (22–27)

	 8.6 The Fourier transform in discrete time
	 8.6.1 Introduction
	 8.6.2 A Fourier transform for sequences
	 8.6.3 The discrete Fourier transform
	 8.6.4 Estimation of the continuous Fourier transform
	 8.6.5 The fast Fourier transform
	 8.6.6 Exercises (28–31)

	 8.7 Engineering application: the design of analogue filters
	 8.8 Engineering application: direct design of digital filters and windows
	 8.8.1 Digital filters
	 8.8.2 Windows
	 8.8.3 Exercises (32–33)

	 8.9 Review exercises (1–25)

	Chapter 9 Partial Differential Equations
	 9.1 Introduction
	 9.2 General discussion
	 9.2.1 Wave equation
	 9.2.2 Heat-conduction or diffusion equation
	 9.2.3 Laplace equation
	 9.2.4 Other and related equations
	 9.2.5 Arbitrary functions and first-order equations
	 9.2.6 Exercises (1–14)

	 9.3 Solution of the wave equation
	 9.3.1 D’Alembert solution and characteristics
	 9.3.2 Separation of variables
	 9.3.3 Laplace transform solution
	 9.3.4 Exercises (15–27)
	 9.3.5 Numerical solution
	 9.3.6 Exercises (28–31)

	 9.4 Solution of the heat-conduction/diffusion equation
	 9.4.1 Separation of variables
	 9.4.2 Laplace transform method
	 9.4.3 Exercises (32–40)
	 9.4.4 Numerical solution
	 9.4.5 Exercises (41–43)

	 9.5 Solution of the Laplace equation
	 9.5.1 Separation of variables
	 9.5.2 Exercises (44–54)
	 9.5.3 Numerical solution
	 9.5.4 Exercises (55–59)

	 9.6 Finite elements
	 9.6.1 Exercises (60–62)

	 9.7 Integral solutions
	 9.7.1 Separation of variables
	 9.7.2 Use of singular solutions
	 9.7.3 Sources and sinks for the heat-conduction equation
	 9.7.4 Exercises (63–67)

	 9.8 General considerations
	9.8.1 Formal classification
	9.8.2 Boundary conditions
	9.8.3 Exercises

	 9.9 Engineering application: wave propagation under a moving load
	 9.10 Engineering application: blood-flow model
	 9.11 Review exercises (1–21)

	Chapter 10 Optimization
	 10.1 Introduction
	 10.2 Linear programming
	 10.2.1 Introduction
	 10.2.2 Simplex algorithm: an example
	 10.2.3 Simplex algorithm: general theory
	 10.2.4 Exercises (1–11)
	 10.2.5 Two-phase method
	 10.2.6 Equality constraints and variables that are
	 10.2.7 Exercises (12–20)

	 10.3 Lagrange multipliers
	 10.3.1 Equality constraints
	 10.3.2 Inequality constraints
	 10.3.3 Exercises (21–28)

	 10.4 Hill climbing
	 10.4.1 Single-variable search
	 10.4.2 Exercises (29–34)
	 10.4.3 Simple multivariable searches: steepest ascent and Newton’s method
	 10.4.4 Exercises (35–39)
	 10.4.5 Advanced multivariable searches
	 10.4.6 Least squares
	 10.4.7 Exercises (40–43)

	 10.5 Engineering application: chemical processing plant
	 10.6 Engineering application: heating fin
	 10.7 Review exercises (1–26)

	Chapter 11 Applied Probability and Statistics
	 11.1 Introduction
	 11.2 Review of basic probability theory
	 11.2.1 The rules of probability
	 11.2.2 Random variables
	 11.2.3 The Bernoulli, binomial and Poisson distributions
	 11.2.4 The normal distribution
	 11.2.5 Sample measures

	 11.3 Estimating parameters
	 11.3.1 Interval estimates and hypothesis tests
	11.3.2 Distribution of the sample average
	 11.3.3 Confidence interval for the mean
	 11.3.4 Testing simple hypotheses
	 11.3.5 Other confidence intervals and tests concerning means
	 11.3.6 Interval and test for proportion
	 11.3.7 Exercises (1–13)

	 11.4 Joint distributions and correlation
	 11.4.1 Joint and marginal distributions
	 11.4.2 Independence
	 11.4.3 Covariance and correlation
	 11.4.4 Sample correlation
	 11.4.5 Interval and test for correlation
	 11.4.6 Rank correlation
	 11.4.7 Exercises (14–24)

	 11.5 Regression
	 11.5.1 The method of least squares
	 11.5.2 Residuals
	 11.5.3 Regression and correlation
	 11.5.4 Nonlinear regression
	 11.5.5 Exercises (25–33)

	 11.6 Goodness-of-fit tests
	 11.6.1 Chi-square distribution and test
	 11.6.2 Contingency tables
	 11.6.3 Exercises (34–42)

	 11.7 Engineering application: analysis of engine performance data
	 11.7.1 Introduction
	 11.7.2 Difference in mean running times and temperatures
	 11.7.3 Dependence of running time on temperature
	 11.7.4 Test for normality
	 11.7.5 Conclusions

	 11.8 Engineering application: statistical quality control
	 11.8.1 Introduction
	 11.8.2 Shewhart attribute control charts
	 11.8.3 Shewhart variable control charts
	 11.8.4 Cusum control charts
	 11.8.5 Moving-average control charts
	 11.8.6 Range charts
	 11.8.7 Exercises (43–54)

	 11.9 Poisson processes and the theory of queues
	 11.9.1 Typical queueing problems
	 11.9.2 Poisson processes
	 11.9.3 Single service channel queue
	 11.9.4 Queues with multiple service channels
	 11.9.5 Queueing system simulation
	 11.9.6 Exercises (55–62)

	 11.10 Bayes’ theorem and its applications
	 11.10.1 Derivation and simple examples
	 11.10.2 Applications in probabilistic inference
	 11.10.3 Bayesian statistical inference
	 11.10.4 Exercises (63–74)

	 11.11 Review exercises (1–10)

	Answers to Exercises
	Index
	Back Cover

		2018-06-02T16:12:40+0000
	Preflight Ticket Signature




