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Preface

In writing this book, I was guided by my long-standing experience and interest in teaching
discrete mathematics. For the student, my purpose was to present material in a precise, read-
able manner, with the concepts and techniques of discrete mathematics clearly presented and
demonstrated. My goal was to show the relevance and practicality of discrete mathematics to
students, who are often skeptical. I wanted to give students studying computer science all of
the mathematical foundations they need for their future studies. I wanted to give mathematics
students an understanding of important mathematical concepts together with a sense of why
these concepts are important for applications. And most importantly, I wanted to accomplish
these goals without watering down the material.

For the instructor, my purpose was to design a flexible, comprehensive teaching tool using
proven pedagogical techniques in mathematics. I wanted to provide instructors with a package
of materials that they could use to teach discrete mathematics effectively and efficiently in the
most appropriate manner for their particular set of students. I hope that I have achieved these
goals.

I have been extremely gratified by the tremendous success of this text, including its use
by more than one million students around the world over the last 30 years and its translation
into many different languages. The many improvements in the eighth edition have been made
possible by the feedback and suggestions of a large number of instructors and students at many
of the more than 600 North American schools, and at many universities in different parts of the
world, where this book has been successfully used. I have been able to significantly improve the
appeal and effectiveness of this book edition to edition because of the feedback I have received
and the significant investments that have been made in the evolution of the book.

This text is designed for a one- or two-term introductory discrete mathematics course taken
by students in a wide variety of majors, including mathematics, computer science, and engineer-
ing. College algebra is the only explicit prerequisite, although a certain degree of mathematical
maturity is needed to study discrete mathematics in a meaningful way. This book has been de-
signed to meet the needs of almost all types of introductory discrete mathematics courses. It is
highly flexible and extremely comprehensive. The book is designed not only to be a successful
textbook, but also to serve as a valuable resource students can consult throughout their studies
and professional life.

Goals of a Discrete Mathematics Course

A discrete mathematics course has more than one purpose. Students should learn a particular
set of mathematical facts and how to apply them; more importantly, such a course should teach
students how to think logically and mathematically. To achieve these goals, this text stresses
mathematical reasoning and the different ways problems are solved. Five important themes are
interwoven in this text: mathematical reasoning, combinatorial analysis, discrete structures, al-
gorithmic thinking, and applications and modeling. A successful discrete mathematics course
should carefully blend and balance all five themes.

1. Mathematical Reasoning: Students must understand mathematical reasoning in order to read,
comprehend, and construct mathematical arguments. This text starts with a discussion of
mathematical logic, which serves as the foundation for the subsequent discussions of methods
of proof. Both the science and the art of constructing proofs are addressed. The technique of

vii
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mathematical induction is stressed through many different types of examples of such proofs
and a careful explanation of why mathematical induction is a valid proof technique.

2. Combinatorial Analysis: An important problem-solving skill is the ability to count or enu-
merate objects. The discussion of enumeration in this book begins with the basic techniques
of counting. The stress is on performing combinatorial analysis to solve counting problems
and analyze algorithms, not on applying formulae.

3. Discrete Structures: A course in discrete mathematics should teach students how to work
with discrete structures, which are the abstract mathematical structures used to represent
discrete objects and relationships between these objects. These discrete structures include
sets, permutations, relations, graphs, trees, and finite-state machines.

4. Algorithmic Thinking: Certain classes of problems are solved by the specification of an
algorithm. After an algorithm has been described, a computer program can be constructed
implementing it. The mathematical portions of this activity, which include the specification
of the algorithm, the verification that it works properly, and the analysis of the computer
memory and time required to perform it, are all covered in this text. Algorithms are described
using both English and an easily understood form of pseudocode.

5. Applications and Modeling: Discrete mathematics has applications to almost every conceiv-
able area of study. There are many applications to computer science and data networking
in this text, as well as applications to such diverse areas as chemistry, biology, linguistics,
geography, business, and the Internet. These applications are natural and important uses of
discrete mathematics and are not contrived. Modeling with discrete mathematics is an ex-
tremely important problem-solving skill, which students have the opportunity to develop by
constructing their own models in some of the exercises.

Changes in the Eighth Edition

Although the seventh edition has been an extremely effective text, many instructors have re-
quested changes to make the book more useful to them. I have devoted a significant amount of
time and energy to satisfy their requests and I have worked hard to find my own ways to improve
the book and to keep it up-to-date.

The eighth edition includes changes based on input from more than 20 formal reviewers,
feedback from students and instructors, and my insights. The result is a new edition that I ex-
pect will be a more effective teaching tool. Numerous changes in the eighth edition have been
designed to help students learn the material. Additional explanations and examples have been
added to clarify material where students have had difficulty. New exercises, both routine and
challenging, have been added. Highly relevant applications, including many related to the In-
ternet, to computer science, and to mathematical biology, have been added. The companion
website has benefited from extensive development; it now provides extensive tools students can
use to master key concepts and to explore the world of discrete mathematics. Furthermore, addi-
tional effective and comprehensive learning and assessment tools are available, complementing
the textbook.

I hope that instructors will closely examine this new edition to discover how it might meet
their needs. Although it is impractical to list all the changes in this edition, a brief list that
highlights some key changes, listed by the benefits they provide, may be useful.

Changes in the Eighth Edition

This new edition of the book includes many enhancements, updates, additions, and edits, all
designed to make the book a more effective teaching tool for a modern discrete mathematics
course. Instructors who have used the book previously will notice overall changes that have been
made throughout the book, as well as specific changes. The most notable revisions are described
here.
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Overall Changes

>

>

>

Exposition has been improved throughout the book with a focus on providing more clarity
to help students read and comprehend concepts.

Many proofs have been enhanced by adding more details and explanations, and by re-
minding the reader of the proof methods used.

New examples have been added, often to meet needs identified by reviewers or to illus-
trate new material. Many of these examples are found in the text, but others are available
only on the companion website.

Many new exercises, both routine and challenging, address needs identified by in-
structors or cover new material, while others strengthen and broaden existing exercise
sets.

More second and third level heads have been used to break sections into smaller co-
herent parts, and a new numbering scheme has been used to identify subsections of the
book.

The online resources for this book have been greatly expanded, providing extensive sup-
port for both instructors and students. These resources are described later in the front
matter.

Topic Coverage

>

Logic  Several logical puzzles have been introduced. A new example explains how to
model the n-queens problem as a satisfiability problem that is both concise and accessible
to students.

Set theory  Multisets are now covered in the text. (Previously they were introduced in
the exercises.)

Algorithms  The string matching problem, an important algorithm for many applica-
tions, including spell checking, key-word searching, string-matching, and computational
biology, is now discussed. The brute-force algorithm for solving string-matching exer-
cises is presented.

Number theory The new edition includes the latest numerical and theoretic discov-
eries relating to primes and open conjectures about them. The extended Euclidean algo-
rithm, a one-pass algorithm, is now discussed in the text. (Previously it was covered in
the exercises.)

Cryptography The concept of homomorphic encryption, and its importance to cloud
computing, is now covered.

Mathematical induction  The template for proofs by mathematical induction has
been expanded. It is now placed in the text before examples of proof by mathematical
induction.

Counting methods The coverage of the division rule for counting has been expanded.

Data mining  Association rules—key concepts in data mining—are now discussed
in the section on n-ary relations. Also, the Jaccard metric, which is used to find the
distance between two sets and which is used in data mining, is introduced in the
exercises.

Graph theory applications A new example illustrates how semantic networks, an
important structure in artificial intelligence, can be modeled using graphs.
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> Biographies New biographies of Wiles, Bhaskaracharya, de la Vallée-Poussin,
Hadamard, Zhang, and Gentry have been added. Existing biographies have been ex-
panded and updated. This adds diversity by including more historically important Eastern
mathematicians, major nineteenth and twentieth century researchers, and currently active
twenty-first century mathematicians and computer scientists.

Features of the Book

ACCESSIBILITY This text has proven to be easily read and understood by many begin-
ning students. There are no mathematical prerequisites beyond college algebra for almost all
the contents of the text. Students needing extra help will find tools on the companion website
for bringing their mathematical maturity up to the level of the text. The few places in the book
where calculus is referred to are explicitly noted. Most students should easily understand the
pseudocode used in the text to express algorithms, regardless of whether they have formally
studied programming languages. There is no formal computer science prerequisite.

Each chapter begins at an easily understood and accessible level. Once basic mathematical
concepts have been carefully developed, more difficult material and applications to other areas
of study are presented.

FLEXIBILITY This text has been carefully designed for flexible use. The dependence
of chapters on previous material has been minimized. Each chapter is divided into sections of
approximately the same length, and each section is divided into subsections that form natural
blocks of material for teaching. Instructors can easily pace their lectures using these blocks.

WRITING STYLE The writing style in this book is direct and pragmatic. Precise math-
ematical language is used without excessive formalism and abstraction. Care has been taken to
balance the mix of notation and words in mathematical statements.

MATHEMATICAL RIGOR AND PRECISION All definitions and theorems in this text
are stated extremely carefully so that students will appreciate the precision of language and
rigor needed in mathematics. Proofs are motivated and developed slowly; their steps are all
carefully justified. The axioms used in proofs and the basic properties that follow from them
are explicitly described in an appendix, giving students a clear idea of what they can assume in
a proof. Recursive definitions are explained and used extensively.

WORKED EXAMPLES Over 800 examples are used to illustrate concepts, relate dif-
ferent topics, and introduce applications. In most examples, a question is first posed, then its
solution is presented with the appropriate amount of detail.

APPLICATIONS The applications included in this text demonstrate the utility of discrete
mathematics in the solution of real-world problems. This text includes applications to a wide
variety of areas, including computer science, data networking, psychology, chemistry, engineer-
ing, linguistics, biology, business, and the Internet.

ALGORITHMS Results in discrete mathematics are often expressed in terms of algo-
rithms; hence, key algorithms are introduced in most chapters of the book. These algorithms
are expressed in words and in an easily understood form of structured pseudocode, which is
described and specified in Appendix 3. The computational complexity of the algorithms in the
text is also analyzed at an elementary level.

HISTORICAL INFORMATION The background of many topics is succinctly described
in the text. Brief biographies of 89 mathematicians and computer scientists are included as
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footnotes. These biographies include information about the lives, careers, and accomplishments
of these important contributors to discrete mathematics, and images, when available, are dis-
played.

In addition, numerous historical footnotes are included that supplement the historical in-
formation in the main body of the text. Efforts have been made to keep the book up-to-date by
reflecting the latest discoveries.

KEY TERMS AND RESULTS A list of key terms and results follows each chapter. The
key terms include only the most important that students should learn, and not every term defined
in the chapter.

EXERCISES There are over 4200 exercises in the text, with many different types of ques-
tions posed. There is an ample supply of straightforward exercises that develop basic skills, a
large number of intermediate exercises, and many challenging exercises. Exercises are stated
clearly and unambiguously, and all are carefully graded for level of difficulty. Exercise sets con-
tain special discussions that develop new concepts not covered in the text, enabling students to
discover new ideas through their own work.

Exercises that are somewhat more difficult than average are marked with a single star, *;
those that are much more challenging are marked with two stars, **. Exercises whose solutions
require calculus are explicitly noted. Exercises that develop results used in the text are clearly
identified with the right pointing hand symbol, i=5=. Answers or outlined solutions to all odd-
numbered exercises are provided at the back of the text. The solutions include proofs in which
most of the steps are clearly spelled out.

REVIEW QUESTIONS A set of review questions is provided at the end of each chapter.
These questions are designed to help students focus their study on the most important concepts
and techniques of that chapter. To answer these questions students need to write long answers,
rather than just perform calculations or give short replies.

SUPPLEMENTARY EXERCISE SETS Each chapter is followed by a rich and varied
set of supplementary exercises. These exercises are generally more difficult than those in the
exercise sets following the sections. The supplementary exercises reinforce the concepts of the
chapter and integrate different topics more effectively.

COMPUTER PROJECTS Each chapter is followed by a set of computer projects. The
approximately 150 computer projects tie together what students may have learned in computing
and in discrete mathematics. Computer projects that are more difficult than average, from both
a mathematical and a programming point of view, are marked with a star, and those that are
extremely challenging are marked with two stars.

COMPUTATIONS AND EXPLORATIONS A set of computations and explorations is
included at the conclusion of each chapter. These exercises (approximately 120 in total) are de-
signed to be completed using existing software tools, such as programs that students or instruc-
tors have written or mathematical computation packages such as Maple™ or Mathematica™.
Many of these exercises give students the opportunity to uncover new facts and ideas through
computation. (Some of these exercises are discussed in the Exploring Discrete Mathematics
companion workbooks available online.)

WRITING PROJECTS Each chapter is followed by a set of writing projects. To do these
projects students need to consult the mathematical literature. Some of these projects are his-
torical in nature and may involve looking up original sources. Others are designed to serve as
gateways to new topics and ideas. All are designed to expose students to ideas not covered in
depth in the text. These projects tie mathematical concepts together with the writing process and
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help expose students to possible areas for future study. (Suggested references for these projects
can be found online or in the printed Student’s Solutions Guide.)

APPENDICES There are three appendices to the text. The first introduces axioms for real
numbers and the positive integers, and illustrates how facts are proved directly from these ax-
ioms. The second covers exponential and logarithmic functions, reviewing some basic material
used heavily in the course. The third specifies the pseudocode used to describe algorithms in
this text.

SUGGESTED READINGS A list of suggested readings for the overall book and for each
chapter is provided after the appendices. These suggested readings include books at or below
the level of this text, more difficult books, expository articles, and articles in which discoveries
in discrete mathematics were originally published. Some of these publications are classics, pub-
lished many years ago, while others have been published in the last few years. These suggested
readings are complemented by the many links to valuable resources available on the web that
can be found on the website for this book.

How to Use This Book

This text has been carefully written and constructed to support discrete mathematics courses
at several levels and with differing foci. The following table identifies the core and optional
sections. An introductory one-term course in discrete mathematics at the sophomore level can
be based on the core sections of the text, with other sections covered at the discretion of the
instructor. A two-term introductory course can include all the optional mathematics sections in
addition to the core sections. A course with a strong computer science emphasis can be taught
by covering some or all of the optional computer science sections. Instructors can find sample
syllabi for a wide range of discrete mathematics courses and teaching suggestions for using each
section of the text can be found in the Instructor’s Resource Guide available on the website for
this book.

Chapter Core Optional CS Optional Math
1 1.1-1.8 (as needed)
2 2.1-2.4, 2.6 (as needed) 2.5
3 3.1-3.3 (as needed)
4 4.1-4.4 (as needed) 4.5,4.6
5 5.1-5.3 54,55
6 6.1-6.3 6.6 6.4,6.5
7 7.1 7.4 72,73
8 8.1,8.5 8.3 8.2,8.4,8.6
9 9.1,9.3,9.5 9.2 9.4,9.6
10 10.1-10.5 10.6-10.8
11 11.1 11.2,11.3 11.4,11.5
12 12.1-12.4
13 13.1-13.5

Instructors using this book can adjust the level of difficulty of their course by choosing
either to cover or to omit the more challenging examples at the end of sections, as well as
the more challenging exercises. The chapter dependency chart shown here displays the strong
dependencies. A star indicates that only relevant sections of the chapter are needed for study
of a later chapter. Weak dependencies have been ignored. More details can be found in the
Instructor’s Resource Guide.
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Chapter 1

\ \
Chapter 2*
‘ Chapter 12
/Chapler 3%
Chapter 9% ‘
\ Chapteh

Chapter 10* | Chapter 13

\ Chapter 5%
Chapter 11

Chapter 6*

/\

Chapter 7 Chapter 8

STUDENT’S SOLUTIONS GUIDE This student manual, available separately, contains
full solutions to all odd-numbered exercises in the exercise sets. These solutions explain why
a particular method is used and why it works. For some exercises, one or two other possible
approaches are described to show that a problem can be solved in several different ways. Sug-
gested references for the writing projects found at the end of each chapter are also included in
this volume. Also included are a guide to writing proofs and an extensive description of com-
mon mistakes students make in discrete mathematics, plus sample tests and a sample crib sheet
for each chapter designed to help students prepare for exams.

INSTRUCTOR’S RESOURCE GUIDE This manual, available on the website and in
printed form by request for instructors, contains full solutions to even-numbered exercises in
the text. Suggestions on how to teach the material in each chapter of the book are provided,
including the points to stress in each section and how to put the material into perspective. It
also offers sample tests for each chapter and a test bank containing over 1500 exam questions to
choose from. Answers to all sample tests and test bank questions are included. Finally, sample
syllabi are presented for courses with differing emphases and student ability levels.
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Extensive effort has been devoted to producing valuable web resources for this book. In-
structors should make a special effort to explore these resources to identify those they feel
will help their students learn and explore discrete mathematics. These resources are available in
the Online Learning Center, which is available to all students and instructors, and the Connect
Site, designed for interactive instruction, which instructors can choose to use. To use Connect,
students purchase online access for a specific time period.

The Online Learning Center

The Online Learning Center (OLC), accessible at www.mhhe.com/rosen, includes an Informa-
tion Center, a Student Site, and an Instructor Site. Key features of each area are described here.

0.1.1 The Information Center

The Information Center contains basic information about the book including the expanded table
of contents (including subsection heads), the preface, descriptions of the ancillaries, and a sam-
ple chapter. It also provides a link that can be used to submit errata reports and other feedback
about the book.

0.1.2 Student Site

The Student Site contains a wealth of resources available for student use, including the follow-
ing, tied into the text wherever the special icons displayed below are found in the text:

Extra » Extra Examples  You can find a large number of additional examples on the site, cov-

Examples ) ering all chapters of the book. These examples are concentrated in areas where students
often ask for additional material. Although most of these examples amplify the basic
concepts, more-challenging examples can also be found here. Many new extra examples
have been recently added for the eighth edition. Each icon in the book corresponds to
one or more extra examples on the website.

Demo ) > Interactive Demonstration Applets  These applets enable you to interactively explore
how important algorithms work, and are tied directly to material in the text with linkages
to examples and exercises. Additional resources are provided on how to use and apply
these applets.
> Self Assessments  These interactive guides help you assess your understanding of 14
key concepts, providing a question bank where each question includes a brief tutorial
followed by a multiple-choice question. If you select an incorrect answer, advice is pro-
vided to help you understand your error. Using these Self Assessments, you should be
able to diagnose your problems and find appropriate help.

Links ) » Web Resources Guide This guide provides annotated links to hundreds of external
websites containing relevant material such as historical and biographical information,
puzzles and problems, discussions, applets, programs, and more. These links are keyed
to the text by page number.

Assessment )

xvi
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Additional resources in the Student Site include:

» Exploring Discrete Mathematics  This ancillary provides help for using a computer alge-
bra system to do a wide range of computations in discrete mathematics. Each chapter provides
adescription of relevant functions in the computer algebra system and how they are used, pro-
grams to carry out computations in discrete mathematics, examples, and exercises that can be
worked using this computer algebra system. Two versions, Exploring Discrete Mathematics
with Maple™ and Exploring Discrete Mathematics with Mathematica™, are available.

» Applications of Discrete Mathematics  This ancillary contains 24 chapters—each with
its own set of exercises—presenting a wide variety of interesting and important applications
covering three general areas in discrete mathematics: discrete structures, combinatorics, and
graph theory. These applications are ideal for supplementing the text or for independent study.

» A Guide to Proof-Writing  This guide provides additional help for writing proofs, a skill
that many students find difficult to master. By reading this guide at the beginning of the
course and periodically thereafter when proof writing is required, you will be rewarded as
your proof-writing ability grows. (Also available in the Student’s Solutions Guide.)

» Common Mistakes in Discrete Mathematics  This guide includes a detailed list of com-
mon misconceptions that students of discrete mathematics often have and the kinds of errors
they tend to make. You are encouraged to review this list from time to time to help avoid
these common traps. (Also available in the Student’s Solutions Guide.)

» Advice on Writing Projects  This guide offers helpful hints and suggestions for the Writing
Projects in the text, including an extensive bibliography of helpful books and articles for
research, discussion of various resources available in print and online, tips on doing library
research, and suggestions on how to write well. (Also available in the Student’s Solutions
Guide.)

0.1.3 Instructor Site

This part of the website provides access to all of the resources on the Student Site, as well as
these resources for instructors:

> Suggested Syllabi  Detailed course outlines are shown, offering suggestions for
courses with different emphases and different student backgrounds and ability levels.

» Teaching Suggestions  This guide contains detailed teaching suggestions for instruc-
tors, including chapter overviews for the entire text, detailed remarks on each section,
and comments on the exercise sets.

> Printable Tests  Printable tests are offered in TeX and Word format for every chapter,
and can be customized by instructors.

» PowerPoint Lecture Slides and PowerPoint Figures and Tables  An extensive col-
lection of PowerPoint lecture notes for all chapters of the text are provided for instructor
use. In addition, images of all figures and tables from the text are provided as PowerPoint
slides.

0.1.4 Connect

A comprehensive online learning package has been developed in conjunction with the text. A
high-level description of this site will be provided here. Interested instructors and students can
find out more about Connect from McGraw-Hill Higher Education. When instructors choose to
use this option, students in their classes must obtain access to Connect for this text, either by
purchasing a copy of the textbook that also includes access privileges or by purchasing access
only with the option of buying a loose-leaf version of the textbook.
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Instructors who adopt Connect have access to a full-featured course management system.
Course management capabilities are provided that allow instructors to create assignments, au-
tomatically assign and grade homework, quiz, and test questions from a bank of questions tied
directly to the text, create and edit their own questions, manage course announcements and due
dates, and track student progress.

Instructors can create their own assignments using Connect. They select the particular ex-
ercises from each section of the book that they want to assign. They can also assign chapters
from the SmartBook version of the text, which provides an adaptive learning environment. Stu-
dents have access to the interactive version of the textbook, the online homework exercises, and
SmartBook.

Interactive Textbook Students have access to an easy-to-use interactive version of the textbook
when they use Connect. The interactive site provides the full content of the text, as well as the
many extra resources that enrich the book. The resources include extra examples, interactive
demonstrations, and self-assessments.

Homework and Learning Management Solution An extensive learning management solution
has been developed that instructors can use to construct homework assignments. Approximately
800 online questions are available, including questions from every section of the text. These
questions are tied to the most commonly assigned exercises in the book.

These online questions have been constructed to support the same objectives as the corre-
sponding written homework questions. This challenge has been met by stretching the capabili-
ties of different question types supported by the Connect platform.

SmartBook Connect also provides another extended online version of the text in the McGraw-
Hill SmartBook platform. The SmartBook version of the text includes a set of objectives for each
chapter of the text. A collection of questions, called probes, is provided to assess student un-
derstanding of each objective. Students are directed to the appropriate part of the text to review
the material needed for each of these objectives. SmartBook provides an adaptive learning en-
vironment; it selects probes for students based on their performance answering earlier probes.
Instructors can assign SmartBook as assignments or can have their students use SmartBook as
a learning tool.
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W hat is discrete mathematics? Discrete mathematics is the part of mathematics devoted
to the study of discrete objects. (Here discrete means consisting of distinct or uncon-
nected elements.) The kinds of problems solved using discrete mathematics include:

» How many ways are there to choose a valid password on a computer system?
» What is the probability of winning a lottery?

» Is there a link between two computers in a network?

» How can I identify spam e-mail messages?

» How can I encrypt a message so that no unintended recipient can read it?

> What is the shortest path between two cities using a transportation system?

» How can a list of integers be sorted so that the integers are in increasing order?
» How many steps are required to do such a sorting?

» How can it be proved that a sorting algorithm correctly sorts a list?

» How can a circuit that adds two integers be designed?

» How many valid Internet addresses are there?

You will learn the discrete structures and techniques needed to solve problems such as these.

More generally, discrete mathematics is used whenever objects are counted, when relation-
ships between finite (or countable) sets are studied, and when processes involving a finite num-
ber of steps are analyzed. A key reason for the growth in the importance of discrete mathematics
is that information is stored and manipulated by computing machines in a discrete fashion.

WHY STUDY DISCRETE MATHEMATICS? There are several important reasons for
studying discrete mathematics. First, through this course you can develop your mathematical
maturity: that is, your ability to understand and create mathematical arguments. You will not
get very far in your studies in the mathematical sciences without these skills.

Second, discrete mathematics is the gateway to more advanced courses in all parts of the
mathematical sciences. Discrete mathematics provides the mathematical foundations for many
computer science courses, including data structures, algorithms, database theory, automata the-
ory, formal languages, compiler theory, computer security, and operating systems. Students find
these courses much more difficult when they have not had the appropriate mathematical foun-
dations from discrete mathematics. One student sent me an e-mail message saying that she used
the contents of this book in every computer science course she took!

Math courses based on the material studied in discrete mathematics include logic, set theory,
number theory, linear algebra, abstract algebra, combinatorics, graph theory, and probability
theory (the discrete part of the subject).

Also, discrete mathematics contains the necessary mathematical background for solv-
ing problems in operations research (including discrete optimization), chemistry, engineering,
biology, and so on. In the text, we will study applications to some of these areas.

Many students find their introductory discrete mathematics course to be significantly more
challenging than courses they have previously taken. One reason for this is that one of the pri-
mary goals of this course is to teach mathematical reasoning and problem solving, rather than a
discrete set of skills. The exercises in this book are designed to reflect this goal. Although there
are plenty of exercises in this text similar to those addressed in the examples, a large percentage

Xix
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of the exercises require original thought. This is intentional. The material discussed in the text
provides the tools needed to solve these exercises, but your job is to successfully apply these
tools using your own creativity. One of the primary goals of this course is to learn how to attack
problems that may be somewhat different from any you may have previously seen. Unfortu-
nately, learning how to solve only particular types of exercises is not sufficient for success in
developing the problem-solving skills needed in subsequent courses and professional work. This
text addresses many different topics, but discrete mathematics is an extremely diverse and large
area of study. One of my goals as an author is to help you develop the skills needed to master
the additional material you will need in your own future pursuits.

Finally, discrete mathematics is an excellent environment in which to learn how to read and
write mathematical proofs. In addition to explicit material on proofs in Chapter 1 and Chapter 5,
this textbook contains throughout many proofs of theorems and many exercises asking the stu-
dent to prove statements. This not only deepens one’s understanding of the subject matter but is
also valuable preparation for more advanced courses in mathematics and theoretical computer
science.

THE EXERCISES I would like to offer some advice about how you can best learn discrete
mathematics (and other subjects in the mathematical and computing sciences). You will learn
the most by actively working exercises. I suggest that you solve as many as you possibly can.
After working the exercises your instructor has assigned, I encourage you to solve additional
exercises such as those in the exercise sets following each section of the text and in the supple-
mentary exercises at the end of each chapter. (Note the key explaining the markings preceding
exercises.)

Key to the Exercises

no marking A routine exercise
A difficult exercise
An extremely challenging exercise

= An exercise containing a result used in the book (Table 1 on the
following page shows where these exercises are used.)

(Requires calculus)  An exercise whose solution requires the use of limits or concepts
from differential or integral calculus

The best approach is to try exercises yourself before you consult the answer section at the
end of this book. Note that the odd-numbered exercise answers provided in the text are answers
only and not full solutions; in particular, the reasoning required to obtain answers is omitted in
these answers. The Student’s Solutions Guide, available separately, provides complete, worked
solutions to all odd-numbered exercises in this text. When you hit an impasse trying to solve an
odd-numbered exercise, | suggest you consult the Student’s Solutions Guide and look for some
guidance as to how to solve the problem. The more work you do yourself rather than passively
reading or copying solutions, the more you will learn. The answers and solutions to the even-
numbered exercises are intentionally not available from the publisher; ask your instructor if you
have trouble with these.

WEB RESOURCES All users of the book are able to access the online resources acces-
sible via the Online Learning Center (OLC) for the book. You will find many Extra Exam-
ples designed to clarify key concepts, Self Assessments for gauging how well you understand
core topics, Interactive Demonstrations that explore key algorithms and other concepts, a Web
Resources Guide containing an extensive selection of links to external sites relevant to the
world of discrete mathematics, extra explanations and practice to help you master core con-
cepts, added instruction on writing proofs and on avoiding common mistakes in discrete mathe-
matics, in-depth discussions of important applications, and guidance on utilizing Maple™ and
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TABLE 1 Hand-Icon Exercises and Where They Are Used
Section Exercise Section Where Used Pages Where Used
1.1 42 1.3 33
1.1 43 1.3 33
1.3 11 1.6 76
1.3 12 1.6 74,76
1.3 19 1.6 76
1.3 34 1.6 76,78
1.3 46 12.2 856
1.7 18 1.7 86
2.3 74 2.3 144
2.3 81 2.5 170
2.5 15 2.5 174
2.5 16 2.5 173
3.1 45 3.1 197
32 74 11.2 797
4.3 37 4.1 253
4.4 2 4.6 318
44 44 7.2 489
6.4 21 7.2 491
6.4 25 7.4 480
7.2 15 7.2 491
9.1 26 9.4 629
10.4 59 11.1 782
11.1 15 11.1 786
11.1 30 11.1 791
11.1 48 11.2 798
12.1 12 123 861
A2 4 8.3 531

Mathematica™ software to explore the computational aspects of discrete mathematics. Places
in the text where these additional online resources are available are identified in the margins by
special icons. For more details on these and other online resources, see the description of the
companion website immediately preceding this “To the Student” message.

THE VALUE OF THIS BOOK My intention is to make your substantial investment in this
text an excellent value. The book, the associated ancillaries, and companion website have taken
many years of effort to develop and refine. I am confident that most of you will find that the text
and associated materials will help you master discrete mathematics, just as so many previous
students have. Even though it is likely that you will not cover some chapters in your current
course, you should find it helpful—as many other students have—to read the relevant sections
of the book as you take additional courses. Most of you will return to this book as a useful tool
throughout your future studies, especially for those of you who continue in computer science,
mathematics, and engineering. I have designed this book to be a gateway for future studies and
explorations, and to be comprehensive reference, and I wish you luck as you begin your journey.

Kenneth H. Rosen
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The Foundations:
Logic and Proofs

The rules of logic specify the meaning of mathematical statements. For instance, these
rules help us understand and reason with statements such as “There exists an integer
that is not the sum of two squares” and “For every positive integer n, the sum of the posi-
tive integers not exceeding n is n(n + 1)/2.” Logic is the basis of all mathematical reasoning,
and of all automated reasoning. It has practical applications to the design of computing ma-
chines, to the specification of systems, to artificial intelligence, to computer programming, to
programming languages, and to other areas of computer science, as well as to many other fields
of study.

To understand mathematics, we must understand what makes up a correct mathematical
argument, that is, a proof. Once we prove a mathematical statement is true, we call it a theorem.
A collection of theorems on a topic organize what we know about this topic. To learn a math-
ematical topic, a person needs to actively construct mathematical arguments on this topic, and
not just read exposition. Moreover, knowing the proof of a theorem often makes it possible to
modify the result to fit new situations.

Everyone knows that proofs are important throughout mathematics, but many people find
it surprising how important proofs are in computer science. In fact, proofs are used to verify
that computer programs produce the correct output for all possible input values, to show that
algorithms always produce the correct result, to establish the security of a system, and to create
artificial intelligence. Furthermore, automated reasoning systems have been created to allow
computers to construct their own proofs.

In this chapter, we will explain what makes up a correct mathematical argument and intro-
duce tools to construct these arguments. We will develop an arsenal of different proof methods
that will enable us to prove many different types of results. After introducing many different
methods of proof, we will introduce several strategies for constructing proofs. We will intro-
duce the notion of a conjecture and explain the process of developing mathematics by studying
conjectures.

Propositional Logic

1.1.1 Introduction

The rules of logic give precise meaning to mathematical statements. These rules are used to dis-
tinguish between valid and invalid mathematical arguments. Because a major goal of this book
is to teach the reader how to understand and how to construct correct mathematical arguments,
we begin our study of discrete mathematics with an introduction to logic.

Besides the importance of logic in understanding mathematical reasoning, logic has numer-
ous applications to computer science. These rules are used in the design of computer circuits,
the construction of computer programs, the verification of the correctness of programs, and in
many other ways. Furthermore, software systems have been developed for constructing some,
but not all, types of proofs automatically. We will discuss these applications of logic in this and
later chapters.
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EXAMPLE 1

Extra )
Examples

EXAMPLE 2

Source: National Library of
Medicine

1.1.2 Propositions

Our discussion begins with an introduction to the basic building blocks of logic—propositions.
A proposition is a declarative sentence (that is, a sentence that declares a fact) that is either
true or false, but not both.

All the following declarative sentences are propositions.

1. Washington, D.C., is the capital of the United States of America.
2. Toronto is the capital of Canada.

3.14+1=2.
4. 24+2=3.
Propositions 1 and 3 are true, whereas 2 and 4 are false. <

Some sentences that are not propositions are given in Example 2.

Consider the following sentences.

1. What time is it?

2. Read this carefully.
3.x+1=2.

4. x+y=z

Sentences 1 and 2 are not propositions because they are not declarative sentences. Sentences 3
and 4 are not propositions because they are neither true nor false. Note that each of sentences 3
and 4 can be turned into a proposition if we assign values to the variables. We will also discuss
other ways to turn sentences such as these into propositions in Section 1.4. <

We use letters to denote propositional variables (or sentential variables), that is, variables
that represent propositions, just as letters are used to denote numerical variables. The conven-
tional letters used for propositional variables are p, g, 7, s, ... . The truth value of a proposition

ARISTOTLE (384 B.C.E.-322 B.C.E.) Aristotle was born in Stagirus (Stagira) in northern Greece. His father
was the personal physician of the King of Macedonia. Because his father died when Aristotle was young,
Aristotle could not follow the custom of following his father’s profession. Aristotle became an orphan at a
young age when his mother also died. His guardian who raised him taught him poetry, rhetoric, and Greek.
At the age of 17, his guardian sent him to Athens to further his education. Aristotle joined Plato’s Academy,
where for 20 years he attended Plato’s lectures, later presenting his own lectures on rhetoric. When Plato died in
347 B.cE., Aristotle was not chosen to succeed him because his views differed too much from those of Plato.
Instead, Aristotle joined the court of King Hermeas where he remained for three years, and married the niece
of the King. When the Persians defeated Hermeas, Aristotle moved to Mytilene and, at the invitation of King
Philip of Macedonia, he tutored Alexander, Philip’s son, who later became Alexander the Great. Aristotle tutored
Alexander for five years and after the death of King Philip, he returned to Athens and set up his own school,
called the Lyceum.

Aristotle’s followers were called the peripatetics, which means “to walk about,” because Aristotle often walked around as he
discussed philosophical questions. Aristotle taught at the Lyceum for 13 years where he lectured to his advanced students in the
morning and gave popular lectures to a broad audience in the evening. When Alexander the Great died in 323 B.CE., a backlash against
anything related to Alexander led to trumped-up charges of impiety against Aristotle. Aristotle fled to Chalcis to avoid prosecution.
He only lived one year in Chalcis, dying of a stomach ailment in 322 B.cE.

Aristotle wrote three types of works: those written for a popular audience, compilations of scientific facts, and systematic
treatises. The systematic treatises included works on logic, philosophy, psychology, physics, and natural history. Aristotle’s writings
were preserved by a student and were hidden in a vault where a wealthy book collector discovered them about 200 years later. They
were taken to Rome, where they were studied by scholars and issued in new editions, preserving them for posterity.
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is true, denoted by T, if it is a true proposition, and the truth value of a proposition is false, de-
noted by F, if it is a false proposition. Propositions that cannot be expressed in terms of simpler
propositions are called atomic propositions.

The area of logic that deals with propositions is called the propositional calculus or propo-
sitional logic. It was first developed systematically by the Greek philosopher Aristotle more than
2300 years ago.

We now turn our attention to methods for producing new propositions from those that we
already have. These methods were discussed by the English mathematician George Boole in
1854 in his book The Laws of Thought. Many mathematical statements are constructed by com-
bining one or more propositions. New propositions, called compound propositions, are formed
from existing propositions using logical operators.

Let p be a proposition. The negation of p, denoted by —p (also denoted by p), is the statement
“It is not the case that p.”

The proposition —p is read “not p.” The truth value of the negation of p, —p, is the opposite
of the truth value of p.

Remark: The notation for the negation operator is not standardized. Although —p and p are the
most common notations used in mathematics to express the negation of p, other notations you
might see are ~p, —p, p’, Np, and !p.

Find the negation of the proposition
“Michael’s PC runs Linux”

and express this in simple English.

Solution: The negation is
“It is not the case that Michael’s PC runs Linux.”
This negation can be more simply expressed as

“Michael’s PC does not run Linux.” |

Find the negation of the proposition
“Vandana’s smartphone has at least 32 GB of memory”

and express this in simple English.

Solution: The negation is

“It is not the case that Vandana’s smartphone has at least 32 GB of memory.”
This negation can also be expressed as

“Vandana’s smartphone does not have at least 32 GB of memory”
or even more simply as

“Vandana’s smartphone has less than 32 GB of memory.” <
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Table 1 displays the truth table for the negation of a proposition p. This table has a row for
each of the two possible truth values of p. Each row shows the truth value of —p corresponding
to the truth value of p for this row.

The negation of a proposition can also be considered the result of the operation of the
negation operator on a proposition. The negation operator constructs a new proposition from
a single existing proposition. We will now introduce the logical operators that are used to form
new propositions from two or more existing propositions. These logical operators are also called
connectives.

Let p and g be propositions. The conjunction of p and g, denoted by p A g, is the proposition
“p and ¢g.” The conjunction p A g is true when both p and ¢ are true and is false otherwise.

Table 2 displays the truth table of p A g. This table has a row for each of the four possible
combinations of truth values of p and g. The four rows correspond to the pairs of truth values
TT, TF, FT, and FF, where the first truth value in the pair is the truth value of p and the second
truth value is the truth value of ¢.

Note that in logic the word “but” sometimes is used instead of “and” in a conjunction. For
example, the statement “The sun is shining, but it is raining” is another way of saying “The sun
is shining and it is raining.” (In natural language, there is a subtle difference in meaning between
“and” and “but”; we will not be concerned with this nuance here.)

Find the conjunction of the propositions p and g where p is the proposition “Rebecca’s PC has
more than 16 GB free hard disk space” and ¢ is the proposition “The processor in Rebecca’s PC
runs faster than 1 GHz.”

Solution: The conjunction of these propositions, p A g, is the proposition “Rebecca’s PC has
more than 16 GB free hard disk space, and the processor in Rebecca’s PC runs faster than
1 GHz.” This conjunction can be expressed more simply as “Rebecca’s PC has more than
16 GB free hard disk space, and its processor runs faster than 1 GHz.” For this conjunction
to be true, both conditions given must be true. It is false when one or both of these conditions
are false. <

Let p and g be propositions. The disjunction of p and ¢, denoted by p V g, is the proposition
“p or q.” The disjunction p V ¢ is false when both p and ¢ are false and is true otherwise.

Table 3 displays the truth table for p v g.

TABLE 2 The Truth Table for TABLE 3 The Truth Table for
the Conjunction of Two the Disjunction of Two
Propositions. Propositions.

pAgq
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1.1 Propositional Logic 5

The use of the connective or in a disjunction corresponds to one of the two ways the word
or is used in English, namely, as an inclusive or. A disjunction is true when at least one of the
two propositions is true. That is, p V ¢ is true when both p and ¢ are true or when exactly one
of p and ¢ is true.

Translate the statement “Students who have taken calculus or introductory computer science can
take this class” in a statement in propositional logic using the propositions p: “A student who
has taken calculus can take this class” and ¢: “A student who has taken introductory computer
science can take this class.”

Solution: We assume that this statement means that students who have taken both calculus and
introductory computer science can take the class, as well as the students who have taken only
one of the two subjects. Hence, this statement can be expressed as p V g, the inclusive or, or
disjunction, of p and q. <

What is the disjunction of the propositions p and ¢, where p and ¢ are the same propositions as
in Example 5?

Solution: The disjunction of p and g, p V g, is the proposition

“Rebecca’s PC has at least 16 GB free hard disk space, or the processor in Rebecca’s PC
runs faster than 1 GHz.”

This proposition is true when Rebecca’s PC has at least 16 GB free hard disk space, when the
PC’s processor runs faster than 1 GHz, and when both conditions are true. It is false when both
of these conditions are false, that is, when Rebecca’s PC has less than 16 GB free hard disk
space and the processor in her PC runs at 1 GHz or slower. <

Besides its use in disjunctions, the connective or is also used to express an exclusive or.
Unlike the disjunction of two propositions p and ¢, the exclusive or of these two propositions is
true when exactly one of p and ¢ is true; it is false when both p and ¢ are true (and when both
are false).

Let p and g be propositions. The exclusive or of p and g, denoted by p @ ¢ (or p XOR g), is
the proposition that is true when exactly one of p and ¢ is true and is false otherwise.

GEORGE BOOLE (1815-1864) George Boole, the son of a cobbler, was born in Lincoln, England, in
November 1815. Because of his family’s difficult financial situation, Boole struggled to educate himself while
supporting his family. Nevertheless, he became one of the most important mathematicians of the 1800s. Al-
though he considered a career as a clergyman, he decided instead to go into teaching, and soon afterward
opened a school of his own. In his preparation for teaching mathematics, Boole—unsatisfied with textbooks
of his day—decided to read the works of the great mathematicians. While reading papers of the great French
mathematician Lagrange, Boole made discoveries in the calculus of variations, the branch of analysis dealing
with finding curves and surfaces by optimizing certain parameters.

In 1848 Boole published The Mathematical Analysis of Logic, the first of his contributions to
symbolic logic. In 1849 he was appointed professor of mathematics at Queen’s College in Cork,
Ireland. In 1854 he published The Laws of Thought, his most famous work. In this book, Boole

introduced what is now called Boolean algebra in his honor. Boole wrote textbooks on differential equations and on difference
equations that were used in Great Britain until the end of the nineteenth century. Boole married in 1855; his wife was the niece of
the professor of Greek at Queen’s College. In 1864 Boole died from pneumonia, which he contracted as a result of keeping a lecture
engagement even though he was soaking wet from a rainstorm.
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The truth table for the exclusive or of two propositions is displayed in Table 4.

Let p and ¢ be the propositions that state “A student can have a salad with dinner” and “A student
can have soup with dinner,” respectively. What is p @ ¢, the exclusive or of p and ¢?

Solution: The exclusive or of p and g is the statement that is true when exactly one of p and
q is true. That is, p @ ¢ is the statement “A student can have soup or salad, but not both, with
dinner.” Note that this is often stated as “A student can have soup or a salad with dinner,” without
explicitly stating that taking both is not permitted. <

Express the statement “I will use all my savings to travel to Europe or to buy an electric car’” in
propositional logic using the statement p: “I will use all my savings to travel to Europe” and the
statement ¢: “T will use all my savings to buy an electric car.”

Solution: To translate this statement, we first note that the or in this statement must be an ex-
clusive or because this student can either use all his or her savings to travel to Europe or use all
these savings to buy an electric car, but cannot both go to Europe and buy an electric car. (This
is clear because either option requires all his savings.) Hence, this statement can be expressed

asp @ q. <

1.1.3 Conditional Statements

We will discuss several other important ways in which propositions can be combined.

Let p and g be propositions. The conditional statement p — q is the proposition “if p, then
q.” The conditional statement p — ¢ is false when p is true and ¢ is false, and true otherwise.
In the conditional statement p — ¢, p is called the hypothesis (or antecedent or premise) and
q is called the conclusion (or consequence).

The statement p — ¢ is called a conditional statement because p — ¢ asserts that ¢ is true
on the condition that p holds. A conditional statement is also called an implication.
The truth table for the conditional statement p — ¢ is shown in Table 5. Note that the state-

ment p — ¢ is true when both p and ¢ are true and when p is false (no matter what truth value
q has).

TABLE 4 The Truth Table for TABLE 5 The Truth Table for
the Exclusive Or of Two the Conditional Statement
Propositions. p—q.

p q p®q p q p—q

T T F T T T

T F T T F F

F T T F T T

F F F F F T
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1.1 Propositional Logic 7

Because conditional statements play such an essential role in mathematical reasoning, a va-
riety of terminology is used to express p — ¢. You will encounter most if not all of the following
ways to express this conditional statement:

“if p, then ¢” “p implies ¢~

“if p, q¢” “p only if ¢”

“p is sufficient for ¢~ “a sufficient condition for g is p”
“qifp” “q whenever p”

“q when p” “q is necessary for p”’

“a necessary condition for p is g” “q follows from p”’

“q unless =p” “q provided that p”

A useful way to understand the truth value of a conditional statement is to think of an obli-
gation or a contract. For example, the pledge many politicians make when running for office is

“If I am elected, then I will lower taxes.”

If the politician is elected, voters would expect this politician to lower taxes. Furthermore, if
the politician is not elected, then voters will not have any expectation that this person will lower
taxes, although the person may have sufficient influence to cause those in power to lower taxes.
It is only when the politician is elected but does not lower taxes that voters can say that the
politician has broken the campaign pledge. This last scenario corresponds to the case when p is
true but ¢ is false in p — g.

Similarly, consider a statement that a professor might make:

“If you get 100% on the final, then you will get an A.”

If you manage to get 100% on the final, then you would expect to receive an A. If you do not
get 100%, you may or may not receive an A depending on other factors. However, if you do get
100%, but the professor does not give you an A, you will feel cheated.

Remark: Because some of the different ways to express the implication p implies g can be
confusing, we will provide some extra guidance. To remember that “p only if ¢” expresses the
same thing as “if p, then g,” note that “p only if ¢” says that p cannot be true when ¢ is not true.
That is, the statement is false if p is true, but g is false. When p is false, ¢ may be either true or
false, because the statement says nothing about the truth value of ¢.

For example, suppose your professor tells you

“You can receive an A in the course only if your score on the final is at least 90%.”

Then, if you receive an A in the course, then you know that your score on the final is at
least 90%. If you do not receive an A, you may or may not have scored at least 90% on the
final. Be careful not to use “g only if p” to express p — ¢ because this is incorrect. The word
“only” plays an essential role here. To see this, note that the truth values of “q only if p” and
p — q are different when p and ¢ have different truth values. To see why “q is necessary for p”
is equivalent to “if p, then ¢g,” observe that “g is necessary for p” means that p cannot be true
unless ¢ is true, or that if ¢ is false, then p is false. This is the same as saying that if p is true,
then ¢ is true. To see why “p is sufficient for ¢ is equivalent to “if p, then g,” note that “p is
sufficient for ¢” means if p is true, it must be the case that ¢ is also true. This is the same as
saying that if p is true, then ¢ is also true.

To remember that “q unless —p” expresses the same conditional statement as “if p, then
q,” note that “q unless —p” means that if —p is false, then ¢ must be true. That is, the state-
ment “q unless —p” is false when p is true but ¢ is false, but it is true otherwise. Consequently,
“q unless =p” and p — g always have the same truth value.
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We illustrate the translation between conditional statements and English statements in
Example 10.

Let p be the statement “Maria learns discrete mathematics” and ¢ the statement “Maria will find
a good job.” Express the statement p — ¢ as a statement in English.

Solution: From the definition of conditional statements, we see that when p is the statement
“Maria learns discrete mathematics” and ¢ is the statement “Maria will find a good job,” p — ¢
represents the statement

“If Maria learns discrete mathematics, then she will find a good job.”

There are many other ways to express this conditional statement in English. Among the most
natural of these are

“Maria will find a good job when she learns discrete mathematics.”
“For Maria to get a good job, it is sufficient for her to learn discrete mathematics.”
and

“Maria will find a good job unless she does not learn discrete mathematics.” <

Note that the way we have defined conditional statements is more general than the meaning
attached to such statements in the English language. For instance, the conditional statement in
Example 10 and the statement

“If it is sunny, then we will go to the beach”

are statements used in normal language where there is a relationship between the hypothesis
and the conclusion. Further, the first of these statements is true unless Maria learns discrete
mathematics, but she does not get a good job, and the second is true unless it is indeed sunny,
but we do not go to the beach. On the other hand, the statement

“If Juan has a smartphone, then 2 + 3 = 5”

is true from the definition of a conditional statement, because its conclusion is true. (The truth
value of the hypothesis does not matter then.) The conditional statement

“If Juan has a smartphone, then 2 + 3 = 6”

is true if Juan does not have a smartphone, even though 2 4+ 3 = 6 is false. We would not use
these last two conditional statements in natural language (except perhaps in sarcasm), because
there is no relationship between the hypothesis and the conclusion in either statement. In math-
ematical reasoning, we consider conditional statements of a more general sort than we use in
English. The mathematical concept of a conditional statement is independent of a cause-and-
effect relationship between hypothesis and conclusion. Our definition of a conditional statement
specifies its truth values; it is not based on English usage. Propositional language is an artificial
language; we only parallel English usage to make it easy to use and remember.

The if-then construction used in many programming languages is different from that
used in logic. Most programming languages contain statements such as if p then S, where
p is a proposition and S is a program segment (one or more statements to be executed).
(Although this looks as if it might be a conditional statement, S is not a proposition, but
rather is a set of executable instructions.) When execution of a program encounters such
a statement, S is executed if p is true, but § is not executed if p is false, as illustrated in
Example 11.
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What is the value of the variable x after the statement
if2+2=4thenx:=x+1

if x = 0 before this statement is encountered? (The symbol := stands for assignment. The state-
ment x := x + 1 means the assignment of the value of x + 1 to x.)

Solution: Because 2 + 2 = 4 is true, the assignment statement x := x + 1 is executed. Hence, x
has the value 0 + 1 = 1 after this statement is encountered. <

CONVERSE, CONTRAPOSITIVE, AND INVERSE We can form some new conditional
statements starting with a conditional statement p — ¢g. In particular, there are three related
conditional statements that occur so often that they have special names. The proposition g — p
is called the converse of p — g. The contrapositive of p — ¢ is the proposition =g — —p. The
proposition —p — —¢g is called the inverse of p — g. We will see that of these three condi-
tional statements formed from p — ¢, only the contrapositive always has the same truth value
asp - q.

We first show that the contrapositive, =g — —p, of a conditional statement p — g always
has the same truth value as p — ¢q. To see this, note that the contrapositive is false only when —p
is false and —g¢ is true, that is, only when p is true and g is false. We now show that neither the
converse, g — p, nor the inverse, =p — —¢g, has the same truth value as p — ¢ for all possible
truth values of p and ¢g. Note that when p is true and ¢ is false, the original conditional statement
is false, but the converse and the inverse are both true.

When two compound propositions always have the same truth values, regardless of the truth
values of its propositional variables, we call them equivalent. Hence, a conditional statement
and its contrapositive are equivalent. The converse and the inverse of a conditional statement
are also equivalent, as the reader can verify, but neither is equivalent to the original conditional
statement. (We will study equivalent propositions in Section 1.3.) Take note that one of the most
common logical errors is to assume that the converse or the inverse of a conditional statement
is equivalent to this conditional statement.

We illustrate the use of conditional statements in Example 12.

Find the contrapositive, the converse, and the inverse of the conditional statement

“The home team wins whenever it is raining.”

Solution: Because “q whenever p” is one of the ways to express the conditional statement p — g,
the original statement can be rewritten as

“If it is raining, then the home team wins.”
Consequently, the contrapositive of this conditional statement is
“If the home team does not win, then it is not raining.”
The converse is
“If the home team wins, then it is raining.”
The inverse is
“If it is not raining, then the home team does not win.”

Only the contrapositive is equivalent to the original statement. <
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BICONDITIONALS We now introduce another way to combine propositions that expresses
that two propositions have the same truth value.

Let p and g be propositions. The biconditional statement p < g is the proposition “p if and
only if g.” The biconditional statement p < ¢ is true when p and ¢ have the same truth values,
and is false otherwise. Biconditional statements are also called bi-implications.

The truth table for p <> g is shown in Table 6. Note that the statement p <> ¢ is true when both the
conditional statements p — ¢ and ¢ — p are true and is false otherwise. That is why we use the
words “if and only if” to express this logical connective and why it is symbolically written by
combining the symbols — and «. There are some other common ways to express p < ¢:

“p is necessary and sufficient for ¢”

“if p then ¢, and conversely”

“p iff g.” “p exactly when ¢.”
The last way of expressing the biconditional statement p < ¢ uses the abbreviation “iff” for “if
and only if.” Note that p <> g has exactly the same truth value as (p — g) A (g = p).

Let p be the statement “You can take the flight,” and let g be the statement ““You buy a ticket.”
Then p < g is the statement

“You can take the flight if and only if you buy a ticket.”

This statement is true if p and g are either both true or both false, that is, if you buy a ticket and
can take the flight or if you do not buy a ticket and you cannot take the flight. It is false when
p and g have opposite truth values, that is, when you do not buy a ticket, but you can take the
flight (such as when you get a free trip) and when you buy a ticket but you cannot take the flight
(such as when the airline bumps you). <

IMPLICIT USE OF BICONDITIONALS You should be aware that biconditionals are not
always explicit in natural language. In particular, the “if and only if” construction used in
biconditionals is rarely used in common language. Instead, biconditionals are often expressed
using an “if, then” or an “only if”” construction. The other part of the “if and only if” is implicit.
That is, the converse is implied, but not stated. For example, consider the statement in English
“If you finish your meal, then you can have dessert.” What is really meant is “You can have
dessert if and only if you finish your meal.” This last statement is logically equivalent to the
two statements “If you finish your meal, then you can have dessert” and ““You can have dessert
only if you finish your meal.” Because of this imprecision in natural language, we need to
make an assumption whether a conditional statement in natural language implicitly includes its
converse. Because precision is essential in mathematics and in logic, we will always distinguish
between the conditional statement p — ¢ and the biconditional statement p < gq.
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1.1.4 Truth Tables of Compound Propositions

We have now introduced five important logical connectives—conjunction, disjunction, exclu-
sive or, implication, and the biconditional operator—as well as negation. We can use these con-
nectives to build up complicated compound propositions involving any number of propositional
variables. We can use truth tables to determine the truth values of these compound propositions,
as Example 14 illustrates. We use a separate column to find the truth value of each compound
expression that occurs in the compound proposition as it is built up. The truth values of the
compound proposition for each combination of truth values of the propositional variables in it
is found in the final column of the table.

Construct the truth table of the compound proposition

V-9 — {PAqg).

Solution: Because this truth table involves two propositional variables p and ¢, there are four
rows in this truth table, one for each of the pairs of truth values TT, TF, FT, and FF. The first two
columns are used for the truth values of p and ¢, respectively. In the third column we find the
truth value of —¢, needed to find the truth value of p V =g, found in the fourth column. The fifth
column gives the truth value of p A g. Finally, the truth value of (p V =¢q) — (p A ¢) is found in
the last column. The resulting truth table is shown in Table 7. <

TABLE 7 The Truth Tableof (p V—¢q) — (p A q).

p q —q pV—q PAq V-9 —>@PArg
T T F T T T

T F T T F F

F T F F F T

F F T T F F

1.1.5 Precedence of Logical Operators

We can construct compound propositions using the negation operator and the logical operators
defined so far. We will generally use parentheses to specify the order in which logical operators
in a compound proposition are to be applied. For instance, (p V g) A (—r) is the conjunction
of p Vv g and —r. However, to reduce the number of parentheses, we specify that the negation
operator is applied before all other logical operators. This means that =p A g is the conjunction
of -ip and g, namely, (—=p) A g, not the negation of the conjunction of p and g, namely —(p A ¢). (It
is generally the case that unary operators that involve only one object precede binary operators.)

Another general rule of precedence is that the conjunction operator takes precedence over
the disjunction operator, so thatp V ¢ A rmeans p V (g A r)rather than (p Vg) Arandp Ag Vv r
means (p A g) V rrather than p A (g V r). Because this rule may be difficult to remember, we will
continue to use parentheses so that the order of the disjunction and conjunction operators is clear.

Finally, it is an accepted rule that the conditional and biconditional operators, — and <,
have lower precedence than the conjunction and disjunction operators, A and V. Consequently,
p — gV rmeans p — (qV r) rather than (p - g) Vrand pV g — r means (p V g) — r rather
than p Vv (¢ — r). We will use parentheses when the order of the conditional operator and bi-
conditional operator is at issue, although the conditional operator has precedence over the
biconditional operator. Table 8 displays the precedence levels of the logical operators, =, A,
V, =, and <.



12 1/ The Foundations: Logic and Proofs

Truth Value | Bit

Definition 7

EXAMPLE 15

Links )

(©Alfred Eisenstaedt/
The LIFE Picture
Collection/Getty Images

1.1.6 Logic and Bit Operations

Computers represent information using bits. A bit is a symbol with two possible values, namely,
0 (zero) and 1 (one). This meaning of the word bit comes from binary digit, because zeros and
ones are the digits used in binary representations of numbers. The well-known statistician John
Tukey introduced this terminology in 1946. A bit can be used to represent a truth value, because
there are two truth values, namely, true and false. As is customarily done, we will use a 1 bit
to represent true and a 0 bit to represent false. That is, 1 represents T (true), O represents F
(false). A variable is called a Boolean variable if its value is either true or false. Consequently,
a Boolean variable can be represented using a bit.

Computer bit operations correspond to the logical connectives. By replacing true by a one
and false by a zero in the truth tables for the operators A, Vv, and @, the columns in Table 9 for
the corresponding bit operations are obtained. We will also use the notation OR, AND, and XOR
for the operators V, A, and @, as is done in various programming languages.

TABLE 9 Table for the Bit Operators OR,
AND, and XOR.

X y xVy XAy x@®y
0 0 0 0 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 0

Information is often represented using bit strings, which are lists of zeros and ones. When
this is done, operations on the bit strings can be used to manipulate this information.

A bit string is a sequence of zero or more bits. The length of this string is the number of bits
in the string.

101010011 is a bit string of length nine. <

JOHN WILDER TUKEY (1915-2000) Tukey, born in New Bedford, Massachusetts, was an only child.
His parents, both teachers, decided home schooling would best develop his potential. His formal education
began at Brown University, where he studied mathematics and chemistry. He received a master’s degree in
chemistry from Brown and continued his studies at Princeton University, changing his field of study from
chemistry to mathematics. He received his Ph.D. from Princeton in 1939 for work in topology, when he
was appointed an instructor in mathematics at Princeton. With the start of World War II, he joined the Fire
Control Research Office, where he began working in statistics. Tukey found statistical research to his liking
and impressed several leading statisticians with his skills. In 1945, at the conclusion of the war, Tukey re-
turned to the mathematics department at Princeton as a professor of statistics, and he also took a position
at AT&T Bell Laboratories. Tukey founded the Statistics Department at Princeton in 1966 and was its first
chairman. Tukey made significant contributions to many areas of statistics, including the analysis of variance,

the estimation of spectra of time series, inferences about the values of a set of parameters from a single experiment, and the philos-
ophy of statistics. However, he is best known for his invention, with J. W. Cooley, of the fast Fourier transform. In addition to his
contributions to statistics, Tukey was noted as a skilled wordsmith; he is credited with coining the terms bit and software.

Tukey contributed his insight and expertise by serving on the President’s Science Advisory Committee. He chaired several
important committees dealing with the environment, education, and chemicals and health. He also served on committees working
on nuclear disarmament. Tukey received many awards, including the National Medal of Science.

HISTORICAL NOTE  There were several other suggested words for a binary digit, including binit and bigit, that never were widely
accepted. The adoption of the word bif may be due to its meaning as a common English word. For an account of Tukey’s coining of
the word bit, see the April 1984 issue of Annals of the History of Computing.
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We can extend bit operations to bit strings. We define the bitwise OR, bitwise AND, and
bitwise XOR of two strings of the same length to be the strings that have as their bits the OR,
AND, and XOR of the corresponding bits in the two strings, respectively. We use the symbols
V, A, and @ to represent the bitwise OR, bitwise AND, and bitwise XOR operations, respectively.
We illustrate bitwise operations on bit strings with Example 16.

EXAMPLE 16 Find the bitwise OR, bitwise AND, and bitwise XOR of the bit strings 01 10110110 and
110001 1101. (Here, and throughout this book, bit strings will be split into blocks of four bits

to make them easier to read.)

Solution: The bitwise OR, bitwise AND, and bitwise XOR of these strings are obtained by taking
the OR, AND, and XOR of the corresponding bits, respectively. This gives us

01 1011 0110
11 0001 1101

11 1011 1111  bitwise OR
01 0001 0100 bitwise AND
10 1010 1011 bitwise XOR

Exercises

. Which of these sentences are propositions? What are the
truth values of those that are propositions?
a) Boston is the capital of Massachusetts.
b) Miami is the capital of Florida.

¢) 2+3=5.
d) 5+7=10.
e) x+2=11.

f) Answer this question.

. Which of these are propositions? What are the truth
values of those that are propositions?

a) Do not pass go.
b) What time is it?
¢) There are no black flies in Maine.
d) 4+x=5.
e) The moon is made of green cheese.
f) 2" > 100.
. What is the negation of each of these propositions?
a) Linda is younger than Sanjay.
b) Mei makes more money than Isabella.
¢) Moshe is taller than Monica.
d) Abby is richer than Ricardo.
. What is the negation of each of these propositions?

a) Janice has more Facebook friends than Juan.
b) Quincy is smarter than Venkat.
¢) Zelda drives more miles to school than Paola.
d) Briana sleeps longer than Gloria.
. What is the negation of each of these propositions?

a) Mei has an MP3 player.
b) There is no pollution in New Jersey.
¢ 2+1=3.
d) The summer in Maine is hot and sunny.
. What is the negation of each of these propositions?

a) Jennifer and Teja are friends.
b) There are 13 items in a baker’s dozen.

¢) Abby sent more than 100 text messages yesterday.
d) 121 is a perfect square.

. What is the negation of each of these propositions?

a) Steve has more than 100 GB free disk space on his
laptop.

b) Zach blocks e-mails and texts from Jennifer.

¢) 7-11-13 =999.

d) Diane rode her bicycle 100 miles on Sunday.

. Suppose that Smartphone A has 256 MB RAM and

32 GB ROM, and the resolution of its camera is 8 MP;
Smartphone B has 288 MB RAM and 64 GB ROM, and
the resolution of its camera is 4 MP; and Smartphone C
has 128 MB RAM and 32 GB ROM, and the resolution
of its camera is 5 MP. Determine the truth value of each
of these propositions.

a) Smartphone B has the most RAM of these three
smartphones.

b) Smartphone C has more ROM or a higher resolution
camera than Smartphone B.

¢) Smartphone B has more RAM, more ROM, and a
higher resolution camera than Smartphone A.

d) If Smartphone B has more RAM and more ROM than
Smartphone C, then it also has a higher resolution
camera.

e) Smartphone A has more RAM than Smartphone B if
and only if Smartphone B has more RAM than Smart-
phone A.

. Suppose that during the most recent fiscal year, the an-

nual revenue of Acme Computer was 138 billion dollars
and its net profit was 8 billion dollars, the annual revenue
of Nadir Software was 87 billion dollars and its net profit
was 5 billion dollars, and the annual revenue of Quixote
Media was 111 billion dollars and its net profit was
13 billion dollars. Determine the truth value of each of
these propositions for the most recent fiscal year.
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a) Quixote Media had the largest annual revenue.
b) Nadir Software had the lowest net profit and Acme
Computer had the largest annual revenue.
¢) Acme Computer had the largest net profit or Quixote
Media had the largest net profit.
d) If Quixote Media had the smallest net profit, then
Acme Computer had the largest annual revenue.
e) Nadir Software had the smallest net profit if and only
if Acme Computer had the largest annual revenue.
Let p and g be the propositions
p: I bought a lottery ticket this week.
q: I won the million dollar jackpot.
Express each of these propositions as an English sen-
tence.

a) p b) pvg ) p—g
d) pAg e) peg f) p—>—q
g PATg h) -pv (A q

Let p and g be the propositions “Swimming at the New
Jersey shore is allowed” and “Sharks have been spotted
near the shore,” respectively. Express each of these com-
pound propositions as an English sentence.

a) g b) pAg ¢ PpVyg
d) p—>gq e) 7q—p f) -p—>—q
g pe g h) pA(pV —q)

Let p and g be the propositions “The election is decided”
and “The votes have been counted,” respectively. Express
each of these compound propositions as an English sen-
tence.

a) p b) pvg

©) PAg d) g-p

e) °g—> p f) p— g

g peg h) =gV (=pA q)

Let p and ¢ be the propositions
p: It is below freezing.
g: It is snowing.
Write these propositions using p and g and logical con-
nectives (including negations).
a) Itis below freezing and snowing.
b) It is below freezing but not snowing.
¢) Itis not below freezing and it is not snowing.
d) Itis either snowing or below freezing (or both).
e) Ifitis below freezing, it is also snowing.
f) Either it is below freezing or it is snowing, but it is
not snowing if it is below freezing.
g) That it is below freezing is necessary and sufficient
for it to be snowing.
Let p, ¢, and r be the propositions
p: You have the flu.
g: You miss the final examination.
r: You pass the course.
Express each of these propositions as an English sen-
tence.
a) p—q
¢c) g r
e) (p—=>-rVig— )

b) g o r
d) pvgvr
f) pAg@V(~gAr)

15.
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Let p and ¢ be the propositions

p: You drive over 65 miles per hour.
g: You get a speeding ticket.
Write these propositions using p and ¢ and logical con-
nectives (including negations).
a) You do not drive over 65 miles per hour.
b) You drive over 65 miles per hour, but you do not get
a speeding ticket.
¢) You will get a speeding ticket if you drive over
65 miles per hour.
d) If you do not drive over 65 miles per hour, then you
will not get a speeding ticket.
e) Driving over 65 miles per hour is sufficient for getting
a speeding ticket.
f) You get a speeding ticket, but you do not drive over
65 miles per hour.
g) Whenever you get a speeding ticket, you are driving
over 65 miles per hour.

Let p, g, and r be the propositions

p: You get an A on the final exam.
q: You do every exercise in this book.
r: You get an A in this class.

Write these propositions using p, ¢, and r and logical con-

nectives (including negations).

a) You get an A in this class, but you do not do every
exercise in this book.

b) You get an A on the final, you do every exercise in
this book, and you get an A in this class.

¢) To getan A in this class, it is necessary for you to get
an A on the final.

d) You get an A on the final, but you don’t do every ex-
ercise in this book; nevertheless, you get an A in this
class.

e) Getting an A on the final and doing every exercise in
this book is sufficient for getting an A in this class.

f) You will get an A in this class if and only if you either
do every exercise in this book or you get an A on the
final.

Let p, ¢, and r be the propositions

p: Grizzly bears have been seen in the area.
q: Hiking is safe on the trail.
r: Berries are ripe along the trail.

Write these propositions using p, ¢, and r and logical con-

nectives (including negations).

a) Berries are ripe along the trail, but grizzly bears have
not been seen in the area.

b) Grizzly bears have not been seen in the area and hik-
ing on the trail is safe, but berries are ripe along the
trail.

¢) If berries are ripe along the trail, hiking is safe if and
only if grizzly bears have not been seen in the area.

d) Itis not safe to hike on the trail, but grizzly bears have
not been seen in the area and the berries along the trail
are ripe.

e) For hiking on the trail to be safe, it is necessary but
not sufficient that berries not be ripe along the trail
and for grizzly bears not to have been seen in the area.
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f) Hiking is not safe on the trail whenever grizzly bears
have been seen in the area and berries are ripe along
the trail.

Determine whether these biconditionals are true or

false.

a) 2+2=4ifandonlyif 1 +1=2.

b) 1+1=2ifand onlyif 2 +3 = 4.

¢) 1+ 1 =3if and only if monkeys can fly.

d) 0> lifandonly if 2 > 1.

Determine whether each of these conditional statements

is true or false.

a) If1+1=2,then2+2=>5.

b) If 1+ 1=3,then2+2=4.

c) f1+1=3,then2+2=>5.

d) If monkeys can fly, then 1 + 1 = 3.

Determine whether each of these conditional statements

is true or false.

a) If 1 + 1 = 3, then unicorns exist.

b) If 1 + 1 = 3, then dogs can fly.

¢) If 1+ 1 =2, then dogs can fly.

d) If2+2=4,then1+2=3.

For each of these sentences, determine whether an in-

clusive or, or an exclusive or, is intended. Explain your

answer.

a) Coffee or tea comes with dinner.

b) A password must have at least three digits or be at
least eight characters long.

¢) The prerequisite for the course is a course in number
theory or a course in cryptography.

d) You can pay using U.S. dollars or euros.

For each of these sentences, determine whether an in-

clusive or, or an exclusive or, is intended. Explain your

answer.

a) Experience with C++ or Java is required.

b) Lunch includes soup or salad.

¢) To enter the country you need a passport or a voter
registration card.

d) Publish or perish.

For each of these sentences, state what the sentence

means if the logical connective or is an inclusive or (that

is, a disjunction) versus an exclusive or. Which of these
meanings of or do you think is intended?

a) To take discrete mathematics, you must have taken
calculus or a course in computer science.

b) When you buy a new car from Acme Motor Company,
you get $2000 back in cash or a 2% car loan.

¢) Dinner for two includes two items from column A or
three items from column B.

d) School is closed if more than two feet of snow falls or
if the wind chill is below —100 °F.

Write each of these statements in the form “if p, then ¢”

in English. [Hint: Refer to the list of common ways to ex-

press conditional statements provided in this section.]

a) Itis necessary to wash the boss’s car to get promoted.

b) Winds from the south imply a spring thaw.

25.

26.

27.
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¢) A sufficient condition for the warranty to be good is
that you bought the computer less than a year ago.

d) Willy gets caught whenever he cheats.

e) You can access the website only if you pay a subscrip-
tion fee.

f) Getting elected follows from knowing the right
people.

g) Carol gets seasick whenever she is on a boat.

Write each of these statements in the form “if p, then ¢”

in English. [Hint: Refer to the list of common ways to

express conditional statements.]

a) It snows whenever the wind blows from the northeast.

b) The apple trees will bloom if it stays warm for
a week.

¢) That the Pistons win the championship implies that
they beat the Lakers.

d) Itis necessary to walk eight miles to get to the top of
Long’s Peak.

e) To get tenure as a professor, it is sufficient to be world
famous.

f) If you drive more than 400 miles, you will need to
buy gasoline.

g) Your guarantee is good only if you bought your CD
player less than 90 days ago.

h) Jan will go swimming unless the water is too cold.

i) We will have a future, provided that people believe in
science.

Write each of these statements in the form “if p, then ¢”
in English. [Hint: Refer to the list of common ways to ex-
press conditional statements provided in this section.]

a) [ will remember to send you the address only if you
send me an e-mail message.

b) To be a citizen of this country, it is sufficient that you
were born in the United States.

¢) If youkeep your textbook, it will be a useful reference
in your future courses.

d) The Red Wings will win the Stanley Cup if their
goalie plays well.

e) That you get the job implies that you had the best cre-
dentials.

f) The beach erodes whenever there is a storm.

g) It is necessary to have a valid password to log on to
the server.

h) You will reach the summit unless you begin your
climb too late.

i) You will get a free ice cream cone, provided that you
are among the first 100 customers tomorrow.

Write each of these propositions in the form “p if and

only if ¢” in English.

a) If it is hot outside you buy an ice cream cone, and if
you buy an ice cream cone it is hot outside.

b) For you to win the contest it is necessary and suffi-
cient that you have the only winning ticket.

¢) You get promoted only if you have connections, and
you have connections only if you get promoted.

d) If you watch television your mind will decay, and con-
versely.

e) The trains run late on exactly those days when I
take it.
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Write each of these propositions in the form “p if and

only if ¢” in English.

a) For you to get an A in this course, it is necessary and
sufficient that you learn how to solve discrete mathe-
matics problems.

b) If you read the newspaper every day, you will be in-
formed, and conversely.

¢) Itrains if it is a weekend day, and it is a weekend day
if it rains.

d) You can see the wizard only if the wizard is not in,
and the wizard is not in only if you can see him.

e) My airplane flight is late exactly when I have to catch
a connecting flight.

State the converse, contrapositive, and inverse of each of

these conditional statements.

a) If it snows today, I will ski tomorrow.

b) I come to class whenever there is going to be a quiz.

¢) A positive integer is a prime only if it has no divisors
other than 1 and itself.

State the converse, contrapositive, and inverse of each of

these conditional statements.

a) If it snows tonight, then I will stay at home.

b) I go to the beach whenever it is a sunny summer day.

¢) When I stay up late, it is necessary that I sleep until
noon.

How many rows appear in a truth table for each of these

compound propositions?

a) p—p

b) (pv-r)A(gV -s)

€) gVpVasVarVatVu

d) (pArAL) < (@A)

How many rows appear in a truth table for each of these

compound propositions?

a) (q—>p)V(p—>g)

b) @V-tH)AP@V-s)

¢c) p—->r)V(s— )V (u—v)

d) WArAs)V(gAL)V (rA-r)

Construct a truth table for each of these compound propo-

sitions.

a) pATp

¢ (V-9 —q

e (p—=q) < (~g—=p)
) p=>a->@—p
Construct a truth table for each of these compound propo-
sitions.

a) p—>p

) pdpPVvy

e (=P epeq
) peo®@e g
Construct a truth table for each of these compound propo-
sitions.

a) pvg - @Ppdq
) PV dPAqg
e) Ppeog®(Cpe )
) p®q9 = P®—q

b) pv-p
d pve—>@PArg

b) p e p
d prg = @PVag

b) (p®q) — PAg)
d peg®(pe g
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Construct a truth table for each of these compound propo-
sitions.

a) p®p b) p&—p

) p®q d) p® g

e P®9VPdqg ) p®@DAPSq)
Construct a truth table for each of these compound propo-
sitions.

a) p— g

) p—->q)V(p—q)
e peogV(peq
f) (peo-qe@eq
Construct a truth table for each of these compound propo-
sitions.

b) p-gq
d p->g9A(p—9

a) pvqVvr b) pvg Ar
c) pAgQ VT d Ag AF
e) (pvVg AT f) pAgV-r

Construct a truth table for each of these compound propo-
sitions.

a) p—(gVr)

b) =p—(g—7)

) pP—=qV(Ep—r)

d p—-ogA(Cp—r)

e) peoqV(nger)

f) (pog) o(geon

Construct a truth table for (p — ¢) = r) — s.
Construct a truth table for (p < q) < (r < ).

Explain, without using a truth table, why (p VvV —¢g) A
(g vV —r) A (r vV —p) is true when p, ¢, and r have the same
truth value and it is false otherwise.

. Explain, without using a truth table, why (p VgV r)A

(7p V mg V —r) is true when at least one of p, ¢, and r is
true and at least one is false, but is false when all three
variables have the same truth value.

If py, Py, ..., p, are n propositions, explain why
n—1 n
A N\ Gpivp)
i=1 j=i+1

is true if and only if at most one of p,, p,, ..., p, is true.
Use Exercise 44 to construct a compound proposition
that is true if and only if exactly one of the proposi-
tions py, py, ..., p, is true. [Hint: Combine the compound
proposition in Exercise 44 and a compound proposition
that is true if and only if at least one of p,, p,, ..., p, is
true.]

What is the value of x after each of these statements is
encountered in a computer program, if x = 1 before the
statement is reached?

a) ifx+2=3thenx:=x+1

b) if (x+1=3)OR(2x+2=3)thenx:=x+1

c) if(2x+3=5)AND 3x+4 =7)thenx :=x+1

d) if(x+1=2)XOR (x+2=3)thenx:=x+1

e) ifx<2thenx:=x+1

Find the bitwise OR, bitwise AND, and bitwise XOR of
each of these pairs of bit strings.

a) 101 1110, 010 0001

b) 11110000, 1010 1010

¢) 0001110001, 100100 1000
d) 111111 1111, 00 0000 0000



48. Evaluate each of these expressions.
a) 11000 A (0 1011V 11011)
b) (01111 A 10101) v 0 1000
¢) (01010 11011) & 0 1000
d) (11011v01010) A (10001 v 11011)

Fuzzy logic is used in artificial intelligence. In fuzzy logic, a

proposition has a truth value that is a number between 0 and

1, inclusive. A proposition with a truth value of 0 is false and

one with a truth value of 1 is true. Truth values that are be-

tween 0 and 1 indicate varying degrees of truth. For instance,
the truth value 0.8 can be assigned to the statement “Fred is
happy,” because Fred is happy most of the time, and the truth
value 0.4 can be assigned to the statement “John is happy,”
because John is happy slightly less than half the time. Use

these truth values to solve Exercises 49-51.

49. The truth value of the negation of a proposition in fuzzy
logic is 1 minus the truth value of the proposition. What
are the truth values of the statements “Fred is not happy”
and “John is not happy”?

50. The truth value of the conjunction of two propositions in
fuzzy logic is the minimum of the truth values of the two
propositions. What are the truth values of the statements

S1.
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“Fred and John are happy”” and “Neither Fred nor John is
happy”?

The truth value of the disjunction of two propositions in
fuzzy logic is the maximum of the truth values of the two
propositions. What are the truth values of the statements
“Fred is happy, or John is happy” and “Fred is not happy,
or John is not happy”?

Is the assertion “This statement is false” a proposition?

The nth statement in a list of 100 statements is “Exactly

n of the statements in this list are false.”

a) What conclusions can you draw from these state-
ments?

b) Answer part (a) if the nth statement is “At least n of
the statements in this list are false.”

¢) Answer part (b) assuming that the list contains 99
statements.

An ancient Sicilian legend says that the barber in a remote

town who can be reached only by traveling a dangerous

mountain road shaves those people, and only those peo-

ple, who do not shave themselves. Can there be such a

barber?

Applications of Propositional Logic

1.2.1 Introduction

Logic has many important applications to mathematics, computer science, and numerous other
disciplines. Statements in mathematics and the sciences and in natural language often are im-
precise or ambiguous. To make such statements precise, they can be translated into the language
of logic. For example, logic is used in the specification of software and hardware, because these
specifications need to be precise before development begins. Furthermore, propositional logic
and its rules can be used to design computer circuits, to construct computer programs, to ver-
ify the correctness of programs, and to build expert systems. Logic can be used to analyze and
solve many familiar puzzles. Software systems based on the rules of logic have been developed
for constructing some, but not all, types of proofs automatically. We will discuss some of these
applications of propositional logic in this section and in later chapters.

1.2.2 Translating English Sentences

There are many reasons to translate English sentences into expressions involving propositional
variables and logical connectives. In particular, English (and every other human language) is
often ambiguous. Translating sentences into compound statements (and other types of logical
expressions, which we will introduce later in this chapter) removes the ambiguity. Note that
this may involve making a set of reasonable assumptions based on the intended meaning of
the sentence. Moreover, once we have translated sentences from English into logical expres-
sions, we can analyze these logical expressions to determine their truth values, we can manip-
ulate them, and we can use rules of inference (which are discussed in Section 1.6) to reason

about them.

To illustrate the process of translating an English sentence into a logical expression, con-

sider Examples 1 and 2.
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EXAMPLE 1

Extra )
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EXAMPLE 2

EXAMPLE 3

Extra )
Examples

EXAMPLE 4

How can this English sentence be translated into a logical expression?

“You can access the Internet from campus only if you are a computer science major or you
are not a freshman.”

Solution: There are many ways to translate this sentence into a logical expression. Although it is
possible to represent the sentence by a single propositional variable, such as p, this would not be
useful when analyzing its meaning or reasoning with it. Instead, we will use propositional vari-
ables to represent each sentence part and determine the appropriate logical connectives between
them. In particular, we let a, ¢, and f represent “You can access the Internet from campus,” “You
are a computer science major,” and “You are a freshman,” respectively. Noting that “only if” is
one way a conditional statement can be expressed, this sentence can be represented as

a— (V) <

How can this English sentence be translated into a logical expression?

“You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16
years old.”

Solution: Let g, r, and s represent “You can ride the roller coaster,” ““You are under 4 feet tall,”
and “You are older than 16 years old,” respectively. Then the sentence can be translated to

(r Ams) = 1g.

There are other ways to represent the original sentence as a logical expression, but the one
we have used should meet our needs. |

1.2.3 System Specifications

Translating sentences in natural language (such as English) into logical expressions is an essen-
tial part of specifying both hardware and software systems. System and software engineers take
requirements in natural language and produce precise and unambiguous specifications that can
be used as the basis for system development. Example 3 shows how compound propositions can
be used in this process.

Express the specification “The automated reply cannot be sent when the file system is full”
using logical connectives.

Solution: One way to translate this is to let p denote “The automated reply can be sent” and g de-
note “The file system is full.” Then —p represents “It is not the case that the automated reply can
be sent,” which can also be expressed as “The automated reply cannot be sent.” Consequently,
our specification can be represented by the conditional statement g — —p. <

System specifications should be consistent, that is, they should not contain conflicting re-
quirements that could be used to derive a contradiction. When specifications are not consistent,
there would be no way to develop a system that satisfies all specifications.

Determine whether these system specifications are consistent:

“The diagnostic message is stored in the buffer or it is retransmitted.”
“The diagnostic message is not stored in the buffer.”
“If the diagnostic message is stored in the buffer, then it is retransmitted.”
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Solution: To determine whether these specifications are consistent, we first express them using
logical expressions. Let p denote “The diagnostic message is stored in the buffer” and let g
denote “The diagnostic message is retransmitted.” The specifications can then be written as
pV g, 7p, and p — g. An assignment of truth values that makes all three specifications true
must have p false to make —p true. Because we want p V g to be true but p must be false, ¢ must
be true. Because p — ¢ is true when p is false and ¢ is true, we conclude that these specifications
are consistent, because they are all true when p is false and ¢ is true. We could come to the same
conclusion by use of a truth table to examine the four possible assignments of truth values to p
and q. <

Do the system specifications in Example 4 remain consistent if the specification “The diagnostic
message is not retransmitted” is added?

Solution: By the reasoning in Example 4, the three specifications from that example are true

only in the case when p is false and g is true. However, this new specification is =g, which is
false when ¢ is true. Consequently, these four specifications are inconsistent. <

1.2.4 Boolean Searches

Logical connectives are used extensively in searches of large collections of information, such
as indexes of Web pages. Because these searches employ techniques from propositional logic,
they are called Boolean searches.

In Boolean searches, the connective AND is used to match records that contain both of
two search terms, the connective OR is used to match one or both of two search terms, and the
connective NOT (sometimes written as AND NOT ) is used to exclude a particular search term.
Careful planning of how logical connectives are used is often required when Boolean searches
are used to locate information of potential interest. Example 6 illustrates how Boolean searches
are carried out.

Web Page Searching Most Web search engines support Boolean searching techniques, which
is useful for finding Web pages about particular subjects. For instance, using Boolean searching
to find Web pages about universities in New Mexico, we can look for pages matching NEW
AND MEXICO AND UNIVERSITIES. The results of this search will include those pages that
contain the three words NEW, MEXICO, and UNIVERSITIES. This will include all of the
pages of interest, together with others such as a page about new universities in Mexico. (Note
that Google, and many other search engines, do require the use of “AND” because such search
engines use all search terms by default.) Most search engines support the use of quotation marks
to search for specific phrases. So, it may be more effective to search for pages matching “NEW
MEXICO” AND UNIVERSITIES.

Next, to find pages that deal with universities in New Mexico or Arizona, we can search
for pages matching (NEW AND MEXICO OR ARIZONA) AND UNIVERSITIES. (Note: Here
the AND operator takes precedence over the OR operator. Also, in Google, the terms used for
this search would be NEW MEXICO OR ARIZONA.) The results of this search will include
all pages that contain the word UNIVERSITIES and either both the words NEW and MEXICO
or the word ARIZONA. Again, pages besides those of interest will be listed. Finally, to find
Web pages that deal with universities in Mexico (and not New Mexico), we might first look
for pages matching MEXICO AND UNIVERSITIES, but because the results of this search will
include pages about universities in New Mexico, as well as universities in Mexico, it might be
better to search for pages matching (MEXICO AND UNIVERSITIES) NOT NEW. The results
of this search include pages that contain both the words MEXICO and UNIVERSITIES but
do not contain the word NEW. (In Google, and many other search engines, the word “NOT” is
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replaced by the symbol “-”. In Google, the terms used for this last search would be MEXICO
UNIVERSITIES -NEW.) <

1.2.5 Logic Puzzles

Puzzles that can be solved using logical reasoning are known as logic puzzles. Solving logic
puzzles is an excellent way to practice working with the rules of logic. Also, computer programs
designed to carry out logical reasoning often use well-known logic puzzles to illustrate their
capabilities. Many people enjoy solving logic puzzles, published in periodicals, books, and on
the Web, as a recreational activity.

The next three examples present logic puzzles, in increasing level of difficulty. Many others
can be found in the exercises. In Section 1.3 we will discuss the n-queens puzzle and the game
of Sudoku.

As areward for saving his daughter from pirates, the King has given you the opportunity to win
a treasure hidden inside one of three trunks. The two trunks that do not hold the treasure are
empty. To win, you must select the correct trunk. Trunks 1 and 2 are each inscribed with the
message “This trunk is empty,” and Trunk 3 is inscribed with the message “The treasure is in
Trunk 2.” The Queen, who never lies, tells you that only one of these inscriptions is true, while
the other two are wrong. Which trunk should you select to win?

Solution: Let p; be the proposition that the treasure is in Trunk i, for i = 1, 2, 3. To translate into
propositional logic the Queen’s statement that exactly one of the inscriptions is true, we observe
that the inscriptions on Trunk 1, Trunk 2, and Trunk 3, are —p,, —p,, and p,, respectively. So,
her statement can be translated to

(py A2(Epy) ATpy) V (2(Tpy) Apy ATpy) V (2(Tpy) A () A po)).

Using the rules for propositional logic, we see that this is equivalent to (p; A =p,) V (p; A p,). By
the distributive law, (p; A —p,) V (p; A p,) is equivalent to p; A (—p, V p,). But because —p, vV
D, must be true, this is then equivalent to p; A T, which is in turn equivalent to p,. So the treasure
is in Trunk 1 (that is, p, is true), and p, and p; are false; and the inscription on Trunk 2 is the
only true one. (Here, we have used the concept of propositional equivalence, which is discussed
in Section 1.3.) |

Next, we introduce a puzzle originally posed by Raymond Smullyan, a master of logic
puzzles, who has published more than a dozen books containing challenging puzzles that involve
logical reasoning.

In [Sm78] Smullyan posed many puzzles about an island that has two kinds of inhabitants,
knights, who always tell the truth, and their opposites, knaves, who always lie. You encounter
two people A and B. What are A and B if A says “B is a knight” and B says “The two of us are
opposite types”?

Solution: Let p and g be the statements that A is a knight and B is a knight, respectively, so that
—p and —q are the statements that A is a knave and B is a knave, respectively.

We first consider the possibility that A is a knight; this is the statement that p is true. If A is
a knight, then he is telling the truth when he says that B is a knight, so that ¢ is true, and A and B
are the same type. However, if B is a knight, then B’s statement that A and B are of opposite
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types, the statement (p A ~q) V (7p A q), would have to be true, which it is not, because A and
B are both knights. Consequently, we can conclude that A is not a knight, that is, that p is false.

If A is a knave, then because everything a knave says is false, A’s statement that B is
a knight, that is, that ¢ is true, is a lie. This means that ¢ is false and B is also a knave.
Furthermore, if B is a knave, then B’s statement that A and B are opposite types is a lie,
which is consistent with both A and B being knaves. We can conclude that both A and B are
knaves. <

We pose more of Smullyan’s puzzles about knights and knaves in Exercises 23-27. In Ex-
ercises 28-35 we introduce related puzzles where we have three types of people, knights and
knaves as in this puzzle together with spies who can lie.

Next, we pose a puzzle known as the muddy children puzzle for the case of two children.

A father tells his two children, a boy and a girl, to play in their backyard without getting dirty.
However, while playing, both children get mud on their foreheads. When the children stop play-
ing, the father says “At least one of you has a muddy forehead,” and then asks the children to
answer “Yes” or “No” to the question: “Do you know whether you have a muddy forehead?” The
father asks this question twice. What will the children answer each time this question is asked,
assuming that a child can see whether his or her sibling has a muddy forehead, but cannot see
his or her own forehead? Assume that both children are honest and that the children answer each
question simultaneously.

Solution: Let s be the statement that the son has a muddy forehead and let d be the statement that
the daughter has a muddy forehead. When the father says that at least one of the two children
has a muddy forehead, he is stating that the disjunction s V d is true. Both children will answer
“No” the first time the question is asked because each sees mud on the other child’s forehead.
That is, the son knows that d is true, but does not know whether s is true, and the daughter
knows that s is true, but does not know whether d is true.

After the son has answered “No” to the first question, the daughter can determine that d
must be true. This follows because when the first question is asked, the son knows that s v d is
true, but cannot determine whether s is true. Using this information, the daughter can conclude
that d must be true, for if d were false, the son could have reasoned that because s V d is true,

RAYMOND SMULLYAN (1919-2017) Raymond Smullyan, the son of a businessman and a homemaker, was
born in Far Rockaway, Queens, New York. He dropped out of high school because he wanted to study what he
was really interested in and not standard high school material. After attending Pacific College and Reed College
in Oregon, he earned an undergraduate degree in mathematics at the University of Chicago in 1955. He paid his
college expenses by performing magic tricks at parties and clubs, using the stage name Five-Ace Merrill. He
obtained a Ph.D. in logic in 1959 at Princeton, studying under Alonzo Church. After graduating from Princeton,
he taught mathematics and logic at Dartmouth College, Princeton University, Yeshiva University, and the City
University of New York. He joined the philosophy department at Indiana University in 1981, where be became
an emeritus professor.

Smullyan wrote many books on recreational logic and mathematics, including Satan, Cantor, and Infin-
ity; What Is the Name of This Book?; The Lady or the Tiger?; Alice in Puzzleland; To Mock a Mockingbird;

Forever Undecided; and The Riddle of Scheherazade: Amazing Logic Puzzles, Ancient and Modern. Because his logic puzzles
are challenging, entertaining, and thought-provoking, he was considered to be a modern-day Lewis Carroll. Smullyan also wrote
several books about the application of deductive logic to chess, three collections of philosophical essays and aphorisms, and several
advanced books on mathematical logic and set theory. He was particularly interested in self-reference and worked on extending
some of Godel’s results that show that it is impossible to write a computer program that can solve all mathematical problems. He
was also particularly interested in explaining ideas from mathematical logic to the public.

Smullyan was a talented musician and often played piano with his second wife, who was a concert-level pianist. Making
telescopes was one of his hobbies and he was interested in optics and stereo photography. He said, “I’ve never had a conflict between
teaching and research as some people do because when I'm teaching, I'm doing research.” Smullyan is the subject of a documentary
short film entitled This Film Needs No Title.
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In Chapter 12 we will
design some useful
circuits.

EXAMPLE 10

then s must be true, and he would have answered “Yes” to the first question. The son can reason
in a similar way to determine that s must be true. It follows that both children answer “Yes” the
second time the question is asked. <

1.2.6 Logic Circuits

Propositional logic can be applied to the design of computer hardware. This was first observed
in 1938 by Claude Shannon in his MIT master’s thesis. In Chapter 12 we will study this topic
in depth. (See that chapter for a biography of Shannon.) We give a brief introduction to this
application here.

A logic circuit (or digital circuit) receives input signals p,, p,, ..., p,, each a bit [either
0 (off) or 1 (on)], and produces output signals sy, s,, ..., s,, each a bit. In this section we will
restrict our attention to logic circuits with a single output signal; in general, digital circuits may
have multiple outputs.

Complicated digital circuits can be constructed from three basic circuits, called gates,
shown in Figure 1. The inverter, or NOT gate, takes an input bit p, and produces as output
—p. The OR gate takes two input signals p and ¢, each a bit, and produces as output the signal
pV q. Finally, the AND gate takes two input signals p and ¢, each a bit, and produces as out-
put the signal p A g. We use combinations of these three basic gates to build more complicated
circuits, such as that shown in Figure 2.

-p p pVg p ——P PAq
p —}l So——p
q —P, g ——P

Inverter OR gate AND gate

FIGURE 1 Basic logic gates.

Given a circuit built from the basic logic gates and the inputs to the circuit, we determine
the output by tracing through the circuit, as Example 10 shows.

Determine the output for the combinatorial circuit in Figure 2.

Solution: In Figure 2 we display the output of each logic gate in the circuit. We see that the
AND gate takes input of p and —g, the output of the inverter with input g, and produces p A
—¢g. Next, we note that the OR gate takes input p A =g and -, the output of the inverter with
input r, and produces the final output (p A =g) V —r. <

Suppose that we have a formula for the output of a digital circuit in terms of negations, dis-
junctions, and conjunctions. Then, we can systematically build a digital circuit with the desired
output, as illustrated in Example 11.

pPATq

P Ag)Vr

—»

FIGURE 2 A combinatorial circuit.
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p r\ pV-r
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o \—) N\ @V AEpV(gVor) .
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“pV(gV-r)

qV r

FIGURE 3 The circuit for (p v —r) A (-p V (g V —r)).

Build a digital circuit that produces the output (p V =r) A (=p V (g V —r)) when given input bits

Solution: To construct the desired circuit, we build separate circuits for p vV =r and for -p V (¢ V
=) and combine them using an AND gate. To construct a circuit for p V =, we use an inverter
to produce —r from the input ». Then, we use an OR gate to combine p and —r. To build a circuit
for =p Vv (g V —r), we first use an inverter to obtain — 7. Then we use an OR gate with inputs ¢
and —r to obtain ¢g Vv —r. Finally, we use another inverter and an OR gate to get =p Vv (¢ V —r)

To complete the construction, we employ a final AND gate, with inputs p V =r and =p V
(g Vv —r). The resulting circuit is displayed in Figure 3. <

We will study logic circuits in great detail in Chapter 12 in the context of Boolean algebra,

EXAMPLE 11
p, g, and r.
from the inputs p and g V —r.
and with different notation.
Exercises

In Exercises 1-6, translate the given statement into proposi-
tional logic using the propositions provided.

1.

You cannot edit a protected Wikipedia entry unless you
are an administrator. Express your answer in terms of e:
“You can edit a protected Wikipedia entry” and a: “You
are an administrator.”

. You can see the movie only if you are over 18 years old

or you have the permission of a parent. Express your an-
swer in terms of m: ““You can see the movie,” e: ““You are
over 18 years old,” and p: “You have the permission of a
parent.”

. You can graduate only if you have completed the require-

ments of your major and you do not owe money to the
university and you do not have an overdue library book.
Express your answer in terms of g: “You can graduate,”
m: “You owe money to the university,” : “You have com-
pleted the requirements of your major,” and b: ““You have
an overdue library book.”

. To use the wireless network in the airport you must pay

the daily fee unless you are a subscriber to the service.
Express your answer in terms of w: “You can use the
wireless network in the airport,” d: “You pay the daily
fee,” and s: “You are a subscriber to the service.”

. You are eligible to be President of the U.S.A. only if you

are at least 35 years old, were born in the U.S.A., or at the

time of your birth both of your parents were citizens, and
you have lived at least 14 years in the country. Express
your answer in terms of e: “You are eligible to be Pres-
ident of the U.S.A.,” a: “You are at least 35 years old,”
b: “You were born in the U.S.A.,” p: “At the time of your
birth, both of your parents were citizens,” and r: “You
have lived at least 14 years in the U.S.A.”

. You can upgrade your operating system only if you have a

32-bit processor running at 1 GHz or faster, at least 1 GB
RAM, and 16 GB free hard disk space, or a 64-bit pro-
cessor running at 2 GHz or faster, at least 2 GB RAM,
and at least 32 GB free hard disk space. Express your an-
swer in terms of u#: “You can upgrade your operating sys-
tem,” b3,: “You have a 32-bit processor,” bg,: “You have
a 64-bit processor,” g,: “Your processor runs at 1 GHz or
faster,” g,: ““Your processor runs at 2 GHz or faster,” r;:
“Your processor has at least 1 GB RAM,” r,: “Your pro-
cessor has at least 2 GB RAM,” h¢: “You have at least
16 GB free hard disk space,” and h,: “You have at least
32 GB free hard disk space.”

. Express these system specifications using the proposi-

tions p: “The message is scanned for viruses” and ¢: “The

message was sent from an unknown system” together

with logical connectives (including negations).

a) “The message is scanned for viruses whenever the
message was sent from an unknown system.”
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b) “The message was sent from an unknown system but
it was not scanned for viruses.”

¢) “Itis necessary to scan the message for viruses when-
ever it was sent from an unknown system.”

d) “When a message is not sent from an unknown sys-
tem it is not scanned for viruses.”

Express these system specifications using the proposi-
tions p: “The user enters a valid password,” g: “Access
is granted,” and r: “The user has paid the subscription
fee” and logical connectives (including negations).

a) “The user has paid the subscription fee, but does not
enter a valid password.”

b) “Access is granted whenever the user has paid the
subscription fee and enters a valid password.”

¢) “Access is denied if the user has not paid the subscrip-
tion fee.”

d) “If the user has not entered a valid password but has
paid the subscription fee, then access is granted.”

Are these system specifications consistent? “The system
is in multiuser state if and only if it is operating normally.
If the system is operating normally, the kernel is func-
tioning. The kernel is not functioning or the system is in
interrupt mode. If the system is not in multiuser state,
then it is in interrupt mode. The system is not in interrupt
mode.”

Are these system specifications consistent? “Whenever
the system software is being upgraded, users cannot ac-
cess the file system. If users can access the file system,
then they can save new files. If users cannot save new
files, then the system software is not being upgraded.”

Are these system specifications consistent? “The router
can send packets to the edge system only if it supports the
new address space. For the router to support the new ad-
dress space it is necessary that the latest software release
be installed. The router can send packets to the edge sys-
tem if the latest software release is installed. The router
does not support the new address space.”

Are these system specifications consistent? “If the file
system is not locked, then new messages will be queued.
If the file system is not locked, then the system is func-
tioning normally, and conversely. If new messages are not
queued, then they will be sent to the message buffer. If the
file system is not locked, then new messages will be sent
to the message buffer. New messages will not be sent to
the message buffer.”

What Boolean search would you use to look for Web
pages about beaches in New Jersey? What if you wanted
to find Web pages about beaches on the isle of Jersey (in
the English Channel)?

What Boolean search would you use to look for Web
pages about hiking in West Virginia? What if you wanted
to find Web pages about hiking in Virginia, but not in
West Virginia?

What Google search would you use to look for Web pages
relating to Ethiopian restaurants in New York or New
Jersey?

16.

17

18.

*19.

20.

21.

22,

What Google search would you use to look for men’s
shoes or boots not designed for work?

Suppose that in Example 7, the inscriptions on Trunks 1,
2, and 3 are “The treasure is in Trunk 3,” “The treasure is
in Trunk 1,” and “This trunk is empty.” For each of these
statements, determine whether the Queen who never
lies could state this, and if so, which trunk the treasure
is in.

a) “All the inscriptions are false.”

b) “Exactly one of the inscriptions is true.”

¢) “Exactly two of the inscriptions are true.”

d) “All three inscriptions are true.”

Suppose that in Example 7 there are treasures in two of
the three trunks. The inscriptions on Trunks 1, 2, and 3
are “This trunk is empty,” “There is a treasure in Trunk
1,” and “There is a treasure in Trunk 2.” For each of these
statements, determine whether the Queen who never lies
could state this, and if so, which two trunks the treasures
are in.

a) “All the inscriptions are false.”

b) “Exactly one of the inscriptions is true.”
¢) “Exactly two of the inscriptions are true.”
d) “All three inscriptions are true.”

Each inhabitant of a remote village always tells the truth
or always lies. A villager will give only a “Yes” or a “No”
response to a question a tourist asks. Suppose you are a
tourist visiting this area and come to a fork in the road.
One branch leads to the ruins you want to visit; the other
branch leads deep into the jungle. A villager is standing
at the fork in the road. What one question can you ask the
villager to determine which branch to take?

An explorer is captured by a group of cannibals. There are
two types of cannibals—those who always tell the truth
and those who always lie. The cannibals will barbecue
the explorer unless he can determine whether a particu-
lar cannibal always lies or always tells the truth. He is
allowed to ask the cannibal exactly one question.

a) Explain why the question “Are you a liar?” does not
work.

b) Find a question that the explorer can use to determine
whether the cannibal always lies or always tells the
truth.

When three professors are seated in a restaurant, the host-
ess asks them: “Does everyone want coffee?”” The first
professor says “I do not know.” The second professor then
says “I do not know.” Finally, the third professor says
“No, not everyone wants coffee.” The hostess comes back
and gives coffee to the professors who want it. How did
she figure out who wanted coffee?

When planning a party you want to know whom to in-
vite. Among the people you would like to invite are three
touchy friends. You know that if Jasmine attends, she will
become unhappy if Samir is there, Samir will attend only
if Kanti will be there, and Kanti will not attend unless
Jasmine also does. Which combinations of these three
friends can you invite so as not to make someone un-

happy?



Exercises 23-27 relate to inhabitants of the island of knights

and knaves created by Smullyan, where knights always tell the

truth and knaves always lie. You encounter two people, A and

B. Determine, if possible, what A and B are if they address you

in the ways described. If you cannot determine what these two

people are, can you draw any conclusions?

23. A says “At least one of us is a knave” and B says nothing.

24. A says “The two of us are both knights” and B says “A is
a knave.”

25. A says “I am a knave or B is a knight” and B says nothing.

26. Both A and B say “I am a knight.”

27. A says “We are both knaves” and B says nothing.

Exercises 28-35 relate to inhabitants of an island on which
there are three kinds of people: knights who always tell the
truth, knaves who always lie, and spies (called normals by
Smullyan [Sm78]) who can either lie or tell the truth. You
encounter three people, A, B, and C. You know one of these
people is a knight, one is a knave, and one is a spy. Each of the
three people knows the type of person each of other two is. For
each of these situations, if possible, determine whether there
is a unique solution and determine who the knave, knight, and
spy are. When there is no unique solution, list all possible so-
lutions or state that there are no solutions.

28. A says “C is the knave,” B says “A is the knight,” and C
says “I am the spy.”

29. A says “I am the knight,” B says “I am the knave,” and C
says “B is the knight.”

30. A says “T am the knave,” B says “I am the knave,” and C
says “T am the knave.”

31. A says “I am the knight,” B says “A is telling the truth,”
and C says “I am the spy.”

32. A says “T am the knight,” B says “A is not the knave,” and
C says “B is not the knave.”

33. A says “T am the knight,” B says “I am the knight,” and C
says “T am the knight.”

34. A says “I am not the spy,” B says “I am not the spy,” and
C says “A is the spy.”

35. A says “I am not the spy,” B says “I am not the spy,” and
C says “I am not the spy.”

Exercises 3642 are puzzles that can be solved by translating

statements into logical expressions and reasoning from these

expressions using truth tables.

36. The police have three suspects for the murder of Mr.
Cooper: Mr. Smith, Mr. Jones, and Mr. Williams. Smith,
Jones, and Williams each declare that they did not kill
Cooper. Smith also states that Cooper was a friend of
Jones and that Williams disliked him. Jones also states
that he did not know Cooper and that he was out of town
the day Cooper was killed. Williams also states that he
saw both Smith and Jones with Cooper the day of the
killing and that either Smith or Jones must have killed
him. Can you determine who the murderer was if

a) one of the three men is guilty, the two innocent men
are telling the truth, but the statements of the guilty
man may or may not be true?

b) innocent men do not lie?
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37. Steve would like to determine the relative salaries of three
coworkers using two facts. First, he knows that if Fred
is not the highest paid of the three, then Janice is. Sec-
ond, he knows that if Janice is not the lowest paid, then
Maggie is paid the most. Is it possible to determine the
relative salaries of Fred, Maggie, and Janice from what
Steve knows? If so, who is paid the most and who the
least? Explain your reasoning.

38. Five friends have access to a chat room. Is it possible to
determine who is chatting if the following information is
known? Either Kevin or Heather, or both, are chatting.
Either Randy or Vijay, but not both, are chatting. If Abby
is chatting, so is Randy. Vijay and Kevin are either both
chatting or neither is. If Heather is chatting, then so are
Abby and Kevin. Explain your reasoning.

39. A detective has interviewed four witnesses to a crime.
From the stories of the witnesses the detective has con-
cluded that if the butler is telling the truth then so is the
cook; the cook and the gardener cannot both be telling
the truth; the gardener and the handyman are not both ly-
ing; and if the handyman is telling the truth then the cook
is lying. For each of the four witnesses, can the detec-
tive determine whether that person is telling the truth or
lying? Explain your reasoning.

40. Four friends have been identified as suspects for an unau-
thorized access into a computer system. They have made
statements to the investigating authorities. Alice said,
“Carlos did it.” John said, “I did not do it.” Carlos said,
“Diana did it.” Diana said, “Carlos lied when he said that
Ididit.”

a) If the authorities also know that exactly one of the
four suspects is telling the truth, who did it? Explain
your reasoning.

b) If the authorities also know that exactly one is lying,
who did it? Explain your reasoning.

41. Suppose there are signs on the doors to two rooms. The
sign on the first door reads “In this room there is a lady,
and in the other one there is a tiger”; and the sign on the
second door reads “In one of these rooms, there is a lady,
and in one of them there is a tiger.” Suppose that you
know that one of these signs is true and the other is false.
Behind which door is the lady?

*42. Solve this famous logic puzzle, attributed to Albert Ein-
stein, and known as the zebra puzzle. Five men with

Links ) different nationalities and with different jobs live in con-

secutive houses on a street. These houses are painted
different colors. The men have different pets and have dif-
ferent favorite drinks. Determine who owns a zebra and
whose favorite drink is mineral water (which is one of the
favorite drinks) given these clues: The Englishman lives
in the red house. The Spaniard owns a dog. The Japanese
man is a painter. The Italian drinks tea. The Norwegian
lives in the first house on the left. The green house is im-
mediately to the right of the white one. The photographer
breeds snails. The diplomat lives in the yellow house.
Milk is drunk in the middle house. The owner of the green
house drinks coffee. The Norwegian’s house is next to the
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blue one. The violinist drinks orange juice. The fox is in
a house next to that of the physician. The horse is in a
house next to that of the diplomat. [Hint: Make a table
where the rows represent the men and columns represent
the color of their houses, their jobs, their pets, and their
favorite drinks and use logical reasoning to determine the
correct entries in the table.]

Freedonia has 50 senators. Each senator is either honest
or corrupt. Suppose you know that at least one of the
Freedonian senators is honest and that, given any two
Freedonian senators, at least one is corrupt. Based on these
facts, can you determine how many Freedonian senators are
honest and how many are corrupt? If so, what is the answer?
Find the output of each of these combinatorial circuits.

a) p

45.

46.

47.

Find the output of each of these combinatorial circuits.

a) P

b

Construct a combinatorial circuit using inverters,
OR gates, and AND gates that produces the output
(p A1) V (g A r) from input bits p, g, and r.

Construct a combinatorial circuit using inverters,
OR gates, and AND gates that produces the output
((=pV-r)A=q)V (7p Ag V r)) from input bits p, g,
and r.

Propositional Equivalences

Definition 1

EXAMPLE 1

1.3.1 Introduction

An important type of step used in a mathematical argument is the replacement of a statement
with another statement with the same truth value. Because of this, methods that produce propo-
sitions with the same truth value as a given compound proposition are used extensively in the
construction of mathematical arguments. Note that we will use the term “compound proposi-
tion” to refer to an expression formed from propositional variables using logical operators, such
aspAgq.

We begin our discussion with a classification of compound propositions according to their
possible truth values.

A compound proposition that is always true, no matter what the truth values of the proposi-
tional variables that occur in it, is called a tautology. A compound proposition that is always
false is called a contradiction. A compound proposition that is neither a tautology nor a con-
tradiction is called a contingency.

Tautologies and contradictions are often important in mathematical reasoning. Example 1 illus-
trates these types of compound propositions.

We can construct examples of tautologies and contradictions using just one propositional vari-
able. Consider the truth tables of p V =p and p A =p, shown in Table 1. Because p Vv —p is always
true, it is a tautology. Because p A —p is always false, it is a contradiction. <
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TABLE 1 Examples of a Tautology
and a Contradiction.

-p pv~—p PATP

T F T F
F T T F

1.3.2 Logical Equivalences

Compound propositions that have the same truth values in all possible cases are called logically
equivalent. We can also define this notion as follows.

The compound propositions p and g are called logically equivalent if p < ¢ is a tautology.
The notation p = ¢ denotes that p and ¢ are logically equivalent.

Remark: The symbol = is not a logical connective, and p = ¢ is not a compound proposition
but rather is the statement that p < ¢ is a tautology. The symbol < is sometimes used instead
of = to denote logical equivalence.

One way to determine whether two compound propositions are equivalent is to use a truth
table. In particular, the compound propositions p and g are equivalent if and only if the columns
giving their truth values agree. Example 2 illustrates this method to establish an extremely
important and useful logical equivalence, namely, that of =(p Vv ¢) with =p A =g. This logi-
cal equivalence is one of the two De Morgan laws, shown in Table 2, named after the English
mathematician Augustus De Morgan, of the mid-nineteenth century.

TABLE 2 De
Morgan’s Laws.

“pA@Q=-pVg
PV =pAg

Show that =(p V ¢g) and =p A =g are logically equivalent.

Solution: The truth tables for these compound propositions are displayed in Table 3. Because
the truth values of the compound propositions =(p V ¢) and =p A =g agree for all possible com-
binations of the truth values of p and g, it follows that =(p Vv g) <> (=p A 2g) is a tautology and

that these compound propositions are logically equivalent. <
TABLE 3 Truth Tables for —(p Vv ¢q) and —p A —q.
p q pvyq A P —q PATY
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T
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EXAMPLE 3

EXAMPLE 4

The next example establishes an extremely important equivalence. It allows us to replace
conditional statements with negations and disjunctions.

Show that p — g and —p Vv g are logically equivalent. (This is known as the conditional-
disjunction equivalence.)

Solution: We construct the truth table for these compound propositions in Table 4. Because the

truth values of =p V ¢ and p — ¢ agree, they are logically equivalent. <
TABLE 4 Truth Tables for —p v g and
p—q.
p q 4 pVq p—q
T T F T T
T F F F F
F T T T T
F F T T T

We will now establish a logical equivalence of two compound propositions involving three
different propositional variables p, ¢, and r. To use a truth table to establish such a logical
equivalence, we need eight rows, one for each possible combination of truth values of these
three variables. We symbolically represent these combinations by listing the truth values of p,
g, and r, respectively. These eight combinations of truth values are TTT, TTF, TFT, TFF, FTT,
FTF, FFT, and FFF; we use this order when we display the rows of the truth table. Note that we
need to double the number of rows in the truth tables we use to show that compound propositions
are equivalent for each additional propositional variable, so that 16 rows are needed to establish
the logical equivalence of two compound propositions involving four propositional variables,
and so on. In general, 2" rows are required if a compound proposition involves n propositional
variables. Because of the rapid growth of 2", more efficient ways are needed to establish logical
equivalences, such as by using ones we already know. This technique will be discussed later.

Show that p V (g A7) and (p V g) A (p V r) are logically equivalent. This is the distributive law
of disjunction over conjunction.

Solution: We construct the truth table for these compound propositions in Table 5. Because the
truth valuesof p V (¢ A r)and (p V g) A (p V 1) agree, these compound propositions are logically
equivalent. <

TABLE 5 A Demonstration Thatp v (g Ar)and (p V q) A (p Vv r) Are Logically

Equivalent.
p q r qgnAr PV I(gAT) rvy pvr eveApvr)
T T T T T T T T
T T F F T T T T
T F T F T T T T
T F F F T T T T
F T T T T T T T
F T F F F T F F
F F T F F F T F
F F F F F F F F




The identities in Table 6
are a special case of
Boolean algebra
identities found in Table
5 of Section 12.1. See
Table 1 in Section 2.2
for analogous set
identities.

1.3 Propositional Equivalences

TABLE 6 Logical Equivalences.

Equivalence Name

pAT=p Identity laws
pvF=p

pvT=T Domination laws
pAF=F

PVP=Dp Idempotent laws
PAP=EPp

—(p)=p Double negation law
pPVg=qVp Commutative laws
PANG=4qAp

pPVvgeVr=pVv(gVvr)
@AQDAT=pA(GAT)

Associative laws

pV@@AN=EPVOAPVT)
PAQ@V=E@PAQV(PAT)

Distributive laws

pAg) =PV g
“(pVg)=PpAg

De Morgan’s laws

pVPAQ=p Absorption laws
PAPV@=p

pvp=T Negation laws
pAp=F

29

Table 6 contains some important equivalences. In these equivalences, T denotes the com-
pound proposition that is always true and F denotes the compound proposition that is always
false. We also display some useful equivalences for compound propositions involving condi-
tional statements and biconditional statements in Tables 7 and 8, respectively. The reader is
asked to verify the equivalences in Tables 6-8 in the exercises.

TABLE 7 Logical Equivalences
Involving Conditional
Statements.

TABLE 8 Logical
Equivalences Involving
Biconditional Statements.

P~ q="PpVgq
pP—2>qg=79—>p
pPVg=ETp—q
pPAG=p = —q)

P9 =pAq
P=>DAP—=>1r=p—>(gAr)
p=rnNAN@g—=1rnN=pVvygy-—r
P=>q9Vp->n=p->(@qVr)
p-=>nnNV@-=nNn=pPAqg —=r

Poqg=@—>q9AQG—p)
pPeogEpeo g
Pog=E@AQV (P AG)
peg=pe g
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Be careful not to apply
logical identities, such
as associative laws,
distributive laws, or De
Morgan’s laws, to
expressions that have a
mix of conjunctions and
disjunctions when the
identities only apply
when all these operators
are the same.

When using De
Morgan’s laws,
remember to change
the logical connective
after you negate.

EXAMPLE 5

Assessment )

The associative law for disjunction shows that the expression p Vv ¢ V r is well defined, in
the sense that it does not matter whether we first take the disjunction of p with ¢ and then
the disjunction of p V g with r, or if we first take the disjunction of ¢ and r and then take the
disjunction of p with g Vv r. Similarly, the expression p A g A r is well defined. By extending
this reasoning, it follows that p; V p, V «-- V p, and p; Ap, A -+ A p, are well defined whenever
P1, P ---, P, are propositions.

Furthermore, note that De Morgan’s laws extend to

(P VPV Vp,) = (P APy A ATp,)

and

APIAPy A AP =PV TPy Ve V).

We will sometimes use the notation \/j'.’:1 p; for p;Vp,V--Vp, and /\j'.’:1 p; for
Py APy A - Ap,. Using this notation, the extended version of De Morgan’s laws can
be written concisely as =(\/_, p;) = AL, “p; and =( AL, p;) = V., “p;. (Methods for
proving these identities will be given in Section 5.1.)

A truth table with 2" rows is needed to prove the equivalence of two compound propositions
in n variables. (Note that the number of rows doubles for each additional propositional variable
added. See Chapter 6 for details about solving counting problems such as this.) Because 2"
grows extremely rapidly as n increases (see Section 3.2), the use of truth tables to establish
equivalences becomes impractical as the number of variables grows. It is quicker to use other
methods, such as employing logical equivalences that we already know. How that can be done
is discussed later in this section.

1.3.3 Using De Morgan’s Laws

The two logical equivalences known as De Morgan’s laws are particularly important. They tell
us how to negate conjunctions and how to negate disjunctions. In particular, the equivalence
—(p V g) = 7p A g tells us that the negation of a disjunction is formed by taking the conjunction
of the negations of the component propositions. Similarly, the equivalence =(p A g) = —p V =g
tells us that the negation of a conjunction is formed by taking the disjunction of the negations
of the component propositions. Example 5 illustrates the use of De Morgan’s laws.

Use De Morgan’s laws to express the negations of “Miguel has a cellphone and he has a laptop
computer” and “Heather will go to the concert or Steve will go to the concert.”

Solution: Let p be “Miguel has a cellphone” and g be “Miguel has a laptop computer.” Then
“Miguel has a cellphone and he has a laptop computer” can be represented by p A g. By the
first of De Morgan’s laws, =(p A g) is equivalent to =p V =g. Consequently, we can express the
negation of our original statement as “Miguel does not have a cellphone or he does not have a
laptop computer.”

Let r be “Heather will go to the concert” and s be “Steve will go to the concert.” Then
“Heather will go to the concert or Steve will go to the concert” can be represented by r Vv s. By
the second of De Morgan’s laws, =(r V ) is equivalent to = A =s. Consequently, we can express
the negation of our original statement as “Heather will not go to the concert and Steve will not
go to the concert.” <
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1.3.4 Constructing New Logical Equivalences

The logical equivalences in Table 6, as well as any others that have been established (such as
those shown in Tables 7 and 8), can be used to construct additional logical equivalences. The
reason for this is that a proposition in a compound proposition can be replaced by a compound
proposition that is logically equivalent to it without changing the truth value of the original
compound proposition. This technique is illustrated in Examples 6-8, where we also use the
fact that if p and ¢ are logically equivalent and ¢ and r are logically equivalent, then p and r are
logically equivalent (see Exercise 60).

EXAMPLE 6 Show that =(p — ¢) and p A —q are logically equivalent.

ii:; ples ) Solution: We could use a truth table to show that these compound propositions are equivalent
(similar to what we did in Example 4). Indeed, it would not be hard to do so. However, we want
to illustrate how to use logical identities that we already know to establish new logical identities,
something that is of practical importance for establishing equivalences of compound proposi-
tions with a large number of variables. So, we will establish this equivalence by developing a
series of logical equivalences, using one of the equivalences in Table 6 at a time, starting with
—(p — ¢) and ending with p A =g. We have the following equivalences.

-(p - q)=-("pVg) by the conditional-disjunction equivalence (Example 3)
= -(p) A-g Dby the second De Morgan law
=pAg by the double negation law

EXAMPLE 7 Show that ~(p V (—p A g)) and =p A g are logically equivalent by developing a series of logical
equivalences.

Solution: We will use one of the equivalences in Table 6 at a time, starting with =(p V (=p A q))
and ending with =p A ~g. (Note: we could also easily establish this equivalence using a truth
table.) We have the following equivalences.

AUGUSTUS DE MORGAN (1806-1871)  Augustus De Morgan was born in India, where his father was a
colonel in the Indian army. De Morgan’s family moved to England when he was 7 months old. He attended
private schools, where in his early teens he developed a strong interest in mathematics. De Morgan studied
at Trinity College, Cambridge, graduating in 1827. Although he considered medicine or law, he decided on
mathematics for his career. He won a position at University College, London, in 1828, but resigned after the
college dismissed a fellow professor without giving reasons. However, he resumed this position in 1836 when
his successor died, remaining until 1866.

De Morgan was a noted teacher who stressed principles over techniques. His students in-

©Bettmann/Gerty Images  cluded many famous mathematicians, including Augusta Ada, Countess of Lovelace, who was Charles

Babbage’s collaborator in his work on computing machines (see page 32 for biographical notes
on Augusta Ada). (De Morgan cautioned the countess against studying too much mathematics, because it might interfere with her
childbearing abilities!)

De Morgan was an extremely prolific writer, publishing more than 1000 articles in more than 15 periodicals. De Morgan also
wrote textbooks on many subjects, including logic, probability, calculus, and algebra. In 1838 he presented what was perhaps the first
clear explanation of an important proof technique known as mathematical induction (discussed in Section 5.1 of this text), a term
he coined. In the 1840s De Morgan made fundamental contributions to the development of symbolic logic. He invented notations
that helped him prove propositional equivalences, such as the laws that are named after him. In 1842 De Morgan presented what
is considered to be the first precise definition of a limit and developed new tests for convergence of infinite series. De Morgan was
also interested in the history of mathematics and wrote biographies of Newton and Halley.

In 1837 De Morgan married Sophia Frend, who wrote his biography in 1882. De Morgan’s research, writing, and teaching left
little time for his family or social life. Nevertheless, he was noted for his kindness, humor, and wide range of knowledge.
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“pVEpAQ)=-pA-(pAg) by the second De Morgan law
=-p A[-(=p)V g] by the first De Morgan law
=-pA(PVq) by the double negation law
=(pAp)V(p A7g) by the second distributive law
=FV(pA-q) because " pAp=F
=(CpA-q)VF by the commutative law for disjunction
=" PpAq by the identity law for F

Consequently =(p V (=ip A q)) and =p A g are logically equivalent. <

EXAMPLE 8 Show that (p A g) = (p V g) is a tautology.

Solution: To show that this statement is a tautology, we will use logical equivalences to demon-
strate that it is logically equivalent to T. (Note: This could also be done using a truth table.)

@A) > PVe=-PAgV (Vg  byExample3
(=pVvVg)V(pVgqg) by the first De Morgan law
=(pVp)V(ngVg) by the associative and commutative

laws for disjunction

=TvT by Example 1 and the commutative
law for disjunction

T by the domination law |

AUGUSTA ADA, COUNTESS OF LOVELACE (1815-1852)  Augusta Ada was the only child from the mar-
riage of the flamboyant and notorious poet Lord Byron and Lady Byron, Annabella Millbanke, who separated
when Ada was 1 month old, because of Lord Byron’s scandalous affair with his half sister. The Lord Byron
had quite a reputation, being described by one of his lovers as “mad, bad, and dangerous to know.” Lady Byron
was noted for her intellect and had a passion for mathematics; she was called by Lord Byron “The Princess of
Parallelograms.” Augusta was raised by her mother, who encouraged her intellectual talents especially in music
and mathematics, to counter what Lady Byron considered dangerous poetic tendencies. At this time, women
were not allowed to attend universities and could not join learned societies. Nevertheless, Augusta pursued
©Hulton Archive/Getty her mathematical studies independently and with mathematicians, including William Frend. She was also en-
Images couraged by another female mathematician, Mary Somerville, and in 1834 at a dinner party hosted by Mary

Somerville, she learned about Charles Babbage’s ideas for a calculating machine, called the Analytic Engine.

In 1838 Augusta Ada married Lord King, later elevated to Earl of Lovelace. Together they had three children.

Augusta Ada continued her mathematical studies after her marriage. Charles Babbage had continued work on his Analytic
Engine and lectured on this in Europe. In 1842 Babbage asked Augusta Ada to translate an article in French describing Babbage’s
invention. When Babbage saw her translation, he suggested she add her own notes, and the resulting work was three times the
length of the original. The most complete accounts of the Analytic Engine are found in Augusta Ada’s notes. In her notes, she
compared the working of the Analytic Engine to that of the Jacquard loom, with Babbage’s punch cards analogous to the cards used
to create patterns on the loom. Furthermore, she recognized the promise of the machine as a general purpose computer much better
than Babbage did. She stated that the “engine is the material expression of any indefinite function of any degree of generality and
complexity.” Her notes on the Analytic Engine anticipate many future developments, including computer-generated music. Augusta
Ada published her writings under her initials A.A.L., concealing her identity as a woman as did many women at a time when women
were not considered to be the intellectual equals of men. After 1845 she and Babbage worked toward the development of a system
to predict horse races. Unfortunately, their system did not work well, leaving Augusta Ada heavily in debt at the time of her death
at an unfortunately young age from uterine cancer.

In 1953 Augusta Ada’s notes on the Analytic Engine were republished more than 100 years after they were written, and after
they had been long forgotten. In his work in the 1950s on the capacity of computers to think (and his influential Turing test for
determining whether a machine is intelligent), Alan Turing responded to Augusta Ada’s statement that “The Analytic Engine has
no pretensions whatever to originate anything. It can do whatever we know how to order it to perform.” This “dialogue” between
Turing and Augusta Ada is still the subject of controversy. Because of her fundamental contributions to computing, the programming
language Ada is named in honor of the Countess of Lovelace.
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1.3.5 Satisfiability

A compound proposition is satisfiable if there is an assignment of truth values to its variables
that makes it true (that is, when it is a tautology or a contingency). When no such assignments
exists, that is, when the compound proposition is false for all assignments of truth values to
its variables, the compound proposition is unsatisfiable. Note that a compound proposition is
unsatisfiable if and only if its negation is true for all assignments of truth values to the variables,
that is, if and only if its negation is a tautology.

When we find a particular assignment of truth values that makes a compound proposition
true, we have shown that it is satisfiable; such an assignment is called a solution of this particular
satisfiability problem. However, to show that a compound proposition is unsatisfiable, we need
to show that every assignment of truth values to its variables makes it false. Although we can
always use a truth table to determine whether a compound proposition is satisfiable, it is often
more efficient not to, as Example 9 demonstrates.

Determine whether each of the compound propositions (pV=g)A(gV -r)A
(rv -p), (PVagVvr)A(pV gV, and PV=g NGV r)A@TVp)A
(»VgVr)A(=pV gV r)is satisfiable.

Solution: Instead of using a truth table to solve this problem, we will reason about truth values.
Note that (p V 7g) A (g V —r) A(rV —p) is true when the three variables p, ¢, and r have the
same truth value (see Exercise 42 of Section 1.1). Hence, it is satisfiable as there is at least
one assignment of truth values for p, ¢, and r that makes it true. Similarly, note that (p V g V
r) A (mp V gV —r) is true when at least one of p, ¢, and r is true and at least one is false (see
Exercise 43 of Section 1.1). Hence, (p V g V r) A (mp V g V —r) is satisfiable, as there is at least
one assignment of truth values for p, ¢, and r that makes it true.

Finally, note that for (p V@) A(@V - ")A(FV-p)AQPVgVTr)A(pV gV -r) to be
true, (pV-g)A(gV - r)A(rv-p)and (pVgVr)A(=pV gV -r) must both be true. For
the first to be true, the three variables must have the same truth values, and for the sec-
ond to be true, at least one of the three variables must be true and at least one must be
false. However, these conditions are contradictory. From these observations we conclude
that no assignment of truth values to p, ¢, and r makes (pV-=g) A(gV r)A(TrV p)A
(PVgVvr)A(pVogV-r)true. Hence, it is unsatisfiable. <

1.3.6 Applications of Satisfiability

Many problems, in diverse areas such as robotics, software testing, artificial intelligence plan-
ning, computer-aided design, machine vision, integrated circuit design, scheduling, computer
networking, and genetics, can be modeled in terms of propositional satisfiability. Although most
applications are quite complex and beyond the scope of this book, we can illustrate how two
puzzles can be modeled as satisfiability problems.

The n-Queens Problem The n-queens problem asks for a placement of n queens on an n X n
chessboard so that no queen can attack another queen. This means that no two queens can be
placed in the same row, in the same column, or on the same diagonal. We display a solution
to the eight-queens problem in Figure 1. (The eight-queens problem dates back to 1848 when
it was proposed by Max Bezzel and was completely solved by Franz Nauck in 1850. We will
return to the n-queens problem in Section 11.4.)

To model the n-queens problem as a satisfiability problem, we introduce n“ variables, p(i, j)
fori=1,2,...,nand j=1,2,...,n. For a given placement of a queens on the chessboard,
p(i, j) is true when there is a queen on the square in the ith row and jth column, and is false

2
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FIGURE 1

otherwise. Note that squares (i, j) and (i, j') are on the same diagonal if either i + i =j + /' or
i —i =j—j. Inthe chessboard in Figure 1, p(6, 2) and p(2, 1) are true, while p(3, 4) and p(5, 4)
are false.

For no two of the n queens to be in the same row, there must be one queen in each row. We
can show that there is one queen in each row by verifying that every row contains at least one
queen and that every row contains at most one queen. We first note that \/;.1:1 p(i, j) asserts that

row i contains at least one queen, and

0, =A\Vrij

i=1 j=1

asserts that every row contains at least one queen.

For every row to include at most one queen, it must be the case that p(i, j) and p(k, j) are
not both true for integers j and k with 1 <j < k < n. Observe that =p(i, j) V p(i, k) asserts that
at least one of —p(i, j) and —p(i, k) is true, which means that at least one of p(i, j) and p(i, k) is
false. So, to check that there is at most one queen in each row, we assert

n n—-1 n
2= AN\ /\ Cpiiv-pk ).
i=1 j=1 k=j+1

To assert that no column contains more than one queen, we assert that

n n—=1 n

0= A\ N\ v -pj).

j=1 i=1 k=i+1

(This assertion, together with the previous assertion that every row contains a queen, implies
that every column contains a queen.)
To assert that no diagonal contains two queens, we assert

n  n—1 min(i—1,n—j)

=AAN N Cpaiv-pi-kk+)

i=2 j=1 k=1
and

n—1 n—1 min(n—i,n—j)

os= AN N Cpahv-pi+kj+k).

i=1 j=1 k=1
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The innermost conjunction in Q, and in Qs for a pair (i, j) runs through the positions on a
diagonal that begin at (i, j) and runs rightward along this diagonal. The upper limits on these
innermost conjunctions identify the last cell in the board on each diagonal.

Putting all this together, we find that the solutions of the n-queens problem are given
by the assignments of truth values to the variables p(i,j), i=1,2,...,nand j=1,2,...,n
that make

O=0,ANO, ANO3AQy A Qs

true.

Using this and other approaches, the number of ways n queens can be placed on a chessboard
so that no queen can attack another has been computed for n < 27. When n = 8 there are 92
such placements, while for n = 16 this number grows to 14,772,512. (See the OEIS discussed
in Section 2.4 for details.) |

Sudoku Sudoku puzzles are constructed using a 9 X 9 grid made up of nine 3 X 3 subgrids,
known as blocks, as shown in Figure 2. For each puzzle, some of the 81 cells, called givens,
are assigned one of the numbers 1, 2, ..., 9, and the other cells are blank. The puzzle is solved
by assigning a number to each blank cell so that every row, every column, and every one of the
nine 3 X 3 blocks contains each of the nine possible numbers. Note that instead of usinga 9 X 9
grid, Sudoku puzzles can be based on n? X n® grids, for any positive integer n, with the n> x n>
grid made up of n*> n X n subgrids.

The popularity of Sudoku dates back to the 1980s when it was introduced in Japan. It
took 20 years for Sudoku to spread to rest of the world, but by 2005, Sudoku puzzles were a
worldwide craze. The name Sudoku is short for the Japanese suuji wa dokushin ni kagiru, which
means “the digits must remain single.” The modern game of Sudoku was apparently designed
in the late 1970s by an American puzzle designer. The basic ideas of Sudoku date back even
further; puzzles printed in French newspapers in the 1890s were quite similar, but not identical,
to modern Sudoku.

Sudoku puzzles designed for entertainment have two additional important properties. First,
they have exactly one solution. Second, they can be solved using reasoning alone, that is, without
resorting to searching all possible assignments of numbers to the cells. As a Sudoku puzzle is
solved, entries in blank cells are successively determined by already known values. For instance,
in the grid in Figure 2, the number 4 must appear in exactly one cell in the second row. How
can we determine in which of the seven blank cells it must appear? First, we observe that 4
cannot appear in one of the first three cells or in one of the last three cells of this row, because
it already appears in another cell in the block each of these cells is in. We can also see that 4

219 4
5 1
4
412
6 7
5
7 3 5
1 9
6

FIGURE 2 A 9 X 9 Sudoku puzzle.
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S

It is tricky setting up the
two inner indices so that
all nine cells in each
square block are
examined.

cannot appear in the fifth cell in this row, as it already appears in the fifth column in the fourth
row. This means that 4 must appear in the sixth cell of the second row.

Many strategies based on logic and mathematics have been devised for solving Sudoku
puzzles (see [Dal0Q], for example). Here, we discuss one of the ways that have been devel-
oped for solving Sudoku puzzles with the aid of a computer, which depends on modeling
the puzzle as a propositional satisfiability problem. Using the model we describe, particular
Sudoku puzzles can be solved using software developed to solve satisfiability problems. Cur-
rently, Sudoku puzzles can be solved in less than 10 milliseconds this way. It should be noted
that there are many other approaches for solving Sudoku puzzles via computers using other
techniques.

To encode a Sudoku puzzle, let p(i, j, n) denote the proposition that is true when the number
n is in the cell in the ith row and jth column. There are 9 X 9 X 9 = 729 such propositions, as i,
J» and n all range from 1 to 9. For example, for the puzzle in Figure 2, the number 6 is given as
the value in the fifth row and first column. Hence, we see that p(5, 1, 6) is true, but p(5, j, 6) is
false forj =2,3,...,9.

Given a particular Sudoku puzzle, we begin by encoding each of the given values. Then,
we construct compound propositions that assert that every row contains every number, every
column contains every number, every 3 X 3 block contains every number, and each cell contains
no more than one number. It follows, as the reader should verify, that the Sudoku puzzle is solved
by finding an assignment of truth values to the 729 propositions p(i, j, n) with i, j, and n each
ranging from 1 to 9 that makes the conjunction of all these compound propositions true. After
listing these assertions, we will explain how to construct the assertion that every row contains
every integer from 1 to 9. We will leave the construction of the other assertions that every
column contains every number and each of the nine 3 X 3 blocks contains every number to the
exercises.

» For each cell with a given value, we assert p(i, j, n) when the cell in row i and column j
has the given value n.

> We assert that every row contains every number:

9 9 9
ANV pGin
> We assert that every column contains every number:

9 9
ANV piiw

j=1 n=1 i=1

> We assert that each of the nine 3 X 3 blocks contains every number:

2 2 9 3 3

/\/\/\VVp(3r+i,3s+j,n)

r=0 s=0 n=1 i=1 j=1

> To assert that no cell contains more than one number, we take the conjunction over all
values of n, n’, i, and j, where each variable ranges from 1 to 9 and n # n’ of p(i, j, n) —

p(i, j, n').

We now explain how to construct the assertion that every row contains every number.
First, to assert that row i contains the number n, we form \/;T;l p(i, j, n). To assert that
row i contains all » numbers, we form the conjunction of these disjunctions over all nine
possible values of n, giving us /\2:1 \/J?:1 p(i, j, n). Finally, to assert that every row contains
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every number, we take the conjunction of /\3:1 \/?:1 p(i, j, n) over all nine rows. This gives

us /\?:1 /\3:1 \/;f):1 p(i, j,n). (Exercises 71 and 72 ask for explanations of the assertions
that every column contains every number and that each of the nine 3 X 3 blocks contains
every number.)

Given a particular Sudoku puzzle, to solve this puzzle we can find a solution to the satisfi-
ability problems that asks for a set of truth values for the 729 variables p(i, j, n) that makes the
conjunction of all the listed assertions true. <

1.3.7 Solving Satisfiability Problems

A truth table can be used to determine whether a compound proposition is satisfiable, or
equivalently, whether its negation is a tautology (see Exercise 64). This can be done by
hand for a compound proposition with a small number of variables, but when the number
of variables grows, this becomes impractical. For instance, there are 220 = 1,048,576 rows
in the truth table for a compound proposition with 20 variables. Thus, you need a com-
puter to help you determine, in this way, whether a compound proposition in 20 variables is
satisfiable.

When many applications are modeled, questions concerning the satisfiability of compound
propositions with hundreds, thousands, or millions of variables arise. Note, for example, that
when there are 1000 variables, checking every one of the 2!°° (a number with more than 300
decimal digits) possible combinations of truth values of the variables in a compound proposi-
tion cannot be done by a computer in even trillions of years. No procedure is known that a com-
puter can follow to determine in a reasonable amount of time whether an arbitrary compound
proposition in such a large number of variables is satisfiable. However, progress has been made
developing methods for solving the satisfiability problem for the particular types of compound
propositions that arise in practical applications, such as for the solution of Sudoku puzzles.
Many computer programs have been developed for solving satisfiability problems which have
practical use. In our discussion of the subject of algorithms in Chapter 3, we will discuss this
question further. In particular, we will explain the important role the propositional satisfiability
problem plays in the study of the complexity of algorithms.

HENRY MAURICE SHEFFER (1883-1964) Henry Maurice Sheffer, born to Jewish parents in the western

| Ukraine, emigrated to the United States in 1892 with his parents and six siblings. He studied at the Boston Latin
| School before entering Harvard, where he completed his undergraduate degree in 1905, his master’s in 1907,

and his Ph.D. in philosophy in 1908. After holding a postdoctoral position at Harvard, Henry traveled to Europe
on a fellowship. Upon returning to the United States, he became an academic nomad, spending one year each
at the University of Washington, Cornell, the University of Minnesota, the University of Missouri, and City

8l College in New York. In 1916 he returned to Harvard as a faculty member in the philosophy department. He
| remained at Harvard until his retirement in 1952.

Sheffer introduced what is now known as the Sheffer stroke in 1913; it became well known only after
its use in the 1925 edition of Whitehead and Russell’s Principia Mathematica. In this same edition Russell
wrote that Sheffer had invented a powerful method that could be used to simplify the Principia. Because of
this comment, Sheffer was something of a mystery man to logicians, especially because Shefter, who published

little in his career, never published the details of this method, only describing it in mimeographed notes and in a brief published

abstract.

Sheffer was a dedicated teacher of mathematical logic. He liked his classes to be small and did not like auditors. When strangers
appeared in his classroom, Sheffer would order them to leave, even his colleagues or distinguished guests visiting Harvard. Sheffer
was barely five feet tall; he was noted for his wit and vigor, as well as for his nervousness and irritability. Although widely liked, he
was quite lonely. He is noted for a quip he spoke at his retirement: “Old professors never die, they just become emeriti.” Sheffer is
also credited with coining the term “Boolean algebra” (the subject of Chapter 12 of this text). Sheffer was briefly married and lived
most of his later life in small rooms at a hotel packed with his logic books and vast files of slips of paper he used to jot down his
ideas. Unfortunately, Sheffer suffered from severe depression during the last two decades of his life.
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Exercises

10.

L1,

LS 2.

. Use truth tables to verify these equivalences.

a) pAT=p b) pvF=p
¢c) pAF=F d pvT=T
€ pVp=p f) pAp=p

. Show that =(-p) and p are logically equivalent.
. Use truth tables to verify the commutative laws

a) pvVg=qVp. b) pAg=gAp.

. Use truth tables to verify the associative laws

a) pvVqgVr=pv(gVr).
b) pA@QAr=pA(GAT).

. Use a truth table to verify the distributive law

PA@VIEPAQYV(PAD.

. Use a truth table to verify the first De Morgan law

“(pAg)=-pVq.

. Use De Morgan’s laws to find the negation of each of the

following statements.

a) Jan is rich and happy.

b) Carlos will bicycle or run tomorrow.
¢) Mei walks or takes the bus to class.
d) Ibrahim is smart and hard working.

. Use De Morgan’s laws to find the negation of each of the

following statements.

a) Kwame will take a job in industry or go to graduate
school.

b) Yoshiko knows Java and calculus.

¢) James is young and strong.

d) Rita will move to Oregon or Washington.

. For each of these compound propositions, use the

conditional-disjunction equivalence (Example 3) to find
an equivalent compound proposition that does not in-
volve conditionals.

a) p— g

b) (p—=q)—r

¢ (7q—=p)—= P =79

For each of these compound propositions, use the
conditional-disjunction equivalence (Example 3) to find
an equivalent compound proposition that does not in-
volve conditionals.

a) p—> g

b) (pvq) = p

¢ p—=>=9)—=>Cp—9q

Show that each of these conditional statements is a tau-
tology by using truth tables.

a) (pAg) —p b) p—> (Vg
) p—>P—9q d pAgp—>P-9
e) “(p—>q —p f) (-9 > g

Show that each of these conditional statements is a tau-
tology by using truth tables.

a) [(pAlpVPl—-q

b) [p—=>Alg—>nN]—>@p-—r)
) pAp—=q9l—gq

D [pVOPApPp—=>1Alg—>n]—>r

=

13. Show that each conditional statement in Exercise 11 is
a tautology using the fact that a conditional statement is
false exactly when the hypothesis is true and the conclu-
sion is false. (Do not use truth tables.)

14. Show that each conditional statement in Exercise 12 is
a tautology using the fact that a conditional statement is
false exactly when the hypothesis is true and the conclu-
sion is false. (Do not use truth tables.)

15. Show that each conditional statement in Exercise 11 is a
tautology by applying a chain of logical identities as in
Example 8. (Do not use truth tables.)

16. Show that each conditional statement in Exercise 12 is a
tautology by applying a chain of logical identities as in
Example 8. (Do not use truth tables.)

17. Use truth tables to verify the absorption laws.

a) pV(pAg) =p b) pA(pVag) =p
18. Determine whether (=p A (p — ¢)) = —g is a tautology.

2"19. Determine whether (=g A (p = ¢)) — —p is a tautology.

Each of Exercises 20-32 asks you to show that two compound
propositions are logically equivalent. To do this, either show
that both sides are true, or that both sides are false, for ex-
actly the same combinations of truth values of the proposi-
tional variables in these expressions (whichever is easier).

20. Show that p < g and (p A g) V (=p A 7g) are logically
equivalent.

21. Show that ~(p < ¢) and p < —q are logically equivalent.
22. Show that p — g and =g — —p are logically equivalent.
23. Show that =p < g and p < —¢ are logically equivalent.
24. Show that =(p @ g) and p < ¢ are logically equivalent.
25. Show that =(p < ¢g) and =p < ¢ are logically equivalent.

26. Show that (p = g) A(p — r) and p — (g A r) are logi-
cally equivalent.

27. Show that (p = r)A(g = r) and (pV q) — r are logi-
cally equivalent.

28. Show that (p = q¢) V(p — r) and p — (¢ V r) are logi-
cally equivalent.

29. Show that (p - r)V (g —» r) and (p A g) — r are logi-
cally equivalent.

30. Show that -p — (¢ — r) and g — (p V r) are logically
equivalent.

31. Show that p & g and (p — ¢q) A (¢ — p) are logically
equivalent.

32. Show that p <& g and =p < —g are logically equivalent.
33. Show that (p — ¢) A (g — r) = (p — r) is a tautology.
34. Show that (p V @) A (-p VvV r) — (g V r) is a tautology.

35. Show that (p - g) — randp — (¢ — r) are notlogically
equivalent.

36. Show that (p A g) = rand (p = r) A (¢ — r) are not log-
ically equivalent.



37.

Show that (p —¢q)— (r—s) and

(g — s) are not logically equivalent.

p—-r -

The dual of a compound proposition that contains only the
logical operators V, A, and = is the compound proposition
obtained by replacing each Vv by A, each A by Vv, each T
by F, and each F by T. The dual of s is denoted by s*.

38.

39.

40.
41.
42,

*% 43,

44.

45.

Find the dual of each of these compound propositions.
a) pvV—q b) pA(gV (rAT))

) (PA7q)V(gAF)

Find the dual of each of these compound propositions.
a) pATgA-r b) (pAgAFr) Vs

o) VAV

When does s* = s, where s is a compound proposition?
Show that (s*)* = s when s is a compound proposition.
Show that the logical equivalences in Table 6, except for
the double negation law, come in pairs, where each pair
contains compound propositions that are duals of each
other.

Why are the duals of two equivalent compound propo-
sitions also equivalent, where these compound proposi-
tions contain only the operators A, V, and =?

Find a compound proposition involving the propositional
variables p, ¢, and r that is true when p and ¢ are true
and r is false, but is false otherwise. [Hint: Use a con-
junction of each propositional variable or its negation.]
Find a compound proposition involving the propositional
variables p, g, and r that is true when exactly two of p, g,
and r are true and is false otherwise. [Hint: Form a dis-
junction of conjunctions. Include a conjunction for each
combination of values for which the compound proposi-
tion is true. Each conjunction should include each of the
three propositional variables or its negations. ]

. Suppose that a truth table in n propositional variables is

specified. Show that a compound proposition with this
truth table can be formed by taking the disjunction of
conjunctions of the variables or their negations, with one
conjunction included for each combination of values for
which the compound proposition is true. The resulting
compound proposition is said to be in disjunctive nor-
mal form.

A collection of logical operators is called functionally com-
plete if every compound proposition is logically equivalent
to a compound proposition involving only these logical oper-
ators.

47.

*48.

*49,

Show that =, A, and V form a functionally complete col-
lection of logical operators. [Hint: Use the fact that ev-
ery compound proposition is logically equivalent to one
in disjunctive normal form, as shown in Exercise 46.]
Show that = and A form a functionally complete col-
lection of logical operators. [Hint: First use a De Mor-
gan law to show that pV ¢ is logically equivalent to
~(7p Ag).]

Show that = and V form a functionally complete collec-
tion of logical operators.

We now present a group of exercises that involve the logical
operators NAND and NOR. The proposition p NAND ¢ is true

1.3 Propositional Equivalences 39

when either p or ¢, or both, are false; and it is false when both p
and g are true. The proposition p NOR q is true when both
p and g are false, and it is false otherwise. The propositions
p NAND g and p NOR g are denoted by p | gand p | ¢, respec-
tively. (The operators | and | are called the Sheffer stroke and
the Peirce arrow after H. M. Sheffer and C. S. Peirce, respec-
tively.)

50.
51.
52.
53.
54.

*55.

56.

57.
58.

*59.

60.

61.

62.

63.

64.

65.

Construct a truth table for the logical operator NAND.

Show that p | g is logically equivalent to =(p A g).

Construct a truth table for the logical operator NOR.

Show that p | ¢ is logically equivalent to ~(p V q).

In this exercise we will show that {]} is a functionally

complete collection of logical operators.

a) Show that p | p is logically equivalent to —p.

b) Show that (p | g) | (» | ¢) is logically equivalent to
Vg

¢) Conclude from parts (a) and (b), and Exercise 49, that
{1} is a functionally complete collection of logical
operators.

Find a compound proposition logically equivalent to

p — q using only the logical operator |.

Show that {|} is a functionally complete collection of log-

ical operators.

Show that p | g and ¢ | p are equivalent.

Show that p | (¢ | r) and (p | ¢) | r are not equivalent, so

that the logical operator | is not associative.

How many different truth tables of compound proposi-

tions are there that involve the propositional variables p

and ¢?

Show that if p, ¢, and r are compound propositions such

that p and ¢ are logically equivalent and ¢ and r are log-

ically equivalent, then p and r are logically equivalent.

The following sentence is taken from the specification of

a telephone system: “If the directory database is opened,

then the monitor is put in a closed state, if the sys-

tem is not in its initial state.” This specification is hard

to understand because it involves two conditional state-

ments. Find an equivalent, easier-to-understand specifi-

cation that involves disjunctions and negations but not

conditional statements.

How many of the disjunctions pV g, -pVgq, gVr,

q vV —r, and =g V —r can be made simultaneously true by

an assignment of truth values to p, ¢, and r?

How many of the disjunctions pV =g Vs, =p V =r Vs,

apVarvas, apVgvVvos, gvVrvas, gVorVoas,

“pV-gV-s, pVrVs,and pVr Vs can be made si-

multaneously true by an assignment of truth values to p,

q, 1, and s?

Show that the negation of an unsatisfiable compound

proposition is a tautology and the negation of a com-

pound proposition that is a tautology is unsatisfiable.

Determine whether each of these compound propositions

is satisfiable.

a) PV AEpVgAEPYg)

b) p = AP > AP =@ AGp =)

) peogApeq)
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66.

67.

68.
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Determine whether each of these compound propositions
is satisfiable.
a) PVgV-NAP@PVYgVs)A(@PV-rv-as)A
(pV gV )A(PV gV s)
b) (pVgVvr)A(FpVgVas)A(PV gV as)A
(pVvarvas)A@EVvgV-ar)A(pVarV-s)
¢) PVgVr)APV-gVas)A(gV-rVvs) A(CpV
rVS)AEpVgVas)APV gV -r) A(CpV
gV S)A(pVaryV-s)
Find the compound proposition Q constructed in Exam-
ple 10 for the n-queens problem, and use it to find all the
ways that n queens can be placed on an n X n chessboard,
so that no queen can attack another when 7 is

a) 2. b) 3. c) 4.
Starting with the compound proposition Q found in Ex-
ample 10, construct a compound proposition that can be

Predicates and Quantifiers

69.

70.

71.

*72.

used to find all solutions of the n-queens problem where
the queen in the first column is in an odd-numbered row.

Show how the solution of a given 4 x 4 Sudoku puzzle
can be found by solving a satisfiability problem.

Construct a compound proposition that asserts that ev-
ery cell of a 9 X9 Sudoku puzzle contains at least one
number.

Explain the steps in the construction of the com-
pound proposition given in the text that asserts that
every column of a 9X9 Sudoku puzzle contains
every number.

Explain the steps in the construction of the compound
proposition given in the text that asserts that each of
the nine 3 X 3 blocks of a 9 X 9 Sudoku puzzle contains
every number.

1.4.1 Introduction

Propositional logic, studied in Sections 1.1-1.3, cannot adequately express the meaning of all
statements in mathematics and in natural language. For example, suppose that we know that

“Every computer connected to the university network is functioning properly.”

No rules of propositional logic allow us to conclude the truth of the statement

“MATH3 is functioning properly,”

where MATH3 is one of the computers connected to the university network. Likewise, we can-
not use the rules of propositional logic to conclude from the statement

“CS2 is under attack by an intruder,”

where CS2 is a computer on the university network, to conclude the truth of

“There is a computer on the university network that is under attack by an intruder.”

In this section we will introduce a more powerful type of logic called predicate logic. We
will see how predicate logic can be used to express the meaning of a wide range of statements
in mathematics and computer science in ways that permit us to reason and explore relationships
between objects. To understand predicate logic, we first need to introduce the concept of a
predicate. Afterward, we will introduce the notion of quantifiers, which enable us to reason
with statements that assert that a certain property holds for all objects of a certain type and with
statements that assert the existence of an object with a particular property.

1.4.2 Predicates

Statements involving variables, such as

“x > 3’” “x — y + 3,”

“x +y — Z,”



EXAMPLE 1

EXAMPLE 2

EXAMPLE 3

Extra )
Examples

EXAMPLE 4
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and

“Computer x is under attack by an intruder,”
and

“Computer x is functioning properly,”

are often found in mathematical assertions, in computer programs, and in system specifications.
These statements are neither true nor false when the values of the variables are not specified. In
this section, we will discuss the ways that propositions can be produced from such statements.

The statement “x is greater than 3™ has two parts. The first part, the variable x, is the subject
of the statement. The second part—the predicate, “is greater than 3”—refers to a property that
the subject of the statement can have. We can denote the statement “x is greater than 3” by P(x),
where P denotes the predicate “is greater than 3” and x is the variable. The statement P(x) is also
said to be the value of the propositional function P at x. Once a value has been assigned to the
variable x, the statement P(x) becomes a proposition and has a truth value. Consider Examples 1
and 2.

Let P(x) denote the statement “x > 3.” What are the truth values of P(4) and P(2)?

Solution: We obtain the statement P(4) by setting x =4 in the statement “x > 3.” Hence,
P(4), which is the statement “4 > 3,” is true. However, P(2), which is the statement “2 > 3,”
is false. <

Let A(x) denote the statement “Computer x is under attack by an intruder.” Suppose that of the
computers on campus, only CS2 and MATH1 are currently under attack by intruders. What are
truth values of A(CS1), A(CS2), and AMATH1)?

Solution: We obtain the statement A(CS1) by setting x = CS1 in the statement “Computer x
is under attack by an intruder.” Because CS1 is not on the list of computers currently under
attack, we conclude that A(CS1) is false. Similarly, because CS2 and MATHI1 are on the list of
computers under attack, we know that A(CS2) and AMMATH]1) are true. <

We can also have statements that involve more than one variable. For instance, consider the
statement “x = y + 3.” We can denote this statement by Q(x, y), where x and y are variables and
Q is the predicate. When values are assigned to the variables x and y, the statement Q(x, y) has
a truth value.

Let Q(x, y) denote the statement “x = y + 3.” What are the truth values of the propositions
0(1,2) and O(3, 0)?

Solution: To obtain Q(1, 2), set x = 1 and y = 2 in the statement Q(x, y). Hence, Q(1, 2) is the
statement “1 =2 + 3,” which is false. The statement Q(3, 0) is the proposition “3 =0+ 3,”
which is true. <

Let A(c, n) denote the statement “Computer ¢ is connected to network n,” where c is a variable
representing a computer and # is a variable representing a network. Suppose that the computer
MATHI1 is connected to network CAMPUS2, but not to network CAMPUS1. What are the
values of AMMATHI1, CAMPUS1) and AOMATH1, CAMPUS?2)?
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Solution: Because MATHI is not connected to the CAMPUSI1 network, we see that AMATHI,
CAMPUS]1) is false. However, because MATHI1 is connected to the CAMPUS2 network, we
see that AIMMATHI1, CAMPUS?2) is true. |

Similarly, we can let R(x, y, z) denote the statement “x + y = z.” When values are assigned
to the variables x, y, and z, this statement has a truth value.

EXAMPLE 5 What are the truth values of the propositions R(1, 2, 3) and R(0, 0, 1)?

Solution: The proposition R(1, 2, 3) is obtained by setting x = 1, y = 2, and z = 3 in the state-
ment R(x, y, z). We see that R(1, 2, 3) is the statement “1 + 2 = 3,” which is true. Also note that

R(0, 0, 1), which is the statement “0 + 0 = 1,” is false. <
In general, a statement involving the n variables x;, x,, ..., x,, can be denoted by
P(xy, x5, ..., X,).
A statement of the form P(x, x,, ..., x,) is the value of the propositional function P at the
n-tuple (x|, x,, ..., x,), and P is also called an n-place predicate or an n-ary predicate.

Propositional functions occur in computer programs, as Example 6 demonstrates.

EXAMPLE 6 Consider the statement

if x> Othenx:=x+1.

Links )

CHARLES SANDERS PEIRCE (1839-1914) Many consider Charles Peirce, born in Cambridge, Mas-
sachusetts, to be the most original and versatile American intellect. He made important contributions to an
amazing number of disciplines, including mathematics, astronomy, chemistry, geodesy, metrology, engineer-
ing, psychology, philology, the history of science, and economics. Peirce was also an inventor, a lifelong student
of medicine, a book reviewer, a dramatist and an actor, a short story writer, a phenomenologist, a logician, and
a metaphysician. He is noted as the preeminent system-building philosopher competent and productive in logic,
mathematics, and a wide range of sciences. He was encouraged by his father, Benjamin Peirce, a professor of
mathematics and natural philosophy at Harvard, to pursue a career in science. Instead, he decided to study logic
and scientific methodology. Peirce attended Harvard (1855-1859) and received a Harvard master of arts degree
(1862) and an advanced degree in chemistry from the Lawrence Scientific School (1863).

In 1861, Peirce became an aide in the U.S. Coast Survey, with the goal of better understanding scientific methodology. His
service for the Survey exempted him from military service during the Civil War. While working for the Survey, Peirce did astro-
nomical and geodesic work. He made fundamental contributions to the design of pendulums and to map projections, applying new
mathematical developments in the theory of elliptic functions. He was the first person to use the wavelength of light as a unit of
measurement. Peirce rose to the position of Assistant for the Survey, a position he held until forced to resign in 1891 when he
disagreed with the direction taken by the Survey’s new administration.

While making his living from work in the physical sciences, Peirce developed a hierarchy of sciences, with mathematics at the
top rung, in which the methods of one science could be adapted for use by those sciences under it in the hierarchy. During this time,
he also founded the American philosophical theory of pragmatism.

The only academic position Peirce ever held was lecturer in logic at Johns Hopkins University in Baltimore (1879—-1884). His
mathematical work during this time included contributions to logic, set theory, abstract algebra, and the philosophy of mathematics.
His work is still relevant today, with recent applications to artificial intelligence. Peirce believed that the study of mathematics could
develop the mind’s powers of imagination, abstraction, and generalization. His diverse activities after retiring from the Survey
included writing for periodicals, contributing to scholarly dictionaries, translating scientific papers, guest lecturing, and textbook
writing. Unfortunately, his income from these pursuits was insufficient to protect him and his second wife from abject poverty. He
was supported in his later years by a fund created by his many admirers and administered by the philosopher William James, his
lifelong friend. Although Peirce wrote and published voluminously in a vast range of subjects, he left more than 100,000 pages
of unpublished manuscripts. Because of the difficulty of studying his unpublished writings, scholars have only recently started to
understand some of his varied contributions. A group of people is devoted to making his work available over the Internet to bring a
better appreciation of Peirce’s accomplishments to the world.

(©Bettmann/Getty Images
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When this statement is encountered in a program, the value of the variable x at that point in the
execution of the program is inserted into P(x), which is “x > 0.” If P(x) is true for this value
of x, the assignment statement x := x + 1 is executed, so the value of x is increased by 1. If
P(x) is false for this value of x, the assignment statement is not executed, so the value of x is
not changed. <

PRECONDITIONS AND POSTCONDITIONS Predicates are also used to establish the
correctness of computer programs, that is, to show that computer programs always produce
the desired output when given valid input. (Note that unless the correctness of a computer
program is established, no amount of testing can show that it produces the desired output
for all input values, unless every input value is tested.) The statements that describe valid
input are known as preconditions and the conditions that the output should satisfy when the
program has run are known as postconditions. As Example 7 illustrates, we use predicates to
describe both preconditions and postconditions. We will study this process in greater detail in
Section 5.5.

Consider the following program, designed to interchange the values of two variables x and y.

temp := X
X =y
y := temp

Find predicates that we can use as the precondition and the postcondition to verify the correct-
ness of this program. Then explain how to use them to verify that for all valid input the program
does what is intended.

Solution: For the precondition, we need to express that x and y have particular values before we
run the program. So, for this precondition we can use the predicate P(x, y), where P(x, y) is the
statement “x = a and y = b,” where a and b are the values of x and y before we run the program.
Because we want to verify that the program swaps the values of x and y for all input values, for
the postcondition we can use Q(x, y), where Q(x, y) is the statement “x = b and y = a.”

To verify that the program always does what it is supposed to do, suppose that the pre-
condition P(x, y) holds. That is, we suppose that the statement “x = g and y = b” is true. This
means that x = a and y = b. The first step of the program, temp := x, assigns the value of x to
the variable temp, so after this step we know that x = a, temp = a, and y = b. After the second
step of the program, x :=y, we know that x = b, temp = a, and y = b. Finally, after the third
step, we know that x = b, temp = a, and y = a. Consequently, after this program is run, the
postcondition Q(x, y) holds, that is, the statement “x = b and y = a” is true. |

1.4.3 Quantifiers

When the variables in a propositional function are assigned values, the resulting statement be-
comes a proposition with a certain truth value. However, there is another important way, called
quantification, to create a proposition from a propositional function. Quantification expresses
the extent to which a predicate is true over a range of elements. In English, the words all, some,
many, none, and few are used in quantifications. We will focus on two types of quantification
here: universal quantification, which tells us that a predicate is true for every element under
consideration, and existential quantification, which tells us that there is one or more element
under consideration for which the predicate is true. The area of logic that deals with predicates
and quantifiers is called the predicate calculus.
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Remember that the truth
value of VxP(x) depends
on the domain!

THE UNIVERSAL QUANTIFIER Many mathematical statements assert that a property is
true for all values of a variable in a particular domain, called the domain of discourse (or the
universe of discourse), often just referred to as the domain. Such a statement is expressed us-
ing universal quantification. The universal quantification of P(x) for a particular domain is the
proposition that asserts that P(x) is true for all values of x in this domain. Note that the domain
specifies the possible values of the variable x. The meaning of the universal quantification of
P(x) changes when we change the domain. The domain must always be specified when a uni-
versal quantifier is used; without it, the universal quantification of a statement is not defined.

The universal quantification of P(x) is the statement
“P(x) for all values of x in the domain.”

The notation VxP(x) denotes the universal quantification of P(x). Here V is called the
universal quantifier. We read VxP(x) as “for all xP(x)” or “for every xP(x).” An element for
which P(x) is false is called a counterexample to VxP(x).

The meaning of the universal quantifier is summarized in the first row of Table 1. We illus-
trate the use of the universal quantifier in Examples 8§—12 and 15.

Let P(x) be the statement “x + 1 > x.” What is the truth value of the quantification VxP(x), where
the domain consists of all real numbers?

Solution: Because P(x) is true for all real numbers x, the quantification
VxP(x)
is true. <

Remark: Generally, an implicit assumption is made that all domains of discourse for quantifiers
are nonempty. Note that if the domain is empty, then VxP(x) is true for any propositional function
P(x) because there are no elements x in the domain for which P(x) is false.

Besides “for all” and “for every,” universal quantification can be expressed in many other
ways, including “all of,” “for each,” “given any,” “for arbitrary,” “for each,” and “for any.”

Remark: 1t is best to avoid using “for any x” because it is often ambiguous as to whether “any”
means “every” or “some.” In some cases, “any” is unambiguous, such as when it is used in
negatives: “There is not any reason to avoid studying.”

A statement VxP(x) is false, where P(x) is a propositional function, if and only if P(x) is not
always true when x is in the domain. One way to show that P(x) is not always true when x is in the
domain is to find a counterexample to the statement VxP(x). Note that a single counterexample is
all we need to establish that VxP(x) is false. Example 9 illustrates how counterexamples are used.

TABLE 1 Quantifiers.

Statement When True? When False?

VxP(x) P(x) is true for every x. There is an x for which P(x) is false.
JxP(x) There is an x for which P(x) is true. P(x) is false for every x.
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Let Q(x) be the statement “x < 2.” What is the truth value of the quantification VxQ(x), where
the domain consists of all real numbers?

Solution: Q(x) is not true for every real number x, because, for instance, Q(3) is false. That is,
x = 3 is a counterexample for the statement VxQ(x). Thus,

VxQ(x)
is false. |

Suppose that P(x) is “x> > 0.” To show that the statement VxP(x) is false where the universe of
discourse consists of all integers, we give a counterexample. We see that x = 0 is a counterex-
ample because x> = 0 when x = 0, so that x? is not greater than 0 when x = 0. <

Looking for counterexamples to universally quantified statements is an important activity
in the study of mathematics, as we will see in subsequent sections of this book.

What does the statement VxN(x) mean if N(x) is “Computer x is connected to the network™ and
the domain consists of all computers on campus?

Solution: The statement VxN(x) means that for every computer x on campus, that computer x is
connected to the network. This statement can be expressed in English as “Every computer on
campus is connected to the network.” <

As we have pointed out, specifying the domain is mandatory when quantifiers are used. The
truth value of a quantified statement often depends on which elements are in this domain, as
Example 12 shows.

What is the truth value of Vx(x2 > x) if the domain consists of all real numbers? What is the
truth value of this statement if the domain consists of all integers?

Solution: The universal quantification Vx(x? > x), where the domain consists of all real num-
bers, is false. For example, (%)2 ? % Note that x> > x if and only if x> — x = x(x — 1) > 0. Con-
sequently, x> > x if and only if x < 0 or x > 1. It follows that Vx(x*> > x) is false if the domain
consists of all real numbers (because the inequality is false for all real numbers x withO < x < 1).
However, if the domain consists of the integers, Vx(x? > x) is true, because there are no integers
xwithO <x < 1. <

THE EXISTENTIAL QUANTIFIER Many mathematical statements assert that there is an
element with a certain property. Such statements are expressed using existential quantification.
With existential quantification, we form a proposition that is true if and only if P(x) is true for
at least one value of x in the domain.

The existential quantification of P(x) is the proposition
“There exists an element x in the domain such that P(x).”

We use the notation IxP(x) for the existential quantification of P(x). Here 3 is called the
existential quantifier.
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A domain must always be specified when a statement 3xP(x) is used. Furthermore, the
meaning of 3xP(x) changes when the domain changes. Without specifying the domain, the state-
ment IxP(x) has no meaning.

Besides the phrase “there exists,” we can also express existential quantification in many
other ways, such as by using the words “for some,” “for at least one,” or “there is.” The existential
quantification IxP(x) is read as

“There is an x such that P(x),”
“There is at least one x such that P(x),”

or
“For some xP(x).”

The meaning of the existential quantifier is summarized in the second row of Table 1. We
illustrate the use of the existential quantifier in Examples 13, 14, and 16.

Let P(x) denote the statement “x > 3.” What is the truth value of the quantification IxP(x),
where the domain consists of all real numbers?

Solution: Because “x > 3” is sometimes true—for instance, when x = 4—the existential quan-
tification of P(x), which is IxP(x), is true. |

Observe that the statement IxP(x) is false if and only if there is no element x in the domain
for which P(x) is true. That is, IxP(x) is false if and only if P(x) is false for every element of the
domain. We illustrate this observation in Example 14.

Let O(x) denote the statement “x = x + 1.” What is the truth value of the quantification IxQ(x),
where the domain consists of all real numbers?

Solution: Because Q(x) is false for every real number x, the existential quantification of Q(x),
which is 3xQ(x), is false. |

Remark: Generally, an implicit assumption is made that all domains of discourse for quantifiers
are nonempty. If the domain is empty, then IxQ(x) is false whenever Q(x) is a propositional
function because when the domain is empty, there can be no element x in the domain for which
O(x) is true.

THE UNIQUENESS QUANTIFIER We have now introduced universal and existential quan-
tifiers. These are the most important quantifiers in mathematics and computer science. However,
there is no limitation on the number of different quantifiers we can define, such as “there are
exactly two,” “there are no more than three,” “there are at least 100,” and so on. Of these other
quantifiers, the one that is most often seen is the uniqueness quantifier, denoted by 3! or 3,.
The notation 3!xP(x) [or 3,xP(x)] states “There exists a unique x such that P(x) is true.” (Other
phrases for uniqueness quantification include “there is exactly one” and “there is one and only
one.”) For instance, 3!x(x — 1 = 0), where the domain is the set of real numbers, states that
there is a unique real number x such that x — 1 = 0. This is a true statement, as x = 1 is the
unique real number such that x — 1 = 0. Observe that we can use quantifiers and propositional
logic to express uniqueness (see Exercise 52 in Section 1.5), so the uniqueness quantifier can
be avoided. Generally, it is best to stick with existential and universal quantifiers so that rules
of inference for these quantifiers can be used.
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1.4.4 QUANTIFIERS OVER FINITE DOMAINS

When the domain of a quantifier is finite, that is, when all its elements can be listed, quantified
statements can be expressed using propositional logic. In particular, when the elements of the
domain are x, x,, ..., x,, where n is a positive integer, the universal quantification VxP(x) is the
same as the conjunction

P(x;) A P(xy) A -+ A P(x,),
because this conjunction is true if and only if P(x,), P(x,), ..., P(x,) are all true.

What is the truth value of VxP(x), where P(x) is the statement “x* < 10” and the domain consists
of the positive integers not exceeding 47

Solution: The statement VxP(x) is the same as the conjunction
P(1) APQ2)AP3)AP4),

because the domain consists of the integers 1, 2, 3, and 4. Because P(4), which is the statement
“42 < 10,” is false, it follows that VxP(x) is false. |

Similarly, when the elements of the domain are x|, x,, ..., x,,, where n is a positive integer,
the existential quantification IxP(x) is the same as the disjunction

P(x;) V P(x,) V -+ V P(x,),
because this disjunction is true if and only if at least one of P(x,), P(x,), ..., P(x,) is true.

What is the truth value of 3xP(x), where P(x) is the statement “x*> > 10” and the universe of
discourse consists of the positive integers not exceeding 47

Solution: Because the domainiis {1, 2, 3, 4}, the proposition 3xP(x) is the same as the disjunction
P(1)v PQ2)V P3)V P®4).

Because P(4), which is the statement “42 > 10,” is true, it follows that JxP(x) is true. |

CONNECTIONS BETWEEN QUANTIFICATION AND LOOPING It is sometimes helpful
to think in terms of looping and searching when determining the truth value of a quantification.
Suppose that there are n objects in the domain for the variable x. To determine whether VxP(x)
is true, we can loop through all 7 values of x to see whether P(x) is always true. If we encounter
a value x for which P(x) is false, then we have shown that VxP(x) is false. Otherwise, VxP(x)
is true. To see whether 3xP(x) is true, we loop through the n values of x searching for a value
for which P(x) is true. If we find one, then IxP(x) is true. If we never find such an x, then we
have determined that IxP(x) is false. (Note that this searching procedure does not apply if there
are infinitely many values in the domain. However, it is still a useful way of thinking about the
truth values of quantifications.)
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1.4.5 Quantifiers with Restricted Domains

An abbreviated notation is often used to restrict the domain of a quantifier. In this nota-
tion, a condition a variable must satisfy is included after the quantifier. This is illustrated in
Example 17. We will also describe other forms of this notation involving set membership in
Section 2.1.

What do the statements Vx < 0 (x> > 0), Vy # 0y # 0), and 3z > 0 (z> = 2) mean, where the
domain in each case consists of the real numbers?

Solution: The statement Vx < 0 (x> > 0) states that for every real number x with x < 0, x*> > 0.
That is, it states “The square of a negative real number is positive.” This statement is the same
as Vx(x < 0 = x% > 0).

The statement Vy # 0 (y® # 0) states that for every real number y with y # 0, we have y> #
0. That is, it states “The cube of every nonzero real number is nonzero.” This statement is
equivalent to Vy(y # 0 — y* # 0).

Finally, the statement 3z > 0 (z> = 2) states that there exists a real number z with z > 0 such
that z> = 2. That is, it states “There is a positive square root of 2.” This statement is equivalent
to Iz(z > 0 A 22 = 2). <

Note that the restriction of a universal quantification is the same as the universal quantifi-
cation of a conditional statement. For instance, ¥x < 0 (x> > 0) is another way of expressing
Vx(x < 0 = x2 > 0). On the other hand, the restriction of an existential quantification is the
same as the existential quantification of a conjunction. For instance, 3z > 0 (z> = 2) is another
way of expressing 3z(z > 0 A 22 = 2).

1.4.6 Precedence of Quantifiers

The quantifiers V and 3 have higher precedence than all logical operators from propositional
calculus. For example, VxP(x) V Q(x) is the disjunction of VxP(x) and Q(x). In other words, it
means (VxP(x)) V Q(x) rather than Vx(P(x) V Q(x)).

1.4.7 Binding Variables

When a quantifier is used on the variable x, we say that this occurrence of the variable is bound.
An occurrence of a variable that is not bound by a quantifier or set equal to a particular value
is said to be free. All the variables that occur in a propositional function must be bound or set
equal to a particular value to turn it into a proposition. This can be done using a combination of
universal quantifiers, existential quantifiers, and value assignments.

The part of a logical expression to which a quantifier is applied is called the scope of this
quantifier. Consequently, a variable is free if it is outside the scope of all quantifiers in the
formula that specify this variable.

In the statement dx(x + y = 1), the variable x is bound by the existential quantification 3x, but
the variable y is free because it is not bound by a quantifier and no value is assigned to this
variable. This illustrates that in the statement 3x(x + y = 1), x is bound, but y is free.

In the statement Ix(P(x) A Q(x)) V VxR(x), all variables are bound. The scope of the first
quantifier, Jx, is the expression P(x) A QO(x), because Jx is applied only to P(x) A Q(x) and not
to the rest of the statement. Similarly, the scope of the second quantifier, Vx, is the expression
R(x). That is, the existential quantifier binds the variable x in P(x) A Q(x) and the universal
quantifier Vx binds the variable x in R(x). Observe that we could have written our statement
using two different variables x and y, as Ix(P(x) A Q(x)) V VyR(y), because the scopes of the
two quantifiers do not overlap. The reader should be aware that in common usage, the same
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letter is often used to represent variables bound by different quantifiers with scopes that do not
overlap. <

1.4.8 Logical Equivalences Involving Quantifiers

In Section 1.3 we introduced the notion of logical equivalences of compound propositions. We
can extend this notion to expressions involving predicates and quantifiers.

Statements involving predicates and quantifiers are logically equivalent if and only if they
have the same truth value no matter which predicates are substituted into these statements
and which domain of discourse is used for the variables in these propositional functions.
We use the notation S = T to indicate that two statements S and 7 involving predicates and
quantifiers are logically equivalent.

Example 19 illustrates how to show that two statements involving predicates and quantifiers
are logically equivalent.

Show that Vx(P(x) A Q(x)) and VxP(x) A VxQ(x) are logically equivalent (where the same do-
main is used throughout). This logical equivalence shows that we can distribute a universal
quantifier over a conjunction. Furthermore, we can also distribute an existential quantifier over
a disjunction. However, we cannot distribute a universal quantifier over a disjunction, nor can
we distribute an existential quantifier over a conjunction. (See Exercises 52 and 53.)

Solution: To show that these statements are logically equivalent, we must show that they always
take the same truth value, no matter what the predicates P and Q are, and no matter which
domain of discourse is used. Suppose we have particular predicates P and Q, with a common
domain. We can show that Vx(P(x) A Q(x)) and VxP(x) A VxQ(x) are logically equivalent by
doing two things. First, we show that if Vx(P(x) A Q(x)) is true, then VxP(x) A VxQ(x) is true.
Second, we show that if VxP(x) A VxQ(x) is true, then Vx(P(x) A Q(x)) is true.

So, suppose that Vx(P(x) A Q(x)) is true. This means that if a is in the domain, then P(a) A
Q(a) is true. Hence, P(a) is true and Q(a) is true. Because P(a) is true and Q(a) is true for every
element « in the domain, we can conclude that VxP(x) and VxQ(x) are both true. This means
that VxP(x) A VxQ(x) is true.

Next, suppose that VxP(x) A VxQ(x) is true. It follows that VxP(x) is true and VxQ(x) is
true. Hence, if a is in the domain, then P(a) is true and Q(a) is true [because P(x) and Q(x) are
both true for all elements in the domain, there is no conflict using the same value of a here].
It follows that for all a, P(a) A Q(a) is true. It follows that Vx(P(x) A O(x)) is true. We can now
conclude that

Vx(P(x) A Q(x)) = VxP(x) A VxQ(x). <

1.4.9 Negating Quantified Expressions

We will often want to consider the negation of a quantified expression. For instance, consider
the negation of the statement

“Every student in your class has taken a course in calculus.”
This statement is a universal quantification, namely,

VxP(x),
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where P(x) is the statement “x has taken a course in calculus” and the domain consists of the
students in your class. The negation of this statement is “It is not the case that every student in
your class has taken a course in calculus.” This is equivalent to “There is a student in your class
who has not taken a course in calculus.” And this is simply the existential quantification of the
negation of the original propositional function, namely,

dx =P(x).
This example illustrates the following logical equivalence:
=VxP(x) = dx =P(x).

To show that =VxP(x) and JxP(x) are logically equivalent no matter what the propositional
function P(x) is and what the domain is, first note that =VxP(x) is true if and only if VxP(x) is
false. Next, note that VxP(x) is false if and only if there is an element x in the domain for which
P(x) is false. This holds if and only if there is an element x in the domain for which =P(x) is
true. Finally, note that there is an element x in the domain for which =P(x) is true if and only if
dx —P(x) is true. Putting these steps together, we can conclude that -VxP(x) is true if and only
if 3x —~P(x) is true. It follows that =VxP(x) and 3x ~P(x) are logically equivalent.

Suppose we wish to negate an existential quantification. For instance, consider the proposi-
tion “There is a student in this class who has taken a course in calculus.” This is the existential
quantification

Q)

where Q(x) is the statement “x has taken a course in calculus.” The negation of this statement is
the proposition “It is not the case that there is a student in this class who has taken a course in
calculus.” This is equivalent to “Every student in this class has not taken calculus,” which is just
the universal quantification of the negation of the original propositional function, or, phrased in
the language of quantifiers,

Vx =0(x).

This example illustrates the equivalence

=3x0(x) = Vx-0(x).

To show that =3xQ(x) and Vx =Q(x) are logically equivalent no matter what Q(x) is and what
the domain is, first note that =~3xQ(x) is true if and only if IxQ(x) is false. This is true if and
only if no x exists in the domain for which Q(x) is true. Next, note that no x exists in the domain
for which Q(x) is true if and only if Q(x) is false for every x in the domain. Finally, note that
Q(x) is false for every x in the domain if and only if =Q(x) is true for all x in the domain, which
holds if and only if Vx=Q(x) is true. Putting these steps together, we see that =3xQ(x) is true if
and only if Vx—Q(x) is true. We conclude that =3xQ(x) and Vx = Q(x) are logically equivalent.

The rules for negations for quantifiers are called De Morgan’s laws for quantifiers. These
rules are summarized in Table 2.

Remark: When the domain of a predicate P(x) consists of n elements, where n is a positive
integer greater than one, the rules for negating quantified statements are exactly the same as De
Morgan’s laws discussed in Section 1.3. This is why these rules are called De Morgan’s laws for
quantifiers. When the domain has n elements x,, x,, ..., x,, it follows that =VxP(x) is the same
as 7(P(x;) A P(x,) A -+ A P(x,)), which is equivalent to =P(x;) V =P(x,) V -+ V =P(x,) by De
Morgan’s laws, and this is the same as 3x—P(x). Similarly, =3xP(x) is the same as =(P(x;) V



EXAMPLE 20

Extra )
Examples

EXAMPLE 21

EXAMPLE 22

1.4 Predicates and Quantifiers 51

TABLE 2 De Morgan’s Laws for Quantifiers.

Negation Equivalent Statement When Is Negation True? When False?

—3xP(x) Vx-P(x) For every x, P(x) is false. There is an x for which
P(x) is true.

—VxP(x) Ix-P(x) There is an x for which P(x) is true for every x.
P(x) is false.

P(x,) V --- V P(x,)), which by De Morgan’s laws is equivalent to =P(x;) A =P(x,) A ==+ A 7P(x,),
and this is the same as Vx—P(x).

We illustrate the negation of quantified statements in Examples 20 and 21.

What are the negations of the statements “There is an honest politician” and “All Americans eat
cheeseburgers”?

Solution: Let H(x) denote “x is honest.” Then the statement “There is an honest politician” is rep-
resented by IxH(x), where the domain consists of all politicians. The negation of this statement
is 73dxH (x), which is equivalent to Vx—H (x). This negation can be expressed as “Every politician
is dishonest.” (Note: In English, the statement “All politicians are not honest” is ambiguous. In
common usage, this statement often means “Not all politicians are honest.” Consequently, we
do not use this statement to express this negation.)

Let C(x) denote “x eats cheeseburgers.” Then the statement “All Americans eat cheeseburg-
ers” is represented by VxC(x), where the domain consists of all Americans. The negation of this
statement is =VxC(x), which is equivalent to 3x=C(x). This negation can be expressed in sev-
eral different ways, including “Some American does not eat cheeseburgers” and “There is an
American who does not eat cheeseburgers.” <

What are the negations of the statements Vx(x?> > x) and Ix(x> = 2)?

Solution: The negation of Vx(x> > x) is the statement —Vx(x> > x), which is equivalent to
Jx—(x> > x). This can be rewritten as 3x(x*> < x). The negation of 3x(x> = 2) is the statement
—3x(x? = 2), which is equivalent to Vx—(x> = 2). This can be rewritten as Vx(x> # 2). The truth
values of these statements depend on the domain. <

We use De Morgan’s laws for quantifiers in Example 22.
Show that =Vx(P(x) — Q(x)) and Ix(P(x) A =Q(x)) are logically equivalent.

Solution: By De Morgan’s law for universal quantifiers, we know that =Vx(P(x) — Q(x)) and
Ax(~(P(x) — Q(x))) are logically equivalent. By the fifth logical equivalence in Table 7 in Sec-
tion 1.3, we know that ~(P(x) — Q(x)) and P(x) A =Q(x) are logically equivalent for every x.
Because we can substitute one logically equivalent expression for another in a logical equiva-
lence, it follows that =Vx(P(x) — Q(x)) and Ix(P(x) A ~Q(x)) are logically equivalent. <4

1.4.10 Translating from English into Logical Expressions

Translating sentences in English (or other natural languages) into logical expressions is a cru-
cial task in mathematics, logic programming, artificial intelligence, software engineering, and
many other disciplines. We began studying this topic in Section 1.1, where we used propositions
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to express sentences in logical expressions. In that discussion, we purposely avoided sentences
whose translations required predicates and quantifiers. Translating from English to logical ex-
pressions becomes even more complex when quantifiers are needed. Furthermore, there can
be many ways to translate a particular sentence. (As a consequence, there is no “cookbook”
approach that can be followed step by step.) We will use some examples to illustrate how to
translate sentences from English into logical expressions. The goal in this translation is to pro-
duce simple and useful logical expressions. In this section, we restrict ourselves to sentences
that can be translated into logical expressions using a single quantifier; in the next section, we
will look at more complicated sentences that require multiple quantifiers.

Express the statement “Every student in this class has studied calculus” using predicates and
quantifiers.

Solution: First, we rewrite the statement so that we can clearly identify the appropriate quanti-
fiers to use. Doing so, we obtain:

“For every student in this class, that student has studied calculus.”
Next, we introduce a variable x so that our statement becomes
“For every student x in this class, x has studied calculus.”

Continuing, we introduce C(x), which is the statement “x has studied calculus.” Consequently,
if the domain for x consists of the students in the class, we can translate our statement as
VxC(x).

However, there are other correct approaches; different domains of discourse and other predi-
cates can be used. The approach we select depends on the subsequent reasoning we want to carry
out. For example, we may be interested in a wider group of people than only those in this class.
If we change the domain to consist of all people, we will need to express our statement as

“For every person x, if person x is a student in this class, then x has studied calculus.”

If S(x) represents the statement that person x is in this class, we see that our statement can
be expressed as Vx(S(x) — C(x)). [Caution! Our statement cannot be expressed as Vx(S(x) A
C(x)) because this statement says that all people are students in this class and have studied
calculus!]

Finally, when we are interested in the background of people in subjects besides calculus,
we may prefer to use the two-variable quantifier Q(x, y) for the statement “Student x has stud-
ied subject y.” Then we would replace C(x) by Q(x, calculus) in both approaches to obtain
VxQ(x, calculus) or Vx(S(x) — Q(x, calculus)). |

In Example 23 we displayed different approaches for expressing the same statement us-
ing predicates and quantifiers. However, we should always adopt the simplest approach that is
adequate for use in subsequent reasoning.

Express the statements “Some student in this class has visited Mexico” and “Every student in
this class has visited either Canada or Mexico” using predicates and quantifiers.

Solution: The statement “Some student in this class has visited Mexico” means that
“There is a student in this class with the property that the student has visited Mexico.”
We can introduce a variable x, so that our statement becomes

“There is a student x in this class having the property that x has visited Mexico.”
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We introduce M(x), which is the statement “x has visited Mexico.” If the domain for x consists
of the students in this class, we can translate this first statement as JxM (x).

However, if we are interested in people other than those in this class, we look at the statement
a little differently. Our statement can be expressed as

“There is a person x having the properties that x is a student in this class and x has visited
Mexico.”

In this case, the domain for the variable x consists of all people. We introduce S(x) to represent
“x is a student in this class.” Our solution becomes Ax(S(x) A M(x)) because the statement is
that there is a person x who is a student in this class and who has visited Mexico. [Caution! Our
statement cannot be expressed as Ix(S(x) — M(x)), which is true when there is someone not in
the class because, in that case, for such a person x, S(x) - M(x) becomes either F — T or F —
F, both of which are true.]

Similarly, the second statement can be expressed as

“For every x in this class, x has the property that x has visited Mexico or x has visited
Canada.”

(Note that we are assuming the inclusive, rather than the exclusive, or here.) We let C(x) be “x
has visited Canada.” Following our earlier reasoning, we see that if the domain for x consists of
the students in this class, this second statement can be expressed as Vx(C(x) V M(x)). However,
if the domain for x consists of all people, our statement can be expressed as

“For every person x, if x is a student in this class, then x has visited Mexico or x has visited
Canada.”

In this case, the statement can be expressed as Vx(S(x) — (C(x) V M(x))).

Instead of using M(x) and C(x) to represent that x has visited Mexico and x has visited
Canada, respectively, we could use a two-place predicate V(x, y) to represent “x has visited
country y.” In this case, V(x, Mexico) and V(x, Canada) would have the same meaning as
M(x) and C(x) and could replace them in our answers. If we are working with many state-
ments that involve people visiting different countries, we might prefer to use this two-variable
approach. Otherwise, for simplicity, we would stick with the one-variable predicates M(x)
and C(x). <4

1.4.11 Using Quantifiers in System Specifications

In Section 1.2 we used propositions to represent system specifications. However, many system
specifications involve predicates and quantifications. This is illustrated in Example 25.

Use predicates and quantifiers to express the system specifications “Every mail message larger
than one megabyte will be compressed” and “If a user is active, at least one network link will
be available.”

Solution: Let S(m, y) be “Mail message m is larger than y megabytes,” where the variable x has
the domain of all mail messages and the variable y is a positive real number, and let C(m) denote
“Mail message m will be compressed.” Then the specification “Every mail message larger than
one megabyte will be compressed” can be represented as Vm(S(m, 1) — C(m)).

Let A(u) represent “User u is active,” where the variable u has the domain of all users,
let S(n, x) denote “Network link 7 is in state x,” where n has the domain of all network
links and x has the domain of all possible states for a network link. Then the specifica-
tion “If a user is active, at least one network link will be available” can be represented by
JuA(u) — InS(n, available). <4
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1.4.12 Examples from Lewis Carroll

Lewis Carroll (really C. L. Dodgson writing under a pseudonym), the author of Alice in Wonder-
land, is also the author of several works on symbolic logic. His books contain many examples
of reasoning using quantifiers. Examples 26 and 27 come from his book Symbolic Logic; other
examples from that book are given in the exercises at the end of this section. These examples
illustrate how quantifiers are used to express various types of statements.

Consider these statements. The first two are called premises and the third is called the conclu-
sion. The entire set is called an argument.

“All lions are fierce.”
“Some lions do not drink coffee.”
“Some fierce creatures do not drink coffee.”

(In Section 1.6 we will discuss the issue of determining whether the conclusion is a valid con-
sequence of the premises. In this example, it is.) Let P(x), Q(x), and R(x) be the statements “x is
a lion,” “x is fierce,” and “x drinks coffee,” respectively. Assuming that the domain consists of

all creatures, express the statements in the argument using quantifiers and P(x), Q(x), and R(x).
Solution: We can express these statements as

Vx(P(x) = Q(x)).
(P(x) A ~R()).

Ax(O(x) A =R(x)).

Notice that the second statement cannot be written as Ix(P(x) — —R(x)). The reason is that
P(x) — —R(x) is true whenever x is not a lion, so that 3x(P(x) — —R(x)) is true as long as there
is at least one creature that is not a lion, even if every lion drinks coffee. Similarly, the third
statement cannot be written as

34(0(x) — R(). b

Consider these statements, of which the first three are premises and the fourth is a valid con-
clusion.

“All hummingbirds are richly colored.”

“No large birds live on honey.”

“Birds that do not live on honey are dull in color.”
“Hummingbirds are small.”

CHARLES LUTWIDGE DODGSON (1832-1898) We know Charles Dodgson as Lewis Carroll—the
pseudonym he used in his literary works. Dodgson, the son of a clergyman, was the third of 11 children, all of
whom stuttered. He was uncomfortable in the company of adults and is said to have spoken without stuttering
only to young girls, many of whom he entertained, corresponded with, and photographed (sometimes in poses
that today would be considered inappropriate). Although attracted to young girls, he was extremely puritan-
ical and religious. His friendship with the three young daughters of Dean Liddell led to his writing Alice in
Wonderland, which brought him money and fame.

Dodgson graduated from Oxford in 1854 and obtained his master of arts degree in 1857. He was appointed
lecturer in mathematics at Christ Church College, Oxford, in 1855. He was ordained in the Church of England
in 1861 but never practiced his ministry. His writings published under this real name include articles and books
on geometry, determinants, and the mathematics of tournaments and elections. (He also used the pseudonym
Lewis Carroll for his many works on recreational logic.)
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Let P(x), Q(x), R(x), and S(x) be the statements “x is a hummingbird,” “x is large,” “x lives on
honey,” and “x is richly colored,” respectively. Assuming that the domain consists of all birds,
express the statements in the argument using quantifiers and P(x), Q(x), R(x), and S(x).

Solution: We can express the statements in the argument as

Vx(P(x) — S(x)).
=3x(0(x) A R(x)).
Vx(=R(x) — S(x)).
Vx(P(x) = =Q(x)).
(Note we have assumed that “small” is the same as “not large” and that “dull in color” is the

same as “not richly colored.” To show that the fourth statement is a valid conclusion of the first
three, we need to use rules of inference that will be discussed in Section 1.6.) |

1.4.13 Logic Programming

An important type of programming language is designed to reason using the rules of predicate
logic. Prolog (from Programming in Logic), developed in the 1970s by computer scientists
working in the area of artificial intelligence, is an example of such a language. Prolog programs
include a set of declarations consisting of two types of statements, Prolog facts and Prolog
rules. Prolog facts define predicates by specifying the elements that satisfy these predicates.
Prolog rules are used to define new predicates using those already defined by Prolog facts.
Example 28 illustrates these notions.

Consider a Prolog program given facts telling it the instructor of each class and in which
classes students are enrolled. The program uses these facts to answer queries concerning the
professors who teach particular students. Such a program could use the predicates instruc-
tor(p, ¢) and enrolled(s, c) to represent that professor p is the instructor of course ¢ and that
student s is enrolled in course ¢, respectively. For example, the Prolog facts in such a program
might include:

instructor(chan,math273)
instructor(patel,ee222)
instructor(grossman,cs301)
enrolled(kevin,math273)
enrolled(juana,ee222)
enrolled(juana,cs301)
enrolled(kiko,math273)
enrolled(kiko,cs301)

(Lowercase letters have been used for entries because Prolog considers names beginning with
an uppercase letter to be variables.)

A new predicate teaches(p, s), representing that professor p teaches student s, can be defined
using the Prolog rule

teaches(P,S) :- instructor(P,C), enrolled(S,C)

which means that teaches(p, s) is true if there exists a class ¢ such that professor p is the in-
structor of class ¢ and student s is enrolled in class ¢. (Note that a comma is used to represent a
conjunction of predicates in Prolog. Similarly, a semicolon is used to represent a disjunction of
predicates.)
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Prolog answers queries using the facts and rules it is given. For example, using the facts

and rules listed, the query

?enrolled(kevin,math273)

produces the response

yes

because the fact enrolled(kevin, math273) was provided as input. The query

?enrolled(X,math273)

produces the response

kevin
kiko

To produce this response, Prolog determines all possible values of X for which
enrolled(X, math273) has been included as a Prolog fact. Similarly, to find all the professors
who are instructors in classes being taken by Juana, we use the query

?teaches(X, juana)

This query returns

patel
grossman <
Exercises
1. Let P(x) denote the statement “x < 4.” What are these a) dxP(x) b) VxP(x)
truth values? ¢) dx-P(x) d) Vx-P(x)

a) P(0) b) P(4) ¢) P(6)

. Let P(x) be the statement “The word x contains the

letter a.” What are these truth values?

b) P(lemon)
d) P(false)

a) P(orange)
¢) P(true)

. Let O(x, y) denote the statement “x is the capital of y.”

What are these truth values?

a) Q(Denver, Colorado)

b) QO(Detroit, Michigan)

¢) Q(Massachusetts, Boston)
d) O(New York, New York)

. State the value of x after the statement if P(x) then x := 1

is executed, where P(x) is the statement “x > 1,” if the
value of x when this statement is reached is

a) x=0. b) x=1.

c) x=2.

. Let P(x) be the statement “x spends more than five hours

every weekday in class,” where the domain for x consists
of all students. Express each of these quantifications in
English.

. Let N(x) be the statement “x has visited North Dakota,”

where the domain consists of the students in your school.
Express each of these quantifications in English.

a) dxN(x) b) VxN(x) ¢) —IxN(x)

d) Ix~N(x) e) VxN(x) f) Vx-N(x)

. Translate these statements into English, where C(x) is “x

is a comedian” and F(x) is “x is funny” and the domain
consists of all people.
a) Vx(C(x) — F(x))
¢) dx(Cx) » F(x))

b) Vx(C(x) A F(x))
d) Ix(C(x) A F(x))

. Translate these statements into English, where R(x) is “x

is a rabbit” and H(x) is “x hops” and the domain consists
of all animals.

a) Vx(R(x) » H(x))
©) Ax(R(x) — H(x)

b) Vx(R(x) A H(x))
d) Ix(R(x) A H(x))

. Let P(x) be the statement “x can speak Russian” and let

Q(x) be the statement “x knows the computer language
C++.” Express each of these sentences in terms of P(x),
Q(x), quantifiers, and logical connectives. The domain
for quantifiers consists of all students at your school.
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a) There is a student at your school who can speak Rus-
sian and who knows C++.

b) There is a student at your school who can speak Rus-
sian but who doesn’t know C++.

¢) Every student at your school either can speak Russian
or knows C++.

d) No student at your school can speak Russian or knows
C++.

Let C(x) be the statement “x has a cat,” let D(x) be the

statement “x has a dog,” and let F'(x) be the statement “x

has a ferret.” Express each of these statements in terms

of C(x), D(x), F(x), quantifiers, and logical connectives.

Let the domain consist of all students in your class.

a) A student in your class has a cat, a dog, and a ferret.

b) All students in your class have a cat, a dog, or a ferret.

¢) Some student in your class has a cat and a ferret, but
not a dog.

d) No student in your class has a cat, a dog, and a ferret.

e) For each of the three animals, cats, dogs, and ferrets,
there is a student in your class who has this animal as
a pet.

Let P(x) be the statement “x = x2.” If the domain consists

of the integers, what are these truth values?

a) P(0) b) P(1) ©) P(2)

d) P(-1) e) IxP(x) f) VxP(x)

Let Q(x) be the statement “x + 1 > 2x.” If the domain

consists of all integers, what are these truth values?

a) 0(0) b) O(-1) ¢) O(1)
d) Ix0(x) e) VxQ(x) f) Ax-0(x)
g) Vx~Q(x)

Determine the truth value of each of these statements if
the domain consists of all integers.

a) Ynn+1>n) b) In(2n = 3n)

¢) dn(n=—n) d) Vn(3n < 4n)

Determine the truth value of each of these statements if
the domain consists of all real numbers.

a) Ix(3 =-1) b) Ix(x* < x?)

©) Vx((—x)? = x?) d) Vx(2x > x)

Determine the truth value of each of these statements if
the domain for all variables consists of all integers.

a) Vn(n® > 0) b) In(n*> =2)

¢) Va(n® >n) d) In(n? < 0)

Determine the truth value of each of these statements

if the domain of each variable consists of all real num-
bers.

a) Ix(x?=2) b) Ix(x2 =-1)

¢) Vx(x?*+2>1) d) Vx(x* # x)

Suppose that the domain of the propositional function
P(x) consists of the integers 0, 1, 2, 3, and 4. Write out
each of these propositions using disjunctions, conjunc-
tions, and negations.

a) dxP(x) b) VxP(x)
d) Vx-P(x) e) —IxP(x)

¢) dx—-P(x)
f) —VxP(x)
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. Suppose that the domain of the propositional function
P(x) consists of the integers —2, —1, 0, 1, and 2. Write
out each of these propositions using disjunctions, con-
junctions, and negations.

a) dxP(x) b) VxP(x) ¢) dx—P(x)

d) Vx—P(x) e) —3xP(x) f) —VxP(x)
Suppose that the domain of the propositional function
P(x) consists of the integers 1, 2, 3, 4, and 5. Express
these statements without using quantifiers, instead using
only negations, disjunctions, and conjunctions.

a) dxP(x) b) VxP(x)

¢) —~IxP(x) d) VxP(x)

e) Vx((x #3) - P(x)) vV Ix~P(x)

Suppose that the domain of the propositional function
P(x) consists of =5, =3, —1, 1, 3, and 5. Express these
statements without using quantifiers, instead using only
negations, disjunctions, and conjunctions.

a) dxP(x) b) VxP(x)

©) Vx((x # 1) - P(x))

d) Ix((x > 0) A P(x))

e) Ax(—P(x)) A Vx((x < 0) = P(x))

For each of these statements find a domain for which the
statement is true and a domain for which the statement is
false.

a) Everyone is studying discrete mathematics.

b) Everyone is older than 21 years.

¢) Every two people have the same mother.

d) No two different people have the same grandmother.
For each of these statements find a domain for which the
statement is true and a domain for which the statement is
false.

a) Everyone speaks Hindi.

b) There is someone older than 21 years.

¢) Every two people have the same first name.

d) Someone knows more than two other people.
Translate in two ways each of these statements into logi-
cal expressions using predicates, quantifiers, and logical
connectives. First, let the domain consist of the students
in your class and second, let it consist of all people.

a) Someone in your class can speak Hindi.

b) Everyone in your class is friendly.
¢) There is a person in your class who was not born in

California.
d) A student in your class has been in a movie.
e) No student in your class has taken a course in logic
programming.
Translate in two ways each of these statements into logi-
cal expressions using predicates, quantifiers, and logical
connectives. First, let the domain consist of the students
in your class and second, let it consist of all people.
a) Everyone in your class has a cellular phone.
b) Somebody in your class has seen a foreign movie.

¢) There is a person in your class who cannot swim.
d) All students in your class can solve quadratic equa-

tions.
e) Some student in your class does not want to be rich.
Translate each of these statements into logical expres-
sions using predicates, quantifiers, and logical connec-
tives.
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a) No one is perfect.

b) Not everyone is perfect.

¢) All your friends are perfect.

d) Atleast one of your friends is perfect.

e) Everyone is your friend and is perfect.

f) Not everybody is your friend or someone is not per-
fect.

Translate each of these statements into logical expres-
sions in three different ways by varying the domain and
by using predicates with one and with two variables.

a) Someone in your school has visited Uzbekistan.
b) Everyone in your class has studied calculus and C++.

¢) No one in your school owns both a bicycle and a mo-
torcycle.

d) There is a person in your school who is not happy.
e) Everyone in your school was born in the twentieth
century.

Translate each of these statements into logical expres-
sions in three different ways by varying the domain and
by using predicates with one and with two variables.

a) A student in your school has lived in Vietnam.

b) There is a student in your school who cannot speak
Hindi.

¢) A student in your school knows Java, Prolog, and
C++.

d) Everyone in your class enjoys Thai food.

e) Someone in your class does not play hockey.

Translate each of these statements into logical expres-
sions using predicates, quantifiers, and logical connec-
tives.

a) Something is not in the correct place.

b) All tools are in the correct place and are in excellent
condition.

¢) Everything is in the correct place and in excellent
condition.

d) Nothing is in the correct place and is in excellent con-
dition.

e) One of your tools is not in the correct place, but it is
in excellent condition.

Express each of these statements using logical operators,
predicates, and quantifiers.

a) Some propositions are tautologies.
b) The negation of a contradiction is a tautology.

¢) The disjunction of two contingencies can be a tautol-
ogy.

d) The conjunction of two tautologies is a tautology.

Suppose the domain of the propositional function P(x, y)

consists of pairs x and y, where xis 1,2,or3and yis 1, 2,

or 3. Write out these propositions using disjunctions and
conjunctions.

31.
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a) dxP(x, 3) b) VyP(1,y)

¢) Iy-P2,y) d) Vx-P(x,2)

Suppose that the domain of Q(x, y, z) consists of triples
x,y,z, where x =0,1, or 2, y=0or 1, and z=0 or 1.
Write out these propositions using disjunctions and con-
junctions.

a) VyQ(0,y,0) b) Ix0(x, 1, 1)

¢) 3z-0(0,0, 2) d) IO, 0, 1)

Express each of these statements using quantifiers. Then
form the negation of the statement so that no negation is
to the left of a quantifier. Next, express the negation in
simple English. (Do not simply use the phrase “It is not
the case that.”)

a) All dogs have fleas.

b) There is a horse that can add.

¢) Every koala can climb.

d) No monkey can speak French.

e) There exists a pig that can swim and catch fish.

Express each of these statements using quantifiers. Then

form the negation of the statement, so that no negation

is to the left of a quantifier. Next, express the negation in

simple English. (Do not simply use the phrase “It is not

the case that.”)

a) Some old dogs can learn new tricks.

b) No rabbit knows calculus.

¢) Every bird can fly.

d) There is no dog that can talk.

e) There is no one in this class who knows French and
Russian.

Express the negation of these propositions using quanti-

fiers, and then express the negation in English.

a) Some drivers do not obey the speed limit.

b) All Swedish movies are serious.

¢) No one can keep a secret.

d) There is someone in this class who does not have a
good attitude.

Express the negation of each of these statements in terms

of quantifiers without using the negation symbol.

a) Vx(x>1)

b) Vx(x <2)

¢) Ix(x>4)

d) dx(x < 0)

e) Vx(be< =1 vV{x>2)

f) I((x<dHVvEx>T7)

Express the negation of each of these statements in terms

of quantifiers without using the negation symbol.

a) Vx(—2<x<3)

b) Vx(0 <x<5)

¢) In(—-4<x<1)

d) Ir(-5<x<-1)

Find a counterexample, if possible, to these universally

quantified statements, where the domain for all variables

consists of all integers.

a) Vx(x2 >x)

b) Vx(x>0vx<0)

¢) Vx(x=1)
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Find a counterexample, if possible, to these universally
quantified statements, where the domain for all variables
consists of all real numbers.
a) Vx(x2 # x)

¢) Vx(|x| > 0)

Express each of these statements using predicates and
quantifiers.

b) Vx(x? # 2)

a) A passenger on an airline qualifies as an elite flyer if
the passenger flies more than 25,000 miles in a year
or takes more than 25 flights during that year.

b) A man qualifies for the marathon if his best previ-
ous time is less than 3 hours and a woman qualifies
for the marathon if her best previous time is less than
3.5 hours.

¢) A student must take at least 60 course hours, or at least
45 course hours and write a master’s thesis, and re-
ceive a grade no lower than a B in all required courses,
to receive a master’s degree.

d) There is a student who has taken more than 21 credit
hours in a semester and received all A’s.

Exercises 40-44 deal with the translation between system
specification and logical expressions involving quantifiers.

40.

41.

42,

43.

Translate these system specifications into English, where
the predicate S(x, y) is “x is in state y” and where the do-
main for x and y consists of all systems and all possible
states, respectively.

a) 3IxS(x, open)

b) Vx(S(x, malfunctioning) Vv S(x, diagnostic))

¢) 3IxS(x, open) V IxS(x, diagnostic)

d) Ix-S(x, available)

e) Vx~S(x, working)

Translate these specifications into English, where F(p) is
“Printer p is out of service,” B(p) is “Printer p is busy,”
L(j) is “Print job j is lost,” and Q(j) is “Print job j is
queued.”

a) 3p(F(p) A B(p)) — FjL()

b) VpB(p) — 30

¢) 3i(Q() A L()) — IpF(p)

d) (VpB(p) AVjOG)) — FjL()

Express each of these system specifications using predi-
cates, quantifiers, and logical connectives.

a) When there is less than 30 megabytes free on the hard
disk, a warning message is sent to all users.

b) No directories in the file system can be opened and
no files can be closed when system errors have been
detected.

¢) The file system cannot be backed up if there is a user
currently logged on.

d) Video on demand can be delivered when there are at
least 8 megabytes of memory available and the con-
nection speed is at least 56 kilobits per second.

Express each of these system specifications using predi-

cates, quantifiers, and logical connectives.

a) At least one mail message, among the nonempty set
of messages, can be saved if there is a disk with more
than 10 kilobytes of free space.

4.

45.

46.

47.
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b) Whenever there is an active alert, all queued messages
are transmitted.

¢) The diagnostic monitor tracks the status of all systems
except the main console.

d) Each participant on the conference call whom the host
of the call did not put on a special list was billed.

Express each of these system specifications using predi-

cates, quantifiers, and logical connectives.

a) Every user has access to an electronic mailbox.

b) The system mailbox can be accessed by everyone in
the group if the file system is locked.

¢) The firewall is in a diagnostic state only if the proxy
server is in a diagnostic state.

d) At least one router is functioning normally if the
throughput is between 100 kbps and 500 kbps and the
proxy server is not in diagnostic mode.

Determine whether Vx(P(x) —» Q(x)) and VxP(x) —
VxQ(x) are logically equivalent. Justify your answer.

Determine whether Vx(P(x) < Q(x)) and Vx P(x) <
VxQ(x) are logically equivalent. Justify your answer.

Show that Jx(P(x) vV Q(x)) and IxP(x) V IxQ(x) are log-
ically equivalent.

Exercises 48-51 establish rules for null quantification that
we can use when a quantified variable does not appear in part
of a statement.

48.

49.

50.

S1.

52.

53.

4.

Establish these logical equivalences, where x does not oc-
cur as a free variable in A. Assume that the domain is
nonempty.

a) (VxP(x)) VA =Vx(P(x)VA)

b) (AxP(x)) VA = Ix(P(x) vV A)

Establish these logical equivalences, where x does not oc-
cur as a free variable in A. Assume that the domain is
nonempty.

a) (VxP(x)) AA = Vx(P(x) ANA)

b) (AxP(x)) AA = Ax(P(x) ANA)

Establish these logical equivalences, where x does not oc-
cur as a free variable in A. Assume that the domain is
nonempty.

a) Vx(A - P(x)) = A - VxP(x)

b) Ax(A - P(x)) = A — JxP(x)

Establish these logical equivalences, where x does not oc-
cur as a free variable in A. Assume that the domain is
nonempty.

a) Vx(P(x) > A) = IxP(x) > A

b) Ix(P(x) - A) = VxP(x) > A

Show that VxP(x) vV VxQ(x) and Vx(P(x) vV Q(x)) are not
logically equivalent.

Show that IxP(x) A IxQ(x) and Ix(P(x) A Q(x)) are not
logically equivalent.

As mentioned in the text, the notation 3!xP(x) denotes
“There exists a unique x such that P(x) is true.”

If the domain consists of all integers, what are the truth

values of these statements?

a) lx(x>1)

¢) Alx(x+3 =2x)

b) Ix(x? =1)
d) Ix(x=x+1)
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What are the truth values of these statements?

a) I!xP(x) - IxP(x)

b) VxP(x) — 3!xP(x)

¢) Alx~P(x) — VxP(x)

Write out 3!xP(x), where the domain consists of the inte-
gers 1, 2, and 3, in terms of negations, conjunctions, and
disjunctions.

Given the Prolog facts in Example 28, what would Prolog
return given these queries?

a) ?instructor(chan,math273)

b) ?instructor(patel,cs301)

¢) ?enrolled(X,cs301)

d) ?enrolled(kiko,Y)

e) ?teaches(grossman,Y)

Given the Prolog facts in Example 28, what would Prolog
return when given these queries?

a) ?enrolled(kevin,ee?222)

b) ?enrolled(kiko,math273)

¢) ?instructor(grossman,X)

d) ?instructor(X,cs301)

e) ?teaches(X,kevin)

Suppose that Prolog facts are used to define the predicates
mother(M, Y) and father(F, X), which represent that M is
the mother of Y and F is the father of X, respectively.
Give a Prolog rule to define the predicate sibling(X, Y),
which represents that X and Y are siblings (that is, have
the same mother and the same father).

Suppose that Prolog facts are used to define the pred-
icates mother(M, Y) and father(F, X), which represent
that M is the mother of Y and F is the father of X, re-
spectively. Give a Prolog rule to define the predicate
grandfather(X, Y), which represents that X is the grand-
father of Y. [Hint: You can write a disjunction in Prolog
either by using a semicolon to separate predicates or by
putting these predicates on separate lines.]

Exercises 61-64 are based on questions found in the book
Symbolic Logic by Lewis Carroll.

61.

Let P(x), Q(x), and R(x) be the statements “x is a profes-
sor,” “x isignorant,” and “x is vain,” respectively. Express
each of these statements using quantifiers; logical con-
nectives; and P(x), Q(x), and R(x), where the domain

consists of all people.

Nested Quantifiers

62.

63

64

a) No professors are ignorant.

b) All ignorant people are vain.

¢) No professors are vain.

d) Does (c¢) follow from (a) and (b)?

Let P(x), Q(x), and R(x) be the statements “x is a clear

explanation,” “x is satisfactory,” and “x is an excuse,”

respectively. Suppose that the domain for x consists of
all English text. Express each of these statements us-
ing quantifiers, logical connectives, and P(x), Q(x), and
R(x).

a) All clear explanations are satisfactory.

b) Some excuses are unsatisfactory.

¢) Some excuses are not clear explanations.

*d) Does (c) follow from (a) and (b)?

. Let P(x), O(x), R(x), and S(x) be the statements “x is a
baby,” “x is logical,” “x is able to manage a crocodile,”
and “x is despised,” respectively. Suppose that the domain
consists of all people. Express each of these statements
using quantifiers; logical connectives; and P(x), Q(x),
R(x), and S(x).

a) Babies are illogical.
b) Nobody is despised who can manage a crocodile.
¢) Illogical persons are despised.
d) Babies cannot manage crocodiles.
*e) Does (d) follow from (a), (b), and (¢)? If not, is there
a correct conclusion?

. Let P(x), Q(x), R(x), and S(x) be the statements “x is a

duck,” “x is one of my poultry,” “x is an officer,” and “x

is willing to waltz,” respectively. Express each of these
statements using quantifiers; logical connectives; and
P(x), Q(x), R(x), and S(x).

a) No ducks are willing to waltz.

b) No officers ever decline to waltz.

¢) All my poultry are ducks.

d) My poultry are not officers.

*¢) Does (d) follow from (a), (b), and (c)? If not, is there
a correct conclusion?

1.5.1 Introduction

In Section 1.4 we defined the existential and universal quantifiers and showed how they can be
used to represent mathematical statements. We also explained how they can be used to translate
English sentences into logical expressions. However, in Section 1.4 we avoided nested quanti-
fiers, where one quantifier is within the scope of another, such as

Vx3dy(x +y = 0).
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Note that everything within the scope of a quantifier can be thought of as a propositional func-
tion. For example,

Vx3Iy(x +y=0)

is the same thing as VxQ(x), where Q(x) is IyP(x, y), where P(x, y) isx +y = 0.

Nested quantifiers commonly occur in mathematics and computer science. Although nested
quantifiers can sometimes be difficult to understand, the rules we have already studied in
Section 1.4 can help us use them. In this section we will gain experience working with nested
quantifiers. We will see how to use nested quantifiers to express mathematical statements such
as “The sum of two positive integers is always positive.” We will show how nested quantifiers
can be used to translate English sentences such as “Everyone has exactly one best friend” into
logical statements. Moreover, we will gain experience working with the negations of statements
involving nested quantifiers.

1.5.2 Understanding Statements Involving Nested Quantifiers

To understand statements involving nested quantifiers, we need to unravel what the quantifiers
and predicates that appear mean. This is illustrated in Examples 1 and 2.

Assume that the domain for the variables x and y consists of all real numbers. The statement
VaVy(x +y=y+x)

says that x + y = y + x for all real numbers x and y. This is the commutative law for addition of
real numbers. Likewise, the statement

Vxdy(x +y =0)

says that for every real number x there is a real number y such that x + y = 0. This states that
every real number has an additive inverse. Similarly, the statement

VaVywWz(x+ 0+ 2) = (x +y) +2)

is the associative law for addition of real numbers. |

Translate into English the statement
VaVy((x > 0) A (y < 0) = (xy < 0)),
where the domain for both variables consists of all real numbers.

Solution: This statement says that for every real number x and for every real number y, if x > 0
and y < 0, then xy < 0. That is, this statement says that for real numbers x and y, if x is positive
and y is negative, then xy is negative. This can be stated more succinctly as “The product of a
positive real number and a negative real number is always a negative real number.” <

THINKING OF QUANTIFICATION AS LOOPS In working with quantifications of more
than one variable, it is sometimes helpful to think in terms of nested loops. (If there are infinitely
many elements in the domain of some variable, we cannot actually loop through all values.
Nevertheless, this way of thinking is helpful in understanding nested quantifiers.) For example,
to see whether VxVyP(x, y) is true, we loop through the values for x, and for each x we loop
through the values for y. If we find that for all values of x that P(x, y) is true for all values of y,



62

1/ The Foundations: Logic and Proofs

EXAMPLE 3

Extra )
Examples

EXAMPLE 4

we have determined that VxVyP(x, y) is true. If we ever hit a value x for which we hit a value y
for which P(x, y) is false, we have shown that VxVyP(x, y) is false.

Similarly, to determine whether Vx3yP(x, y) is true, we loop through the values for x. For
each x we loop through the values for y until we find a y for which P(x, y) is true. If for every x we
hit such a y, then Vx3yP(x, y) is true; if for some x we never hit such a y, then Vx3yP(x, y) is false.

To see whether AxVyP(x, y) is true, we loop through the values for x until we find an x for
which P(x, y) is always true when we loop through all values for y. Once we find such an x, we
know that IxVyP(x, y) is true. If we never hit such an x, then we know that AxVyP(x, y) is false.

Finally, to see whether 3x3yP(x, y) is true, we loop through the values for x, where for each
x we loop through the values for y until we hit an x for which we hit a y for which P(x, y) is true.
The statement Ix3yP(x, y) is false only if we never hit an x for which we hit a y such that P(x, y)
is true.

1.5.3 The Order of Quantifiers

Many mathematical statements involve multiple quantifications of propositional functions in-
volving more than one variable. It is important to note that the order of the quantifiers is impor-
tant, unless all the quantifiers are universal quantifiers or all are existential quantifiers.

These remarks are illustrated by Examples 3-5.

Let P(x, y) be the statement “x +y =y + x.” What are the truth values of the quantifications
VxVyP(x, y) and VyVxP(x, y), where the domain for all variables consists of all real numbers?

Solution: The quantification
VxVyP(x, y)
denotes the proposition
“For all real numbers x, for all real numbers y, x +y =y + x.”

Because P(x, y) is true for all real numbers x and y (it is the commutative law for addition, which
is an axiom for the real numbers—see Appendix 1), the proposition VxVyP(x, y) is true. Note that
the statement YyVxP(x, y) says “For all real numbers y, for all real numbers x, x +y =y + x.”
This has the same meaning as the statement “For all real numbers x, for all real numbers y,
x+y=y+x” Thatis, VxVyP(x, y) and VyVxP(x, y) have the same meaning, and both are true.
This illustrates the principle that the order of nested universal quantifiers in a statement without
other quantifiers can be changed without changing the meaning of the quantified statement. <

Let Q(x, y) denote “x + y = 0.” What are the truth values of the quantifications JyVxQ(x, y) and
Vx3yQ(x, y), where the domain for all variables consists of all real numbers?

Solution: The quantification
Vx0(x, y)
denotes the proposition
“There is a real number y such that for every real number x, Q(x, y).”
No matter what value of y is chosen, there is only one value of x for which x + y = 0. Because

there is no real number y such that x +y = 0 for all real numbers x, the statement JyVxQ(x, y)
is false.
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The quantification

Vx3dyQ(x, y)
denotes the proposition
“For every real number x there is a real number y such that Q(x, y).”

Given a real number x, there is a real number y such that x + y = 0; namely, y = —x. Hence, the
statement Vx3yQ(x, y) is true. <4

Example 4 illustrates that the order in which quantifiers appear makes a difference. The
statements IyVxP(x, y) and Vx3IyP(x, y) are not logically equivalent. The statement IyVxP(x, y)
is true if and only if there is a y that makes P(x, y) true for every x. So, for this statement to
be true, there must be a particular value of y for which P(x, y) is true regardless of the choice
of x. On the other hand, Vx3yP(x, y) is true if and only if for every value of x there is a value
of y for which P(x, y) is true. So, for this statement to be true, no matter which x you choose,
there must be a value of y (possibly depending on the x you choose) for which P(x, y) is true.
In other words, in the second case, y can depend on x, whereas in the first case, y is a constant
independent of x.

From these observations, it follows that if IyVxP(x, y) is true, then Vx3IyP(x, y) must also
be true. However, if Vx3yP(x, y) is true, it is not necessary for IyVxP(x, y) to be true. (See
Supplementary Exercises 30 and 31.)

Table 1 summarizes the meanings of the different possible quantifications involving two
variables.

Quantifications of more than two variables are also common, as Example 5 illustrates.

Let O(x,y,z) be the statement “x+y =z What are the truth values of the statements
VxVy3zQO(x, v, z) and 3zVxVyQ(x, y, z), where the domain of all variables consists of all real
numbers?

Solution: Suppose that x and y are assigned values. Then, there exists a real number z such that
x +y = z. Consequently, the quantification

VaVy3z0(x, y, 2),
which is the statement

“For all real numbers x and for all real numbers y there is a real number z such that
x+y=2z"

TABLE 1 Quantifications of Two Variables.

Statement When True? When False?

VxVyP(x, y) P(x,y) is true for every pair x, y. There is a pair x, y for

VyVxP(x, y) which P(x, y) is false.

Vx3yP(x, y) For every x there is a y for There is an x such that
which P(x, y) is true. P(x,y) is false for every y.

AxVyP(x, y) There is an x for which P(x, y) For every x there is a y for
is true for every y. which P(x, y) is false.

Ax3yP(x, y) There is a pair x, y for which P(x, y) is false for every

Jy3axP(x, y) P(x, y) is true. pair x, y.
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is true. The order of the quantification here is important, because the quantification

AZVxVyO(x, v, 2),

which is the statement

“There is a real number z such that for all real numbers x and for all real numbers y it is true
thatx+y=2z2"

is false, because there is no value of z that satisfies the equation x + y = z for all values of x
and y. |

1.5.4 Translating Mathematical Statements into Statements
Involving Nested Quantifiers

Mathematical statements expressed in English can be translated into logical expressions, as
Examples 6—8 show.

Translate the statement “The sum of two positive integers is always positive” into a logical
expression.

Solution: To translate this statement into a logical expression, we first rewrite it so that the
implied quantifiers and a domain are shown: “For every two integers, if these integers are both
positive, then the sum of these integers is positive.” Next, we introduce the variables x and y to
obtain “For all positive integers x and y, x + y is positive.” Consequently, we can express this
statement as

VaVy((x > 0) A (y > 0) = (x+y > 0)),
where the domain for both variables consists of all integers. Note that we could also translate
this using the positive integers as the domain. Then the statement “The sum of two positive

integers is always positive” becomes “For every two positive integers, the sum of these integers
is positive.” We can express this as

VaVy(x +y > 0),

where the domain for both variables consists of all positive integers. <

Translate the statement “Every real number except zero has a multiplicative inverse.” (A mul-
tiplicative inverse of a real number x is a real number y such that xy = 1.)

Solution: We first rewrite this as “For every real number x except zero, x has a multiplicative

inverse.” We can rewrite this as “For every real number x, if x # 0, then there exists a real
number y such that xy = 1.” This can be rewritten as

Vx((x # 0) = Jy(xy = 1)). |

One example that you may be familiar with is the concept of limit, which is important in
calculus.
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(Requires calculus) Use quantifiers to express the definition of the limit of a real-valued func-
tion f(x) of a real variable x at a point ¢ in its domain.

Solution: Recall that the definition of the statement
limf(x) =L
X—a
is: For every real number e > O there exists a real number 6 > 0 such that |f(x) —L| <e
whenever 0 < |x — a| < 6. This definition of a limit can be phrased in terms of quantifiers by
VedIoVx(0 < [x—a| <6 — [f(x) — L] < e),

where the domain for the variables 6 and e consists of all positive real numbers and for x consists
of all real numbers.
This definition can also be expressed as

Ve>036>0Vx(0O < |x—a| <6 - |f(x)—L| <e¢)

when the domain for the variables ¢ and 6 consists of all real numbers, rather than just the
positive real numbers. [Here, restricted quantifiers have been used. Recall that Vx > 0 P(x) means
that for all x with x > 0, P(x) is true.] <4

1.5.5 Translating from Nested Quantifiers into English

Expressions with nested quantifiers expressing statements in English can be quite complicated.
The first step in translating such an expression is to write out what the quantifiers and predicates
in the expression mean. The next step is to express this meaning in a simpler sentence. This
process is illustrated in Examples 9 and 10.

Translate the statement
Vx(C(x) v 3y(C(y) A F(x, y)))

into English, where C(x) is “x has a computer,” F(x, y) is “x and y are friends,” and the domain
for both x and y consists of all students in your school.

Solution: The statement says that for every student x in your school, x has a computer or there
is a student y such that y has a computer and x and y are friends. In other words, every student
in your school has a computer or has a friend who has a computer. <

Translate the statement
VYV (Fx, ) AF(x, 2) Ay # 2)) = ~F(, 2)

into English, where F(a, b) means a and b are friends and the domain for x, y, and z consists of
all students in your school.

Solution: We first examine the expression (F(x, y) A F(x, z) A (y # z2)) = —F(y, z). This expres-
sion says that if students x and y are friends, and students x and z are friends, and furthermore,
if y and z are not the same student, then y and z are not friends. It follows that the original state-
ment, which is triply quantified, says that there is a student x such that for all students y and all
students z other than y, if x and y are friends and x and z are friends, then y and z are not friends.
In other words, there is a student none of whose friends are also friends with each other. <
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1.5.6 Translating English Sentences into Logical Expressions

In Section 1.4 we showed how quantifiers can be used to translate sentences into logical expres-
sions. However, we avoided sentences whose translation into logical expressions required the
use of nested quantifiers. We now address the translation of such sentences.

Express the statement “If a person is female and is a parent, then this person is someone’s
mother” as a logical expression involving predicates, quantifiers with a domain consisting of all
people, and logical connectives.

Solution: The statement “If a person is female and is a parent, then this person is someone’s
mother” can be expressed as “For every person x, if person x is female and person x is a parent,
then there exists a person y such that person x is the mother of person y.” We introduce the
propositional functions F(x) to represent “x is female,” P(x) to represent “x is a parent,” and
M(x, y) to represent “x is the mother of y.” The original statement can be represented as

Vx((F(x) A P(x)) = JyM(x, y)).

Using the null quantification rule in part (b) of Exercise 49 in Section 1.4, we can move Jy to
the left so that it appears just after Vx, because y does not appear in F(x) A P(x). We obtain the
logically equivalent expression

VxIy((F(x) A P(x)) = M(x, y)). |

Express the statement “Everyone has exactly one best friend” as a logical expression involving
predicates, quantifiers with a domain consisting of all people, and logical connectives.

Solution: The statement “Everyone has exactly one best friend” can be expressed as “For every
person x, person x has exactly one best friend.” Introducing the universal quantifier, we see
that this statement is the same as “Vx(person x has exactly one best friend),” where the domain
consists of all people.

To say that x has exactly one best friend means that there is a person y who is the best friend
of x, and furthermore, that for every person z, if person z is not person y, then z is not the best
friend of x. When we introduce the predicate B(x, y) to be the statement ““y is the best friend of
x,” the statement that x has exactly one best friend can be represented as

IyB, y) AVz((z # y) = ~B(x, 2))).
Consequently, our original statement can be expressed as
Vx3y(B(x, y) AVz((z # y) = =B(x, 2))).

[Note that we can write this statement as Vx3!yB(x, y), where 3! is the “uniqueness quantifier”
defined in Section 1.4.] <

Use quantifiers to express the statement “There is a woman who has taken a flight on every
airline in the world.”

Solution: Let P(w, f) be “w has taken f” and Q(f, a) be “f is a flight on a.” We can express the
statement as

IwVadf(Pw, f) A O(f. a)),
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where the domains of discourse for w, f, and a consist of all the women in the world, all airplane
flights, and all airlines, respectively.
The statement could also be expressed as

IwVa3dfRw, f, a),
where R(w, f,a) is “w has taken f on a.” Although this is more compact, it somewhat

obscures the relationships among the variables. Consequently, the first solution is usually
preferable. <

1.5.7 Negating Nested Quantifiers

Statements involving nested quantifiers can be negated by successively applying the rules for
negating statements involving a single quantifier. This is illustrated in Examples 14—16.

Express the negation of the statement Vx3y(xy = 1) so that no negation precedes a quantifier.

Solution: By successively applying De Morgan’s laws for quantifiers in Table 2 of
Section 1.4, we can move the negation in =Vx3y(xy = 1) inside all the quantifiers. We find that
=Vx3y(xy = 1) is equivalent to Ix—=Iy(xy = 1), which is equivalent to IxVy-(xy = 1). Because
—(xy = 1) can be expressed more simply as xy # 1, we conclude that our negated statement can
be expressed as IxVy(xy # 1). <

Use quantifiers to express the statement that “There does not exist a woman who has taken a
flight on every airline in the world.”

Solution: This statement is the negation of the statement “There is a woman who has taken
a flight on every airline in the world” from Example 13. By Example 13, our statement can
be expressed as =IwVaIf (P(w, f) A Q(f, a)), where P(w, f) is “w has taken f~ and Q(f, a) is
“f is a flight on a.” By successively applying De Morgan’s laws for quantifiers in Table 2 of
Section 1.4 to move the negation inside successive quantifiers and by applying De Morgan’s
law for negating a conjunction in the last step, we find that our statement is equivalent to each
of this sequence of statements:

Vw=Va3f (P(w, ) A O(f, @) = YwIa~3f (P(w, f) A O(f, a))
= Vw3aVf—~(P(w, f) A Q(f, a))
= YwIaVf(=P(w, ) V =Q(f. a)).

This last statement states ‘“For every woman there is an airline such that for all flights, this
woman has not taken that flight or that flight is not on this airline.” <

(Requires calculus) Use quantifiers and predicates to express the fact that lim,_, , f(x) does not

exist where f(x) is a real-valued function of a real variable x and a belongs to the domain of f

Solution: To say that lim_, f(x) does not exist means that for all real numbers L,
lim__,_ f(x) # L. By using Example 8, the statement lim,_, , f(x) # L can be expressed as

X—=a X—=a

Ve>036>0Vx(0< |[x—a] <6 - |[f(x) = L| <e).
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Successively applying the rules for negating quantified expressions, we construct this sequence
of equivalent statements:
Ve>036>0Vx(0<|x —a|<é — [f(x) — L|<e)
=3e>0-36>0Vx(0<|x —a]<é = |f(x) — L|<e)

=3e>0V6>0 Vx(0<|x —a]<é = |f(x) — L|<e¢)
=3de>0V6>03Ix ~(0<|x —a|<é = [f(x) = L|<e)
=3de>0V6>0Ix(0<|x —al|<sA|f(x) = L|>¢€).

In the last step we used the equivalence —(p — g) = p A 7g, which follows from the fifth
equivalence in Table 7 of Section 1.3.
Because the statement “lim,_, f(x) does not exist” means for all real numbers L,

lim__,  f(x) # L, this can be expressed as

VLIe>0V6>03x(0 < [x —a| <A |f(x) —L| > e).

This last statement says that for every real number L there is a real number € > 0 such
that for every real number 6 > 0, there exists a real number x such that 0 < |x —a| < 6 and

[f) —L| > e.

Exercises

<

1. Translate these statements into English, where the do-

main for each variable consists of all real numbers.
a) Vxdy(x <y)

b) VaVy((x 2 0) A (y 2 0)) = (xy 2 0))

¢) VaVydz(xy = 2)

. Translate these statements into English, where the do-

main for each variable consists of all real numbers.
a) IVy(ry =y)

b) VxVy((x 2 0) A (y < 0)) = (x —y > 0))

¢) VaVydz(x =y +2z)

. Let O(x, y) be the statement “x has sent an e-mail mes-

sage to y,” where the domain for both x and y consists of
all students in your class. Express each of these quantifi-
cations in English.

a) IxIy0(x, y)
¢) VxIyO(x, y)
e) VyaxQO(x, y)

b) AxVyO(x, y)
d) IVxO(x, y)
f) VxVyQ(x,y)

. Let P(x, y) be the statement “Student x has taken class y,”

where the domain for x consists of all students in your
class and for y consists of all computer science courses
at your school. Express each of these quantifications in
English.

a) IxIyP(x,y)
¢) Vx3yP(x,y)
e) VyaxP(x,y)

b) IxVyP(x, y)
d) IyVxP(x, y)
f) VxVyP(x, y)

5. Let W(x, y) mean that student x has visited website y,

where the domain for x consists of all students in your

school and the domain for y consists of all websites. Ex-

press each of these statements by a simple English sen-

tence.

a) W(Sarah Smith, www.att.com)

b) IxW(x, www.imdb.org)

¢) dyW(osé Orez, y)

d) 3y(W(Ashok Puri, y) A W(Cindy Yoon, y))

e) TyVz(y # (David Belcher) A (W(David Belcher, z) —
W(,2))

£) IxFvz((x # y) A (W(x, 2) © W(y,2)

. Let C(x, y) mean that student x is enrolled in class y,

where the domain for x consists of all students in your
school and the domain for y consists of all classes being
given at your school. Express each of these statements by
a simple English sentence.

a) C(Randy Goldberg, CS 252)

b) IxC(x, Math 695)

¢) 3JyC(Carol Sitea, y)

d) Ix(C(x, Math 222) A C(x, CS 252))

e IWVa((x £ ) A (Cx 2) = C(3,2)

f) IyWVz((x # y) A (C(x, 2) & C(, 2)))

. Let T(x, y) mean that student x likes cuisine y, where the

domain for x consists of all students at your school and
the domain for y consists of all cuisines. Express each of
these statements by a simple English sentence.

a) —T(Abdallah Hussein, Japanese)
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b) IAxT(x, Korean) A VxT(x, Mexican)
¢) 3Iy(T(Monique Arsenault, y) V
T(Jay Johnson, y))
d) VxvzIAy((x # z2) = ~(T(x, ) AT(z ¥))
e) WIVy(T(x,y) < T(zy))
f) Vavzay(T(x, y) © T(z y)

. Let Q(x, y) be the statement “Student x has been a con-

testant on quiz show y.” Express each of these sentences
in terms of Q(x, y), quantifiers, and logical connectives,
where the domain for x consists of all students at your
school and for y consists of all quiz shows on televi-
sion.

a) There is a student at your school who has been a con-
testant on a television quiz show.

b) No student at your school has ever been a contestant
on a television quiz show.

¢) There is a student at your school who has been a con-
testant on Jeopardy! and on Wheel of Fortune.

d) Every television quiz show has had a student from
your school as a contestant.

e) Atleast two students from your school have been con-
testants on Jeopardy!.

. Let L(x, y) be the statement “x loves y,” where the domain

for both x and y consists of all people in the world. Use
quantifiers to express each of these statements.

a) Everybody loves Jerry.

b) Everybody loves somebody.

¢) There is somebody whom everybody loves.

d) Nobody loves everybody.

e) There is somebody whom Lydia does not love.

f) There is somebody whom no one loves.

g) There is exactly one person whom everybody loves.

h) There are exactly two people whom Lynn loves.

i) Everyone loves himself or herself.

j) There is someone who loves no one besides himself
or herself.

Let F(x, y) be the statement “x can fool y,” where the do-
main consists of all people in the world. Use quantifiers
to express each of these statements.

a) Everybody can fool Fred.

b) Evelyn can fool everybody.

¢) Everybody can fool somebody.

d) There is no one who can fool everybody.

e) Everyone can be fooled by somebody.

f) No one can fool both Fred and Jerry.

g) Nancy can fool exactly two people.

h) There is exactly one person whom everybody can
fool.

i) No one can fool himself or herself.

J) There is someone who can fool exactly one person
besides himself or herself.

Let S(x) be the predicate “x is a student,” F(x) the pred-

icate “x is a faculty member,” and A(x, y) the predicate

“x has asked y a question,” where the domain consists of

all people associated with your school. Use quantifiers to

express each of these statements.

a) Lois has asked Professor Michaels a question.

b) Every student has asked Professor Gross a question.

12.

13.
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¢) Every faculty member has either asked Professor
Miller a question or been asked a question by Pro-
fessor Miller.

d) Some student has not asked any faculty member a
question.

e) There is a faculty member who has never been asked
a question by a student.

f) Some student has asked every faculty member a ques-
tion.

g) There is a faculty member who has asked every other
faculty member a question.

h) Some student has never been asked a question by a
faculty member.

Let I(x) be the statement “x has an Internet connection”
and C(x, y) be the statement “x and y have chatted over
the Internet,” where the domain for the variables x and y
consists of all students in your class. Use quantifiers to
express each of these statements.

a) Jerry does not have an Internet connection.

b) Rachel has not chatted over the Internet with
Chelsea.

¢) Jan and Sharon have never chatted over the Internet.

d) No one in the class has chatted with Bob.

e) Sanjay has chatted with everyone except Joseph.

f) Someone in your class does not have an Internet con-
nection.

g) Not everyone in your class has an Internet connec-
tion.

h) Exactly one student in your class has an Internet con-
nection.

i) Everyone except one student in your class has an In-
ternet connection.

J) Everyone in your class with an Internet connection
has chatted over the Internet with at least one other
student in your class.

k) Someone in your class has an Internet connection but
has not chatted with anyone else in your class.

1) There are two students in your class who have not
chatted with each other over the Internet.

m) There is a student in your class who has chatted with
everyone in your class over the Internet.

n) There are at least two students in your class who have
not chatted with the same person in your class.

0) There are two students in the class who between them
have chatted with everyone else in the class.

Let M(x,y) be “x has sent y an e-mail message” and
T(x,y) be “x has telephoned y,” where the domain con-
sists of all students in your class. Use quantifiers to ex-
press each of these statements. (Assume that all e-mail
messages that were sent are received, which is not the
way things often work.)

a) Chou has never sent an e-mail message to Koko.

b) Arlene has never sent an e-mail message to or tele-
phoned Sarah.

¢) José has never received an e-mail message from Deb-
orah.

d) Every student in your class has sent an e-mail mes-
sage to Ken.

e) No one in your class has telephoned Nina.
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f) Everyone in your class has either telephoned Avi or
sent him an e-mail message.

g) There is a student in your class who has sent every-
one else in your class an e-mail message.

h) There is someone in your class who has either sent an
e-mail message or telephoned everyone else in your
class.

i) There are two different students in your class who
have sent each other e-mail messages.

J) There is a student who has sent himself or herself an
e-mail message.

k) There is a student in your class who has not received
an e-mail message from anyone else in the class and
who has not been called by any other student in the
class.

1) Every student in the class has either received an e-

mail message or received a telephone call from an-

other student in the class.

There are at least two students in your class such that

one student has sent the other e-mail and the second

student has telephoned the first student.

n) There are two different students in your class who
between them have sent an e-mail message to or tele-
phoned everyone else in the class.

m)

Use quantifiers and predicates with more than one vari-

able to express these statements.

a) There is a student in this class who can speak Hindi.

b) Every student in this class plays some sport.

¢) Some student in this class has visited Alaska but has

not visited Hawaii.

All students in this class have learned at least one pro-

gramming language.

e) There is a student in this class who has taken ev-
ery course offered by one of the departments in this
school.

d)

f) Some student in this class grew up in the same town
as exactly one other student in this class.

g) Every student in this class has chatted with at least
one other student in at least one chat group.

Use quantifiers and predicates with more than one vari-

able to express these statements.

a) Every computer science student needs a course in dis-
crete mathematics.

b) There is a student in this class who owns a personal

computer.

¢) Every student in this class has taken at least one com-

puter science course.

There is a student in this class who has taken at least

one course in computer science.

e) Every student in this class has been in every building
on campus.

f) There is a student in this class who has been in every
room of at least one building on campus.

g) Every student in this class has been in at least one
room of every building on campus.

d

16.

17
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A discrete mathematics class contains 1 mathematics

major who is a freshman, 12 mathematics majors who

are sophomores, 15 computer science majors who are

sophomores, 2 mathematics majors who are juniors, 2

computer science majors who are juniors, and 1 computer

science major who is a senior. Express each of these state-

ments in terms of quantifiers and then determine its truth

value.

a) There is a student in the class who is a junior.

b) Every student in the class is a computer science ma-
jor.

¢) There is a student in the class who is neither a math-
ematics major nor a junior.

d) Every student in the class is either a sophomore or a
computer science major.

e) There is a major such that there is a student in the
class in every year of study with that major.

Express each of these system specifications using pred-

icates, quantifiers, and logical connectives, if neces-

sary.

a) Every user has access to exactly one mailbox.

b) There is a process that continues to run during all er-
ror conditions only if the kernel is working correctly.

¢) All users on the campus network can access all web-

sites whose url has a .edu extension.

There are exactly two systems that monitor every re-

mote server.

18. Express each of these system specifications using pred-

19

20.

icates, quantifiers, and logical connectives, if neces-

sary.

a) At least one console must be accessible during every
fault condition.

b) The e-mail address of every user can be retrieved
whenever the archive contains at least one message
sent by every user on the system.

¢) For every security breach there is at least one mecha-
nism that can detect that breach if and only if there is
a process that has not been compromised.

d) There are at least two paths connecting every two dis-
tinct endpoints on the network.

e) No one knows the password of every user on the sys-
tem except for the system administrator, who knows
all passwords.

Express each of these statements using mathematical and

logical operators, predicates, and quantifiers, where the

domain consists of all integers.

a) The sum of two negative integers is negative.

b) The difference of two positive integers is not neces-
sarily positive.

¢) The sum of the squares of two integers is greater than
or equal to the square of their sum.

d) The absolute value of the product of two integers is
the product of their absolute values.

Express each of these statements using predicates, quan-

tifiers, logical connectives, and mathematical operators

where the domain consists of all integers.

a) The product of two negative integers is positive.
b) The average of two positive integers is positive.
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¢) The difference of two negative integers is not neces-
sarily negative.

d) The absolute value of the sum of two integers does
not exceed the sum of the absolute values of these in-
tegers.

Use predicates, quantifiers, logical connectives, and

mathematical operators to express the statement that ev-

ery positive integer is the sum of the squares of four in-
tegers.

Use predicates, quantifiers, logical connectives, and

mathematical operators to express the statement that there

is a positive integer that is not the sum of three squares.

Express each of these mathematical statements using

predicates, quantifiers, logical connectives, and mathe-

matical operators.

a) The product of two negative real numbers is positive.

b) The difference of a real number and itself is zero.

¢) Every positive real number has exactly two square
roots.

d) A negative real number does not have a square root
that is a real number.

Translate each of these nested quantifications into an En-
glish statement that expresses a mathematical fact. The
domain in each case consists of all real numbers.

a) Vy(x+y=y)

b) VxVy((x 2 0) A (y < 0)) = (x —y > 0))

o (k< OAY=SONAGx—y>0)

d) Vavy((x # 0) A (y # 0) < (xy # 0))

Translate each of these nested quantifications into an En-
glish statement that expresses a mathematical fact. The
domain in each case consists of all real numbers.

a) Vy(xy =y)

b) VavVy((x < 0) A (y < 0)) = (xy > 0))

¢ IFY((? > A <y)

d) VaxVydz(x +y=2)

Let O(x, y) be the statement “x+y =x —y.” If the do-
main for both variables consists of all integers, what are
the truth values?

a) O(1, 1)

¢) VyQ(Ly)
e) IxIy0(x, y)
g) VxO(x, y)
i) VavyQ(x, y)
Determine the truth value of each of these statements if
the domain for all variables consists of all integers.

a) Vnam(n? < m) b) InVm(n < m?)

¢) VYndm(n+m =0) d) InVm(nm = m)

e) Indmmn? +m? =5) f) InImn?® + m? = 6)

g) dndmn+m=4An—m=1)

h) Indmn+m=4An—-—m=2)

i) VaVmIpp = (m+n)/2)

Determine the truth value of each of these statements
if the domain of each variable consists of all real num-
bers.

a) VxIy(? =y)
¢) IxVy(xy =0)

b) Q(2,0)

d) 3x0(x, 2)
f) Vx3y0(x, y)
h) Vy3xQO(x, y)

b) VxIy(x =)?)
d) ITyx+y#y + x)

29.
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€) Vx(x #0 — Jy(xy = 1))

f) IAVy(y#0->xy=1)

g) VxIyx+y=1)

h) IxTy(x+2y =2A2x+4y =5)

i) Vxdyx+y=2A2x—y=1)

) VaVydzz=(x+y)/2)

Suppose the domain of the propositional function P(x, y)
consists of pairs x and y, where xis 1,2,or3and yis 1, 2,
or 3. Write out these propositions using disjunctions and
conjunctions.

a) VaxVyP(x,y) b) Ax3yP(x, y)

¢) IxVyP(x, y) d) Vy3axP(x,y)

Rewrite each of these statements so that negations ap-
pear only within predicates (that is, so that no negation
is outside a quantifier or an expression involving logical
connectives).

a) —3JdyAxP(x, y)

©) ~Iy(Q(K) A Vx=R(x, )
d) —Iy(FxR(x, y) vV VxS(x, y))

e) ~Iy(Vx3zT(x, y,2) vV IxVzU(x, y, 2))

Express the negations of each of these statements so that
all negation symbols immediately precede predicates.

a) Vx3IyvzT(x,y, z)

b) Vx3yP(x, y) v VxIyO(x, y)

©) Vxdy(P(x, y) A 3zR(x, y, 7))

d) Vx3y(P(x,y) = Q(x, y))

Express the negations of each of these statements so that
all negation symbols immediately precede predicates.

a) JIVYWxT(x, y, 2)

b) Ax3yP(x, y) A VxVyQ(x, y)

©) Iy(Q(x, y) < Q0 X))

d) Vyax3zT(x, y,2) V O, y))

Rewrite each of these statements so that negations ap-
pear only within predicates (that is, so that no negation
is outside a quantifier or an expression involving logical
connectives).

a) VxVyP(x,y)

©) WVYVx(P(x, y) vV Ox, )
d) ~(3xIy-P(x, y) AVxVy0O(x, y))

e) ~Vx(IYVzP(x,y, 2) A IVyP(x, y, 2))

Find a common domain for the variables x, y, and
z for which the statement VxVy((x # y) - Vz((z = x) V
(z =1))) is true and another domain for which it is false.

b) =Vx3yP(x, y)

b) ~Vy3rP(x,y)

Find a common domain for the variables x,y,z,

and w for which the statement VxVyVzIw((w # x) A

(w # y) A (w # 7)) is true and another common domain

for these variables for which it is false.

Express each of these statements using quantifiers. Then

form the negation of the statement so that no negation is

to the left of a quantifier. Next, express the negation in

simple English. (Do not simply use the phrase “It is not

the case that.”)

a) No one has lost more than one thousand dollars play-
ing the lottery.

b) There is a student in this class who has chatted with
exactly one other student.
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¢) No student in this class has sent e-mail to exactly two
other students in this class.

d) Some student has solved every exercise in this book.

e) No student has solved at least one exercise in every
section of this book.

Express each of these statements using quantifiers. Then

form the negation of the statement so that no negation is

to the left of a quantifier. Next, express the negation in

simple English. (Do not simply use the phrase “It is not

the case that.”)

a) Every student in this class has taken exactly two math-
ematics classes at this school.

b) Someone has visited every country in the world ex-
cept Libya.

¢) No one has climbed every mountain in the Himalayas.

d) Every movie actor has either been in a movie with
Kevin Bacon or has been in a movie with someone
who has been in a movie with Kevin Bacon.

Express the negations of these propositions using quan-

tifiers, and in English.

a) Every student in this class likes mathematics.

b) There is a student in this class who has never seen a
computer.

¢) There is a student in this class who has taken every
mathematics course offered at this school.

d) There is a student in this class who has been in at least
one room of every building on campus.

Find a counterexample, if possible, to these universally
quantified statements, where the domain for all variables
consists of all integers.

a) VaVy(x> =y > x=y)

b) VxAy(y? = x)

c) VaVy(xy > x)

Find a counterexample, if possible, to these universally
quantified statements, where the domain for all variables
consists of all integers.

a) Vady(x =1/y)

b) Vxdy(y*> —x < 100)

) Vavy(x* # %)

Use quantifiers to express the associative law for multi-
plication of real numbers.

Use quantifiers to express the distributive laws of multi-
plication over addition for real numbers.

Use quantifiers and logical connectives to express the fact
that every linear polynomial (that is, polynomial of de-
gree 1) with real coefficients and where the coefficient of
x is nonzero, has exactly one real root.

Use quantifiers and logical connectives to express the fact
that a quadratic polynomial with real number coefficients
has at most two real roots.

Determine the truth value of the statement Vx3y(xy = 1)
if the domain for the variables consists of

a) the nonzero real numbers.
b) the nonzero integers.
¢) the positive real numbers.
46. Determine the truth value of the statement IxVy(x < y?)
if the domain for the variables consists of

a) the positive real numbers.

b) the integers.

¢) the nonzero real numbers.

47. Show that the two statements -3IxVyP(x,y) and
Vx3y-P(x, y), where both quantifiers over the first vari-
able in P(x, y) have the same domain, and both quantifiers
over the second variable in P(x, y) have the same domain,
are logically equivalent.

*48. Show that VxP(x) Vv VxQ(x) and VxVy(P(x)V Q®)),
where all quantifiers have the same nonempty domain,
are logically equivalent. (The new variable y is used to
combine the quantifications correctly.)

*49, a) Show that VxP(x) A 3xQ(x) is logically equivalent to
Vx3y (P(x) A Q(y)), where all quantifiers have the
same nonempty domain.

b) Show that VxP(x)V 3xQ(x) is equivalent to Vx3Jy
(P(x) v O(y)), where all quantifiers have the same
nonempty domain.

A statement is in prenex normal form (PNF) if and only if

it is of the form

Q1x105%y =+ Qpx P(X1, Xy, ..., X)),

where each Q,,i = 1,2, ..., k, is either the existential quanti-

fier or the universal quantifier, and P(x,, ..., x;) is a predicate

involving no quantifiers. For example, IxVy(P(x, y) A Q(y)) is
in prenex normal form, whereas 3xP(x) V VxQ(x) is not (be-
cause the quantifiers do not all occur first).

Every statement formed from propositional variables,
predicates, T, and F using logical connectives and quanti-
fiers is equivalent to a statement in prenex normal form.
Exercise 51 asks for a proof of this fact.

*50. Put these statements in prenex normal form. [Hint: Use
logical equivalence from Tables 6 and 7 in Section 1.3,
Table 2 in Section 1.4, Example 19 in Section 1.4,
Exercises 47 and 48 in Section 1.4, and Exercises 48
and 49.]

a) IxP(x) v IxQO(x) V A, where A is a proposition not in-
volving any quantifiers

b) =(VxP(x) vV VxQ(x))

¢) AxP(x) - IxQO(x)

*%5]1. Show how to transform an arbitrary statement to a state-

ment in prenex normal form that is equivalent to the given
statement. (Note: A formal solution of this exercise re-
quires use of structural induction, covered in Section 5.3.)

*52. Express the quantification 3!xP(x), introduced in Sec-
tion 1.4, using universal quantifications, existential quan-
tifications, and logical operators.
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Rules of Inference

1.6.1 Introduction

Later in this chapter we will study proofs. Proofs in mathematics are valid arguments that estab-
lish the truth of mathematical statements. By an argument, we mean a sequence of statements
that end with a conclusion. By valid, we mean that the conclusion, or final statement of the ar-
gument, must follow from the truth of the preceding statements, or premises, of the argument.
That is, an argument is valid if and only if it is impossible for all the premises to be true and
the conclusion to be false. To deduce new statements from statements we already have, we use
rules of inference which are templates for constructing valid arguments. Rules of inference are
our basic tools for establishing the truth of statements.

Before we study mathematical proofs, we will look at arguments that involve only com-
pound propositions. We will define what it means for an argument involving compound propo-
sitions to be valid. Then we will introduce a collection of rules of inference in propositional
logic. These rules of inference are among the most important ingredients in producing valid
arguments. After we illustrate how rules of inference are used to produce valid arguments, we
will describe some common forms of incorrect reasoning, called fallacies, which lead to invalid
arguments.

After studying rules of inference in propositional logic, we will introduce rules of infer-
ence for quantified statements. We will describe how these rules of inference can be used
to produce valid arguments. These rules of inference for statements involving existential and
universal quantifiers play an important role in proofs in computer science and mathematics,
although they are often used without being explicitly mentioned.

Finally, we will show how rules of inference for propositions and for quantified statements
can be combined. These combinations of rule of inference are often used together in complicated
arguments.

1.6.2 Valid Arguments in Propositional Logic

Consider the following argument involving propositions (which, by definition, is a sequence of
propositions):

“If you have a current password, then you can log onto the network.”
“You have a current password.”

Therefore,

“You can log onto the network.”

We would like to determine whether this is a valid argument. That is, we would like to de-
termine whether the conclusion “You can log onto the network™ must be true when the premises
“If you have a current password, then you can log onto the network™ and “You have a current
password” are both true.

Before we discuss the validity of this particular argument, we will look at its form. Use p
to represent ‘““You have a current password” and ¢ to represent “You can log onto the network.”
Then, the argument has the form

p—=4q
p
S q

where .". is the symbol that denotes “therefore.”
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Definition 1

We know that when p and g are propositional variables, the statement (p — g) Ap) — g is
a tautology (see Exercise 12(c) in Section 1.3). In particular, when both p — ¢ and p are true,
we know that ¢ must also be true. We say this form of argument is valid because whenever all
its premises (all statements in the argument other than the final one, the conclusion) are true,
the conclusion must also be true. Now suppose that both “If you have a current password, then
you can log onto the network™ and “You have a current password” are true statements. When
we replace p by “You have a current password” and ¢ by “You can log onto the network,” it
necessarily follows that the conclusion “You can log onto the network™ is true. This argument
is valid because its form is valid. Note that whenever we replace p and g by propositions where
p — ¢q and p are both true, then ¢ must also be true.

What happens when we replace p and ¢ in this argument form by propositions where not
both p and p — ¢ are true? For example, suppose that p represents “You have access to the
network” and ¢ represents ““You can change your grade” and that p is true, but p — ¢ is false.
The argument we obtain by substituting these values of p and ¢ into the argument form is

“If you have access to the network, then you can change your grade.”
“You have access to the network.”

.. ““You can change your grade.”

The argument we obtained is a valid argument, but because one of the premises, namely the first
premise, is false, we cannot conclude that the conclusion is true. (Most likely, this conclusion
is false.)

In our discussion, to analyze an argument, we replaced propositions by propositional vari-
ables. This changed an argument to an argument form. We saw that the validity of an argument
follows from the validity of the form of the argument. We summarize the terminology used to
discuss the validity of arguments with our definition of the key notions.

An argument in propositional logic is a sequence of propositions. All but the final proposition
in the argument are called premises and the final proposition is called the conclusion. An
argument is valid if the truth of all its premises implies that the conclusion is true.

An argument form in propositional logic is a sequence of compound propositions in-
volving propositional variables. An argument form is valid if no matter which particular
propositions are substituted for the propositional variables in its premises, the conclusion is
true if the premises are all true.

Remark: From the definition of a valid argument form we see that the argument form with
premises p;, p,, ..., p, and conclusion ¢ is valid exactly when (p; Ap, A= Ap,) = g is a
tautology.

The key to showing that an argument in propositional logic is valid is to show that its

argument form is valid. Consequently, we would like techniques to show that argument forms
are valid. We will now develop methods for accomplishing this task.

1.6.3 Rules of Inference for Propositional Logic

We can always use a truth table to show that an argument form is valid. We do this by showing
that whenever the premises are true, the conclusion must also be true. However, this can be
a tedious approach. For example, when an argument form involves 10 different propositional
variables, to use a truth table to show this argument form is valid requires 2'° = 1024 different
rows. Fortunately, we do not have to resort to truth tables. Instead, we can first establish the
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validity of some relatively simple argument forms, called rules of inference. These rules of
inference can be used as building blocks to construct more complicated valid argument forms.
We will now introduce the most important rules of inference in propositional logic.

The tautology (p A (p — g)) — g is the basis of the rule of inference called modus ponens,
or the law of detachment. (Modus ponens is Latin for mode that affirms.) This tautology leads
to the following valid argument form, which we have already seen in our initial discussion about
arguments (where, as before, the symbol .". denotes “therefore”):

p
pP—=q
g

Using this notation, the hypotheses are written in a column, followed by a horizontal bar, fol-
lowed by a line that begins with the therefore symbol and ends with the conclusion. In particular,
modus ponens tells us that if a conditional statement and the hypothesis of this conditional state-
ment are both true, then the conclusion must also be true. Example 1 illustrates the use of modus
ponens.

Suppose that the conditional statement “If it snows today, then we will go skiing” and its hy-
pothesis, “It is snowing today,” are true. Then, by modus ponens, it follows that the conclusion
of the conditional statement, “We will go skiing,” is true. <

As we mentioned earlier, a valid argument can lead to an incorrect conclusion if one or
more of its premises is false. We illustrate this again in Example 2.

Determine whether the argument given here is valid and determine whether its conclusion must
be true because of the validity of the argument.

2
“If v/2 > %, then (\/5)2 > <%> . We know that \/E > % Consequently,
2 32 _ 9w

Solution: Let p be the proposition “\/5 > %” and g the proposition “2 > (%)2.” The premises
of the argument are p — ¢ and p, and q is its conclusion. This argument is valid because it
is constructed by using modus ponens, a valid argument form. However, one of its premises,

\/5 > %, is false. Consequently, we cannot conclude that the conclusion is true. Furthermore,

note that the conclusion of this argument is false, because 2 < %. <

There are many useful rules of inference for propositional logic. Perhaps the most widely
used of these are listed in Table 1. Exercises 13—16, 25, 33, and 34 in Section 1.3 ask for the
verifications that these rules of inference are valid argument forms. We now give examples of
arguments that use these rules of inference. In each argument, we first use propositional variables
to express the propositions in the argument. We then show that the resulting argument form is
a rule of inference from Table 1.

State which rule of inference is the basis of the following argument: “It is below freezing now.
Therefore, it is below freezing or raining now.”

Solution: Let p be the proposition “It is below freezing now,” and let ¢ be the proposition “It is
raining now.” Then this argument is of the form

P
SpVg
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EXAMPLE 4

EXAMPLE 5

TABLE 1 Rules of Inference.

Rule of Inference Tautology Name

P PApP-=>9)—q Modus ponens
pP—4q

-q (gA(p—>q)—p Modus tollens
pP—9q
=

pP—q (@P=9A(@—=1r)—=>P-=71) Hypothetical syllogism

q—r

Sop—or

pPVyq (V@ AP —q Disjunctive syllogism

P p—->@Vyg Addition

PAq (PAqQ —p Simplification

P @A@) = PAg Conjunction

L PAg

pPVq (Vg A@EpVE))—> (V) Resolution
pVvr

“qVvr

This is an argument that uses the addition rule. <

State which rule of inference is the basis of the following argument: “It is below freezing and
raining now. Therefore, it is below freezing now.”

Solution: Let p be the proposition “It is below freezing now,” and let g be the proposition “It is
raining now.” This argument is of the form

PAg
P

This argument uses the simplification rule. <

State which rule of inference is used in the argument:

If it rains today, then we will not have a barbecue today. If we do not have a barbecue today,
then we will have a barbecue tomorrow. Therefore, if it rains today, then we will have a
barbecue tomorrow.
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Solution: Let p be the proposition “It is raining today,” let g be the proposition “We will not
have a barbecue today,” and let r be the proposition “We will have a barbecue tomorrow.” Then
this argument is of the form

p=4q
q-r

Sop=T

Hence, this argument is a hypothetical syllogism. <

1.6.4 Using Rules of Inference to Build Arguments

When there are many premises, several rules of inference are often needed to show that an
argument is valid. This is illustrated by Examples 6 and 7, where the steps of arguments are
displayed on separate lines, with the reason for each step explicitly stated. These examples also
show how arguments in English can be analyzed using rules of inference.

Show that the premises “It is not sunny this afternoon and it is colder than yesterday,” “We will
go swimming only if it is sunny,” “If we do not go swimming, then we will take a canoe trip,”
and “If we take a canoe trip, then we will be home by sunset” lead to the conclusion “We will
be home by sunset.”

Solution: Let p be the proposition “It is sunny this afternoon,” g the proposition “It is colder
than yesterday,” r the proposition “We will go swimming,” s the proposition “We will take a
canoe trip,” and ¢ the proposition “We will be home by sunset.” Then the premises become
“pAg, r— p r— s ands — t. The conclusion is simply 7. We need to give a valid argument
with premises =p A g, r — p, =r — s, and s — ¢ and conclusion .

We construct an argument to show that our premises lead to the desired conclusion as fol-
lows.

Step Reason

1. . pAg Premise

2. p Simplification using (1)
3.r-p Premise

4. =r Modus tollens using (2) and (3)
5. r—s Premise

6. s Modus ponens using (4) and (5)
7. s>t Premise

8.t Modus ponens using (6) and (7)

Note that we could have used a truth table to show that whenever each of the four hypotheses
is true, the conclusion is also true. However, because we are working with five propositional
variables, p, g, r, s, and ¢, such a truth table would have 32 rows. <

Show that the premises “If you send me an e-mail message, then I will finish writing the pro-
gram,” “If you do not send me an e-mail message, then I will go to sleep early,” and “If I go
to sleep early, then I will wake up feeling refreshed” lead to the conclusion “If I do not finish
writing the program, then I will wake up feeling refreshed.”

Solution: Let p be the proposition “You send me an e-mail message,” g the proposition “I will
finish writing the program,” r the proposition “I will go to sleep early,” and s the proposition “I
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will wake up feeling refreshed.” Then the premises are p — g, =p — r, and r — s. The desired
conclusion is =g — 5. We need to give a valid argument with premises p — ¢, =p — r, and
r — s and conclusion ~g — s.

This argument form shows that the premises lead to the desired conclusion.

Step Reason

l.p—ogq Premise

2. mg = p Contrapositive of (1)

3. p-or Premise

4. ng > r Hypothetical syllogism using (2) and (3)

5. r—>s Premise

6. g —s Hypothetical syllogism using (4) and (5) <

1.6.5 Resolution

Computer programs have been developed to automate the task of reasoning and proving theo-
rems. Many of these programs make use of a rule of inference known as resolution. This rule
of inference is based on the tautology

(V@O ANEpVI)—=(gVr).

(Exercise 34 in Section 1.3 asks for the verification that this is a tautology.) The final disjunction
in the resolution rule, g V r, is called the resolvent. When we let g = r in this tautology, we
obtain (p vV ¢) A (-p V q) — ¢q. Furthermore, when we let »r = F, we obtain (p V ¢) A (-p) = ¢
(because g vV F = ¢), which is the tautology on which the rule of disjunctive syllogism is based.

Use resolution to show that the hypotheses “Jasmine is skiing or it is not snowing” and “It is
snowing or Bart is playing hockey” imply that “Jasmine is skiing or Bart is playing hockey.”

Solution: Let p be the proposition “It is snowing,” ¢ the proposition “Jasmine is skiing,” and
r the proposition “Bart is playing hockey.” We can represent the hypotheses as =p V ¢ and p V
r, respectively. Using resolution, the proposition g V r, “Jasmine is skiing or Bart is playing
hockey,” follows. |

Resolution plays an important role in programming languages based on the rules of logic,
such as Prolog (where resolution rules for quantified statements are applied). Furthermore, it
can be used to build automatic theorem proving systems. To construct proofs in propositional
logic using resolution as the only rule of inference, the hypotheses and the conclusion must be
expressed as clauses, where a clause is a disjunction of variables or negations of these variables.
We can replace a statement in propositional logic that is not a clause by one or more equivalent
statements that are clauses. For example, suppose we have a statement of the form p Vv (g A 7).
Because pV(gAr)=(pVq) A(pVr), we can replace the single statement p V (g A r) by two
statements p V g and p V r, each of which is a clause. We can replace a statement of the form
—(p V g) by the two statements —p and —~g because De Morgan’s law tells us that =(p Vv q) =
—p A 7g. We can also replace a conditional statement p — g with the equivalent disjunction

Vg
Show that the premises (p A g¢) V r and r — s imply the conclusion p V s.
Solution: We can rewrite the premises (p A g) V r as two clauses, p V r and g V r. We can also

replace r — s by the equivalent clause =7 Vv s. Using the two clauses p V r and =r V s, we can
use resolution to conclude p V s. <
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1.6.6 Fallacies

Several common fallacies arise in incorrect arguments. These fallacies resemble rules of infer-
ence, but are based on contingencies rather than tautologies. These are discussed here to show
the distinction between correct and incorrect reasoning.

The proposition ((p — g) A g) — p is not a tautology, because it is false when p is false and
q is true. However, there are many incorrect arguments that treat this as a tautology. In other
words, they treat the argument with premises p — ¢ and ¢ and conclusion p as a valid argument
form, which it is not. This type of incorrect reasoning is called the fallacy of affirming the
conclusion.

Is the following argument valid?

If you do every problem in this book, then you will learn discrete mathematics. You learned
discrete mathematics.

Therefore, you did every problem in this book.

Solution: Let p be the proposition “You did every problem in this book.” Let ¢ be the proposition
“You learned discrete mathematics.” Then this argument is of the form: if p — ¢ and ¢, then
p- This is an example of an incorrect argument using the fallacy of affirming the conclusion.
Indeed, it is possible for you to learn discrete mathematics in some way other than by doing every
problem in this book. (You may learn discrete mathematics by reading, listening to lectures,
doing some, but not all, the problems in this book, and so on.) <

The proposition ((p — ¢) A 7p) = —q is not a tautology, because it is false when p is false
and g is true. Many incorrect arguments use this incorrectly as a rule of inference. This type of
incorrect reasoning is called the fallacy of denying the hypothesis.

Let p and g be as in Example 10. If the conditional statement p — ¢ is true, and = is true, is it
correct to conclude that =g is true? In other words, is it correct to assume that you did not learn
discrete mathematics if you did not do every problem in the book, assuming that if you do every
problem in this book, then you will learn discrete mathematics?

Solution: Tt is possible that you learned discrete mathematics even if you did not do every prob-

lem in this book. This incorrect argument is of the form p — ¢ and —p imply —¢g, which is an
example of the fallacy of denying the hypothesis. <

1.6.7 Rules of Inference for Quantified Statements

We have discussed rules of inference for propositions. We will now describe some important
rules of inference for statements involving quantifiers. These rules of inference are used exten-
sively in mathematical arguments, often without being explicitly mentioned.

Universal instantiation is the rule of inference used to conclude that P(c) is true, where ¢
is a particular member of the domain, given the premise VxP(x). Universal instantiation is used
when we conclude from the statement “All women are wise” that “Lisa is wise,” where Lisa is
a member of the domain of all women.

Universal generalization is the rule of inference that states that VxP(x) is true, given the
premise that P(c) is true for all elements ¢ in the domain. Universal generalization is used when
we show that VxP(x) is true by taking an arbitrary element ¢ from the domain and showing that
P(c) is true. The element ¢ that we select must be an arbitrary, and not a specific, element of
the domain. That is, when we assert from VxP(x) the existence of an element ¢ in the domain,
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TABLE 2 Rules of Inference for Quantified Statements.

Rule of Inference Name

VxP(x)
. P(c)

Universal instantiation

P(c) for an arbitrary ¢
. VxP(x)

Universal generalization

JxP(x)

. Existential instantiation
. P(c) for some element ¢

P(c) for some element ¢
o AxP(x)

Existential generalization

we have no control over ¢ and cannot make any other assumptions about ¢ other than it comes
from the domain. Universal generalization is used implicitly in many proofs in mathematics and
is seldom mentioned explicitly. However, the error of adding unwarranted assumptions about
the arbitrary element ¢ when universal generalization is used is all too common in incorrect
reasoning.

Existential instantiation is the rule that allows us to conclude that there is an element ¢ in
the domain for which P(c) is true if we know that IxP(x) is true. We cannot select an arbitrary
value of ¢ here, but rather it must be a ¢ for which P(c) is true. Usually we have no knowledge
of what c is, only that it exists. Because it exists, we may give it a name (c¢) and continue our
argument.

Existential generalization is the rule of inference that is used to conclude that IxP(x) is
true when a particular element ¢ with P(c) true is known. That is, if we know one element ¢ in
the domain for which P(c) is true, then we know that IxP(x) is true.

We summarize these rules of inference in Table 2. We will illustrate how some of these
rules of inference for quantified statements are used in Examples 12 and 13.

Show that the premises “Everyone in this discrete mathematics class has taken a course in
computer science” and “Marla is a student in this class” imply the conclusion “Marla has taken
a course in computer science.”

Solution: Let D(x) denote “x is in this discrete mathematics class,” and let C(x) denote “x has
taken a course in computer science.” Then the premises are Vx(D(x) — C(x)) and D(Marla).
The conclusion is C(Marla).

The following steps can be used to establish the conclusion from the premises.

Step Reason
1. Vx(D(x) - C(x)) Premise
2. D(Marla) - C(Marla) Universal instantiation from (1)
3. D(Marla) Premise
4. C(Marla) Modus ponens from (2) and (3)

EXAMPLE 13 Show that the premises “A student in this class has not read the book,” and “Everyone in this

class passed the first exam” imply the conclusion “Someone who passed the first exam has not
read the book.”
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Solution: Let C(x) be “x is in this class,” B(x) be “x has read the book,” and P(x) be “x passed
the first exam.” The premises are Ix(C(x) A 7B(x)) and Vx(C(x) — P(x)). The conclusion is
Ix(P(x) A B(x)). These steps can be used to establish the conclusion from the premises.

Step Reason

1. Ax(C(x) A =B(x)) Premise

2. C(a) A —B(a) Existential instantiation from (1)
3. C(a) Simplification from (2)

4. Vx(C(x) = P(x)) Premise

5. C(a) — P(a) Universal instantiation from (4)

6. P(a) Modus ponens from (3) and (5)

7. —B(a) Simplification from (2)

8. P(a) A ~B(a) Conjunction from (6) and (7)

9. Ax(P(x) A "B(x)) Existential generalization from (8)

1.6.8 Combining Rules of Inference for Propositions
and Quantified Statements

We have developed rules of inference both for propositions and for quantified statements. Note
that in our arguments in Examples 12 and 13 we used both universal instantiation, a rule of in-
ference for quantified statements, and modus ponens, a rule of inference for propositional logic.
We will often need to use this combination of rules of inference. Because universal instantia-
tion and modus ponens are used so often together, this combination of rules is sometimes called
universal modus ponens. This rule tells us that if Vx(P(x) - Q(x)) is true, and if P(a) is true
for a particular element a in the domain of the universal quantifier, then Q(a) must also be true.
To see this, note that by universal instantiation, P(a) — Q(a) is true. Then, by modus ponens,
Q(a) must also be true. We can describe universal modus ponens as follows:

Vx(P(x) = Q(x))
P(a), where a is a particular element in the domain

s 0Q(a)

Universal modus ponens is commonly used in mathematical arguments. This is illustrated
in Example 14.

Assume that “For all positive integers n, if n is greater than 4, then n? is less than 2" is true.
Use universal modus ponens to show that 100% < 2100,

Solution: Let P(n) denote “n > 4” and Q(n) denote “n- < 2".” The statement “For all positive
integers n, if n is greater than 4, then n? is less than 2" can be represented by Vn(P(n) — Q(n)),
where the domain consists of all positive integers. We are assuming that Va(P(n) — Q(n)) is
true. Note that P(100) is true because 100 > 4. It follows by universal modus ponens that Q(100)
is true, namely, that 100% < 2% <

Another useful combination of a rule of inference from propositional logic and a rule of in-
ference for quantified statements is universal modus tollens. Universal modus tollens combines
universal instantiation and modus tollens and can be expressed in the following way:

Vx(P(x) — Q(x))
—Q(a), where a is a particular element in the domain

.. P(a)
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The verification of universal modus tollens is left as Exercise 25. Exercises 26-29 develop
additional combinations of rules of inference in propositional logic and quantified statements.

Exercises

1. Find the argument form for the following argument and

determine whether it is valid. Can we conclude that the
conclusion is true if the premises are true?

If Socrates is human, then Socrates is mortal.
Socrates is human.

.. Socrates is mortal.

. Find the argument form for the following argument and
determine whether it is valid. Can we conclude that the
conclusion is true if the premises are true?

If George does not have eight legs, then he is not a
spider.
George is a spider.

.. George has eight legs.

. What rule of inference is used in each of these argu-

ments?

a) Alice is a mathematics major. Therefore, Alice is ei-
ther a mathematics major or a computer science ma-
jor.

b) Jerry is a mathematics major and a computer science
major. Therefore, Jerry is a mathematics major.

¢) If it is rainy, then the pool will be closed. It is rainy.
Therefore, the pool is closed.

d) If it snows today, the university will close. The uni-
versity is not closed today. Therefore, it did not snow
today.

e) IfI goswimming, then I will stay in the sun too long.
If I'stay in the sun too long, then I will sunburn. There-
fore, if I go swimming, then I will sunburn.

. What rule of inference is used in each of these argu-

ments?

a) Kangaroos live in Australia and are marsupials.
Therefore, kangaroos are marsupials.

b) Itis either hotter than 100 degrees today or the pollu-
tion is dangerous. It is less than 100 degrees outside
today. Therefore, the pollution is dangerous.

¢) Linda is an excellent swimmer. If Linda is an ex-
cellent swimmer, then she can work as a lifeguard.
Therefore, Linda can work as a lifeguard.

d) Steve will work at a computer company this summer.
Therefore, this summer Steve will work at a computer
company or he will be a beach bum.

e) If I work all night on this homework, then I can an-
swer all the exercises. If I answer all the exercises, 1
will understand the material. Therefore, if I work all
night on this homework, then I will understand the
material.

10.

. Use rules of inference to show that the hypotheses

“Randy works hard,” “If Randy works hard, then he is
a dull boy,” and “If Randy is a dull boy, then he will not
get the job” imply the conclusion “Randy will not get the
job.”

. Use rules of inference to show that the hypotheses “If it

does not rain or if it is not foggy, then the sailing race will
be held and the lifesaving demonstration will go on,” “If
the sailing race is held, then the trophy will be awarded,”
and “The trophy was not awarded” imply the conclusion
“It rained.”

. What rules of inference are used in this famous argu-

ment? “All men are mortal. Socrates is a man. Therefore,
Socrates is mortal.”

. What rules of inference are used in this argument? “No

man is an island. Manhattan is an island. Therefore, Man-
hattan is not a man.”

. For each of these collections of premises, what relevant

conclusion or conclusions can be drawn? Explain the
rules of inference used to obtain each conclusion from
the premises.

a) “If I take the day off, it either rains or snows.” “I took
Tuesday off or I took Thursday off.” “It was sunny on
Tuesday.” “It did not snow on Thursday.”

b) “If I eat spicy foods, then I have strange dreams.” “I
have strange dreams if there is thunder while I sleep.”
“I did not have strange dreams.”

¢) “I am either clever or lucky.” “I am not lucky.” “If I
am lucky, then I will win the lottery.”

d) “Every computer science major has a personal com-
puter.” “Ralph does not have a personal computer.”
“Ann has a personal computer.”

e) “Whatis good for corporations is good for the United
States.” “What is good for the United States is good
for you.” “What is good for corporations is for you to
buy lots of stuff.”

f) “All rodents gnaw their food.” “Mice are rodents.”
“Rabbits do not gnaw their food.” “Bats are not ro-
dents.”

For each of these sets of premises, what relevant conclu-
sion or conclusions can be drawn? Explain the rules of in-
ference used to obtain each conclusion from the premises.

a) “If I play hockey, then I am sore the next day.” “I
use the whirlpool if T am sore.” “I did not use the
whirlpool.”

b) “If I work, it is either sunny or partly sunny.” “I
worked last Monday or I worked last Friday.” “It was
not sunny on Tuesday.” “It was not partly sunny on
Friday.”

¢) “All insects have six legs.” “Dragonflies are insects.”
“Spiders do not have six legs.” “Spiders eat dragon-
flies.”
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d) “Every student has an Internet account.” “Homer
does not have an Internet account.” “Maggie has an
Internet account.”

e) “All foods that are healthy to eat do not taste good.”
“Tofu is healthy to eat.” “You only eat what tastes
good.” “You do not eat tofu.” “Cheeseburgers are not
healthy to eat.”

f) “I am either dreaming or hallucinating.” “I am not
dreaming.” “If T am hallucinating, I see elephants run-
ning down the road.”

2

Show that the argument form with premises p,, p,, ..., p,
and conclusion g — r is valid if the argument form with
premises py, p,, ..., P, g, and conclusion r is valid.

Show that the argument form with premises (p A7) —
(rvs),q — (uAt), u — p,and —s and conclusion g — r
is valid by first using Exercise 11 and then using rules of
inference from Table 1.

For each of these arguments, explain which rules of in-
ference are used for each step.

a) “Doug, a student in this class, knows how to write
programs in JAVA. Everyone who knows how to
write programs in JAVA can get a high-paying job.
Therefore, someone in this class can get a high-paying
job.”

b) “Somebody in this class enjoys whale watching. Ev-
ery person who enjoys whale watching cares about
ocean pollution. Therefore, there is a person in this
class who cares about ocean pollution.”

¢) “Each of the 93 students in this class owns a personal
computer. Everyone who owns a personal computer
can use a word processing program. Therefore, Zeke,
a student in this class, can use a word processing pro-
gram.”

d) “Everyone in New Jersey lives within 50 miles of the
ocean. Someone in New Jersey has never seen the
ocean. Therefore, someone who lives within 50 miles
of the ocean has never seen the ocean.”

For each of these arguments, explain which rules of in-

ference are used for each step.

a) “Linda, a student in this class, owns a red convertible.
Everyone who owns a red convertible has gotten at
least one speeding ticket. Therefore, someone in this
class has gotten a speeding ticket.”

b) “Each of five roommates, Melissa, Aaron, Ralph, Ve-
neesha, and Keeshawn, has taken a course in discrete
mathematics. Every student who has taken a course in
discrete mathematics can take a course in algorithms.
Therefore, all five roommates can take a course in al-
gorithms next year.”

¢) “All movies produced by John Sayles are wonder-
ful. John Sayles produced a movie about coal min-
ers. Therefore, there is a wonderful movie about coal
miners.”

d) “There is someone in this class who has been to
France. Everyone who goes to France visits the
Louvre. Therefore, someone in this class has visited
the Louvre.”

15.

16

17.

18.

19.

20.

21.

22,

1.6 Rules of Inference 83

For each of these arguments determine whether the argu-

ment is correct or incorrect and explain why.

a) All students in this class understand logic. Xavier is
a student in this class. Therefore, Xavier understands
logic.

b) Every computer science major takes discrete math-
ematics. Natasha is taking discrete mathematics.
Therefore, Natasha is a computer science major.

¢) All parrots like fruit. My pet bird is not a parrot.
Therefore, my pet bird does not like fruit.

d) Everyone who eats granola every day is healthy.
Linda is not healthy. Therefore, Linda does not eat
granola every day.

For each of these arguments determine whether the argu-

ment is correct or incorrect and explain why.

a) Everyone enrolled in the university has lived in a dor-
mitory. Mia has never lived in a dormitory. Therefore,
Mia is not enrolled in the university.

b) A convertible car is fun to drive. Isaac’s car is not a
convertible. Therefore, Isaac’s car is not fun to drive.

¢) Quincy likes all action movies. Quincy likes the
movie Eight Men Out. Therefore, Eight Men Out is
an action movie.

d) Alllobstermen set at least a dozen traps. Hamilton is a
lobsterman. Therefore, Hamilton sets at least a dozen
traps.

What is wrong with this argument? Let H(x) be “x is

happy.” Given the premise 3xH(x), we conclude that

H(Lola). Therefore, Lola is happy.

What is wrong with this argument? Let S(x, y) be “x is
shorter than y.” Given the premise JsS(s, Max), it fol-
lows that S(Max, Max). Then by existential generaliza-
tion it follows that 3xS(x, x), so that someone is shorter
than himself.

Determine whether each of these arguments is valid. If an
argument is correct, what rule of inference is being used?
If it is not, what logical error occurs?

a) If n is a real number such that n > 1, then n® > 1.
Suppose that n? > 1. Then n > 1.

b) If n is a real number with n > 3, then n? > 9.
Suppose that n> < 9. Then n < 3.

¢) If n is a real number with n > 2, then n? > 4.
Suppose that n < 2. Then n? < 4.

Determine whether these are valid arguments.

a) Ifxis apositive real number, then x? is a positive real
number. Therefore, if a2 is positive, where a is a real
number, then a is a positive real number.

b) If x* # 0, where x is a real number, then x # 0. Let a
be a real number with a? # 0; then a # 0.

Which rules of inference are used to establish the

conclusion of Lewis Carroll’s argument described in

Example 26 of Section 1.4?

Which rules of inference are used to establish the
conclusion of Lewis Carroll’s argument described in
Example 27 of Section 1.4?
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Identify the error or errors in this argument that sup-
posedly shows that if IxP(x) A IxQ(x) is true then
Jx(P(x) A Q(x)) is true.

1. IxP(x) vV 3xQ(x) Premise

2. AxP(x) Simplification from (1)

3. P(c) Existential instantiation from (2)
4. IxQ(x) Simplification from (1)

5. Qo) Existential instantiation from (4)
6. P(c) A Q(c) Conjunction from (3) and (5)

7. Ix(P(x) A Q(x)) Existential generalization

Identify the error or errors in this argument that sup-
posedly shows that if Vx(P(x)V Q(x)) is true then
VxP(x) V VxQ(x) is true.

1. Vx(P(x) Vv Q(x)) Premise

2. P(c) Vv Q(c) Universal instantiation from (1)
3. P(c) Simplification from (2)

4. VxP(x) Universal generalization from (3)
5. Q(c) Simplification from (2)

6. VxQO(x) Universal generalization from (5)
7. Vx(P(x) V VxQ(x)) Conjunction from (4) and (6)

Justify the rule of universal modus tollens by showing
that the premises Vx(P(x) - Q(x)) and ~Q(a) for a par-
ticular element « in the domain, imply —P(a).

Justify the rule of universal transitivity, which states
that if Vx(P(x) — Q(x)) and Vx(Q(x) = R(x)) are true,
then Vx(P(x) = R(x)) is true, where the domains of all
quantifiers are the same.

Use rules of inference to show that if Vx(P(x) = (Q(x) A
S(x))) and Vx(P(x) A R(x)) are true, then Vx(R(x) A S(x))
is true.

Use rules of inference to show that if Vx(P(x) v Q(x)) and
Vx((=P(x) A OQ(x)) = R(x)) are true, then Vx(-R(x) —
P(x)) is also true, where the domains of all quantifiers
are the same.

Use rules of inference to show that if Vx(P(x) v Q(x)),
Vx(=Q(x) V S(x)), Vx(R(x) = —S(x)), and Ix—P(x) are
true, then Ix—R(x) is true.

Use resolution to show the hypotheses “Allen is a bad
boy or Hillary is a good girl” and “Allen is a good boy or
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David is happy” imply the conclusion “Hillary is a good
girl or David is happy.”

Use resolution to show that the hypotheses “It is not rain-
ing or Yvette has her umbrella,” “Yvette does not have
her umbrella or she does not get wet,” and “It is raining
or Yvette does not get wet” imply that “Yvette does not
get wet.”

Show that the equivalence p A =p = F can be derived us-
ing resolution together with the fact that a conditional
statement with a false hypothesis is true. [Hint: Let g =
r = F in resolution. ]

Use resolution to show that the compound proposition
@GVOAEPVG APV =g A(mpVg) is not satisfi-
able.
The Logic Problem, taken from WFF’'N PROOF, The
Game of Logic, has these two assumptions:
1. “Logic is difficult or not many students like logic.”
2. “If mathematics is easy, then logic is not difficult.”
By translating these assumptions into statements involv-
ing propositional variables and logical connectives, de-
termine whether each of the following are valid conclu-
sions of these assumptions:
a) That mathematics is not easy, if many students like
logic.
b) That not many students like logic, if mathematics is
not easy.
¢) That mathematics is not easy or logic is difficult.
d) That logic is not difficult or mathematics is not easy.
e) That if not many students like logic, then either math-
ematics is not easy or logic is not difficult.
Determine whether this argument, taken from Kalish and
Montague [KaMo64], is valid.
If Superman were able and willing to prevent evil,
he would do so. If Superman were unable to pre-
vent evil, he would be impotent; if he were unwilling
to prevent evil, he would be malevolent. Superman
does not prevent evil. If Superman exists, he is nei-
ther impotent nor malevolent. Therefore, Superman
does not exist.

1.7.1 Introduction

In this section we introduce the notion of a proof and describe methods for constructing proofs.
A proof is a valid argument that establishes the truth of a mathematical statement. A proof can
use the hypotheses of the theorem, if any, axioms assumed to be true, and previously proven
theorems. Using these ingredients and rules of inference, the final step of the proof establishes
the truth of the statement being proved.

In our discussion we move from formal proofs of theorems toward more informal proofs.
The arguments we introduced in Section 1.6 to show that statements involving propositions
and quantified statements are true were formal proofs, where all steps were supplied, and the
rules for each step in the argument were given. However, formal proofs of useful theorems can
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be extremely long and hard to follow. In practice, the proofs of theorems designed for human
consumption are almost always informal proofs, where more than one rule of inference may
be used in each step, where steps may be skipped, where the axioms being assumed and the
rules of inference used are not explicitly stated. Informal proofs can often explain to humans
why theorems are true, while computers are perfectly happy producing formal proofs using
automated reasoning systems.

The methods of proof discussed in this chapter are important not only because they are used
to prove mathematical theorems, but also for their many applications to computer science. These
applications include verifying that computer programs are correct, establishing that operating
systems are secure, making inferences in artificial intelligence, showing that system specifica-
tions are consistent, and so on. Consequently, understanding the techniques used in proofs is
essential both in mathematics and in computer science.

1.7.2 Some Terminology

Formally, a theorem is a statement that can be shown to be true. In mathematical writing, the
term theorem is usually reserved for a statement that is considered at least somewhat important.
Less important theorems sometimes are called propositions. (Theorems can also be referred to
as facts or results.) A theorem may be the universal quantification of a conditional statement
with one or more premises and a conclusion. However, it may be some other type of logical
statement, as the examples later in this chapter will show. We demonstrate that a theorem is true
with a proof. A proof is a valid argument that establishes the truth of a theorem. The statements
used in a proof can include axioms (or postulates), which are statements we assume to be true
(for example, the axioms for the real numbers, given in Appendix 1, and the axioms of plane
geometry), the premises, if any, of the theorem, and previously proven theorems. Axioms may
be stated using primitive terms that do not require definition, but all other terms used in theorems
and their proofs must be defined. Rules of inference, together with definitions of terms, are used
to draw conclusions from other assertions, tying together the steps of a proof. In practice, the
final step of a proof is usually just the conclusion of the theorem. However, for clarity, we will
often recap the statement of the theorem as the final step of a proof.

A less important theorem that is helpful in the proof of other results is called a lemma
(plural lemmas or lemmata). Complicated proofs are usually easier to understand when they are
proved using a series of lemmas, where each lemma is proved individually. A corollary is a
theorem that can be established directly from a theorem that has been proved. A conjecture is
a statement that is being proposed to be a true statement, usually on the basis of some partial
evidence, a heuristic argument, or the intuition of an expert. When a proof of a conjecture is
found, the conjecture becomes a theorem. Many times conjectures are shown to be false, so they
are not theorems.

1.7.3 Understanding How Theorems Are Stated

Before we introduce methods for proving theorems, we need to understand how many mathe-
matical theorems are stated. Many theorems assert that a property holds for all elements in a
domain, such as the integers or the real numbers. Although the precise statement of such theo-
rems needs to include a universal quantifier, the standard convention in mathematics is to omit
it. For example, the statement

“If x > y, where x and y are positive real numbers, then x> > y”

really means

2

“For all positive real numbers x and y, if x > y, then x> > y2.
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Furthermore, when theorems of this type are proved, the first step of the proof usually involves
selecting a general element of the domain. Subsequent steps show that this element has the
property in question. Finally, universal generalization implies that the theorem holds for all
members of the domain.

1.7.4 Methods of Proving Theorems

Proving mathematical theorems can be difficult. To construct proofs we need all available am-
munition, including a powerful battery of different proof methods. These methods provide the
overall approach and strategy of proofs. Understanding these methods is a key component of
learning how to read and construct mathematical proofs. Once we have chosen a proof method,
we use axioms, definitions of terms, previously proved results, and rules of inference to com-
plete the proof. Note that in this book we will always assume the axioms for real numbers found
in Appendix 1. We will also assume the usual axioms whenever we prove a result about ge-
ometry. When you construct your own proofs, be careful not to use anything but these axioms,
definitions, and previously proved results as facts!

To prove a theorem of the form Vx(P(x) — Q(x)), our goal is to show that P(c) — Q(c) is
true, where c is an arbitrary element of the domain, and then apply universal generalization. In
this proof, we need to show that a conditional statement is true. Because of this, we now focus
on methods that show that conditional statements are true. Recall that p — ¢ is true unless p is
true but ¢ is false. Note that to prove the statement p — ¢, we need only show that ¢ is true if p
is true. The following discussion will give the most common techniques for proving conditional
statements. Later we will discuss methods for proving other types of statements. In this section,
and in Section 1.8, we will develop a large arsenal of proof techniques that can be used to prove
a wide variety of theorems.

When you read proofs, you will often find the words “obviously” or “clearly.” These words
indicate that steps have been omitted that the author expects the reader to be able to fill in.
Unfortunately, this assumption is often not warranted and readers are not at all sure how to fill
in the gaps. We will assiduously try to avoid using these words and try not to omit too many
steps. However, if we included all steps in proofs, our proofs would often be excruciatingly long.

1.7.5 Direct Proofs

A direct proof of a conditional statement p — ¢ is constructed when the first step is the as-
sumption that p is true; subsequent steps are constructed using rules of inference, with the final
step showing that ¢ must also be true. A direct proof shows that a conditional statement p — ¢
is true by showing that if p is true, then ¢ must also be true, so that the combination p true and
g false never occurs. In a direct proof, we assume that p is true and use axioms, definitions, and
previously proven theorems, together with rules of inference, to show that ¢ must also be true.
You will find that direct proofs of many results are quite straightforward. Starting with the hy-
pothesis and leading to the conclusion, the way forward is essentially dictated by the premises
available at that step. However, direct proofs sometimes require particular insights and can be
quite tricky. The first direct proofs we present here are quite straightforward; later in the text
you will see some that require some insight.

We will provide examples of several different direct proofs. Before we give the first example,
we need to define some terminology.

The integer n is even if there exists an integer k such thatn = 2k, and n is odd if there exists an
integer k such that n = 2k + 1. (Note that every integer is either even or odd, and no integer
is both even and odd.) Two integers have the same parity when both are even or both are odd;
they have opposite parity when one is even and the other is odd.
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Give a direct proof of the theorem “If n is an odd integer, then n? is odd.”

Solution: Note that this theorem states VnP((n) — Q(n)), where P(n) is “n is an odd integer” and
Q(n) is “n” is odd.” As we have said, we will follow the usual convention in mathematical proofs
by showing that P(n) implies Q(n), and not explicitly using universal instantiation. To begin a
direct proof of this theorem, we assume that the hypothesis of this conditional statement is true,
namely, we assume that » is odd. By the definition of an odd integer, it follows that n = 2k + 1,
where k is some integer. We want to show that n? is also odd. We can square both sides of the
equation n = 2k + 1 to obtain a new equation that expresses n>. When we do this, we find that
n? = 2k + 1)> = 4k> + 4k + 1 = 2(2k* 4+ 2k) + 1. By the definition of an odd integer, we can
conclude that n? is an odd integer (it is one more than twice an integer). Consequently, we have
proved that if 7 is an odd integer, then n? is an odd integer. <

Give a direct proof that if m and n are both perfect squares, then nm is also a perfect square. (An
integer a is a perfect square if there is an integer b such that a = b?.)

Solution: To produce a direct proof of this theorem, we assume that the hypothesis of this con-
ditional statement is true, namely, we assume that m and n are both perfect squares. By the
definition of a perfect square, it follows that there are integers s and ¢ such that m = s*> and
n = 1. The goal of the proof is to show that mn must also be a perfect square when m and n are;
looking ahead we see how we can show this by substituting s> for m and ¢ for n into mn. This
tells us that mn = s*#>. Hence, mn = s*t*> = (ss)(tt) = (st)(st) = (st)?, using commutativity and
associativity of multiplication. By the definition of perfect square, it follows that mn is also a
perfect square, because it is the square of sz, which is an integer. We have proved that if m and n
are both perfect squares, then mn is also a perfect square. <

1.7.6 Proof by Contraposition

Direct proofs lead from the premises of a theorem to the conclusion. They begin with the
premises, continue with a sequence of deductions, and end with the conclusion. However, we
will see that attempts at direct proofs often reach dead ends. We need other methods of prov-
ing theorems of the form Vx(P(x) — Q(x)). Proofs of theorems of this type that are not direct
proofs, that is, that do not start with the premises and end with the conclusion, are called indirect
proofs.

An extremely useful type of indirect proof is known as proof by contraposition. Proofs
by contraposition make use of the fact that the conditional statement p — ¢ is equivalent to its
contrapositive, =g — —ip. This means that the conditional statement p — g can be proved by
showing that its contrapositive, =g — —p, is true. In a proof by contraposition of p — ¢, we
take g as a premise, and using axioms, definitions, and previously proven theorems, together
with rules of inference, we show that —p must follow. We will illustrate proof by contraposition
with two examples. These examples show that proof by contraposition can succeed when we
cannot easily find a direct proof.

Prove that if n is an integer and 3n + 2 is odd, then » is odd.

Solution: We first attempt a direct proof. To construct a direct proof, we first assume that 3n + 2
is an odd integer. From the definition of an odd integer, we know that 3n + 2 = 2k + 1 for some
integer k. Can we use this fact to show that n is odd? We see that 3n + 1 = 2k, but there does
not seem to be any direct way to conclude that » is odd. Because our attempt at a direct proof
failed, we next try a proof by contraposition.
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The first step in a proof by contraposition is to assume that the conclusion of the conditional
statement “If 3n + 2 is odd, then n is odd” is false; namely, assume that n is even. Then, by the
definition of an even integer, n = 2k for some integer k. Substituting 2k for n, we find that 3n +
2=32k)+2 =6k +2=23k+ 1). This tells us that 3n + 2 is even (because it is a multiple
of 2), and therefore not odd. This is the negation of the premise of the theorem. Because the
negation of the conclusion of the conditional statement implies that the hypothesis is false, the
original conditional statement is true. Our proof by contraposition succeeded; we have proved
the theorem “If 3n + 2 is odd, then » is odd.” <

Prove that if n = ab, where a and b are positive integers, then a < 4/nor b < \/E

Solution: Because there is no obvious way of showing that a < \/r_z orb < \/ﬁ directly from the
equation n = ab, where a and b are positive integers, we attempt a proof by contraposition.
The first step in a proof by contraposition is to assume that the conclusion of the conditional
statement “If n = ab, where a and b are positive integers, then a < y/nor b < 4/n” is false. That
is, we assume that the statement (a < \/ﬁ) v(b< \/Z) is false. Using the meaning of disjunction
together with De Morgan’s law, we see that this implies that both a < \/; and b < 4/n are false.
This implies that a > \/ﬁ and b > \/ﬁ We can multiply these inequalities together (using the

fact that if 0 < s < tand 0 < u < v, then su < 1v) to obtain ab > /n - y/n = n. This shows that
ab # n, which contradicts the statement n = ab.

Because the negation of the conclusion of the conditional statement implies that the hy-
pothesis is false, the original conditional statement is true. Our proof by contraposition suc-

ceeded; we have proved that if n = ab, where a and b are positive integers, then a < \/ﬁ or

b < /n. <

VACUOUS AND TRIVIAL PROOFS We can quickly prove that a conditional statement
p — ¢ is true when we know that p is false, because p — ¢ must be true when p is false. Con-
sequently, if we can show that p is false, then we have a proof, called a vacuous proof, of the
conditional statement p — g. Vacuous proofs are often used to establish special cases of theo-
rems that state that a conditional statement is true for all positive integers [i.e., a theorem of the
kind VnP(n), where P(n) is a propositional function]. Proof techniques for theorems of this kind
will be discussed in Section 5.1.

Show that the proposition P(0) is true, where P(n) is “If n > 1, then n> > n”” and the domain
consists of all integers.

Solution: Note that P(0) is “If 0 > 1, then 0> > 0.” We can show P(0) using a vacuous
proof. Indeed, the hypothesis 0 > 1 is false. This tells us that P(0) is automatically true. <

Remark: The fact that the conclusion of this conditional statement, 02 > 0, is false is irrelevant
to the truth value of the conditional statement, because a conditional statement with a false
hypothesis is guaranteed to be true.

Prove that if n is an integer with 10 < n < 15 which is a perfect square, then n is also a perfect
cube.

Solution: Note that there are no perfect squares n with 10 < n < 15, because 3> = 9 and 4% = 16.
Hence, the statement that 7 is an integer with 10 < n < 15 which is a perfect square is false for
all integers n. Consequently, the statement to be proved is true for all integers 7. <
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We can also quickly prove a conditional statement p — ¢ if we know that the conclusion
q is true. By showing that ¢ is true, it follows that p — g must also be true. A proof of p — ¢
that uses the fact that ¢ is true is called a trivial proof. Trivial proofs are often important when
special cases of theorems are proved (see the discussion of proof by cases in Section 1.8) and
in mathematical induction, which is a proof technique discussed in Section 5.1.

Let P(n) be “If a and b are positive integers witha > b, then a* > b",” where the domain consists
of all nonnegative integers. Show that P(0) is true.

Solution: The proposition P(0) is “If a > b, then a° > b°.” Because a’ = b° = 1, the conclusion
of the conditional statement “If ¢ > b, then a® > b°” is true. Hence, this conditional statement,
which is P(0), is true. This is an example of a trivial proof. Note that the hypothesis, which is
the statement “a > b,” was not needed in this proof. <

A LITTLE PROOF STRATEGY We have described two important approaches for proving
theorems of the form Vx(P(x) — Q(x)): direct proof and proof by contraposition. We have also
given examples that show how each is used. However, when you are presented with a theorem
of the form Vx(P(x) — Q(x)), which method should you use to attempt to prove it? We will
provide a few rules of thumb here; in Section 1.8 we will discuss proof strategy at greater length.

When you want to prove a statement of the form Vx(P(x) — Q(x)), first evaluate whether
a direct proof looks promising. Begin by expanding the definitions in the hypotheses. Start to
reason using these hypotheses, together with axioms and available theorems. If a direct proof
does not seem to go anywhere, for instance when there is no clear way to use hypotheses as in
Examples 3 and 4 to reach the conclusion, try the same thing with a proof by contraposition.

(Hypotheses such as x is irrational or x # O that are difficult to reason from are a clue that
an indirect proof might be your best best.)

Recall that in a proof by contraposition you assume that the conclusion of the conditional
statement is false and use a direct proof to show this implies that the hypothesis must be false.
Often, you will find that a proof by contraposition is easily constructed from the negation of
the conclusion. We illustrate this strategy in Examples 7 and 8. In each example, note how
straightforward a proof by contraposition is, while there is no clear way to provide a direct
proof.

Before we present our next example, we need a definition.

The real number r is rational if there exist integers p and g with g # 0 such that r = p/q. A
real number that is not rational is called irrational.

Prove that the sum of two rational numbers is rational. (Note that if we include the implicit
quantifiers here, the theorem we want to prove is “For every real number r and every real number
s, if r and s are rational numbers, then r + s is rational.)

Solution: We first attempt a direct proof. To begin, suppose that 7 and s are rational numbers.
From the definition of a rational number, it follows that there are integers p and ¢, with g # 0,
such that r = p/q, and integers ¢ and u, with u # 0, such that s = 7/u. Can we use this informa-
tion to show that r + s is rational? That is, can we find integers v and w such that » + s = v/w
and w # 0?

With the goal of finding these integers v and w, we add r = p/q and s = t/u, using qu as
the common denominator. We find that

r+s=l—?+

t _pu+tqt
q u qu
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Because g # 0 and u # 0, it follows that qu # 0. Consequently, we have expressed r + s as the
ratio of two integers, v = pu + gt and w = qu, where w # 0. This means that r + s is rational.
We have proved that the sum of two rational numbers is rational; our attempt to find a direct
proof succeeded. <

Prove that if n is an integer and n? is odd, then 7 is odd.

Solution: We first attempt a direct proof. Suppose that 7 is an integer and n? is odd. From the
definition of an odd integer, there exists an integer k such that n> = 2k + 1. Can we use this
information to show that n is odd? There seems to be no obvious approach to show that n is odd

because solving for n produces the equation n = +1/2k + 1, which is not terribly useful.
Because this attempt to use a direct proof did not bear fruit, we next attempt a proof by
contraposition. We take as our hypothesis the statement that n is not odd. Because every integer
is odd or even, this means that n is even. This implies that there exists an integer k such that
n = 2k. To prove the theorem, we need to show that this hypothesis implies the conclusion
that n? is not odd, that is, that n? is even. Can we use the equation n = 2k to achieve this? By
squaring both sides of this equation, we obtain n> = 4k*> = 2(2k?), which implies that n? is also
even because n> = 2t, where ¢ = 2k*. We have proved that if n is an integer and n? is odd, then
n is odd. Our attempt to find a proof by contraposition succeeded. <

1.7.7 Proofs by Contradiction

Suppose we want to prove that a statement p is true. Furthermore, suppose that we can find a
contradiction g such that =p — ¢ is true. Because ¢ is false, but =p — ¢ is true, we can conclude
that —p is false, which means that p is true. How can we find a contradiction g that might help
us prove that p is true in this way?

Because the statement r A =7 is a contradiction whenever r is a proposition, we can prove
that p is true if we can show that =p — (r A =) is true for some proposition r. Proofs of this type
are called proofs by contradiction. Because a proof by contradiction does not prove a result
directly, it is another type of indirect proof. We provide three examples of proof by contradiction.
The first is an example of an application of the pigeonhole principle, a combinatorial technique
that we will cover in depth in Section 6.2.

Show that at least four of any 22 days must fall on the same day of the week.

Solution: Let p be the proposition “At least four of 22 chosen days fall on the same day of the
week.” Suppose that —p is true. This means that at most three of the 22 days fall on the same
day of the week. Because there are seven days of the week, this implies that at most 21 days
could have been chosen, as for each of the days of the week, at most three of the chosen days
could fall on that day. This contradicts the premise that we have 22 days under consideration.
That is, if  is the statement that 22 days are chosen, then we have shown that =p — (r A =r).
Consequently, we know that p is true. We have proved that at least four of 22 chosen days fall
on the same day of the week. <

Prove that 4/2 is irrational by giving a proof by contradiction.

Solution: Let p be the proposition “\/5 is irrational.” To start a proof by contradiction, we sup-
pose that —p is true. Note that —p is the statement “It is not the case that 4/2 is irrational,” which
says that \/5 is rational. We will show that assuming that —p is true leads to a contradiction.
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If 4/2 is rational, there exist integers a and b with \/5 = a/b, where b # 0 and a and b have
no common factors (so that the fraction a/b is in lowest terms). (Here, we are using the fact that

every rational number can be written in lowest terms.) Because \/E = a/b, when both sides of
this equation are squared, it follows that

a
Hence,
2% = a?

By the definition of an even integer it follows that a® is even. We next use the fact that if a? is
even, a must also be even, which follows by Exercise 18. Furthermore, because « is even, by
the definition of an even integer, a = 2c¢ for some integer c. Thus,

2b* = 4c”.
Dividing both sides of this equation by 2 gives
b* =2c%

By the definition of even, this means that b? is even. Again using the fact that if the square of
an integer is even, then the integer itself must be even, we conclude that » must be even as well.

We have now shown that the assumption of —p leads to the equation \/5 = a/b, where
a and b have no common factors, but both ¢ and b are even, that is, 2 divides both a and b.

Note that the statement that \/5 = a/b, where a and b have no common factors, means, in
particular, that 2 does not divide both a and b. Because our assumption of —p leads to the
contradiction that 2 divides both a and b and 2 does not divide both a and b, =p must be false.

That is, the statement p, “\/5 is irrational,” is true. We have proved that \/5 isirrational. <«

Proof by contradiction can be used to prove conditional statements. In such proofs, we first
assume the negation of the conclusion. We then use the premises of the theorem and the negation
of the conclusion to arrive at a contradiction. (The reason that such proofs are valid rests on the
logical equivalence of p — ¢ and (p A 7g) — F. To see that these statements are equivalent,
simply note that each is false in exactly one case, namely, when p is true and ¢ is false.)

Note that we can rewrite a proof by contraposition of a conditional statement as a proof
by contradiction. In a proof of p — ¢ by contraposition, we assume that —g is true. We then
show that —p must also be true. To rewrite a proof by contraposition of p — ¢ as a proof by
contradiction, we suppose that both p and —g are true. Then, we use the steps from the proof of
—g — —p to show that —p is true. This leads to the contradiction p A —p, completing the proof.
Example 11 illustrates how a proof by contraposition of a conditional statement can be rewritten
as a proof by contradiction.

Give a proof by contradiction of the theorem “If 3n + 2 is odd, then #n is odd.”

Solution: Let p be “3n + 2 is odd” and g be “n is odd.” To construct a proof by contradiction,
assume that both p and —¢g are true. That is, assume that 3n + 2 is odd and that » is not odd.
Because 7 is not odd, we know that it is even. Because 7 is even, there is an integer k such
that n = 2k. This implies that 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1). Because 3n + 2 is 2¢,
where t = 3k + 1, 3n + 2 is even. Note that the statement “3n + 2 is even” is equivalent to the
statement —p, because an integer is even if and only if it is not odd. Because both p and —p are
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true, we have a contradiction. This completes the proof by contradiction, proving that if 3n + 2
is odd, then n is odd. <

Note that we can also prove by contradiction that p — ¢ is true by assuming that p and -¢g
are true, and showing that ¢ must be also be true. This implies that =g and g are both true, a
contradiction. This observation tells us that we can turn a direct proof into a proof by contra-
diction.

PROOFS OF EQUIVALENCE To prove a theorem that is a biconditional statement, that is, a
statement of the form p < ¢, we show that p — ¢ and ¢ — p are both true. The validity of this
approach is based on the tautology

Peq e P@—-q9NG—Dp).

Prove the theorem “If n is an integer, then n is odd if and only if n? is odd.”

Solution: This theorem has the form “p if and only if g,” where p is “n is odd” and ¢ is “n®
is odd.” (As usual, we do not explicitly deal with the universal quantification.) To prove this
theorem, we need to show that p - ¢ and ¢ — p are true.

We have already shown (in Example 1) that p — ¢ is true and (in Example 8) that g — p is
true.

Because we have shown that bothp — g and ¢ — p are true, we have shown that the theorem
is true. <

Sometimes a theorem states that several propositions are equivalent. Such a theorem states
that propositions py, p,, ps, ..., p, are equivalent. This can be written as

Py <Py Py

which states that all n propositions have the same truth values, and consequently, that for all i
andjwith1 <i<nandl <j <n,p,and p; are equivalent. One way to prove these are mutually
equivalent is to use the tautology

PPy op, o @ 2p)ANP, 2> p) A AP, =Py

This shows that if the n conditional statements p; — p,, p, = p3, ..., p, — p; can be shown to
be true, then the propositions p,, p,, ..., p, are all equivalent.

This is much more efficient than proving that p; — p; for all i # j with  <i<nand 1 <
j < n. (Note that there are n> — n such conditional statements.)

When we prove that a group of statements are equivalent, we can establish any chain of
conditional statements we choose as long as it is possible to work through the chain to go from
any one of these statements to any other statement. For example, we can show that p,, p,, and
D5 are equivalent by showing that p; — ps, p3; = p,, and p, = p;.

Show that these statements about the integer n are equivalent:

p;: niseven.
p,: n—1lisodd.

py: n?iseven.

Solution: We will show that these three statements are equivalent by showing that the condi-
tional statements p, — p,, p, = p3, and p; — p,; are true.
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We use a direct proof to show that p; — p,. Suppose that n is even. Then n = 2k for some
integer k. Consequently, n — 1 =2k — 1 = 2(k — 1) + 1. This means that n — 1 is odd because
it is of the form 2m + 1, where m is the integer k — 1.

We also use a direct proof to show that p, — p;. Now suppose n—1 is odd. Then
n—1=2k+ 1 for some integer k. Hence, n = 2k + 2 so that n> = 2k +2)> = 4k*> + 8k + 4 =
2(2k? + 4k + 2). This means that n? is twice the integer 2k> + 4k + 2, and hence is even.

To prove p; — p,, we use a proof by contraposition. That is, we prove that if n is not even,
then n? is not even. This is the same as proving that if 7 is odd, then n? is odd, which we have
already done in Example 1. This completes the proof. <

COUNTEREXAMPLES In Section 1.4 we stated that to show that a statement of the form
VxP(x) is false, we need only find a counterexample, that is, an example x for which P(x) is
false. When presented with a statement of the form VxP(x), which we believe to be false or
which has resisted all proof attempts, we look for a counterexample. We illustrate the use of
counterexamples in Example 15.

Show that the statement “Every positive integer is the sum of the squares of two integers” is false.

Solution: To show that this statement is false, we look for a counterexample, which is a par-
ticular integer that is not the sum of the squares of two integers. It does not take long to find
a counterexample, because 3 cannot be written as the sum of the squares of two integers. To
show this is the case, note that the only perfect squares not exceeding 3 are 0> = 0 and 1% = 1.
Furthermore, there is no way to get 3 as the sum of two terms each of which is 0 or 1. Conse-
quently, we have shown that “Every positive integer is the sum of the squares of two integers”
is false. <

1.7.8 Mistakes in Proofs

There are many common errors made in constructing mathematical proofs. We will briefly de-
scribe some of these here. Among the most common errors are mistakes in arithmetic and basic
algebra. Even professional mathematicians make such errors, especially when working with
complicated formulae. Whenever you use such computations you should check them as care-
fully as possible. (You should also review any troublesome aspects of basic algebra, especially
before you study Section 5.1.)

Each step of a mathematical proof needs to be correct and the conclusion needs to follow
logically from the steps that precede it. Many mistakes result from the introduction of steps that
do not logically follow from those that precede it. This is illustrated in Examples 16—18.

What is wrong with this famous supposed “proof” that 1 = 2?

“Proof”: We use these steps, where a and b are two equal positive integers.

Step Reason

l.a=b>b Given

2. a’>=ab Multiply both sides of (1) by a

3. a* — b* =ab - b? Subtract b? from both sides of (2)

4. (a—b)a+b)=0bla—-Db) Factor both sides of (3)

5.a+b=>b Divide both sides of (4) by a — b

6. 2b=0>b Replace a by b in (5) because a = b
and simplify

7.2=1 Divide both sides of (6) by b
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EXAMPLE 17

EXAMPLE 18

EXAMPLE 19

Solution: Every step is valid except for step 5, where we divided both sides by a — b. The error
is that a — b equals zero; division of both sides of an equation by the same quantity is valid as
long as this quantity is not zero. <

What is wrong with this “proof”?

“Theorem™: If n? is positive, then 7 is positive.

“Proof”’: Suppose that n” is positive. Because the conditional statement “If 7 is positive, then

n? is positive” is true, we can conclude that 7 is positive.

Solution: Let P(n) be “n is positive” and Q(n) be “n~ is positive.” Then our hypothesis is Q(n).
The statement “If n is positive, then n? is positive” is the statement Vn(P(n) — Q(n)). From
the hypothesis Q(n) and the statement Vn(P(n) — Q(n)) we cannot conclude P(n), because we
are not using a valid rule of inference. Instead, this is an example of the fallacy of affirming
the conclusion. A counterexample is supplied by n = —1 for which n> = 1 is positive, but n is
negative. <

What is wrong with this “proof”?

“Theorem”: If n is not positive, then n? is not positive. (This is the contrapositive of the
“theorem” in Example 17.)

“Proof”’: Suppose that n is not positive. Because the conditional statement “If n is positive,
then n? is positive” is true, we can conclude that n? is not positive.

Solution: Let P(n) and Q(n) be as in the solution of Example 17. Then our hypothesis is =P(n)
and the statement “If n is positive, then n? is positive™ is the statement Yn(P(n) — Q(n)). From
the hypothesis =P(n) and the statement Vn(P(n) — Q(n)) we cannot conclude —=Q(n), because
we are not using a valid rule of inference. Instead, this is an example of the fallacy of denying
the hypothesis. A counterexample is supplied by n = —1, as in Example 17. <

Finally, we briefly discuss a particularly nasty type of error. Many incorrect arguments are
based on a fallacy called begging the question. This fallacy occurs when one or more steps of
a proof are based on the truth of the statement being proved. In other words, this fallacy arises
when a statement is proved using itself, or a statement equivalent to it. That is why this fallacy
is also called circular reasoning.

Is the following argument correct? It supposedly shows that 7 is an even integer whenever n? is

an even integer.

Suppose that n? is even. Then n?> = 2k for some integer k. Let n = 21 for some integer /. This
shows that 7 is even.

Solution: This argument is incorrect. The statement “let n = 2/ for some integer [’ occurs in the
proof. No argument has been given to show that n can be written as 2/ for some integer /. This is
circular reasoning because this statement is equivalent to the statement being proved, namely,
“n is even.” The result itself is correct; only the method of proof is wrong. <
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Making mistakes in proofs is part of the learning process. When you make a mistake that
someone else finds, you should carefully analyze where you went wrong and make sure that
you do not make the same mistake again. Even professional mathematicians make mistakes in
proofs. More than a few incorrect proofs of important results have fooled people for many years
before subtle errors in them were found.

1.7.9 Just a Beginning

We have now developed a basic arsenal of proof methods. In the next section we will introduce
other important proof methods. We will also introduce several important proof techniques in
Chapter 5, including mathematical induction, which can be used to prove results that hold for
all positive integers. In Chapter 6 we will introduce the notion of combinatorial proofs.

In this section we introduced several methods for proving theorems of the form Vx(P(x) —
Q(x)), including direct proofs and proofs by contraposition. There are many theorems of this type
whose proofs are easy to construct by directly working through the hypotheses and definitions
of the terms of the theorem. However, it is often difficult to prove a theorem without resorting
to a clever use of a proof by contraposition or a proof by contradiction, or some other proof
technique. In Section 1.8 we will address proof strategy. We will describe various approaches
that can be used to find proofs when straightforward approaches do not work. Constructing
proofs is an art that can be learned only through experience, including writing proofs, having

your proofs critiqued, and reading and analyzing other proofs.

Exercises

10.

11.

12.

13.

. Use a direct proof to show that the sum of two odd inte-

gers is even.

. Use a direct proof to show that the sum of two even inte-

gers is even.

. Show that the square of an even number is an even num-

ber using a direct proof.

. Show that the additive inverse, or negative, of an even

number is an even number using a direct proof.

. Prove that if m 4+ n and n + p are even integers, where

m, n, and p are integers, then m + p is even. What kind of
proof did you use?

. Use a direct proof to show that the product of two odd

numbers is odd.

. Use a direct proof to show that every odd integer is the

difference of two squares. [Hint: Find the difference of
the squares of k + 1 and k where k is a positive integer.]

. Prove that if n is a perfect square, then n + 2 is not a per-

fect square.

. Use a proof by contradiction to prove that the sum of an

irrational number and a rational number is irrational.

Use a direct proof to show that the product of two rational
numbers is rational.

Prove or disprove that the product of two irrational num-
bers is irrational.

Prove or disprove that the product of a nonzero rational
number and an irrational number is irrational.

Prove that if x is irrational, then 1/x is irrational.

14.
15.

16.

20.

21.

22.

23.

24.

Prove that if x is rational and x # 0, then 1/x is rational.
Prove that if x is an irrational number and x > 0, then \/)—c
is also irrational.

Prove that if x, y, and z are integers and x + y + z is odd,
then at least one of x, y, and z is odd.

. Use a proof by contraposition to show that if x +y > 2,

where x and y are real numbers, thenx > 1 ory > 1.

. Prove that if m and n are integers and mn is even, then m

is even or n is even.

. Show that if n is an integer and n3 + 5 is odd, then n is

even using

a) a proof by contraposition.

b) a proof by contradiction.

Prove that if n is an integer and 3n + 2 is even, then 7 is
even using

a) a proof by contraposition.

b) a proof by contradiction.

Prove the proposition P(0), where P(n) is the proposition
“If n is a positive integer greater than 1, then n*> > n.”
What kind of proof did you use?

Prove the proposition P(1), where P(n) is the proposi-
tion “If n is a positive integer, then n> > n.” What kind of
proof did you use?

Let P(n) be the proposition “If a and b are positive real
numbers, then (a + b)" > a* + b".” Prove that P(1) is
true. What kind of proof did you use?

Show that if you pick three socks from a drawer contain-
ing just blue socks and black socks, you must get either a
pair of blue socks or a pair of black socks.
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25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.
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Show that at least ten of any 64 days chosen must fall on
the same day of the week.

Show that at least three of any 25 days chosen must fall
in the same month of the year.

Use a proof by contradiction to show that there is no ra-
tional number 7 for which 73 + r + 1 = 0. [Hint: Assume
that r = a/b is a root, where a and b are integers and a/b
is in lowest terms. Obtain an equation involving integers
by multiplying by 4. Then look at whether a and b are
each odd or even.]

Prove that if n is a positive integer, then n is even if and
only if 7n + 4 is even.

Prove that if n is a positive integer, then #n is odd if and
only if 5n + 6 is odd.

Prove that m? = n? if and only if m = n or m = —n.

Prove or disprove that if m and n are integers such that
mn = 1, theneitherm =1andn = 1, orelse m = —1 and
n=-1.

Show that these three statements are equivalent, where a
and b are real numbers: (i) a is less than b, (ii) the average
of a and b is greater than a, and (iii) the average of a and
b is less than b.

Show that these statements about the integer x are
equivalent: (i) 3x + 2 is even, (ii) x + 5 is odd, (iii) x*
is even.

Show that these statements about the real number x are
equivalent: (i) x is rational, (if) x/2 is rational, (iii) 3x — 1
is rational.

Show that these statements about the real number x are
equivalent: (i) x is irrational, (if) 3x+ 2 is irrational,
(iii) x/2 is irrational.

Is this reasoning for finding the solutions of the equa-
tion V/2x2 — 1 = x correct? (1) V/2x2 — 1 = x is given;

(2) 2x* — 1 = x?, obtained by squaring both sides of (1);

Proof Methods and Strategy

37.

38.

39.

40.

41.

42.

43.

44.

(3) x> =1 =0, obtained by subtracting x> from both
sides of (2); (4) (x — 1)(x+ 1) = 0, obtained by factor-
ing the left-hand side of X—-1; 5 x=1o0rx=-1,
which follows because ab =0 implies that a =0 or
b=0.

Are these steps for finding the solutions of v/x+3 =
3 —x correct? (1) Vx+3=3—xis given; 2) x+3 =
x*> — 6x + 9, obtained by squaring both sides of (1); (3)
0 = x> — 7x + 6, obtained by subtracting x + 3 from both
sides of (2); (4) 0 = (x — 1)(x — 6), obtained by factoring
the right-hand side of (3); (5) x = 1 or x = 6, which fol-
lows from (4) because ab = 0 implies thata = 0 orb = 0.
Show that the propositions p,, p,, p3, and p, can be shown
to be equivalent by showing that p;, < p,, p, < ps, and
P1 < P3-

Show that the propositions py, p,, p3, P4, and ps can
be shown to be equivalent by proving that the condi-
tional statements py = py, p3 = P> Py = P2 P2 = Ds»
and ps — ps are true.

Find a counterexample to the statement that every posi-
tive integer can be written as the sum of the squares of
three integers.

Prove that at least one of the real numbers a,, a,, ..., a,
is greater than or equal to the average of these numbers.
What kind of proof did you use?

Use Exercise 41 to show that if the first 10 positive inte-
gers are placed around a circle, in any order, there exist
three integers in consecutive locations around the circle
that have a sum greater than or equal to 17.

Prove that if n is an integer, these four statements are
equivalent: () n is even, (i) n+ 1 is odd, (iii) 3n+ 1 is
odd, (iv) 3n is even.

Prove that these four statements about the integer n are
equivalent: (i) n® is odd, (ii) 1 — n is even, (iii) n° is odd,
(iv) n* + 1 is even.

1.8.1 Introduction

Assessment )

In Section 1.7 we introduced many methods of proof and illustrated how each method can
be used. In this section we continue this effort. We will introduce several other commonly

used proof methods, including the method of proving a theorem by considering different cases
separately. We will also discuss proofs where we prove the existence of objects with desired

properties.

In Section 1.7 we briefly discussed the strategy behind constructing proofs. This strategy
includes selecting a proof method and then successfully constructing an argument step by step,
based on this method. In this section, after we have developed a versatile arsenal of proof meth-
ods, we will study some aspects of the art and science of proofs. We will provide advice on how
to find a proof of a theorem. We will describe some tricks of the trade, including how proofs
can be found by working backward and by adapting existing proofs.
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When mathematicians work, they formulate conjectures and attempt to prove or disprove
them. We will briefly describe this process here by proving results about tiling checkerboards
with dominoes and other types of pieces. Looking at tilings of this kind, we will be able to
quickly formulate conjectures and prove theorems without first developing a theory.

We will conclude the section by discussing the role of open questions. In particular, we
will discuss some interesting problems either that have been solved after remaining open for
hundreds of years or that still remain open.

1.8.2 Exhaustive Proof and Proof by Cases

Sometimes we cannot prove a theorem using a single argument that holds for all possible cases.
We now introduce a method that can be used to prove a theorem by considering different cases
separately. This method is based on a rule of inference that we will now introduce. To prove a
conditional statement of the form

(P1VPaV-Vp,)—q

the tautology

[Py VPV Vp) = ql o [Py = QAP > DA AP, = 9]

can be used as a rule of inference. This shows that the original conditional statement with a
hypothesis made up of a disjunction of the propositions py, p,, ..., p, can be proved by proving
each of the n conditional statements p; — ¢, i = 1,2, ..., n, individually. Such an argument is
called a proof by cases. Sometimes to prove that a conditional statement p — ¢ is true, it is
convenient to use a disjunctionp; V p, V --- V p, instead of p as the hypothesis of the conditional
statement, where p and p, V p, V -+ V p, are equivalent.

EXHAUSTIVE PROOF Some theorems can be proved by examining a relatively small num-
ber of examples. Such proofs are called exhaustive proofs, or proofs by exhaustion because
these proofs proceed by exhausting all possibilities. An exhaustive proof is a special type of
proof by cases where each case involves checking a single example. We now provide some
illustrations of exhaustive proofs.

Prove that (n 4+ 1) > 3" if n is a positive integer with n < 4.

Solution: We use a proof by exhaustion. We only need verify the inequality (n + 1)* > 3" when
n=1273 and 4. For n =1, we have (n + 1)> =23 = 8 and 3" = 3! = 3; for n = 2, we have
n+1P=3=27and3"=32=09;forn =3, we have (n+ 1)’ =4° =64 and 3" = 3°> = 27;
and for n = 4, we have (n + 1)> = 5% = 125 and 3” = 3* = 81. In each of these four cases, we
see that (n + 1)> > 3. We have used the method of exhaustion to prove that (n + 1) > 3" if n
is a positive integer with n < 4. <

Prove that the only consecutive positive integers not exceeding 100 that are perfect powers are 8
and 9. (An integer n is a perfect power if it equals m“, where m is an integer and a is an integer
greater than 1.)

Solution: We use a proof by exhaustion. In particular, we can prove this fact by examining
positive integers n not exceeding 100, first checking whether 7 is a perfect power, and if it is,
checking whether n + 1 is also a perfect power. A quicker way to do this is simply to look at all
perfect powers not exceeding 100 and checking whether the next largest integer is also a perfect
power. The squares of positive integers not exceeding 100 are 1, 4, 9, 16, 25, 36, 49, 64, 81, and
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Proofs by exhaustion
can tire out people and
computers when the
number of cases
challenges the available
processing power!

EXAMPLE 3
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EXAMPLE 4

100. The cubes of positive integers not exceeding 100 are 1, 8, 27, and 64. The fourth powers
of positive integers not exceeding 100 are 1, 16, and 81. The fifth powers of positive integers
not exceeding 100 are 1 and 32. The sixth powers of positive integers not exceeding 100 are 1
and 64. There are no powers of positive integers higher than the sixth power not exceeding 100,
other than 1. Looking at this list of perfect powers not exceeding 100, we see that n = 8§ is the
only perfect power n for which n + 1 is also a perfect power. That is, 23 = 8 and 3> = 9 are the
only two consecutive perfect powers not exceeding 100. <

People can carry out exhaustive proofs when it is necessary to check only a relatively small
number of instances of a statement. Computers do not complain when they are asked to check
a much larger number of instances of a statement, but they still have limitations. Note that not
even a computer can check all instances when it is impossible to list all instances to check.

PROOF BY CASES A proof by cases must cover all possible cases that arise in a theorem.
We illustrate proof by cases with a couple of examples. In each example, you should check that
all possible cases are covered.

Prove that if n is an integer, then n?>n.

Solution: We can prove that n> > n for every integer by considering three cases, when n = 0,
when n > 1, and when n < —1. We split the proof into three cases because it is straightforward
to prove the result by considering zero, positive integers, and negative integers separately.

Case (i): When n = 0, because 0% = 0, we see that 0% > 0. It follows that n> > n is true in
this case.

Case (ii): When n > 1, when we multiply both sides of the inequality n > 1 by the positive
integer n, we obtain n - n > n - 1. This implies that n> > n forn > 1.

Case (iii): In this case n < —1. However, n> > 0. It follows that n> > n.

Because the inequality n> > n holds in all three cases, we can conclude that if 7 is an integer,
then n? > n. <

Use a proof by cases to show that |xy| = |x||y|, where x and y are real numbers. (Recall that |a],
the absolute value of a, equals @ when a > 0 and equals —a when a < 0.)

Solution: In our proof of this theorem, we remove absolute values using the fact that |a| = a
when a > 0 and |a| = —a when a < 0. Because both |x| and |y| occur in our formula, we will
need four cases: (i) x and y both nonnegative, (ii) x nonnegative and y negative, (iii) x negative
and y nonnegative, and (iv) x negative and y negative. We denote by p,, p,, p;, and p,, the
proposition stating the assumption for each of these four cases, respectively.

(Note that we can remove the absolute value signs by making the appropriate choice of
signs within each case.)

Case (i): We see that p; — ¢ because xy > 0 when x > 0 and y > 0, so that |xy| =xy =
Xl 1yl

Case (ii): To see that p, — g, note thatif x > O and y < 0, then xy < 0, so that |xy| = —xy =
x(—y) = |x||y|. (Here, because y < 0, we have |y| = —y.)

Case (iii): To see that p; — ¢, we follow the same reasoning as the previous case with the
roles of x and y reversed.

Case (iv): To see that p, — g, note that when x < O and y < 0, it follows that xy > 0. Hence,
ey = xy = (=x)(=y) = Ix]|y].
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Because |xy| = |x||y| holds in each of the four cases and these cases exhaust all possibilities,
we can conclude that |xy| = |x||y|, whenever x and y are real numbers. <4

LEVERAGING PROOF BY CASES The examples we have presented illustrating proof by
cases provide some insight into when to use this method of proof. In particular, when it is not
possible to consider all cases of a proof at the same time, a proof by cases should be considered.
When should you use such a proof? Generally, look for a proof by cases when there is no obvious
way to begin a proof, but when extra information in each case helps move the proof forward.
Example 5 illustrates how the method of proof by cases can be used effectively.

Formulate a conjecture about the final decimal digit of the square of an integer and prove your
result.

Solution: The smallest perfect squares are 1,4,9, 16, 25,36,49, 64,81, 100, 121, 144, 169,
196, 225, and so on. We notice that the digits that occur as the final digit of a square are
0,1,4,5,6, and 9, with 2, 3,7, and 8 never appearing as the final digit of a square. We con-
jecture this theorem: The final decimal digit of a perfect square is 0, 1, 4, 5, 6, or 9. How can we
prove this theorem?

We first note that we can express an integer n as 10a + b, where a and b are positive inte-
gersand bis 0,1,2,3,4,5,6,7,8, or 9. Here a is the integer obtained by subtracting the final
decimal digit of n from n and dividing by 10. Next, note that (10a + b)> = 100a* + 20ab + b* =
10(10a? + 2b) + b?, so that the final decimal digit of n? is the same as the final decimal digit
of b?. Furthermore, note that the final decimal digit of b” is the same as the final decimal digit
of (10 — b)*> = 100 — 20b + b>. Consequently, we can reduce our proof to the consideration of
Six cases.

Case (i): The final digit of is 1 or 9. Then the final decimal digit of n? is the final decimal
digit of 1 = 1 or 9> = 81, namely, 1.

Case (ii): The final digit of n is 2 or 8. Then the final decimal digit of n? is the final decimal
digit of 22 = 4 or 82 = 64, namely, 4.

Case (iii): The final digit of n is 3 or 7. Then the final decimal digit of n? is the final decimal
digit of 32 = 9 or 72 = 49, namely, 9.

Case (iv): The final digit of n is 4 or 6. Then the final decimal digit of n? is the final decimal
digit of 4> = 16 or 6> = 36, namely, 6.

Case (v): The final decimal digit of n is 5. Then the final decimal digit of n? is the final
decimal digit of 5% = 25, namely, 5.

Case (vi): The final decimal digit of n is 0. Then the final decimal digit of n? is the final
decimal digit of 0> = 0, namely, 0.

Because we have considered all six cases, we can conclude that the final decimal digit of n?,
where n is an integer is either 0, 1, 2, 4, 5, 6, or 9. |

Sometimes we can eliminate all but a few examples in a proof by cases, as Example 6
illustrates.

Show that there are no solutions in integers x and y of x> + 3y> = 8.

Solution: We can quickly reduce a proof to checking just a few simple cases because x> > 8
when |x| > 3 and 3y? > 8 when |y| > 2. This leaves the cases when x equals —2, —1, 0, 1, or 2
and y equals —1, 0, or 1. We can finish using an exhaustive proof. To dispense with the remaining
cases, we note that possible values for x* are 0, 1, and 4, and possible values for 3y* are 0 and
3, and the largest sum of possible values for x> and 3y? is 7. Consequently, it is impossible for
x? 4+ 3y? = 8 to hold when x and y are integers. <
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In a proof by cases be
sure not to omit any
cases and check that you
have proved all cases
correctly!

EXAMPLE 7

EXAMPLE 8

WITHOUT LOSS OF GENERALITY In the proof in Example 4, we dismissed case (iii),
where x < 0 and y > 0, because it is the same as case (ii), where x > 0 and y < 0, with the roles
of x and y reversed. To shorten the proof, we could have proved cases (ii) and (iii) together by
assuming, without loss of generality, that x > 0 and y < 0. Implicit in this statement is that we
can complete the case with x < 0 and y > 0 using the same argument as we used for the case
with x > 0 and y < 0, but with the obvious changes.

In general, when the phrase “without loss of generality” is used in a proof (often abbre-
viated as WLOG), we assert that by proving one case of a theorem, no additional argument is
required to prove other specified cases. That is, other cases follow by making straightforward
changes to the argument, or by filling in some straightforward initial step. Proofs by cases can
often be made much more efficient when the notion of without loss of generality is employed.
Incorrect use of this principle, however, can lead to unfortunate errors. Sometimes assumptions
are made that lead to a loss in generality. Such assumptions can be made that do not take into
account that one case may be substantially different from others. This can lead to an incomplete,
and possibly unsalvageable, proof. In fact, many incorrect proofs of famous theorems turned
out to rely on arguments that used the idea of “without loss of generality” to establish cases
that could not be quickly proved from simpler cases.

We now illustrate a proof where without loss of generality is used effectively together with
other proof techniques.

Show that if x and y are integers and both xy and x + y are even, then both x and y are even.

Solution: We will use proof by contraposition, the notion of without loss of generality, and proof
by cases. First, suppose that x and y are not both even. That is, assume that x is odd or that y is
odd (or both). Without loss of generality, we assume that x is odd, so that x = 2m + 1 for some
integer k.

To complete the proof, we need to show that xy is odd or x +y is odd. Consider two
cases: (i) y is even, and (if) y is odd. In (i), y = 2n for some integer n, so that x+y =
2m+ 1)+ 2n=2(m+n)+ 1is odd. In (if), y = 2n + 1 for some integer n, so that xy = (2m +
D@2n+1)=4mn+2m+2n+1=22mn+m+n)+ 1 is odd. This completes the proof by
contraposition. (Note that our use of without loss of generality within the proof is justified
because the proof when y is odd can be obtained by simply interchanging the roles of x and y in
the proof we have given.) <

COMMON ERRORS WITH EXHAUSTIVE PROOF AND PROOF BY CASES A common
error of reasoning is to draw incorrect conclusions from examples. No matter how many separate
examples are considered, a theorem is not proved by considering examples unless every possible
case is covered. The problem of proving a theorem is analogous to showing that a computer
program always produces the output desired. No matter how many input values are tested, unless
all input values are tested, we cannot conclude that the program always produces the correct
output.

Is it true that every positive integer is the sum of 18 fourth powers of integers?

Solution: To determine whether a positive integer n can be written as the sum of 18 fourth
powers of integers, we might begin by examining whether 7 is the sum of 18 fourth powers of
integers for the smallest positive integers. Because the fourth powers of integers are 0, 1, 16,
81, ..., if we can select 18 terms from these numbers that add up to n, then n is the sum of
18 fourth powers. We can show that all positive integers up to 78 can be written as the sum of
18 fourth powers. (The details are left to the reader.) However, if we decided this was enough
checking, we would come to the wrong conclusion. It is not true that every positive integer is
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the sum of 18 fourth powers because 79 is not the sum of 18 fourth powers (as the reader can
verify). <

Another common error involves making unwarranted assumptions that lead to incorrect
proofs by cases where not all cases are considered. This is illustrated in Example 9.

What is wrong with this “proof™?

“Theorem”: If x is a real number, then x? is a positive real number.

“Proof ”: Let p, be “x is positive,” let p, be “x is negative,” and let g be “x? is positive.” To
show that p; — ¢ is true, note that when x is positive, x? is positive because it is the product of
two positive numbers, x and x. To show that p, — g, note that when x is negative, x? is positive
because it is the product of two negative numbers, x and x. This completes the proof.

Solution: The problem with this “proof” is that we missed the case of x = 0. When x =0,
x> =0 is not positive, so the supposed theorem is false. If p is “x is a real number,” then
we can prove results where p is the hypothesis with three cases, p;, p,, and p;, where
p, is “x is positive,” p, is “x is negative,” and p; is “x = 0” because of the equivalence

P PIVpyVD;. <

1.8.3 Existence Proofs

Many theorems are assertions that objects of a particular type exist. A theorem of this type is
a proposition of the form IxP(x), where P is a predicate. A proof of a proposition of the form
dxP(x) is called an existence proof. There are several ways to prove a theorem of this type.
Sometimes an existence proof of xP(x) can be given by finding an element a, called a witness,
such that P(a) is true. This type of existence proof is called constructive. It is also possible
to give an existence proof that is nonconstructive; that is, we do not find an element a such
that P(a) is true, but rather prove that IxP(x) is true in some other way. One common method
of giving a nonconstructive existence proof is to use proof by contradiction and show that the
negation of the existential quantification implies a contradiction. The concept of a constructive
existence proof is illustrated by Example 10 and the concept of a nonconstructive existence
proof is illustrated by Example 11.

A Constructive Existence Proof Show that there is a positive integer that can be written as
the sum of cubes of positive integers in two different ways.

Solution: After considerable computation (such as a computer search) we find that
1729 =10° + 9’ = 12° + 1°,

Because we have displayed a positive integer that can be written as the sum of cubes in two
different ways, we are done.

There is an interesting story pertaining to this example. The English mathematician G. H.
Hardy, when visiting the ailing Indian prodigy Ramanujan in the hospital, remarked that 1729,
the number of the cab he took, was rather dull. Ramanujan replied “No, it is a very interesting
number; it is the smallest number expressible as the sum of cubes in two different ways.” <

A Nonconstructive Existence Proof Show that there exist irrational numbers x and y such
that x” is rational.
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Solution: By Example 11 in Section 1.7 we know that \/5 is irrational. Consider the number
\/5\/5. If it is rational, we have two irrational numbers x and y with x rational, namely, x = \/5
andy = \/5 On the other hand if \/5\/E is irrational, then we can let x = \/5\/5 andy = \/E SO
that ¥ = (\/5\/5)\/5 = \/E(ﬁ'ﬁ) =2 =2

This proof is an example of a nonconstructive existence proof because we have not found
irrational numbers x and y such that x” is rational. Rather, we have shown that either the pair

V2
X = \/5, y= \/5 or the pair x = \/5 ,y = \/5 have the desired property, but we do not know
which of these two pairs works! <

Remark: Exercise 11 in Section 4.3 provides a constructive existence proof that there are irra-
tional numbers x and y such that x” is rational.

Nonconstructive existence proofs often are quite subtle, as Example 12 illustrates.

EXAMPLE 12 Chomp is a game played by two players. In this game, cookies are laid out on a rectangular grid.
The cookie in the top left position is poisoned, as shown in Figure 1(a). The two players take
turns making moves; at each move, a player is required to eat a remaining cookie, together with

Links ) all cookies to the right and/or below it (see Figure 1(b), for example). The loser is the player
who has no choice but to eat the poisoned cookie. We ask whether one of the two players has a
winning strategy. That is, can one of the players always make moves that are guaranteed to lead
to a win?

GODFREY HAROLD HARDY (1877-1947) Hardy, born in Cranleigh, Surrey, England, was the older of
two children of Isaac Hardy and Sophia Hall Hardy. His father was the geography and drawing master at the
Cranleigh School and also gave singing lessons and played soccer. His mother gave piano lessons and helped run
a boardinghouse for young students. Hardy’s parents were devoted to their children’s education. Hardy demon-
strated his numerical ability at the early age of two when he began writing down numbers into the millions.
He had a private mathematics tutor rather than attending regular classes at the Cranleigh School. He moved to
Winchester College, a private high school, when he was 13 and was awarded a scholarship. He excelled in his
studies and demonstrated a strong interest in mathematics. He entered Trinity College, Cambridge, in 1896 on
AMERICAN a scholarship and won several prizes during his time there, graduating in 1899.
PHILOSOPHICAL Hardy held the position of lecturer in mathematics at Trinity College at Cambridge University from
SOCIETY/Science Source 1906 to 1919, when he was appointed to the Sullivan chair of geometry at Oxford. He had become un-
happy with Cambridge over the dismissal of the noted philosopher and mathematician Bertrand Russell
from Trinity for antiwar activities and did not like a heavy load of administrative duties. In 1931 he returned to Cambridge as the
Sadleirian professor of pure mathematics, where he remained until his retirement in 1942. He was a pure mathematician and held
an elitist view of mathematics, hoping that his research could never be applied. Ironically, he is perhaps best known as one of the
developers of the Hardy—Weinberg law, which predicts patterns of inheritance. His work in this area appeared as a letter to the
journal Science in which he used simple algebraic ideas to demonstrate errors in an article on genetics. Hardy worked primarily
in number theory and function theory, exploring such topics as the Riemann zeta function, Fourier series, and the distribution of
primes. He made many important contributions to many important problems, such as Waring’s problem about representing positive
integers as sums of kth powers and the problem of representing odd integers as sums of three primes. Hardy is also remembered
for his collaborations with John E. Littlewood, a colleague at Cambridge, with whom he wrote more than 100 papers, and the
celebrated Indian mathematical prodigy Srinivasa Ramanujan. His collaboration with Littlewood led to the joke that there were only
three important English mathematicians at that time, Hardy, Littlewood, and Hardy-Littlewood. However, some people believed
that Hardy had invented a fictitious person, Littlewood, because Littlewood was seldom seen away from Cambridge. Hardy had
the wisdom of recognizing Ramanujan’s genius from unconventional but extremely creative writings Ramanujan sent him, while
other mathematicians failed to see the genius. Hardy brought Ramanujan to Cambridge and collaborated on important joint papers,
establishing new results on the number of partitions of an integer. Hardy was interested in mathematics education, and his book
A Course of Pure Mathematics had a profound effect on undergraduate instruction in mathematics in the first half of the twentieth
century. Hardy also wrote A Mathematician’s Apology, in which he gives his answer to the question of whether it is worthwhile to
devote one’s life to the study of mathematics. It presents Hardy’s view of what mathematics is and what a mathematician does.
Hardy had a strong interest in sports. He was an avid cricket fan and followed scores closely. One peculiar trait he had was that
he did not like his picture taken (only five snapshots are known) and disliked mirrors, covering them with towels immediately upon
entering a hotel room.
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FIGURE 1 (a) Chomp (top left cookie poisoned). (b) Three possible moves.

EXAMPLE 13

Solution: We will give a nonconstructive existence proof of a winning strategy for the first
player. That is, we will show that the first player always has a winning strategy without explicitly
describing the moves this player must follow.

First, note that the game ends and cannot finish in a draw because with each move at least
one cookie is eaten, so after no more than m X n moves the game ends, where the initial grid is
m X n. Now, suppose that the first player begins the game by eating just the cookie in the bottom
right corner. There are two possibilities, this is the first move of a winning strategy for the first
player, or the second player can make a move that is the first move of a winning strategy for the
second player. In this second case, instead of eating just the cookie in the bottom right corner,
the first player could have made the same move that the second player made as the first move of
a winning strategy (and then continued to follow that winning strategy). This would guarantee
a win for the first player.

Note that we showed that a winning strategy exists, but we did not specify an actual winning
strategy. Consequently, the proof is a nonconstructive existence proof. In fact, no one has been
able to describe a winning strategy for Chomp that applies for all rectangular grids by describing
the moves that the first player should follow. However, winning strategies can be described for
certain special cases, such as when the grid is square and when the grid only has two rows of
cookies (see Exercises 15 and 16 in Section 5.2). |

1.8.4 Uniqueness Proofs

Some theorems assert the existence of a unique element with a particular property. In other
words, these theorems assert that there is exactly one element with this property. To prove a
statement of this type we need to show that an element with this property exists and that no
other element has this property. The two parts of a uniqueness proof are:

Existence:  We show that an element x with the desired property exists.
Uniqueness: We show that if x and y both have the desired property, then x = y.

Remark: Showing that there is a unique element x such that P(x) is the same as proving the
statement Ax(P(x) A Yy(y # x — =P(y))).

We illustrate the elements of a uniqueness proof in Example 13.

Show that if @ and b are real numbers and a # 0, then there is a unique real number r such that
ar+b =0.
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Solution: First, note that the real number r = —b/a is a solution of ar+ b =0 because
a(—b/a)+ b = —b+ b = 0. Consequently, a real number r exists for which ar + b = 0. This

is the existence part of the proof.
Second, suppose that s is a real number such that as + b = 0. Then ar + b = as + b, where
Extra r = —b/a. Subtracting b from both sides, we find that ar = as. Dividing both sides of this last
Examples ) equation by a, which is nonzero, we see that » = s. This establishes the uniqueness part of the
proof. <

1.8.5 Proof Strategies

Finding proofs can be a challenging business. When you are confronted with a statement to
prove, you should first replace terms by their definitions and then carefully analyze what the
hypotheses and the conclusion mean. After doing so, you can attempt to prove the result us-
ing one of the available methods of proof. We have already provided some proof strategies in
Section 1.7 for theorems of the form Vx(P(x) - Q(x)), when we introduced direct proof, proof
by contraposition, and proof by contradiction. If the statement is a conditional statement, try a
direct proof first as long as the hypotheses provide a good starting point; if this fails, try a proof

Links )

SRINIVASA RAMANUIJAN (1887-1920) The renowned mathematical prodigy Ramanujan was born and
raised in southern India near the city of Madras (now called Chennai). His father was a clerk in a cloth shop.
His mother contributed to the family income by singing at a local temple. Ramanujan studied at the local
English language school, displaying his talent and interest for mathematics. At the age of 13 he mastered
a textbook used by college students. When he was 15, a university student lent him a copy of Synopsis of
Pure Mathematics. Ramanujan decided to work out the over 6000 results in this book, stated without proof
or explanation, writing on sheets later collected to form notebooks. He graduated from high school in 1904,
winning a scholarship to the University of Madras. Enrolling in a fine arts curriculum, he neglected his sub-
©Nick Higham/Alamy Siock jects other than mathematics and lost his scholarship. He failed to pass examinations at the university four
Photo times from 1904 to 1907, doing well only in mathematics. During this time he filled his notebooks with orig-

inal writings, sometimes rediscovering already published work and at other times making new discoveries.

Without a university degree, it was difficult for Ramanujan to find a decent job. To survive, he had to depend on the goodwill
of his friends. He tutored students in mathematics, but his unconventional ways of thinking and failure to stick to the syllabus caused
problems. He was married in 1909 in an arranged marriage to a young woman nine years his junior. Needing to support himself and
his wife, he moved to Madras and sought a job. He showed his notebooks of mathematical writings to his potential employers, but
the books bewildered them. However, a professor at the Presidency College recognized his genius and supported him, and in 1912
he found work as an accounts clerk, earning a small salary.

Ramanujan continued his mathematical work during this time and published his first paper in 1910 in an Indian journal. He
realized that his work was beyond that of the Indian mathematicians of his day and decided to write to leading English mathemati-
cians. The first mathematicians he wrote to turned down his request for help. But in January 1913 he wrote to G. H. Hardy, who was
inclined to turn Ramanujan down, but the mathematical statements in the letter, although stated without proof, puzzled Hardy. He
decided to examine them closely with the help of his colleague and collaborator J. E. Littlewood. They decided, after careful study,
that Ramanujan was probably a genius, because his statements “could only be written down by a mathematician of the highest class;
they must be true, because if they were not true, no one would have the imagination to invent them.”

Hardy arranged a scholarship for Ramanujan, bringing him to England in 1914. Hardy personally tutored him in mathematical
analysis, and they collaborated for five years, proving significant theorems about the number of partitions of integers. During this
time, Ramanujan made important contributions to number theory and also worked on continued fractions, infinite series, and elliptic
functions. Ramanujan had amazing insight involving certain types of functions and series, but his purported theorems on prime
numbers were often wrong, illustrating his vague idea of what constitutes a correct proof. He was one of the youngest members ever
appointed a Fellow of the Royal Society. Unfortunately, in 1917 Ramanujan became extremely ill. At the time, it was thought that he
had trouble with the English climate and had contracted tuberculosis. It is now thought that he suffered from a vitamin deficiency,
brought on by Ramanujan’s strict vegetarianism and shortages in wartime England. He returned to India in 1919, continuing to
do mathematics even when confined to his bed. He was religious and thought his mathematical talent came from his family deity,
Namagiri. He considered mathematics and religion to be linked. He said that “an equation for me has no meaning unless it expresses
a thought of God.” His short life came to an end in April 1920, when he was 32 years old. Ramanujan left several notebooks of
unpublished results. The writings in these notebooks illustrate Ramanujan’s insights but are quite sketchy. Many mathematicians
have devoted many years of work to explaining and justifying the results in these notebooks. An excellent movie, The Man Who
Knew Infinity, about the life of Ramanujan was released in 2015.
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by contrapostion. If neither of these approaches works, you might try a proof by contradiction.
However, we did not provide any further guidance how to create such proofs. We now present
some strategies that you can use to develop new proofs.

FORWARD AND BACKWARD REASONING Whichever method you choose, you need a
starting point for your proof. To begin a direct proof of a conditional statement, you start with the
premises. Using these premises, together with axioms and known theorems, you can construct
a proof using a sequence of steps that leads to the conclusion. This type of reasoning, called
Jorward reasoning, is the most common type of reasoning used to prove relatively simple results.
Similarly, with indirect reasoning you can start with the negation of the conclusion and, using
a sequence of steps, obtain the negation of the premises.

Unfortunately, forward reasoning is often difficult to use to prove more complicated results,
because the reasoning needed to reach the desired conclusion may be far from obvious. In such
cases it may be helpful to use backward reasoning. To reason backward to prove a statement ¢,
we find a statement p that we can prove with the property that p — g. (Note that it is not helpful
to find a statement r that you can prove such that g — r, because it is the fallacy of begging
the question to conclude from ¢ — r and r that ¢ is true.) Backward reasoning is illustrated in
Examples 14 and 15.

Given two positive real numbers x and y, their arithmetic mean is (x + y)/2 and their geometric
mean is 4/xy. When we compare the arithmetic and geometric means of pairs of distinct positive
real numbers, we find that the arithmetic mean is always greater than the geometric mean. [For

example, when x =4 and y = 6, we have 5 = (4 + 6)/2 > /4 - 6 = \/24.] Can we prove that
this inequality is always true?

Solution: To prove that (x+y)/2 > 1/xy when x and y are distinct positive real numbers,
we can work backward. We construct a sequence of equivalent inequalities. The equivalent
inequalities are

(c+3)/2> \/x,
(x+y)?/4 > xy,

(x+y)* > 4xy,

x% 4+ 2xy +y% > dxy,
X% = 2xy +y> >0,
(x—y)> > 0.

Because (x — y)> > 0 when x # y, it follows that the final inequality is true. Because all these
inequalities are equivalent, it follows that (x +y)/2 > \/x_y when x # y. Once we have carried
out this backward reasoning, we can build a proof based on reversing the steps. This produces
construct a proof using forward reasoning. (Note that the steps of our backward reasoning will
not be part of the final proof. These steps serve as our guide for putting this proof together.)

Proof: Suppose that x and y are distinct positive real numbers. Then (x —y)*> > 0 be-
cause the square of a nonzero real number is positive (see Appendix 1). Because (x — y)* =
x% — 2xy + y?, this implies that x> — 2xy + y*> > 0. Adding 4xy to both sides, we obtain x> +
2xy 4+ y* > 4xy. Because x> + 2xy + y*> = (x + y)?, this means that (x + y)> > 4xy. Dividing both
sides of this equation by 4, we see that (x + y)?/4 > xy. Finally, taking square roots of both sides
(which preserves the inequality because both sides are positive) yields (x +y)/2 > \/x_y We
conclude that if x and y are distinct positive real numbers, then their arithmetic mean (x + y)/2
is greater than their geometric mean 4/xy. <
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Suppose that two people play a game taking turns removing one, two, or three stones at a time
from a pile that begins with 15 stones. The person who removes the last stone wins the game.
Show that the first player can win the game no matter what the second player does.

Solution: To prove that the first player can always win the game, we work backward. At the
last step, the first player can win if this player is left with a pile containing one, two, or three
stones. The second player will be forced to leave one, two, or three stones if this player has to
remove stones from a pile containing four stones. Consequently, one way for the first person to
win is to leave four stones for the second player on the next-to-last move. The first person can
leave four stones when there are five, six, or seven stones left at the beginning of this player’s
move, which happens when the second player has to remove stones from a pile with eight stones.
Consequently, to force the second player to leave five, six, or seven stones, the first player should
leave eight stones for the second player at the second-to-last move for the first player. This means
that there are nine, ten, or eleven stones when the first player makes this move. Similarly, the
first player should leave twelve stones when this player makes the first move. We can reverse
this argument to show that the first player can always make moves so that this player wins
the game no matter what the second player does. These moves successively leave twelve, eight,
and four stones for the second player. <

ADAPTING EXISTING PROOFS An excellent way to look for possible approaches that can
be used to prove a statement is to take advantage of existing proofs of similar results. Often
an existing proof can be adapted to prove other facts. Even when this is not the case, some of
the ideas used in existing proofs may be helpful. Because existing proofs provide clues for new
proofs, you should read and understand the proofs you encounter in your studies. This process
is illustrated in Example 16.

In Example 11 of Section 1.7 we proved that \/5 is irrational. We now conjecture that \/§

is irrational. Can we adapt the proof in Example 11 in Section 1.7 to show that \/5 is
irrational?

Solution: To adapt the proof in Example 11 in Section 1.7, we begin by mimicking the steps in

that proof, but with \/5 replaced with \/g . First, we suppose that \/5 = ¢/d where the fraction
c/d is in lowest terms. Squaring both sides tells us that 3 = ¢?/d?, so that 3d> = ¢*. Can we
use this equation to show that 3 must be a factor of both ¢ and d, similar to how we used the
equation 2b> = ¢ in Example 11 in Section 1.7 to show that 2 must be a factor of both a
and b? (Recall that an integer s is a factor of the integer ¢ if #/s is an integer. An integer n is
even if and only if 2 is a factor of #.) In turns out that we can, but we need some ammunition
from number theory, which we will develop in Chapter 4. We sketch out the remainder of the
proof, but leave the justification of these steps until Chapter 4. Because 3 is a factor of ¢?, it
must also be a factor of c¢. Furthermore, because 3 is a factor of ¢, 9 is a factor of ¢2, which
means that 9 is a factor of 3d2. This implies that 3 is a factor of d?, which means that 3 is a
factor of that d. This makes 3 a factor of both ¢ and d, which contradicts the assumption that
c/d is in lowest terms. After we have filled in the justification for these steps, we will have

shown that 4/3 is irrational by adapting the proof that \/5 is irrational. Note that this proof can

be extended to show that 4/n is irrational whenever #n is a positive integer that is not a perfect
square. We leave the details of this to Chapter 4. <

A good tip is to look for existing proofs that you might adapt when you are confronted
with proving a new theorem, particularly when the new theorem seems similar to one you have
already proved.
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1.8.6 Looking for Counterexamples

In Section 1.7 we introduced the use of counterexamples to show that certain statements are
false. When confronted with a conjecture, you might first try to prove this conjecture, and if
your attempts are unsuccessful, you might try to find a counterexample, first by looking at
the simplest, smallest examples. If you cannot find a counterexample, you might again try to
prove the statement. In any case, looking for counterexamples is an extremely important pursuit,
which often provides insights into problems. We will illustrate the role of counterexamples in
Example 17.

In Example 15 in Section 1.7 we showed that the statement “Every positive integer is the sum of
two squares of integers” is false by finding a counterexample. That is, there are positive integers
that cannot be written as the sum of the squares of two integers. Although we cannot write every
positive integer as the sum of the squares of two integers, maybe we can write every positive
integer as the sum of the squares of three integers. That is, is the statement “Every positive
integer is the sum of the squares of three integers” true or false?

Solution: Because we know that not every positive integer can be written as the sum of two
squares of integers, we might initially be skeptical that every positive integer can be written as
the sum of three squares of integers. So, we first look for a counterexample. That is, we can show
that the statement “Every positive integer is the sum of three squares of integers” is false if we
can find a particular integer that is not the sum of the squares of three integers. To look for a
counterexample, we try to write successive positive integers as a sum of three squares. We find
that 1=02+02+12,2=02+124+12,3=12412+12,4=024+024+2%,5=0% + 12 + 22,
6 = 12 + 12 + 22, but we cannot find a way to write 7 as the sum of three squares. To show that
there are not three squares that add up to 7, we note that the only possible squares we can use
are those not exceeding 7, namely, 0, 1, and 4. Because no three terms where each term is 0, 1,
or 4 add up to 7, it follows that 7 is a counterexample. We conclude that the statement “Every
positive integer is the sum of the squares of three integers” is false.

We have shown that not every positive integer is the sum of the squares of three integers.
The next question to ask is whether every positive integer is the sum of the squares of four
positive integers. Some experimentation provides evidence that the answer is yes. For exam-
ple,7=12+12+12+2%2,25 =42 4+22 422+ 1%, and 87 = 9% + 22 + 1% + 12. It turns out the
conjecture “Every positive integer is the sum of the squares of four integers” is true. For a proof,
see [Ro10]. <

1.8.7 Proof Strategy in Action

Mathematics is generally taught as if mathematical facts were carved in stone. Mathematics
texts (including the bulk of this book) formally present theorems and their proofs. Such presen-
tations do not convey the discovery process in mathematics. This process begins with exploring
concepts and examples, asking questions, formulating conjectures, and attempting to settle these
conjectures either by proof or by counterexample. These are the day-to-day activities of math-
ematicians. Believe it or not, the material taught in textbooks was originally developed in this
way.

People formulate conjectures on the basis of many types of possible evidence. The exam-
ination of special cases can lead to a conjecture, as can the identification of possible patterns.
Altering the hypotheses and conclusions of known theorems also can lead to plausible conjec-
tures. At other times, conjectures are made based on intuition or a belief that a result holds.
No matter how a conjecture was made, once it has been formulated, the goal is to prove or dis-
prove it. When mathematicians believe that a conjecture may be true, they try to find a proof. If
they cannot find a proof, they may look for a counterexample. When they cannot find a coun-
terexample, they may switch gears and once again try to prove the conjecture. Although many
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FIGURE 3
FIGURE 2 The standard checkerboard. Two dominoes.

conjectures are quickly settled, a few conjectures resist attack for hundreds of years and lead to
the development of new parts of mathematics. We will mention a few famous conjectures later
in this section.

1.8.8 Tilings

We can illustrate aspects of proof strategy through a brief study of tilings of checkerboards.
Looking at tilings of checkerboards is a fruitful way to quickly discover many different results
and construct their proofs using a variety of proof methods. There are almost an endless number
of conjectures that can be made and studied in this area, too. To begin, we need to define some
terms. A checkerboard is a rectangle divided into squares of the same size by horizontal and
vertical lines. The game of checkers is played on a board with 8 rows and 8 columns; this
board is called the standard checkerboard and is shown in Figure 2. In this section we use the
term board to refer to a checkerboard of any rectangular size as well as parts of checkerboards
obtained by removing one or more squares. A domino is a rectangular piece that is one square
by two squares, as shown in Figure 3. We say that a board is tiled by dominoes when all its
squares are covered with no overlapping dominoes and no dominoes overhanging the board.
We now develop some results about tiling boards using dominoes.

Can we tile the standard checkerboard using dominoes?

Solution: We can find many ways to tile the standard checkerboard using dominoes. For exam-
ple, we can tile it by placing 32 dominoes horizontally, as shown in Figure 4. The existence
of one such tiling completes a constructive existence proof. There are a large number of other
ways to do this tiling. We can place 32 dominoes vertically on the board or we can place some
tiles vertically and some horizontally. But for a constructive existence proof we needed to find
just one such tiling. <

Can we tile a board obtained by removing one of the four corner squares of a standard checker-
board?

Solution: To answer this question, note that a standard checkerboard has 64 squares, so removing
a square produces a board with 63 squares. Now suppose that we could tile a board obtained
from the standard checkerboard by removing a corner square. The board has an even number of
squares because each domino covers two squares and no two dominoes overlap and no dominoes
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FIGURE 4 Tiling the standard checkerboard. FIGURE 5 The standard checkerboard

EXAMPLE 20

with the upper left and lower right squares
removed.

overhang the board. Consequently, we can prove by contradiction that a standard checkerboard
with one square removed cannot be tiled using dominoes because such a board has an odd
number of squares. <

‘We now consider a trickier situation.

Can we tile the board obtained by deleting the upper left and lower right corner squares of a
standard checkerboard, shown in Figure 5?

Solution: A board obtained by deleting two squares of a standard checkerboard contains
64 — 2 = 62 squares. Because 62 is even, we cannot quickly rule out the existence of a tiling of
the standard checkerboard with its upper left and lower right squares removed, unlike Example
19, where we ruled out the existence of a tiling of the standard checkerboard with one corner
square removed. Trying to construct a tiling of this board by successively placing dominoes
might be a first approach, as the reader should attempt. However, no matter how much we try,
we cannot find such a tiling. Because our efforts do not produce a tiling, we are led to conjecture
that no tiling exists.

We might try to prove that no tiling exists by showing that we reach a dead end however
we successively place dominoes on the board. To construct such a proof, we would have to
consider all possible cases that arise as we run through all possible choices of successively
placing dominoes. For example, we have two choices for covering the square in the second
column of the first row, next to the removed top left corner. We could cover it with a horizontally
placed tile or a vertically placed tile. Each of these two choices leads to further choices, and so
on. It does not take long to see that this is not a fruitful plan of attack for a person, although a
computer could be used to complete such a proof by exhaustion. (Exercise 47 asks you to supply
such a proof to show that a 4 X 4 checkerboard with opposite corners removed cannot be tiled.)

We need another approach. Perhaps there is an easier way to prove there is no tiling of
a standard checkerboard with two opposite corners removed. As with many proofs, a key ob-
servation can help. We color the squares of this checkerboard using alternating white and black
squares, as in Figure 2. Observe that a domino in a tiling of such a board covers one white square
and one black square. Next, note that this board has unequal numbers of white squares and black
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FIGURE6 A
right triomino
and a straight

triomino.

EXAMPLE 21

EXAMPLE 22

squares. We can use these observations to prove by contradiction that a standard checkerboard
with opposite corners removed cannot be tiled using dominoes. We now present such a proof.

Proof: Suppose we can use dominoes to tile a standard checkerboard with opposite cor-
ners removed. Note that the standard checkerboard with opposite corners removed contains
64 — 2 = 62 squares. The tiling would use 62/2 = 31 dominoes. Note that each domino in this
tiling covers one white and one black square. Consequently, the tiling covers 31 white squares
and 31 black squares. However, when we remove two opposite corner squares, either 32 of the
remaining squares are white and 30 are black or else 30 are white and 32 are black. This contra-
dicts the assumption that we can use dominoes to cover a standard checkerboard with opposite
corners removed, completing the proof. <

We can use other types of pieces besides dominoes in tilings. Instead of dominoes we can
study tilings that use identically shaped pieces constructed from congruent squares that are
connected along their edges. Such pieces are called polyominoes, a term coined in 1953 by the
mathematician Solomon Golomb, the author of an entertaining book about them [Go94]. We
will consider two polyominoes with the same number of squares the same if we can rotate and/or
flip one of the polyominoes to get the other one. For example, there are two types of triominoes
(see Figure 6), which are polyominoes made up of three squares connected by their sides. One
type of triomino, the straight triomino, has three horizontally connected squares; the other
type, right triominoes, resembles the letter L in shape, flipped and/or rotated, if necessary. We
will study the tilings of a checkerboard by straight triominoes here; we will study tilings by right
triominoes in Section 5.1.

Can you use straight triominoes to tile a standard checkerboard?

Solution: The standard checkerboard contains 64 squares and each triomino covers three
squares. Consequently, if triominoes tile a board, the number of squares of the board must be
a multiple of 3. Because 64 is not a multiple of 3, triominoes cannot be used to cover an 8 X 8
checkerboard. |

In Example 22, we consider the problem of using straight triominoes to tile a standard
checkerboard with one corner missing.

Can we use straight triominoes to tile a standard checkerboard with one of its four corners
removed? An 8 X 8 checkerboard with one corner removed contains 64 — 1 = 63 squares. Any
tiling by straight triominoes of one of these four boards uses 63/3 = 21 triominoes. However,
when we experiment, we cannot find a tiling of one of these boards using straight triominoes.
A proof by exhaustion does not appear promising. Can we adapt our proof from Example 20 to
prove that no such tiling exists?

Solution: We will color the squares of the checkerboard in an attempt to adapt the proof by
contradiction we gave in Example 20 of the impossibility of using dominoes to tile a standard
checkerboard with opposite corners removed. Because we are using straight triominoes rather
than dominoes, we color the squares using three colors rather than two colors, as shown in Fig-
ure 7. Note that there are 21 blue squares, 21 black squares, and 22 white squares in this coloring.
Next, we make the crucial observation that when a straight triomino covers three squares of the
checkerboard, it covers one blue square, one black square, and one white square. Next, note that
each of the three colors appears in a corner square. Thus, without loss of generality, we may
assume that we have rotated the coloring so that the missing square is colored blue. Therefore,
we assume that the remaining board contains 20 blue squares, 21 black squares, and 22 white
squares.
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FIGURE 7 Coloring the squares of the standard checkerboard
with three colors.

If we could tile this board using straight triominoes, then we would use 63/3 = 21 straight
triominoes. These triominoes would cover 21 blue squares, 21 black squares, and 21 white
squares. This contradicts the fact that this board contains 20 blue squares, 21 black squares, and
22 white squares. Therefore, we cannot tile this board using straight triominoes. <

1.8.9 The Role of Open Problems

Many advances in mathematics have been made by people trying to solve famous unsolved
problems. In the past 20 years, many unsolved problems have finally been resolved, such as the
proof of a conjecture in number theory made more than 300 years ago. This conjecture asserts
the truth of the statement known as Fermat’s last theorem.

FERMAT’S LAST THEOREM The equation
x}’l + yn — ZVL

has no solutions in integers x, y, and z with xyz # 0 whenever 7 is an integer with n > 2.

Remark: The equation x> + y? = z? has infinitely many solutions in integers x, y, and z; these
solutions are called Pythagorean triples and correspond to the lengths of the sides of right tri-
angles with integer lengths. See Exercise 34.

This problem has a fascinating history. In the seventeenth century, Fermat jotted in the mar-
gin of his copy of the works of Diophantus that he had a “wondrous proof” that there are no
integer solutions of x" 4+ y" = z" when n is an integer greater than 2 with xyz # 0. However,
he never published a proof (Fermat published almost nothing), and no proof could be found in
the papers he left when he died. Mathematicians looked for a proof for three centuries without
success, although many people were convinced that a relatively simple proof could be found.
(Proofs of special cases were found, such as the proof of the case when n = 3 by Euler and
the proof of the n = 4 case by Fermat himself.) Over the years, several established mathemati-
cians thought that they had proved this theorem. In the nineteenth century, one of these failed
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attempts led to the development of the part of number theory called algebraic number theory.
A correct proof, requiring hundreds of pages of advanced mathematics, was not found until the
1990s, when Andrew Wiles used recently developed ideas from a sophisticated area of number
theory called the theory of elliptic curves to prove Fermat’s last theorem. Wiles’s quest to find
a proof of Fermat’s last theorem using this powerful theory, described in a program in the Nova
series on public television, took close to ten years! Moreover, his proof was based on major
contributions of many mathematicians. (The interested reader should consult [Ro10] for more
information about Fermat’s last theorem and for additional references concerning this problem
and its resolution.)

We now state an open problem that is simple to describe, but that seems quite difficult to
resolve.

EXAMPLE 23 The 3x + 1 Conjecture Let T be the transformation that sends an even integer x to x/2 and

an odd integer x to 3x + 1. A famous conjecture, sometimes known as the 3x + 1 conjecture,

Links ) states that for all positive integers x, when we repeatedly apply the transformation 7', we

will eventually reach the integer 1. For example, starting with x = 13, we find 7(13) =

3.-1341=40, T@0)=40/2=20, T(20)=20/2=10, T10)=10/2=5 T(O)=

3.5+1=16, T(16)=8, T(8) =4, T(4)=2, and T(2) =1. The 3x+ 1 conjecture has
been verified using computers for all integers x up to 5.48 - 1018,

The 3x + 1 conjecture has an interesting history and has attracted the attention of mathe-
maticians since the 1950s. The conjecture has been raised many times and goes by many other
names, including the Collatz problem, Hasse’s algorithm, Ulam’s problem, the Syracuse prob-
lem, and Kakutani’s problem. Many mathematicians have been diverted from their work to
spend time attacking this conjecture. This led to the joke that this problem was part of a conspir-
acy to slow down American mathematical research. See the article by Jeffrey Lagarias [Lal0]

be addictive. for a fascinating discussion of this problem and the results that have been found by mathemati-

cians attacking it. <

There are a surprising number of important open problems throughout discrete mathemat-
ics. For instance, in Chapter 4 you will encounter many open questions about prime numbers.
(Students already familiar with the basic notions about primes might want to explore Section

ANDREW WILES (born 1953) Andrew Wiles was born in Cambridge, England. His father was a Profes-
sor of Divinity. Wiles attended the King’s College School and the Leys School in Cambridge. Wiles become
interested in Fermat’s last theorem when at age ten he read a book stating the problem. He knew then that
he would never let this problem go, as it looked simple but none of the great mathematicians could solve it.
Wiles entered Merton College, Oxford in 1971. He received his B.A. in 1974, and then entered Clare Col-
lege, Cambridge, for his graduate studies. He received his Ph.D. in 1980; his graduate research was on the
theory of elliptic curves. He was a Benjamin Peirce Assistant Professor at Harvard University from 1977
until 1980. In 1981, he held a post at the Institute for Advanced Study in Princeton, and in 1982 he was
©Charles Rex ArbogasvAP  appointed to a professorship at Princeton University. He was awarded a Guggenheim Fellowship in 1985
fmages and spent a year at the Institut des Hautes Etudes Scientifiques and the Ecole Normale Supérieure in Paris.
Ironically, he did not realize that during his years working on elliptic curves he was learning techniques that would later help him
solve the problem that obsessed him.

In 1986 when Wiles learned of work that showed that Fermat’s last theorem follows from a conjecture in the theory of elliptic
curves, he realized that this led to a possible strategy for a poof. He abandoned his ongoing research and devoted himself entirely to
working on Fermat’s last theorem. It took him more than seven years to complete his proof and two more years for some parts of the
proof to be corrected. During this time he spent time only on this problem and with his young daughters. In 1988 he took a position
as a research professor at Oxford University, returning to Princeton in 1990, where he remained until 2011, when he rejoined Oxford
University as the Royal Society Research Professor.

Not only did Wiles become famous when he proved Fermat’s last theorem, he also won the Wolfskehl Prize, which was es-
tablished in 1908 for the first correct proof. This prize included 100,000 German marks (in the currency of the day), which would
have been worth over $1,500,000 today. Although it was common wisdom that this prize had become worthless because of the two
world wars, currency changes, and hyperinflation, Wiles received approximately $50,000. Wiles has won many of the top awards
in mathematics, including the Abel Prize, the Fermat Prize, and the Wolf Prize. In 2000, he was made a Knight Commander of the
Order of the British Empire by the Queen of England, making him Sir Andrew Wiles.




Build up your arsenal of
proof methods as you
work through this book.

1.8 Proof Methods and Strategy 113

4.3, where these open questions are discussed.) You will encounter many other open questions
as you read this book. The study of such problems has played and continues to play an important
role in the development of many parts of discrete mathematics.

1.8.10 Additional Proof Methods

In this chapter we introduced the basic methods used in proofs. We also described how to lever-
age these methods to prove a variety of results. We will use these proof methods in all subse-
quent chapters. In particular, we will use them in Chapters 2, 3, and 4 to prove results about
sets, functions, algorithms, and number theory and in Chapters 9, 10, and 11 to prove results in
graph theory. Among the theorems we will prove is the famous halting theorem, which states
that there is a problem that cannot be solved using any procedure. However, there are many im-
portant proof methods besides those we have covered. We will introduce some of these methods
later in this book. In particular, in Section 5.1 we will discuss mathematical induction, which
is an extremely useful method for proving statements of the form VnP(n), where the domain
consists of all positive integers. In Section 5.3 we will introduce structural induction, which can
be used to prove results about recursively defined sets. We will use the Cantor diagonalization
method, which can be used to prove results about the size of infinite sets, in Section 2.5. In
Chapter 6 we will introduce the notion of combinatorial proofs, which can be used to prove re-
sults by counting arguments. The reader should note that entire books have been devoted to the
activities discussed in this section, including many excellent works by George Pdlya ([Po61],
[Po71], [P090]).

Finally, note that we have not given a procedure that can be used for proving theorems in
mathematics. It is a deep theorem of mathematical logic that there is no such procedure.

Exercises
1. Prove that n*> + 1 > 2" when 7 is a positive integer with 9. Prove the triangle inequality, which states that if x and y
1<n<4. are real numbers, then |x| + |y| > |x + y| (where |x| rep-

2. Use a proof by cases to show that 10 is not the square of a
positive integer. [Hint: Consider two cases: (i) | <x < 3,

(i) x > 4]

resents the absolute value of x, which equals x if x > 0
and equals —x if x < 0).

10. Prove that there is a positive integer that equals the sum
of the positive integers not exceeding it. Is your proof

3. Use a proof by cases to show that 100 is not the cube of a

positive integer. [Hint: Consider two cases: (i) | <x < 4,
(i) x>5.]

. Prove that there are no positive perfect cubes less than
1000 that are the sum of the cubes of two positive
integers.

. Prove that if x and y are real numbers, then max(x, y) +
min(x, y) = x + y. [Hint: Use a proof by cases, with the
two cases corresponding to x >y and x <y, respec-
tively.]

. Use a proof by cases to show that min(a, min(b, ¢)) =
min(min(a, b), c) whenever a, b, and ¢ are real numbers.

. Prove using the notion of without loss of generality that
min(x, y) = (x+y — [x —y])/2 and max(x, y) = (x +y +
|x — y|)/2 whenever x and y are real numbers.

. Prove using the notion of without loss of generality that

5x + Sy is an odd integer when x and y are integers of
opposite parity.

11.

12.

13.

14.

15.

16.

constructive or nonconstructive?

Prove that there are 100 consecutive positive integers that
are not perfect squares. Is your proof constructive or non-
constructive?

Prove that either 2 - 10°% + 15 or 2 - 10°% + 16 is not a
perfect square. Is your proof constructive or nonconstruc-
tive?

Prove that there exists a pair of consecutive integers such
that one of these integers is a perfect square and the other
is a perfect cube.

Show that the product of two of the numbers 65900 —
2001 4 3177 791212 _ 2399 | 2001 4 244493 _ 58192 4
7'777 is nonnegative. Is your proof constructive or non-
constructive? [Hint: Do not try to evaluate these num-
bers!]

Prove or disprove that there is a rational number x and an
irrational number y such that x” is irrational.

Prove or disprove that if a and b are rational numbers,
then a” is also rational.
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17. Show that each of these statements can be used to ex-

18

19

20

21

.

22,

23.

24,

25

26

*27

*28

29

30

31

press the fact that there is a unique element x such that
P(x) is true. [Note that we can also write this statement
as 31xP(x).]

a) VY(PG) < x =)

b) FxP(x) A VXVy(P(x) A P(y) = x =)

©) Ix(P(x) AVy(P(y) = x =)

Show that if a, b, and ¢ are real numbers and a # 0, then
there is a unique solution of the equation ax + b = c.
Suppose that a and b are odd integers with a # b. Show
there is a unique integer ¢ such that |[a — c| = |b —¢|.
Show that if r is an irrational number, there is a unique
integer n such that the distance between r and n is less
than 1/2.

Show that if n is an odd integer, then there is a unique
integer k such that n is the sum of k — 2 and k + 3.
Prove that given a real number x there exist unique num-
bers n and e such that x =n+¢, n is an integer, and
0<e<l.

Prove that given a real number x there exist unique num-
bers n and e such that x =n —¢, n is an integer, and
0<e<l.

Use forward reasoning to show that if x is a nonzero
real number, then x> + 1 /x> > 2. [Hint: Start with the in-
equality (x — 1/x)> > 0, which holds for all nonzero real
numbers x.]

The harmonic mean of two real numbers x and y equals
2xy/(x + y). By computing the harmonic and geometric
means of different pairs of positive real numbers, formu-
late a conjecture about their relative sizes and prove your
conjecture.

The quadratic mean of two real numbers x and y
equals \/(x2 + y?)/2. By computing the arithmetic and
quadratic means of different pairs of positive real num-
bers, formulate a conjecture about their relative sizes and
prove your conjecture.

Write the numbers 1,2, ..., 2n on a blackboard, where
n is an odd integer. Pick any two of the numbers, j and
k, write |j — k| on the board and erase j and k. Continue
this process until only one integer is written on the board.
Prove that this integer must be odd.

Suppose that five ones and four zeros are arranged around
acircle. Between any two equal bits you insert a 0 and be-
tween any two unequal bits you insert a 1 to produce nine
new bits. Then you erase the nine original bits. Show that
when you iterate this procedure, you can never get nine
zeros. [Hint: Work backward, assuming that you did end
up with nine zeros.]

Formulate a conjecture about the decimal digits that ap-
pear as the final decimal digit of the fourth power of an
integer. Prove your conjecture using a proof by cases.
Formulate a conjecture about the final two decimal digits
of the square of an integer. Prove your conjecture using a
proof by cases.

Prove that there is no positive integer n such that n> +
n* = 100.

32.

33.

34.

35.

36
37

38

*39.

40.

41

42,

43

44.

45.

46

47.

Prove that there are no solutions in integers x and y to the
equation 2x? + 5y* = 14.

Prove that there are no solutions in positive integers x and
y to the equation x* + y* = 625.

Prove that there are infinitely many solutions in pos-
itive integers x, y, and z to the equation x> +y*> =
2. [Hint: Let x = m*> —n?, y =2mn, and z = m* + n?,
where m and n are integers.]

Adapt the proof in Example 4 in Section 1.7 to prove that
if n = abc, where q, b, and ¢ are positive integers, then

aS{/ﬁ,bS{/ﬁ,orcS{/ﬁ.

Prove that {/5 is irrational.

Prove that between every two rational numbers there is
an irrational number.

Prove that between every rational number and every irra-

tional number there is an irrational number.

Let S =x,y; + x,, + -+ +x,y,, where x, x,, ..., x,, and

Yi» Yo --., ¥, are orderings of two different sequences of

positive real numbers, each containing n elements.

a) Show that S takes its maximum value over all order-
ings of the two sequences when both sequences are
sorted (so that the elements in each sequence are in
nondecreasing order).

b) Show that S takes its minimum value over all or-
derings of the two sequences when one sequence
is sorted into nondecreasing order and the other is
sorted into nonincreasing order.

Prove or disprove that if you have an 8-gallon jug of wa-
ter and two empty jugs with capacities of 5 gallons and 3
gallons, respectively, then you can measure 4 gallons by
successively pouring some of or all of the water in a jug
into another jug.

Verify the 3x + 1 conjecture for these integers.

a) 6 b) 7 c) 17 d) 21

Verify the 3x + 1 conjecture for these integers.

a) 16 b) 11 c) 35 d) 113

Prove or disprove that you can use dominoes to tile
the standard checkerboard with two adjacent corners re-
moved (that is, corners that are not opposite).

Prove or disprove that you can use dominoes to tile a stan-
dard checkerboard with all four corners removed.

Prove that you can use dominoes to tile a rectangular
checkerboard with an even number of squares.

Prove or disprove that you can use dominoes to tile a
5 x 5 checkerboard with three corners removed.

Use a proof by exhaustion to show that a tiling using
dominoes of a 4 X 4 checkerboard with opposite corners
removed does not exist. [Hint: First show that you can
assume that the squares in the upper left and lower right
corners are removed. Number the squares of the original
checkerboard from 1 to 16, starting in the first row, mov-
ing right in this row, then starting in the leftmost square
in the second row and moving right, and so on. Remove
squares 1 and 16. To begin the proof, note that square
2 is covered either by a domino laid horizontally, which



covers squares 2 and 3, or vertically, which covers squares
2 and 6. Consider each of these cases separately, and work
through all the subcases that arise.]

*48. Prove that when a white square and a black square are
removed from an 8 X 8 checkerboard (colored as in the
text) you can tile the remaining squares of the checker-
board using dominoes. [Hint: Show that when one black
and one white square are removed, each part of the par-
tition of the remaining cells formed by inserting the bar-
riers shown in the figure can be covered by dominoes.]
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49. Show that by removing two white squares and two black
squares from an 8 X 8 checkerboard (colored as in the
text) you can make it impossible to tile the remaining
squares using dominoes.

*50. Find all squares, if they exist, on an 8 X 8 checkerboard
such that the board obtained by removing one of these
squares can be tiled using straight triominoes. [Hint: First
use arguments based on coloring and rotations to elimi-
nate as many squares as possible from consideration.]

*51. a) Draw each of the five different tetrominoes, where a
tetromino is a polyomino consisting of four squares.

b) For each of the five different tetrominoes, prove or
disprove that you can tile a standard checkerboard us-
ing these tetrominoes.

*52. Prove or disprove that you can tile a 10 x 10 checker-
board using straight tetrominoes.

TERMS

proposition: a statement that is true or false

propositional variable: a variable that represents a proposi-
tion

truth value: true or false

— p (negation of p): the proposition with truth value opposite
to the truth value of p

logical operators: operators used to combine propositions

compound proposition: a proposition constructed by combin-
ing propositions using logical operators

truth table: a table displaying all possible truth values of
propositions

p V q (disjunction of p and ¢): the proposition “p or ¢,” which
is true if and only if at least one of p and ¢ is true

P A q (conjunction of p and g): the proposition “p and g,”
which is true if and only if both p and ¢ are true

P @ q (exclusive or of p and g): the proposition “p XOR g,”
which is true when exactly one of p and ¢ is true

p — q (p implies ¢): the proposition “if p, then ¢,” which is
false if and only if p is true and ¢ is false

converse of p — g: the conditional statement ¢ — p

contrapositive of p — ¢: the conditional statement ~g — —p

inverse of p — ¢: the conditional statement =p — —g

p < q (biconditional): the proposition “p if and only if ¢,”
which is true if and only if p and ¢ have the same truth
value

bit: eitheraOora l
Boolean variable: a variable that has a value of O or 1

bit operation: an operation on a bit or bits

bit string: a list of bits

bitwise operations: operations on bit strings that operate on
each bit in one string and the corresponding bit in the other
string

logic gate: a logic element that performs a logical operation
on one or more bits to produce an output bit

logic circuit: a switching circuit made up of logic gates that
produces one or more output bits

tautology: a compound proposition that is always true

contradiction: a compound proposition that is always false

contingency: a compound proposition that is sometimes true
and sometimes false

consistent compound propositions: compound propositions
for which there is an assignment of truth values to the vari-
ables that makes all these propositions true

satisfiable compound proposition: a compound proposition
for which there is an assignment of truth values to its vari-
ables that makes it true

logically equivalent compound propositions: compound
propositions that always have the same truth values

predicate: part of a sentence that attributes a property to the
subject

propositional function: a statement containing one or more
variables that becomes a proposition when each of its vari-
ables is assigned a value or is bound by a quantifier

domain (or universe) of discourse: the values a variable in a
propositional function may take
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dx P(x) (existential quantification of P(x)): the proposition
that is true if and only if there exists an x in the domain
such that P(x) is true

VxP(x) (universal quantification of P(x)): the proposition
that is true if and only if P(x) is true for every x in the do-
main

logically equivalent expressions: expressions that have the
same truth value no matter which propositional functions
and domains are used

free variable: a variable not bound in a propositional function

bound variable: a variable that is quantified

scope of a quantifier: portion of a statement where the quan-
tifier binds its variable

argument: a sequence of statements

argument form: a sequence of compound propositions in-
volving propositional variables

premise: a statement, in an argument, or argument form, other
than the final one

conclusion: the final statement in an argument or argument
form

valid argument form: a sequence of compound propositions
involving propositional variables where the truth of all the
premises implies the truth of the conclusion

valid argument: an argument with a valid argument form

rule of inference: a valid argument form that can be used in
the demonstration that arguments are valid

fallacy: an invalid argument form often used incorrectly as a
rule of inference (or sometimes, more generally, an incor-
rect argument)

circular reasoning or begging the question: reasoning where
one or more steps are based on the truth of the statement
being proved

theorem: a mathematical assertion that can be shown to be
true

conjecture: a mathematical assertion proposed to be true, but
that has not been proved

proof: a demonstration that a theorem is true

axiom: a statement that is assumed to be true and that can be
used as a basis for proving theorems

Review Questions

lemma: a theorem used to prove other theorems

corollary: a proposition that can be proved as a consequence
of a theorem that has just been proved

vacuous proof: a proof that p — ¢ is true based on the fact
that p is false

trivial proof: a proof that p — ¢ is true based on the fact that
q is true

direct proof: a proof that p — ¢ is true that proceeds by show-
ing that g must be true when p is true

proof by contraposition: a proof that p — ¢ is true that pro-
ceeds by showing that p must be false when ¢ is false

proof by contradiction: a proof that p is true based on the
truth of the conditional statement =p — ¢, where ¢ is a con-
tradiction

exhaustive proof: a proof that establishes a result by checking
a list of all possible cases

proof by cases: a proof broken into separate cases, where these
cases cover all possibilities

without loss of generality: an assumption in a proof that
makes it possible to prove a theorem by reducing the num-
ber of cases to consider in the proof

counterexample: an element x such that P(x) is false

constructive existence proof: a proof that an element with a
specified property exists that explicitly finds such an ele-
ment

nonconstructive existence proof: a proof that an element with
a specified property exists that does not explicitly find such
an element

rational number: a number that can be expressed as the ratio
of two integers p and ¢ such that g # 0

uniqueness proof: a proof that there is exactly one element
satisfying a specified property

RESULTS

The logical equivalences given in Tables 6, 7, and 8 in Sec-
tion 1.3.

De Morgan’s laws for quantifiers.
Rules of inference for propositional calculus.
Rules of inference for quantified statements.

1. a) Define the negation of a proposition.

b) What is the negation of “This is a boring course”?

2. a) Define (using truth tables) the disjunction, conjunc-
tion, exclusive or, conditional, and biconditional of
the propositions p and g.

b) What are the disjunction, conjunction, exclusive or,
conditional, and biconditional of the propositions “T’1l
go to the movies tonight” and “I'll finish my discrete
mathematics homework™?

3. a) Describe at least five different ways to write the con-
ditional statement p — ¢ in English.

b) Define the converse and contrapositive of a condi-
tional statement.

¢) State the converse and the contrapositive of the con-
ditional statement “If it is sunny tomorrow, then I will
go for a walk in the woods.”

4. a) What does it mean for two propositions to be logically
equivalent?
b) Describe the different ways to show that two com-
pound propositions are logically equivalent.
¢) Show in at least two different ways that the com-
pound propositions =p V (r = =¢g) and =p V =g V —r
are equivalent.



5.

g

°

10.

(Depends on the Exercise Set in Section 1.3)

a) Given atruth table, explain how to use disjunctive nor-
mal form to construct a compound proposition with
this truth table.

b) Explain why part (a) shows that the operators A, V,
and — are functionally complete.

¢) Is there an operator such that the set containing just
this operator is functionally complete?

What are the universal and existential quantifications of

a predicate P(x)? What are their negations?

. a) What is the difference between the quantification

AxVyP(x, y) and Vy3xP(x, y), where P(x, y) is a predi-
cate?

b) Give an example of a predicate P(x,y) such that
IxVyP(x,y) and Vy3dxP(x,y) have different truth
values.

. Describe what is meant by a valid argument in proposi-

tional logic and show that the argument “If the earth is

flat, then you can sail off the edge of the earth,” “You can-

not sail off the edge of the earth,” therefore, “The earth is

not flat” is a valid argument.

Use rules of inference to show that if the premises “All

zebras have stripes” and “Mark is a zebra” are true, then

the conclusion “Mark has stripes” is true.

a) Describe what is meant by a direct proof, a proof by
contraposition, and a proof by contradiction of a con-
ditional statement p — gq.
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b) Give a direct proof, a proof by contraposition, and a
proof by contradiction of the statement: “If n is even,
then n + 4 is even.”

a) Describe a way to prove the biconditional p < q.

b) Prove the statement: “The integer 3n + 2 is odd if
and only if the integer 9n + 5 is even, where n is an
integer.”

To prove that the statements p, p,, p3, and p, are equiva-
lent, is it sufficient to show that the conditional statements
P4 = P2, D3 — Py, and p; — p, are valid? If not, provide
another collection of conditional statements that can be
used to show that the four statements are equivalent.

a) Suppose that a statement of the form VxP(x) is false.
How can this be proved?

b) Show that the statement “For every positive integer 7,
n* > 2n” is false.

What is the difference between a constructive and non-
constructive existence proof? Give an example of each.

What are the elements of a proof that there is a unique
element x such that P(x), where P(x) is a propositional
function?

Explain how a proof by cases can be used to prove a result
about absolute values, such as the fact that |xy| = |x]||y|
for all real numbers x and y.

1.

o

Let p be the proposition “I will do every exercise in
this book™ and ¢ be the proposition “T will get an A in
this course.” Express each of these as a combination of
p and g.

a) I will get an A in this course only if I do every exercise
in this book.

b) T will get an A in this course and I will do every exer-
cise in this book.

¢) Either I will not get an A in this course or I will not
do every exercise in this book.

d) For me to get an A in this course it is necessary and
sufficient that I do every exercise in this book.

. Find the truth table of the compound proposition (p vV

Q) = (pA-r).

Show that these compound propositions are tautologies.
a) (gA(p—q)—>p

b) (Vg A-p)—q

Give the converse, the contrapositive, and the inverse of
these conditional statements.

a) If it rains today, then I will drive to work.

b) If |x| = x, then x > 0.

¢) If nis greater than 3, then n? is greater than 9.

Given a conditional statement p — ¢, find the converse of
its inverse, the converse of its converse, and the converse
of its contrapositive.

o

Given a conditional statement p — ¢, find the inverse of
its inverse, the inverse of its converse, and the inverse of
its contrapositive.

Find a compound proposition involving the propositional
variables p, g, r, and s that is true when exactly three of
these propositional variables are true and is false other-
wise.

Show that these statements are inconsistent: “If Sergei
takes the job offer, then he will get a signing bonus.” “If
Sergei takes the job offer, then he will receive a higher
salary.” “If Sergei gets a signing bonus, then he will not
receive a higher salary.” “Sergei takes the job offer.”

Show that these statements are inconsistent: “If Miranda
does not take a course in discrete mathematics, then she
will not graduate.” “If Miranda does not graduate, then
she is not qualified for the job.” “If Miranda reads this
book, then she is qualified for the job.” “Miranda does
not take a course in discrete mathematics but she reads
this book.”

Teachers in the Middle Ages supposedly tested the realtime

propositional logic ability of a student via a technique known

as an obligato game. In an obligato game, a number of rounds
is set and in each round the teacher gives the student succes-
sive assertions that the student must either accept or reject as
they are given. When the student accepts an assertion, it is
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added as a commitment; when the student rejects an assertion
its negation is added as a commitment. The student passes
the test if the consistency of all commitments is maintained
throughout the test.

10.

11.

12.

Suppose that in a three-round obligato game, the teacher
first gives the student the proposition p — ¢, then the
proposition =(p V r) V g, and finally, the proposition g.
For which of the eight possible sequences of three an-
swers will the student pass the test?

Suppose that in a four-round obligato game, the teacher
first gives the student the proposition =(p — (g A r)), then
the proposition p V =g, then the proposition =7, and fi-
nally, the proposition (p A r) V (¢ — p). For which of the
16 possible sequences of four answers will the student
pass the test?

Explain why every obligato game has a winning strategy.

Exercises 13 and 14 are set on the island of knights and knaves
described in Example 7 in Section 1.2.

13.

14.

15.

16.

17.

18.

Suppose that you meet three people, Aaron, Bohan, and
Crystal. Can you determine what Aaron, Bohan, and
Crystal are if Aaron says “All of us are knaves” and Bohan
says “Exactly one of us is a knave”?

Suppose that you meet three people, Anita, Boris, and
Carmen. What are Anita, Boris, and Carmen if Anita
says “I am a knave and Boris is a knight” and Boris says
“Exactly one of the three of us is a knight”?

(Adapted from [Sm78]) Suppose that on an island there
are three types of people, knights, knaves, and normals
(also known as spies). Knights always tell the truth,
knaves always lie, and normals sometimes lie and some-
times tell the truth. Detectives questioned three inhabi-
tants of the island—Amy, Brenda, and Claire—as part of
the investigation of a crime. The detectives knew that one
of the three committed the crime, but not which one. They
also knew that the criminal was a knight, and that the
other two were not. Additionally, the detectives recorded
these statements: Amy: “I am innocent.” Brenda: “What
Amy says is true.” Claire: “Brenda is not a normal.” Af-
ter analyzing their information, the detectives positively
identified the guilty party. Who was it?

Show that if S is a proposition, where S is the condi-
tional statement “If S is true, then unicorns live,” then
“Unicorns live” is true. Show that it follows that S can-
not be a proposition. (This paradox is known as Lob’s
paradox.)

Show that the argument with premises “The tooth fairy
is a real person” and “The tooth fairy is not a real per-
son” and conclusion “You can find gold at the end of the
rainbow” is a valid argument. Does this show that the
conclusion is true?

Suppose that the truth value of the proposition p; is T
whenever i is an odd positive integer and is F when-
ever i is an even positive integer. Find the truth values

100 100
of V,’:l(pi APiyp) and /\izl(pi V Pis1)-

*19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

Model 16 x 16 Sudoku puzzles (with 4 X 4 blocks) as
satisfiability problems.

Let P(x) be the statement “Student x knows calculus” and

let O(y) be the statement “Class y contains a student who

knows calculus.” Express each of these as quantifications

of P(x) and Q(y).

a) Some students know calculus.

b) Not every student knows calculus.

¢) Every class has a student in it who knows calculus.

d) Every student in every class knows calculus.

e) There is at least one class with no students who know
calculus.

Let P(m, n) be the statement “m divides n,” where the do-
main for both variables consists of all positive integers.
(By “m divides n” we mean that n = km for some integer
k.) Determine the truth values of each of these statements.

a) P(4,5) b) P2, 4)
¢) VmVn P(m, n) d) ImVn P(m, n)
e) InVm P(m, n) f) VnP(1,n)

Find a domain for the quantifiers in FxIy(x #y A
Vz((z = x) V (z = y))) such that this statement is true.
Find a domain for the quantifiers in JIxIy(x #y A
Vz(z=x)V(z=1y)) such that this statement is
false.

Use existential and universal quantifiers to express the
statement “No one has more than three grandmothers”
using the propositional function G(x, y), which represents
“x is the grandmother of y.”

Use existential and universal quantifiers to express the
statement “Everyone has exactly two biological parents”
using the propositional function P(x, y), which represents
“x is the biological parent of y.”

The quantifier 3, denotes “there exists exactly n,” so that
3,xP(x) means there exist exactly n values in the domain
such that P(x) is true. Determine the true value of these
statements where the domain consists of all real num-
bers.

a) Elo)c(x2 =-1) b) 3, x(|x| =0)

¢) x(x*=2) d) Fx(x = |x])

Express each of these statements using existential and
universal quantifiers and propositional logic, where 3, is
defined in Exercise 26.

a) JyxP(x) b) 3,xP(x)

¢) A,xP(x) d) 33xP(x)

Let P(x,y) be a propositional function. Show that
dxVy P(x, y) — Vy3x P(x, y) is a tautology.

Let P(x) and Q(x) be propositional functions. Show that
Ix (P(x) —» Q(x)) and Vx P(x) — 3x O(x) always have the
same truth value.

If Vy3xP(x, y) is true, does it necessarily follow that
IxVy P(x, y) is true?

If Vx3yP(x,y) is true, does it necessarily follow that
IxVy P(x, y) is true?



32. Find the negations of these statements.
a) If it snows today, then I will go skiing tomorrow.
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is in the domain, are true, then the conclusion —P(a) is
true.

b) Every person in this class understands mathematical 38. Prove that if x is irrational, then x is irrational.
induction. . . . . 39. Prove or disprove that if x2 is irrational, then x3 is irra-
¢) Some students in this class do not like discrete math- tional
ematics. ' ) o ) )
d) In every mathematics class there is some student who 40. Prove that given a nonnegative integer n, there is a unique
falls asleep during lectures. nonnegative integer m such that m?> < n < (m + 1)°.
33. Express this statement using quantifiers: “Every student 41. Prove that there exists an integer m such that m? > 10'°%,
in this class has taken some course in every department Is your proof constructive or nonconstructive?
in the school of mathematical sciences.” 42. Prove that there is a positive integer that can be written
34. Express this statement using quantifiers: “There is a as the sum of squares of positive integers in two differ-
building on the campus of some college in the United ent ways. (Use a computer or calculator to speed up your
States in which every room is painted white.” work.)
35. Express the statement “There is exactly one student in 43. Disprove the statement that every positive integer is the
this class who has taken exactly one mathematics class sum of the cubes of eight nonnegative integers.
at this S.ChOOI using th.e uniqueness quaptlﬁer. Then ex- 44. Disprove the statement that every positive integer is the
press this statement using quantifiers, without using the .
: ; sum of at most two squares and a cube of nonnegative
uniqueness quantifier. integers
36. Describe a rule of inference that can be used to prove that . P .
. . 45. Disprove the statement that every positive integer is the
there are exactly two elements x and y in a domain such cum of 36 fifth powers of nonneeative infeeers
that P(x) and P(y) are true. Express this rule of inference P g gers.
as a statement in English. 46. Assuming the truth of the theorem that states that ﬁ is
37. Use rules of inference to show that if the premises irrational whenever n is a positive integer that is not a
Vx(P(x) — Q(x)), Vx(Q(x) = R(x)), and —R(a), where a perfect square, prove that \/E + \/5 is irrational.
Computer Projects
Write programs with the specified input and output.
1. Given the truth values of the propositions p and ¢, find the 4. Given the truth values of the propositions p and ¢ in

truth values of the conjunction, disjunction, exclusive or,
conditional statement, and biconditional of these proposi-
tions.

2. Given two bit strings of length n, find the bitwise AND,
bitwise OR, and bitwise XOR of these strings.

*3. Give a compound proposition, determine whether it is sat-
isfiable by checking its truth value for all positive assign-
ments of truth values to its propositional variables.

Computations and Explorations

*5.

*6.

fuzzy logic, find the truth value of the disjunction and
the conjunction of p and ¢ (see Exercises 50 and 51 of
Section 1.1).

Given positive integers m and n, interactively play the
game of Chomp.

Given a portion of a checkerboard, look for tilings of this
checkerboard with various types of polyominoes, includ-
ing dominoes, the two types of triominoes, and larger poly-
ominoes.

Use a computational program or programs you have written to do these exercises.

1. Look for positive integers that are not the sum of the cubes
of nine different positive integers.

2. Look for positive integers greater than 79 that are not the
sum of the fourth powers of 18 positive integers.

3. Find as many positive integers as you can that can be writ-
ten as the sum of cubes of positive integers, in two different
ways, sharing this property with 1729.

*4,

5.

6.

Try to find winning strategies for the game of Chomp for
different initial configurations of cookies.

Construct the 12 different pentominoes, where a pen-
tomino is a polyomino consisting of five squares.

Find all the rectangles of 60 squares that can be tiled using
every one of the 12 different pentominoes.
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Writing Projects

Respond to these with essays using outside sources.

. Discuss logical paradoxes, including the paradox of Epi-

menides the Cretan, Jourdain’s card paradox, and the bar-
ber paradox, and how they are resolved.

. Describe how fuzzy logic is being applied to practical

applications. Consult one or more of the recent books
on fuzzy logic written for general audiences.

. Describe some of the practical problems that can be mod-

eled as satisfiability problems.

. Explain how satisfiability can be used to model a round

robin tournament.

. Describe some of the techniques that have been devised

to help people solve Sudoku puzzles without the use of a
computer.

. Describe the basic rules of WFF’N PROOF, The Game of

Modern Logic, developed by Layman Allen. Give exam-
ples of some of the games included in WFF’N PROOF.

. Read some of the writings of Lewis Carroll on symbolic

logic. Describe in detail some of the models he used to
represent logical arguments and the rules of inference he
used in these arguments.

10.

11.

12.

13.

14.

15.

. Extend the discussion of Prolog given in Section 1.4, ex-

plaining in more depth how Prolog employs resolution.

. Discuss some of the techniques used in computational

logic, including Skolem’s rule.

“Automated theorem proving” is the task of using com-
puters to mechanically prove theorems. Discuss the goals
and applications of automated theorem proving and the
progress made in developing automated theorem provers.
Describe how DNA computing has been used to solve in-
stances of the satisfiability problem.

Look up some of the incorrect proofs of famous open
questions and open questions that were solved since 1970
and describe the type of error made in each proof.
Discuss what is known about winning strategies in the
game of Chomp.

Describe various aspects of proof strategy discussed by
George Pdlya in his writings on reasoning, including
[Po62], [Po71], and [P0o90].

Describe a few problems and results about tilings with
polyominoes, as described in [Go94] and [Ma91], for
example.
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Basic Structures: Sets, Functions,
Sequences, Sums, and Matrices

Much of discrete mathematics is devoted to the study of discrete structures, used to rep-
resent discrete objects. Many important discrete structures are built using sets, which
are collections of objects. Among the discrete structures built from sets are combinations, un-
ordered collections of objects used extensively in counting; relations, sets of ordered pairs that
represent relationships between objects; graphs, sets of vertices and edges that connect vertices;
and finite state machines, used to model computing machines. These are some of the topics we
will study in later chapters.

The concept of a function is extremely important in discrete mathematics. A function as-
signs to each element of a first set exactly one element of a second set, where the two sets are
not necessarily distinct. Functions play important roles throughout discrete mathematics. They
are used to represent the computational complexity of algorithms, to study the size of sets, to
count objects, and in a myriad of other ways. Useful structures such as sequences and strings
are special types of functions. In this chapter, we will introduce the notion of sequences, which
represent ordered lists of elements. Furthermore, we will introduce some important types of
sequences and we will show how to define the terms of a sequence using earlier terms. We will
also address the problem of identifying a sequence from its first few terms.

In our study of discrete mathematics, we will often add consecutive terms of a sequence of
numbers. Because adding terms from a sequence, as well as other indexed sets of numbers, is
such a common occurrence, a special notation has been developed for adding such terms. In this
chapter, we will introduce the notation used to express summations. We will develop formulae
for certain types of summations that appear throughout the study of discrete mathematics. For
instance, we will encounter such summations in the analysis of the number of steps used by an
algorithm to sort a list of numbers so that its terms are in increasing order.

The relative sizes of infinite sets can be studied by introducing the notion of the size, or
cardinality, of a set. We say that a set is countable when it is finite or has the same size as the
set of positive integers. In this chapter we will establish the surprising result that the set of
rational numbers is countable, while the set of real numbers is not. We will also show how the
concepts we discuss can be used to show that there are functions that cannot be computed using
a computer program in any programming language.

Matrices are used in discrete mathematics to represent a variety of discrete structures. We
will review the basic material about matrices and matrix arithmetic needed to represent relations
and graphs. The matrix arithmetic we study will be used to solve a variety of problems involving
these structures.

2.1.1 Introduction

In this section, we study the fundamental discrete structure on which all other discrete structures
are built, namely, the set. Sets are used to group objects together. Often, but not always, the
objects in a set have similar properties. For instance, all the students who are currently enrolled
in your school make up a set. Likewise, all the students currently taking a course in discrete
mathematics at any school make up a set. In addition, those students enrolled in your school
who are taking a course in discrete mathematics form a set that can be obtained by taking the
elements common to the first two collections. The language of sets is a means to study such
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Definition 1

EXAMPLE 1
EXAMPLE 2

EXAMPLE 3

EXAMPLE 4

Extra )
Examples

Beware that mathe-
maticians disagree
whether 0 is a natural
number. We consider it
quite natural.

collections in an organized fashion. We now provide a definition of a set. This definition is an
intuitive definition, which is not part of a formal theory of sets.

A set is an unordered collection of distinct objects, called elements or members of the set. A
set is said to contain its elements. We write a € A to denote that a is an element of the set A.
The notation a ¢ A denotes that a is not an element of the set A.

It is common for sets to be denoted using uppercase letters. Lowercase letters are usually
used to denote elements of sets.

There are several ways to describe a set. One way is to list all the members of a set, when
this is possible. We use a notation where all members of the set are listed between braces. For
example, the notation {a, b, ¢, d} represents the set with the four elements a, b, ¢, and d. This
way of describing a set is known as the roster method.

The set V of all vowels in the English alphabet can be written as V = {aq, ¢, i, 0, u}. <

The set O of odd positive integers less than 10 can be expressed by O = {1, 3, 5,7, 9}. <

Although sets are usually used to group together elements with common properties, there is
nothing that prevents a set from having seemingly unrelated elements. For instance, {a, 2, Fred,
New Jersey} is the set containing the four elements a, 2, Fred, and New Jersey. <

Sometimes the roster method is used to describe a set without listing all its members. Some
members of the set are listed, and then ellipses (...) are used when the general pattern of the
elements is obvious.

The set of positive integers less than 100 can be denoted by {1,2,3, ..., 99}. <

Another way to describe a set is to use set builder notation. We characterize all those
elements in the set by stating the property or properties they must have to be members. The
general form of this notation is {x | x has property P} and is read “the set of all x such that x has
property P.” For instance, the set O of all odd positive integers less than 10 can be written as

O = {x | xis an odd positive integer less than 10},
or, specifying the universe as the set of positive integers, as
O={xeZ'|xis odd and x < 10}.

We often use this type of notation to describe sets when it is impossible to list all the elements
of the set. For instance, the set Q% of all positive rational numbers can be written as

Qt={xeR|x= ’;’, for some positive integers p and g}.
These sets, each denoted using a boldface letter, play an important role in discrete mathe-
matics:

N=1{0,1,2,3, ...}, the set of all natural numbers
7Z={...,-2,-1,0,1,2, ...}, the set of all integers

Zt ={1,2,3,...}, the set of all positive integers

Q={p/q|p€Z qeZ and g # 0}, the set of all rational numbers
R, the set of all real numbers
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Definition 2

Source: Library of Congress
Prints and Photographs
Division [LC-USZ62-74393]

2.1 Sets 123

R, the set of all positive real numbers
C, the set of all complex numbers.

(Note that some people do not consider 0 a natural number, so be careful to check how the term
natural numbers is used when you read other books.)

Among the sets studied in calculus and other subjects are intervals, sets of all the real
numbers between two numbers a and b, with or without a and b. If a and b are real numbers
with a < b, we denote these intervals by

[a,b] = {x|a < x < b}
[a,b) ={x|a <x< b}
(a,b] = {x|a<x<b}
(a,b) = {x|a<x<b}.
Note that [a, b] is called the closed interval from a to b and (a, b) is called the open interval

from a to b. Each of the intervals [a, b], [a, b), (a, b], and (a, b) contains all the real numbers
strictly between a and b. The first two of these contain a and the first and third contain b.

Remark: Some books use the notations [a, b[, la, b], and |a, b[ for [a, b), (a, b], and (a, b), re-
spectively.

Sets can have other sets as members, as Example 5 illustrates.

The set {N, Z, Q, R} is a set containing four elements, each of which is a set. The four elements
of this set are N, the set of natural numbers; Z, the set of integers; Q, the set of rational numbers;
and R, the set of real numbers. |

Remark: Note that the concept of a datatype, or type, in computer science is built upon the con-
cept of a set. In particular, a datatype or type is the name of a set, together with a set of opera-
tions that can be performed on objects from that set. For example, boolean is the name of the set
{0, 1}, together with operators on one or more elements of this set, such as AND, OR, and NOT.

Because many mathematical statements assert that two differently specified collections of
objects are really the same set, we need to understand what it means for two sets to be equal.

Two sets are equal if and only if they have the same elements. Therefore, if A and B are sets,
then A and B are equal if and only if Vx(x € A < x € B). We write A = Bif A and B are equal
sets.

GEORG CANTOR (1845-1918) Georg Cantor was born in St. Petersburg, Russia, where his father was a
successful merchant. Cantor developed his interest in mathematics in his teens. He began his university studies
in Zurich in 1862, but when his father died he left Zurich. He continued his university studies at the University
of Berlin in 1863, where he studied under the eminent mathematicians Weierstrass, Kummer, and Kronecker.
He received his doctor’s degree in 1867, after having written a dissertation on number theory. Cantor assumed
a position at the University of Halle in 1869, where he continued working until his death.

Cantor is considered the founder of set theory. His contributions in this area include the discovery that the
set of real numbers is uncountable. He is also noted for his many important contributions to analysis. Cantor
also was interested in philosophy and wrote papers relating his theory of sets with metaphysics.

Cantor married in 1874 and had six children. His melancholy temperament was balanced by his wife’s
happy disposition. Although he received a large inheritance from his father, he was poorly paid as a professor.
To mitigate this, he tried to obtain a better-paying position at the University of Berlin. His appointment there was

blocked by Kronecker, who did not agree with Cantor’s views on set theory. Cantor suffered from mental illness throughout the later
years of his life. He died in 1918 from a heart attack.
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EXAMPLE 6

{#} has one more
element than @.

Links )

Assessment )

EXAMPLE 7

The sets {1,3,5} and {3, 5, 1} are equal, because they have the same elements. Note that the
order in which the elements of a set are listed does not matter. Note also that it does not matter
if an element of a set is listed more than once, so {1,3,3,3,5,5,5,5} is the same as the set
{1, 3, 5} because they have the same elements. <

THE EMPTY SET There is a special set that has no elements. This set is called the empty set,
or null set, and is denoted by @. The empty set can also be denoted by { } (that is, we represent
the empty set with a pair of braces that encloses all the elements in this set). Often, a set of
elements with certain properties turns out to be the null set. For instance, the set of all positive
integers that are greater than their squares is the null set.

A set with one element is called a singleton set. A common error is to confuse the empty
set @ with the set {@#}, which is a singleton set. The single element of the set {@} is the empty
set itself! A useful analogy for remembering this difference is to think of folders in a computer
file system. The empty set can be thought of as an empty folder and the set consisting of just
the empty set can be thought of as a folder with exactly one folder inside, namely, the empty
folder.

NAIVE SET THEORY Note that the term object has been used in the definition of a set,
Definition 1, without specifying what an object is. This description of a set as a collection
of objects, based on the intuitive notion of an object, was first stated in 1895 by the German
mathematician Georg Cantor. The theory that results from this intuitive definition of a set, and
the use of the intuitive notion that for any property whatever, there is a set consisting of exactly
the objects with this property, leads to paradoxes, or logical inconsistencies. This was shown
by the English philosopher Bertrand Russell in 1902 (see Exercise 50 for a description of one of
these paradoxes). These logical inconsistencies can be avoided by building set theory beginning
with axioms. However, we will use Cantor’s original version of set theory, known as naive set
theory, in this book because all sets considered in this book can be treated consistently using
Cantor’s original theory. Students will find familiarity with naive set theory helpful if they go on
to learn about axiomatic set theory. They will also find the development of axiomatic set theory
much more abstract than the material in this text. We refer the interested reader to [Su72] to
learn more about axiomatic set theory.

2.1.2 Venn Diagrams

Sets can be represented graphically using Venn diagrams, named after the English mathemati-
cian John Venn, who introduced their use in 1881. In Venn diagrams the universal set U, which
contains all the objects under consideration, is represented by a rectangle. (Note that the univer-
sal set varies depending on which objects are of interest.) Inside this rectangle, circles or other
geometrical figures are used to represent sets. Sometimes points are used to represent the par-
ticular elements of the set. Venn diagrams are often used to indicate the relationships between
sets. We show how a Venn diagram can be used in Example 7.

Draw a Venn diagram that represents V, the set of vowels in the English alphabet.

Solution: We draw a rectangle to indicate the universal set U, which is the set of the 26 letters
of the English alphabet. Inside this rectangle we draw a circle to represent V. Inside this circle
we indicate the elements of V with points (see Figure 1). <
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FIGURE 1 Venn diagram for the set of vowels.

2.1.3 Subsets

It is common to encounter situations where the elements of one set are also the elements of
a second set. We now introduce some terminology and notation to express such relationships
between sets.

The set A is a subset of B, and B is a superset of A, if and only if every element of A is also an
element of B. We use the notation A C B to indicate that A is a subset of the set B. If, instead,
we want to stress that B is a superset of A, we use the equivalent notation B 2 A. (So, A C B
and B 2 A are equivalent statements.)

We see that A C B if and only if the quantification

Vx(x €A - x € B)

is true. Note that to show that A is not a subset of B we need only find one element x € A with
x & B. Such an x is a counterexample to the claim that x € A implies x € B.
We have these useful rules for determining whether one set is a subset of another:

Showing that A is a Subset of B To show that A C B, show that if x belongs to A then x also
belongs to B.

Showing that A is Not a Subset of B To show that A ¢ B, find a single x € A such that x & B.

The set of all odd positive integers less than 10 is a subset of the set of all positive integers less
than 10, the set of rational numbers is a subset of the set of real numbers, the set of all computer

BERTRAND RUSSELL (1872-1970) Bertrand Russell was born into a prominent English family active in
the progressive movement and having a strong commitment to liberty. He became an orphan at an early age
and was placed in the care of his father’s parents, who had him educated at home. He entered Trinity College,
Cambridge, in 1890, where he excelled in mathematics and in moral science. He won a fellowship on the basis
of his work on the foundations of geometry. In 1910 Trinity College appointed him to a lectureship in logic and
the philosophy of mathematics.

Russell fought for progressive causes throughout his life. He held strong pacifist views, and his protests
against World War I led to dismissal from his position at Trinity College. He was imprisoned for 6 months in
1918 because of an article he wrote that was branded as seditious. Russell fought for women’s suffrage in Great
Britain. In 1961, at the age of 89, he was imprisoned for the second time for his protests advocating nuclear
disarmament.

Russell’s greatest work was in his development of principles that could be used as a foundation for all
of mathematics. His most famous work is Principia Mathematica, written with Alfred North Whitehead,

which attempts to deduce all of mathematics using a set of primitive axioms. He wrote many books on philosophy, physics, and his
political ideas. Russell won the Nobel Prize for Literature in 1950.
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EXAMPLE 9

THEOREM 1
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science majors at your school is a subset of the set of all students at your school, and the set of
all people in China is a subset of the set of all people in China (that is, it is a subset of itself).
Each of these facts follows immediately by noting that an element that belongs to the first set in
each pair of sets also belongs to the second set in that pair. <

The set of integers with squares less than 100 is not a subset of the set of nonnegative integers
because —1 is in the former set [as (—1)> < 100], but not the latter set. The set of people who
have taken discrete mathematics at your school is not a subset of the set of all computer science
majors at your school if there is at least one student who has taken discrete mathematics who is
not a computer science major. <

Theorem 1 shows that every nonempty set S is guaranteed to have at least two subsets, the
empty set and the set S itself, thatis,  C S and S C S.

Forevery setS, ()3 CS and (ii)SCS.

Proof: We will prove (i) and leave the proof of (ii) as an exercise.

Let S be a set. To show that § C S, we must show that Vx(x € # — x € S) is true. Because
the empty set contains no elements, it follows that x € @ is always false. It follows that the
conditional statement x € § — x € S is always true, because its hypothesis is always false and a
conditional statement with a false hypothesis is true. Therefore, Vx(x € @ — x € §) is true. This
completes the proof of (i). Note that this is an example of a vacuous proof. <

When we wish to emphasize that a set A is a subset of a set B but that A # B, we writeA C B
and say that A is a proper subset of B. For A C Bto be true, it must be the case that A C B and
there must exist an element x of B that is not an element of A. That is, A is a proper subset of B
if and only if

Vxx EA—->xE€BYAIx(xEBAXxEA)

is true. Venn diagrams can be used to illustrate that a set A is a subset of a set B. We draw the
universal set U as a rectangle. Within this rectangle we draw a circle for B. Because A is a subset
of B, we draw the circle for A within the circle for B. This relationship is shown in Figure 2.

Recall from Definition 2 that sets are equal if they have the same elements. A useful way
to show that two sets have the same elements is to show that each set is a subset of the other.
In other words, we can show that if A and B are sets with A C B and B C A, then A = B. That
is, A = Bif and only if Vx(x € A — x € B) and Vx(x € B — x € A) or equivalently if and only
if Vx(x € A & x € B), which is what it means for the A and B to be equal. Because this method
of showing two sets are equal is so useful, we highlight it here.

JOHN VENN (1834-1923) John Venn was born into a London suburban family noted for its philanthropy.
He attended London schools and got his mathematics degree from Caius College, Cambridge, in 1857. He was
elected a fellow of this college and held his fellowship there until his death. He took holy orders in 1859 and,
after a brief stint of religious work, returned to Cambridge, where he developed programs in the moral sciences.
Besides his mathematical work, Venn had an interest in history and wrote extensively about his college and
family.

Venn’s book Symbolic Logic clarifies ideas originally presented by Boole. In this book, Venn presents a
systematic development of a method that uses geometric figures, known now as Venn diagrams. Today these
diagrams are primarily used to analyze logical arguments and to illustrate relationships between sets. In addition
to his work on symbolic logic, Venn made contributions to probability theory described in his widely used
textbook on that subject.
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@B

FIGURE 2 Venn diagram showing that A is a subset of B.

Showing Two Sets are Equal To show that two sets A and B are equal, show that A C B
and B C A.

Sets may have other sets as members. For instance, we have the sets
A =10, {a}, {b}, {a b}} and B = {x| x is a subset of the set {a, b}}.

Note that these two sets are equal, that is, A = B. Also note that {a} € A, buta ¢ A.

2.1.4 The Size of a Set

Sets are used extensively in counting problems, and for such applications we need to discuss
the sizes of sets.

Let S be a set. If there are exactly n distinct elements in S where 7 is a nonnegative integer,
we say that S is a finite set and that n is the cardinality of S. The cardinality of S is denoted
by |S].

Remark: The term cardinality comes from the common usage of the term cardinal number as
the size of a finite set.

Let A be the set of odd positive integers less than 10. Then |A| = 5. <
Let S be the set of letters in the English alphabet. Then |S| = 26. <
Because the null set has no elements, it follows that |@| = 0. <

We will also be interested in sets that are not finite.

A set is said to be infinite if it is not finite.

The set of positive integers is infinite. <

We will extend the notion of cardinality to infinite sets in Section 2.5, a challenging topic
full of surprising results.
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2.1.5 Power Sets

Many problems involve testing all combinations of elements of a set to see if they satisfy some
property. To consider all such combinations of elements of a set S, we build a new set that has
as its members all the subsets of S.

Given a set S, the power set of S is the set of all subsets of the set S. The power set of S is
denoted by P(S).

What is the power set of the set {0, 1,2}?

Solution: The power set P({0, 1, 2}) is the set of all subsets of {0, 1,2}. Hence,
P({0,1,2}) = {#, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2} }.

Note that the empty set and the set itself are members of this set of subsets. <

What is the power set of the empty set? What is the power set of the set {#}?

Solution: The empty set has exactly one subset, namely, itself. Consequently,
P@) = {0}.
The set {@} has exactly two subsets, namely, @ and the set {{} itself. Therefore,

P{0}) = {0, {9}}. |

If a set has n elements, then its power set has 2" elements. We will demonstrate this fact in
several ways in subsequent sections of the text.

2.1.6 Cartesian Products

The order of elements in a collection is often important. Because sets are unordered, a different
structure is needed to represent ordered collections. This is provided by ordered n-tuples.

The ordered n-tuple (a,, a,, ..., a,) is the ordered collection that has a, as its first element,
a, as its second element, ..., and a,, as its nth element.

We say that two ordered n-tuples are equal if and only if each corresponding pair of their
elements is equal. In other words, (a,, a,, ..., a,) = (b, b,, ..., b,) if and only if a; = b, for
i=1,2,...,n In particular, ordered 2-tuples are called ordered pairs. The ordered pairs (a, b)
and (¢, d) are equal if and only if @ = c and b = d. Note that (a, b) and (b, a) are not equal unless
a=>h.
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Many of the discrete structures we will study in later chapters are based on the notion of the
Cartesian product of sets (named after René Descartes). We first define the Cartesian product
of two sets.

Let A and B be sets. The Cartesian product of A and B, denoted by A X B, is the set of all
ordered pairs (a, b), where a € A and b € B. Hence,

AXB={(@b)|a€AAbEB).

Let A represent the set of all students at a university, and let B represent the set of all courses
offered at the university. What is the Cartesian product A X B and how can it be used?

Solution: The Cartesian product A X B consists of all the ordered pairs of the form (a, b), where a
is a student at the university and b is a course offered at the university. One way to use the set A X
B is to represent all possible enrollments of students in courses at the university. Furthermore,
observe that each subset of A X B represents one possible total enrollment configuration, and
P(A x B) represents all possible enrollment configurations. <

What is the Cartesian product of A = {1,2} and B = {a, b, c}?

Solution: The Cartesian product A X B is

AxB={(,a),(,b),1,c), 2 a),2b), (2 c)}. > |

Note that the Cartesian products A X B and B X A are not equal unless A = {J or B = @ (so
that A X B = @) or A = B (see Exercises 33 and 40). This is illustrated in Example 18.

Show that the Cartesian product B X A is not equal to the Cartesian product A X B, where A and
B are as in Example 17.

RENE DESCARTES (1596-1650) René Descartes was born into a noble family near Tours, France, about
130 miles southwest of Paris. He was the third child of his father’s first wife; she died several days after his
birth. Because of René’s poor health, his father, a provincial judge, let his son’s formal lessons slide until, at
the age of 8, René entered the Jesuit college at La Fléche. The rector of the school took a liking to him and
permitted him to stay in bed until late in the morning because of his frail health. From then on, Descartes spent
his mornings in bed; he considered these times his most productive hours for thinking.

Descartes left school in 1612, moving to Paris, where he spent 2 years studying mathematics. He earned
a law degree in 1616 from the University of Poitiers. At 18 Descartes became disgusted with studying and
decided to see the world. He moved to Paris and became a successful gambler. However, he grew tired of
bawdy living and moved to the suburb of Saint-Germain, where he devoted himself to mathematical study.
When his gambling friends found him, he decided to leave France and undertake a military career. However, he

never did any fighting. One day, while escaping the cold in an overheated room at a military encampment, he had several feverish
dreams, which revealed his future career as a mathematician and philosopher.

After ending his military career, he traveled throughout Europe. He then spent several years in Paris, where he studied mathemat-
ics and philosophy and constructed optical instruments. Descartes decided to move to Holland, where he spent 20 years wandering
around the country, accomplishing his most important work. During this time he wrote several books, including the Discours, which
contains his contributions to analytic geometry, for which he is best known. He also made fundamental contributions to philosophy.

In 1649 Descartes was invited by Queen Christina to visit her court in Sweden to tutor her in philosophy. Although he was
reluctant to live in what he called “the land of bears amongst rocks and ice,” he finally accepted the invitation and moved to Sweden.
Unfortunately, the winter of 1649-1650 was extremely bitter. Descartes caught pneumonia and died in mid-February.
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Solution: The Cartesian product B X A is
BxA={(a1),(a2),1),®?2), (1), (2}

This is not equal to A X B, which was found in Example 17. <

The Cartesian product of more than two sets can also be defined.

Definition 9 The Cartesian product of the sets A, A,, ..., A,, denoted by A; X A, X --- X A, is the set of
ordered n-tuples (a,, a,, ..., a,), where a; belongs to A, fori = 1,2, ..., n. In other words,

A XA, X XA, ={(a,ay...,a,) |a,€A;fori=1,2,...,n}.

EXAMPLE 19 What is the Cartesian product A X B X C, where A = {0, 1}, B= {1,2},and C = {0, 1, 2}?

Solution: The Cartesian product A X B X C consists of all ordered triples (a, b, ¢), where a € A,
b € B, and c € C. Hence,

AXBxC=1{010),(0,11),(0,1,2),(0,20), (0,2 1),(0,22),
1,1,0),(1,1,1),(1,1,2),(1,2,0), (1,2, 1), (1, 2, 2)}. <

Remark: Note that when A, B, and C are sets, (A X B) X C is not the same as A X B X C (see
Exercise 41).

We use the notation A% to denote A X A, the Cartesian product of the set A with itself.
Similarly, A> = A X A x A, A* = A x A X A X A, and so on. More generally,

A"={(ayay ...,a,) |a,eAfori=1,2,...,n}.

EXAMPLE 20 Suppose that A ={1,2}. It follows that A%={(1,1),(1,2),(2,1),(2,2)} and A3=
{(L1 1,1, 12),(1,21),(1,22),211),212),221),(222) <

A subset R of the Cartesian product A X B is called a relation from the set A to the set B. The
elements of R are ordered pairs, where the first element belongs to A and the second to B. For
example, R = {(a, 0), (a, 1), (@, 3), (b, 1), (b, 2), (¢, 0), (¢, 3)} is a relation from the set {a, b, c} to
the set {0, 1,2, 3}, and it is also a relation from the set {q, b, ¢, d, e} to the set {0, 1, 3, 4). (This
illustrates that a relation need not contain a pair (x, y) for every element x of A.) A relation from
a set A to itself is called a relation on A.

EXAMPLE 21 What are the ordered pairs in the less than or equal to relation, which contains (a, b) if a < b,
on the set {0, 1,2, 3}?

Solution: The ordered pair (a, b) belongs to R if and only if both a and b belong to {0, 1,2, 3} and
a < b. Consequently, R = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3,3)}. «

We will study relations and their properties at length in Chapter 9.
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2.1.7 Using Set Notation with Quantifiers

Sometimes we restrict the domain of a quantified statement explicitly by making use of a par-
ticular notation. For example, Vx € S(P(x)) denotes the universal quantification of P(x) over all
elements in the set S. In other words, Vx € S(P(x)) is shorthand for Vx(x € § — P(x)). Simi-
larly, 3x € S(P(x)) denotes the existential quantification of P(x) over all elements in S. That is,
dx € S(P(x)) is shorthand for Ix(x € S A P(x)).

EXAMPLE 22 What do the statements Vx € R (x> > 0) and 3x € Z (x> = 1) mean?
Solution: The statement Vx € R(x2 > 0) states that for every real number x, x2 > 0. This state-
ment can be expressed as “The square of every real number is nonnegative.” This is a true
statement.

The statement dx € Z(x> = 1) states that there exists an integer x such that x> = 1. This
statement can be expressed as “There is an integer whose square is 1.” This is also a true state-
ment because x = 1 is such an integer (as is —1). <
2.1.8 Truth Sets and Quantifiers
We will now tie together concepts from set theory and from predicate logic. Given a predicate
P, and a domain D, we define the truth set of P to be the set of elements x in D for which P(x)
is true. The truth set of P(x) is denoted by {x € D | P(x)}.

EXAMPLE 23 What are the truth sets of the predicates P(x), Q(x), and R(x), where the domain is the set of
integers and P(x) is “|x| = 1,” Q(x) is “x? = 2,” and R(x) is “|x| = x.”
Solution: The truth set of P, {x € Z | |x| = 1}, is the set of integers for which |x| = 1. Because
|x] =1 when x = 1 or x = —1, and for no other integers x, we see that the truth set of P is the
set {—1,1}.

The truth set of Q, {x € Z | x> = 2}, is the set of integers for which x?> = 2. This is the
empty set because there are no integers x for which x> = 2.

The truth setof R, {x € Z | |x| = x}, is the set of integers for which |x| = x. Because |x| = x
if and only if x > 0, it follows that the truth set of R is N, the set of nonnegative integers. <«

Note that VxP(x) is true over the domain U if and only if the truth set of P is the set U.
Likewise, 3xP(x) is true over the domain U if and only if the truth set of P is nonempty.

Exercises

1. List the members of these sets. 3. Which of the intervals (0, 5), (0, 5], [0, 5), [0, 5], (1, 4],
a) {x | xis areal number such that x> = 1} [2, 3], (2, 3) contains
b) {x | xis a positive integer less than 12} a) 07 b) 17
¢) {x|xis the square of an integer and x < 100} ¢ 2? a) 3?
d) {x | xis an integer such that x> = 2} e) 47 f) 5?7

2. Use set builder notation to give a description of each of 4. For each of these intervals, list all its elements or explain
these sets. why it is empty.
a) {0,3,6,9, 12} a) [a a] b) [a, a)
b) {-3,-2,-1,0,1,2,3} ¢) (a,4d] d) (@ a)

¢) {mmnop}

e) (a, b), wherea>b f) [a, b], where a > b
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S.

10.

11.

12.

13.

14.

15.

16.

17.

For each of these pairs of sets, determine whether the first
is a subset of the second, the second is a subset of the first,
or neither is a subset of the other.

a) the set of airline flights from New York to New Delhi,
the set of nonstop airline flights from New York to
New Delhi

b) the set of people who speak English, the set of people
who speak Chinese

¢) the set of flying squirrels, the set of living creatures
that can fly

. For each of these pairs of sets, determine whether the first

is a subset of the second, the second is a subset of the first,
or neither is a subset of the other.

a) the set of people who speak English, the set of people
who speak English with an Australian accent

b) the set of fruits, the set of citrus fruits

¢) the set of students studying discrete mathematics, the
set of students studying data structures

. Determine whether each of these pairs of sets are equal.

a) {1,3,3,3,55,5,55},{53,1}
b) {{1}} {1 {1}} ) 9 {0}

. Suppose that A = {2, 4,6}, B={2,6}, C = {4,6}, and

D = {4, 6,8}. Determine which of these sets are subsets
of which other of these sets.

. For each of the following sets, determine whether 2 is an

element of that set.

a) {x € R|xis an integer greater than 1}

b) {x € R|x is the square of an integer}

o {2{2}} d {{2},{{2}}}

e {{2}{2.{2}}} £) {{{2}}}

For each of the sets in Exercise 9, determine whether {2}
is an element of that set.

Determine whether each of these statements is true or
false.

a) 0ed b) @ € {0}
¢) {0}cy d) ¢ c {0}
e) {0} € {0} f) {0} c {0}
g) {#} C {0}

Determine whether these statements are true or false.

a) 0 e {0} b) # € {0 {0}}

o {0} € {0} d {4} € {{0}}

e) {0} c {0 {9}} f) {{9}} c {0, {9})

g {{9}} c {{9}, {9}}

Determine whether each of these statements is true or
false.

a) x€ {x} b) {x} € {x} ¢ {x} € {x}

d {x}ef{{x}} o 9C{x} f) 0 e {x}

Use a Venn diagram to illustrate the subset of odd inte-
gers in the set of all positive integers not exceeding 10.
Use a Venn diagram to illustrate the set of all months of
the year whose names do not contain the letter R in the
set of all months of the year.

Use a Venn diagram to illustrate the relationship A C B
and B C C.

Use a Venn diagram to illustrate the relationships A C B
and B C C.

18.

19.

20.

21.

22,

23.

24,

25.

26.

217.
28.
29.

30.

31.

32,

33.

34.

35.

36.

37.

38.

Use a Venn diagram to illustrate the relationships A C B
and A C C.

Suppose that A, B, and C are sets such that A C B and
B C C. Show that A C C.

Find two sets A and B such that A € Band A C B.
What is the cardinality of each of these sets?

a) {a} b) {{a}}

o {a {a}} d) {a {a}, {a {a}}}
What is the cardinality of each of these sets?

a) ¢ b) {7}

o {4 {0}} d) {4, {9}, {0, {4}}}

Find the power set of each of these sets, where a and b
are distinct elements.

a) {a} b) {a, b} o {0 {9}}

Can you conclude that A = B if A and B are two sets with
the same power set?

How many elements does each of these sets have where
a and b are distinct elements?

a) P({a, b, {a b}})

b) P({0,a {a}, {{a}}})

¢) P(P®)

Determine whether each of these sets is the power set of
a set, where a and b are distinct elements.

a) ¢ b) {#, {a}}

o) {0 {a}, {0 a}} d) {0, {a}, {b}, {a b}}
Prove that P(A) C P(B) if and only if A C B.

Show thatif A C Cand BC D,thenAXB C CxD
LetA ={a,b,c,d} and B = {y, z}. Find

a) AXB. b) BXxA.

What is the Cartesian product A X B, where A is the set
of courses offered by the mathematics department at a
university and B is the set of mathematics professors at
this university? Give an example of how this Cartesian
product can be used.

What is the Cartesian product A X B X C, where A is the
set of all airlines and B and C are both the set of all cities
in the United States? Give an example of how this Carte-
sian product can be used.

Suppose that A X B = @, where A and B are sets. What
can you conclude?

Let A be a set. Show that X A =Ax @ =@.
LetA = {a, b, c}, B= {x y},and C = {0, 1}. Find

a) AXBxC. b) CxBXA.

¢) CxXAXB. d) BXx B XB.
Find A? if

a) A={0,1,3}. b) A={1,2,4a,b}.
Find A3 if

a) A= {a}. b) A ={0,a}.

How many different elements does A X B have if A has m
elements and B has n elements?

How many different elements does A X B X C have if A
has m elements, B has n elements, and C has p elements?
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How many different elements does A" have when A has
m elements and r is a positive integer?

Show that A X B # B X A, when A and B are nonempty,
unless A = B.

Explain why A X B X C and (A X B) X C are not the same.

Explain why (A X B) X (C X D)and A X (Bx C) X D are
not the same.

Prove or disprove that if A and B are sets, then P(A X B) =
P(A) X P(B).

Prove or disprove that if A, B, and C are nonempty sets
andAXB=AXC,thenB=C.

Translate each of these quantifications into English and
determine its truth value.

a) VxeR (32 # —1) b) Ix€Z (x* =2)

¢) VxeZ (x* > 0) d) IxeR (2 =x)
Translate each of these quantifications into English and
determine its truth value.

a) IxeR @ =-1) b) Ix€Z (x+1 > x)

c) WeZ(x—-1€Z) d) VxeZ (x> e Z)

Find the truth set of each of these predicates where the
domain is the set of integers.
a) P(x):x* <3

¢) Rx):2x+1=0

b) O(x): x% > x

Set Operations

48.

*49,

*50.

Links )

*51.
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Find the truth set of each of these predicates where the

domain is the set of integers.

a) P(x): x> > 1

©) R(x): x < x?

The defining property of an ordered pair is that two or-

dered pairs are equal if and only if their first elements are

equal and their second elements are equal. Surprisingly,

instead of taking the ordered pair as a primitive con-

cept, we can construct ordered pairs using basic notions

from set theory. Show that if we define the ordered pair

(a, b) to be {{a}, {a, b}}, then (a, b) = (¢, d) if and only

ifa = cand b = d. [Hint: Firstshow that {{a}, {a, b}} =

{{c},{c,d}}ifandonlyifa=cand b =d.]

This exercise presents Russell’s paradox. Let S be the

set that contains a set x if the set x does not belong to

itself, so that S = {x | x & x}.

a) Show the assumption that S is a member of S leads to
a contradiction.

b) Show the assumption that S is not a member of S leads
to a contradiction.

By parts (a) and (b) it follows that the set S cannot be de-

fined as it was. This paradox can be avoided by restricting

the types of elements that sets can have.

Describe a procedure for listing all the subsets of a

finite set.

b) O(x):x* =2

2.2.1 Introduction

Links )

Definition 1

EXAMPLE 1

Two, or more, sets can be combined in many different ways. For instance, starting with the set
of mathematics majors at your school and the set of computer science majors at your school, we
can form the set of students who are mathematics majors or computer science majors, the set of
students who are joint majors in mathematics and computer science, the set of all students not
majoring in mathematics, and so on.

Let A and B be sets. The union of the sets A and B, denoted by A U B, is the set that contains
those elements that are either in A or in B, or in both.

An element x belongs to the union of the sets A and B if and only if x belongs to A or x belongs
to B. This tells us that

AUB={x|x€eAvVxeB}.

The Venn diagram shown in Figure 1 represents the union of two sets A and B. The area that
represents A U B is the shaded area within either the circle representing A or the circle repre-
senting B.

We will give some examples of the union of sets.

The wunion of the sets {1,3,5} and {1,2,3} is the set {1,2, 3,5}; that is,
{1,3,5}u{1,2,3} ={1,2,3,5}. |
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EXAMPLE 2

Definition 2

EXAMPLE 3

EXAMPLE 4

Definition 3

EXAMPLE 5

Be careful not to
overcount!

U U
A U B is shaded. A N B is shaded.
FIGURE 1 Venn diagram of the FIGURE 2 Venn diagram of the
union of A and B. intersection of A and B.

The union of the set of all computer science majors at your school and the set of all mathe-
matics majors at your school is the set of students at your school who are majoring either in
mathematics or in computer science (or in both). <4

Let A and B be sets. The intersection of the sets A and B, denoted by A N B, is the set con-
taining those elements in both A and B.

An element x belongs to the intersection of the sets A and B if and only if x belongs to A and x
belongs to B. This tells us that

AnNnB={x|x€eAAx€EB}.

The Venn diagram shown in Figure 2 represents the intersection of two sets A and B. The shaded
area that is within both the circles representing the sets A and B is the area that represents the
intersection of A and B.

We give some examples of the intersection of sets.

The intersection of the sets {1,3,5} and {1,2,3} is the set {1,3}; that is,
{1,3,5}n{1,2,3} ={1,3}. <

The intersection of the set of all computer science majors at your school and the set of all mathematics
majors is the set of all students who are joint majors in mathematics and computer science. <

Two sets are called disjoint if their intersection is the empty set.

LetA={1,3,579}and B={2,4,6,8, 10}. Because AN B =, A and B are disjoint. <

We are often interested in finding the cardinality of a union of two finite sets A and B. Note
that |A| + |B| counts each element that is in A but not in B or in B but not in A exactly once, and
each element that is in both A and B exactly twice. Thus, if the number of elements that are in
both A and B is subtracted from |A| + |B|, elements in A N B will be counted only once. Hence,

|[AUB| =|A| +|B| - |ANB|.

The generalization of this result to unions of an arbitrary number of sets is called the principle
of inclusion—exclusion. The principle of inclusion—exclusion is an important technique used in
enumeration. We will discuss this principle and other counting techniques in detail in Chapters 6
and 8.
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There are other important ways to combine sets.

Let A and B be sets. The difference of A and B, denoted by A — B, is the set containing those
elements that are in A but not in B. The difference of A and B is also called the complement
of B with respect to A.

Remark: The difference of sets A and B is sometimes denoted by A\B.

An element x belongs to the difference of A and B if and only if x € A and x & B. This tells us that
A-B={x|x€AAx¢&B}.

The Venn diagram shown in Figure 3 represents the difference of the sets A and B. The shaded
area inside the circle that represents A and outside the circle that represents B is the area that
represents A — B.

We give some examples of differences of sets.

The difference of {1,3,5} and {1, 2, 3} is the set {5}; thatis, {1,3,5} — {1,2,3} = {5}. This
is different from the difference of {1, 2, 3} and {1, 3, 5}, which is the set {2}. <4

The difference of the set of computer science majors at your school and the set of mathematics
majors at your school is the set of all computer science majors at your school who are not also
mathematics majors. <

Once the universal set U has been specified, the complement of a set can be defined.

Let U be the universal set. The complement of the set A, denoted by A, is the complement of
A with respect to U. Therefore, the complement of the set A is U — A.

Remark: The definition of the complement of A depends on a particular universal set U. This
definition makes sense for any superset U of A. If we want to identify the universal set U, we
would write “the complement of A with respect to the set U.”

An element belongs to Aif and only if x & A. This tells us that

A={xeU|x¢gA)}.

In Figure 4 the shaded area outside the circle representing A is the area representing A.
We give some examples of the complement of a set.

Let A ={aq, e, i, 0, u} (where the universal set is the set of letters of the English alphabet). Then
A=1{bcdfghjklmnpqrstvwxyz} <

Let A be the set of positive integers greater than 10 (with universal set the set of all positive
integers). Then A = {1,2,3,4,5,6,7, 8,9, 10}. |

It is left to the reader (Exercise 21) to show that we can express the difference of A and B
as the intersection of A and the complement of B. That is,

A-B=ANB.
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Set identities and
propositional
equivalences are just
special cases of

identities for Boolean

algebra.

A — B is shaded. A is shaded.

FIGURE 3 Venn diagram for
the difference of A and B.

FIGURE 4 Venn diagram for
the complement of the set A.

2.2.2 Set Identities

Table 1 lists the most important identities of unions, intersections, and complements of sets.
We will prove several of these identities here, using three different methods. These methods
are presented to illustrate that there are often many different approaches to the solution of a
problem. The proofs of the remaining identities will be left as exercises. The reader should note
the similarity between these set identities and the logical equivalences discussed in Section 1.3.
(Compare Table 6 of Section 1.6 and Table 1.) In fact, the set identities given can be proved
directly from the corresponding logical equivalences. Furthermore, both are special cases of
identities that hold for Boolean algebra (discussed in Chapter 12).

TABLE 1 Set Identities.

Identity Name

AnU=A Identity laws
Auf=A

AUU=U Domination laws
Ang=0

AUA=A Idempotent laws
ANA=A

(A_) =A Complementation law
AUB=BUA Commutative laws
ANB=BnNA

AUuBUC)=AUB)UC
AnBNC)=ANBNC

Associative laws

AUBNC)=AUBNAUO
ANBUC)=ANBUMANO)

Distributive laws

ANA=0

ANB=AUB De Morgan’s laws
AUB=ANB

AUANB)=A Absorption laws
AN(AUuB)=A

AUA=U Complement laws




This identity says that
the complement of the
intersection of two sets
is the union of their
complements.

EXAMPLE 10
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Before we discuss different approaches for proving set identities, we briefly discuss the role
of Venn diagrams. Although these diagrams can help us understand sets constructed using two
or three atomic sets (the sets used to construct more complicated combinations of these sets),
they provide far less insight when four or more atomic sets are involved. Venn diagrams for
four or more sets are quite complex because it is necessary to use ellipses rather than circles
to represent the sets. This is necessary to ensure that every possible combination of the sets is
represented by a nonempty region. Although Venn diagrams can provide an informal proof for
some identities, such proofs should be formalized using one of the three methods we will now
describe.

One way to show that two sets are equal is to show that each is a subset of the other. Recall
that to show that one set is a subset of a second set, we can show that if an element belongs to
the first set, then it must also belong to the second set. We generally use a direct proof to do
this. We illustrate this type of proof by establishing the first of De Morgan’s laws.

Prove that AN B = A U B.

Solution: We will prove that the two sets A N B and A U B are equal by showing that each set is
a subset of the other. L

First, we will show that AN B C A U B. We do this by showing that if x is in A N B, then it
must also be in A U B. Now suppose thatx € A N B. By the definition of complement, x € A N B.
Using the definition of intersection, we see that the proposition =((x € A) A (x € B)) is true.

By applying De Morgan’s law for propositions, we see that =(x € A) or =(x € B). Using
the definition of negation of propositions, we have x EAorx f B. Using the definition of the
complement of a set, we see that this implies that x € A or x € B. Consequently, by the definition
of union, we see that x € A U B. We have now shown that AN B C A U B.

Next, we will show that AUB C A n B. We do this by showing that if x is in A U B, then it
must also be in A N B. Now suppose that x € A U B. By the definition of union, we know that
x € A or x € B. Using the definition of complement, we see that x A or x ¢ B. Consequently,
the proposition ~(x € A) V —(x € B) is true.

By De Morgan’s law for propositions, we conclude that =((x € A) A (x € B)) is true. By the
definition of intersection, it follows that =(x € A N B). We now use the definition of complement
to conclude that x € A N B. This shows that AUB C AN B.

Because we have shown that each set is a subset of the other, the two sets are equal, and the
identity is proved. <

We can more succinctly express the reasoning used in Example 10 using set builder nota-
tion, as Example 11 illustrates.

Use set builder notation and logical equivalences to establish the first De Morgan law AN B =
AUB.

Solution: We can prove this identity with the following steps.

={x|x&€ANB} by definition of complement

={x| (x € (ANnB))} by definition of does not belong symbol
={x|(x€AAx€EB)} by definition of intersection
={x|(x€A)V-(x €B)} by the first De Morgan law for logical equivalences
={x|x¢&AVx¢&B} by definition of does not belong symbol
={x|xe ZV X e E} by definition of complement

={x|xe€ AU E} by definition of union

=AUB by meaning of set builder notation
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EXAMPLE 12

EXAMPLE 13

Note that besides the definitions of complement, union, set membership, and set builder
notation, this proof uses the second De Morgan law for logical equivalences. <

Proving a set identity involving more than two sets by showing each side of the identity is
a subset of the other often requires that we keep track of different cases, as illustrated by the
proof in Example 12 of one of the distributive laws for sets.

Prove the second distributive law from Table 1, which states that AN (BUC)=(ANB)U
(AN C) for all sets A, B, and C.

Solution: We will prove this identity by showing that each side is a subset of the other side.

Suppose that x e AN(BUC). Then x € A and x € BU C. By the definition of union, it
follows that x € A, and x € B or x € C (or both). In other words, we know that the compound
proposition (x € A) A ((x € B) V (x € ()) is true. By the distributive law for conjunction over
disjunction, it follows that ((x € A) A (x € B)) V ((x € A) A (x € C)). We conclude that either
x €Aandx € B,orx € A and x € C. By the definition of intersection, it follows thatx € AN B
or x € AN C. Using the definition of union, we conclude that x € (A N B) U (A N C). We con-
cludethat AN(BUC)CANB)UMANC).

Now suppose that x € (A N B) U (A N C). Then, by the definition of union, x € AN B or
x € AN C. By the definition of intersection, it follows that x € A and x € B or that x € A and
x € C.From this we see thatx € A, and x € Borx € C. Consequently, by the definition of union
we see that x € A and x € B U C. Furthermore, by the definition of intersection, it follows that
x€AN(BUC). We conclude that AN B)U (AN C) C AN (BU C). This completes the proof
of the identity. <

Set identities can also be proved using membership tables. We consider each combination
of the atomic sets (that is, the original sets used to produce the sets on each side) that an element
can belong to and verify that elements in the same combinations of sets belong to both the sets
in the identity. To indicate that an element is in a set, a 1 is used; to indicate that an element is
not in a set, a 0 is used. (The reader should note the similarity between membership tables and
truth tables.)

Use a membership table to show that AN (BUC)=ANB)UMANC).
Solution: The membership table for these combinations of sets is shown in Table 2. This table

has eight rows. Because the columns for AN (B U C) and (A N B) U (A N C) are the same, the
identity is valid. <

TABLE 2 A Membership Table for the Distributive Property.
A B C BucC AN(BUC) ANB AnC ANB)UMANO)
1 1 1 1 1 1 1 1
1 1 0 1 1 1 0 1
1 0 1 1 1 0 1 1
1 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0
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Once we have proved set identities, we can use them to prove new identities. In particular,
we can apply a string of identities, one in each step, to take us from one side of a desired identity
to the other. It is helpful to explicitly state the identity that is used in each step, as we do in
Example 14.

Let A, B, and C be sets. Show that

AUBNC)=(CUB)NA.

Solution: We have
AUBNC) = AN (BN C) by the first De Morgan law
= A_n (E U E) by the second De Morgan law
= (E U E) N A by the commutative law for intersections

= (E U E) N A by the commutative law for unions. <

We summarize the three different ways for proving set identities in Table 3.

TABLE 3 Methods of Proving Set Identities.

Description Method
Subset method Show that each side of the identity is a subset of the other side.
Membership table For each possible combination of the atomic sets, show that an element

in exactly these atomic sets must either belong to both sides or belong to
neither side

Apply existing identities Start with one side, transform it into the other side using a sequence of

steps by applying an established identity.

2.2.3 Generalized Unions and Intersections

Because unions and intersections of sets satisfy associative laws, the sets AUB U C and
AN BNC are well defined; that is, the meaning of this notation is unambiguous when A, B,
and C are sets. That is, we do not have to use parentheses to indicate which operation comes
first because AUBUC)=AUB)UCand AN(BNC)=(AnNB)NC. Note that AUBU C
contains those elements that are in at least one of the sets A, B, and C, and that A N B N C con-
tains those elements that are in all of A, B, and C. These combinations of the three sets, A, B,
and C, are shown in Figure 5.

Let A=1{0,24628}, B={0,1,2,3,4}, and C=1{0,3,6,9}. What are AUBUC and
ANBNC?

Solution: The set A U B U C contains those elements in at least one of A, B, and C. Hence,
AUBUC=1{0,1,2,3,4,6,8,9}.
The set A N B N C contains those elements in all three of A, B, and C. Thus,

ANBNC = {0}. <
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(a) A U B U Cis shaded. (b) A N B NC is shaded.

FIGURE 5 The union and intersection of A, B, and C.

We can also consider unions and intersections of an arbitrary number of sets. We introduce
these definitions.

Definition 6  The union of a collection of sets is the set that contains those elements that are members of
at least one set in the collection.

We use the notation
n
Al UA2 U - UAn = UAI
i=1

to denote the union of the sets A}, A,, ..., A,

Definition 7  The intersection of a collection of sets is the set that contains those elements that are members
of all the sets in the collection.

We use the notation
n
Al ﬂA2 n--- ﬁAn = mAl
i=1

to denote the intersection of the sets A}, A,, ..., A,. We illustrate generalized unions and inter-
sections with Example 16.

EXAMPLE 16 Fori=1,2,....letA; = {i,i+1,i+2, ... }. Then,
Extra ) u u
E. /
ampres Ua=ti+Li+2..}={1.23..},
i=1 i=1

and

n n
NA=()Gi+Li+2 . }={nn+1ln+2 ..} =A,
i=1 i=1
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We can extend the notation we have introduced for unions and intersections to other families of
sets. In particular, to denote the union of the infinite family of sets A, A,, ..., A, ..., we use the
notation

o
AL UA U UA, U= (A,
i=1
Similarly, the intersection of these sets is denoted by
ANA,N-NA, N = mAi.

More generally, when [ is a set, the notations ﬂieIA,- and UieIAl- are used to denote
the intersection and union of the sets A; for i € I, respectively. Note that we have (,;A; =
{x|VielxeA)}and |J,,, A, ={x|Fielxe€A)}.

iel

Suppose that A, = {1,2,3,...,i} fori=1,2,3, ... . Then,

A=JL2s =123 =27

s
ot

Il
—_
Il
—_

and

A =

1

{1,2,3,...,i} = {1}.

INEDX:

s

5

To see that the union of these sets is the set of positive integers, note that every positive
integer n is in at least one of the sets, because it belongsto A, = {1, 2, ..., n}, and every element
of the sets in the union is a positive integer. To see that the intersection of these sets is the set
{1}, note that the only element that belongs to all the sets A}, A,, ... is 1. To see this note that
A ={l}and1 €A, fori=12,.... |

2.2.4 Computer Representation of Sets

There are various ways to represent sets using a computer. One method is to store the elements
of the set in an unordered fashion. However, if this is done, the operations of computing the
union, intersection, or difference of two sets would be time consuming, because each of these
operations would require a large amount of searching for elements. We will present a method for
storing elements using an arbitrary ordering of the elements of the universal set. This method
of representing sets makes computing combinations of sets easy.

Assume that the universal set U is finite (and of reasonable size so that the number of
elements of U is not larger than the memory size of the computer being used). First, specify an
arbitrary ordering of the elements of U, for instance a,, a,, ..., a,. Represent a subset A of U
with the bit string of length n, where the ith bit in this string is 1 if a; belongs to A and is 0 if g,
does not belong to A. Example 18 illustrates this technique.

Let U=1{1,23,4,56,7,8,9, 10}, and the ordering of elements of U has the elements in in-
creasing order; that is, a; = i. What bit strings represent the subset of all odd integers in U, the
subset of all even integers in U, and the subset of integers not exceeding 5 in U?
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EXAMPLE 19

EXAMPLE 20

Solution: The bit string that represents the set of odd integers in U, namely, {1, 3,5,7,9}, hasa
one bit in the first, third, fifth, seventh, and ninth positions, and a zero elsewhere. It is

10 1010 1010.

(We have split this bit string of length ten into blocks of length four for easy reading.) Similarly,
we represent the subset of all even integers in U, namely, {2, 4, 6, 8, 10}, by the string

01 0101 0101.

The set of all integers in U that do not exceed 5, namely, {1, 2, 3,4, 5}, is represented by the
string

11 1110 0000. b

Using bit strings to represent sets, it is easy to find complements of sets and unions, inter-
sections, and differences of sets. To find the bit string for the complement of a set from the bit
string for that set, we simply change each 1 to a 0 and each O to 1, because x € A if and only if

x & A. Note that this operation corresponds to taking the negation of each bit when we associate
a bit with a truth value—with 1 representing true and O representing false.

We have seen that the bit string for the set {1,3,5,7,9} (with universal set {1, 2,3,4,
5,6,7,89,10}) is

10 1010 1010.

What is the bit string for the complement of this set?

Solution: The bit string for the complement of this set is obtained by replacing Os with 1s and
vice versa. This yields the string

01 0101 0101,

which corresponds to the set {2, 4, 6, 8, 10}. |

To obtain the bit string for the union and intersection of two sets we perform bitwise Boolean
operations on the bit strings representing the two sets. The bit in the ith position of the bit string
of the union is 1 if either of the bits in the ith position in the two strings is 1 (or both are 1), and
is 0 when both bits are 0. Hence, the bit string for the union is the bitwise OR of the bit strings
for the two sets. The bit in the ith position of the bit string of the intersection is 1 when the
bits in the corresponding position in the two strings are both 1, and is 0 when either of the two
bits is O (or both are). Hence, the bit string for the intersection is the bitwise AND of the bit
strings for the two sets.

The bit strings for the sets {1,2,3,4,5} and {1,3,5,7,9} are 11 1110 0000 and 10 1010 1010,
respectively. Use bit strings to find the union and intersection of these sets.

Solution: The bit string for the union of these sets is
11 1110 0000 v 10 1010 1010 = 11 1110 1010,

which corresponds to the set {1,2,3,4,5,7,9}. The bit string for the intersection of these
sets is

11 1110 0000 A 10 1010 1010 = 10 1010 0000,

which corresponds to the set {1, 3, 5}. <
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2.2.5 Multisets

Sometimes the number of times that an element occurs in an unordered collection matters. A
multiset (short for multiple-membership set) is an unordered collection of elements where an
element can occur as a member more than once. We can use the same notation for a multiset
as we do for a set, but each element is listed the number of times it occurs. (Recall that in a set,
an element either belongs to a set or it does not. Listing it more than once does not affect the
membership of this element in the set.) So, the multiset denoted by {a, a, a, b, b} is the multiset
that contains the element a thrice and the element b twice. When we use this notation, it must
be clear that we are working with multisets and not ordinary sets. We can avoid this ambiguity

by using an alternate notation for multisets. The notation {m, - a,, m, - a,, ..., m, - a,} denotes
the multiset with element a; occurring m, times, element a, occurring m, times, and so on.
The numbers m;, i = 1,2, ..., r, are called the multiplicities of the elements a;,, i = 1,2, ..., r.

(Elements not in a multiset are assigned 0 as their multiplicity in this set.) The cardinality of
a multiset is defined to be the sum of the multiplicities of its elements. The word multiset was
introduced by Nicolaas Govert de Bruijn in the 1970s, but the concept dates back to the 12th
century work of the Indian mathematician Bhaskaracharya.

Let P and Q be multisets. The union of the multisets P and Q is the multiset in which the
multiplicity of an element is the maximum of its multiplicities in P and Q. The intersection of P
and Q is the multiset in which the multiplicity of an element is the minimum of its multiplicities
in P and Q. The difference of P and Q is the multiset in which the multiplicity of an element is
the multiplicity of the element in P less its multiplicity in Q unless this difference is negative,
in which case the multiplicity is 0. The sum of P and Q is the multiset in which the multiplic-
ity of an element is the sum of multiplicities in P and Q. The union, intersection, and differ-
ence of P and Q are denoted by P U Q, PN O, and P — Q, respectively (where these operations
should not be confused with the analogous operations for sets). The sum of P and Q is denoted
by P+ Q.

Suppose that P and Q are the multisets {4 -a,1-b,3-c} and {3-a,4-b,2-d}, respectively.
FindPUQ,PNQ,P—Q,and P+ Q.

Solution: We have

PuUQ = {max(4, 3) - ¢, max(1, 4) - b, max(3, 0) - ¢, max(0, 2) - d}
={4-44-b3-¢2-d},

PN Q= {min(4, 3) - a, min(1, 4) - b, min(3, 0) - ¢, min(0, 2) - d}
={3-a1-b0-¢0-d}={3-a1-b},

BHASKARACHARYA (1114-1185) Bhaskaracharya was born in Bijapur in the Indian state of Karnataka.
(Bhaskaracharya’s name was actually Bhaskara, but the title Acharya, which means teacher, was added honorif-
ically.) His father was a well-known scholar and a famous astrologer. Bhaskaracharya was head of the astronom-
ical observatory at Ujjain, the leading Indian mathematical center of the day. He is considered to be the greatest
mathematician of medieval India. Bhaskaracharya made discoveries in many parts of mathematics, including
geometry, plane and spherical trigonometry, algebra, number theory, and combinatorics. Bhaskaracharya de-
scribed the principles of differential calculus, which he applied to astronomical problems, predating the works
of Newton and Leibniz by more than 500 years. In number theory he made many discoveries about Diophantine
equations, the study of the solution in integers of equations, which were rediscovered more than 600 years later.
His greatest work is the Crown of Treatises (Siddhanta Shiromani), which includes four main parts, covering
arithmetic, algebra, mathematics of the planets, and spheres.
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P—0Q={max(4 —3,0)-a max(l —4,0) - b, max(3 -0, 0) - ¢, max(0 — 2, 0) - d}
={1-4,0-b3-¢,0-d} ={1-a,3-c}, and

P+0={4+3)-a,(1+4):-b3+0):-¢,(0+2) d}

={7-a,5-b,3-¢,2-d}.

Exercises

1.

Let A be the set of students who live within one mile of
school and let B be the set of students who walk to classes.
Describe the students in each of these sets.

a) AnB b) AUB

¢c) A-B d) B-A

. Suppose that A is the set of sophomores at your school

and B is the set of students in discrete mathematics at

your school. Express each of these sets in terms of A

and B.

a) the set of sophomores taking discrete mathematics in
your school

b) the set of sophomores at your school who are not tak-
ing discrete mathematics

¢) the set of students at your school who either are
sophomores or are taking discrete mathematics

d) the set of students at your school who either are not
sophomores or are not taking discrete mathematics

. LetA={1,2,34 5} and B = {0,3,6). Find

a) AUB. b) AnB.
¢) A—B. d) B—A.
. LetA={a,b,c,de}andB={a,b,cde,f g h}. Find
a) AUB. b) AnB.
c) A-B. d) B—A.

In Exercises 5-10 assume that A is a subset of some underly-
ing universal set U.

S.

Prove the complementation law in Table 1 by showing
that A = A.

6. Prove the identity laws in Table 1 by showing that
a) Auf=A. b) AnU=A.
7. Prove the domination laws in Table 1 by showing that
a) AuU=U. b) An@g=0.
8. Prove the idempotent laws in Table 1 by showing that
a) AUA =A. b) AnA=A.
9. Prove the complement laws in Table 1 by showing that
a) AUA=U. b) AnA=0.
10. Show that
a) A-0=A. b) d-A=40.
11. Let A and B be sets. Prove the commutative laws from

12.

Table 1 by showing that

a) AUB=BUA.

b) AnB=BnA.

Prove the first absorption law from Table 1 by showing
that if A and B are sets, then A U (A N B) = A.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

Prove the second absorption law from Table 1 by show-
ing that if A and B are sets, then AN (A U B) = A.

Find the sets A and Bif A—B={1,5,7,8}, B—A=
{2,10},and AN B = {3,6,9}.

Prove the second De Morgan law in Table 1 by showing
that if A and B are sets, then A U B = ANB

a) by showing each side is a subset of the other side.

b) using a membership table.

Let A and B be sets. Show that

a) (AnB) CA. b) AC(AUB).

¢) A-BCA. d) An(B-A)=4.

e) AU(B—A)=AUB.

Show that if A and B are sets in a universe U then A C B
ifandonly if AUB = U.

Given sets A and B in a universe U, draw the Venn dia-
grams of each of these sets.
a)A->B={xeU|xeA - xeB}

b)) Ao B={xeU|x€A < x€B}

Show that if A, B, and C are sets, then ANBNC =AU
BuC

a) by showing each side is a subset of the other side.

b) using a membership table.

Let A, B, and C be sets. Show that

a) AUB)C(AUBUQOQO).

b) AnBNC)C (AnB).

¢c) A-B)—-CCA-C.

d) A-C)n(C-B)=0.

e) B-—AU(C-A)=MBUO)-A.

Show that if A and B are sets, then

a) A-B=ANB.

b) ANB) UANB)=A.

Show that if A and B are sets with A C B, then

a) AUB =B.

b) AnB=A.

Prove the first associative law from Table 1 by show-
ing that if A, B, and C are sets, then AUBUC) =
(AuB)UC.

Prove the second associative law from Table 1 by show-
ing that if A, B, and C are sets, then AN(BNC) =
AnB)nC.

Prove the first distributive law from Table 1 by showing
thatif A, B, and C are sets,thenAU (BN C) =(AUB)N
AuO).




26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Let A, B, and C be sets. Show that (A —-B)—C =
A-C)—-B-0).

Let A={0,2,46,8 10}, B={0,1,2,3,4,5,6}, and
C=1{456,7289 10}. Find

a) AnBnC. b) AuUBUC.

¢c) AuB)NC. d AnB)uC.

Draw the Venn diagrams for each of these combinations
of the sets A, B, and C.

a) An(BUC) by AnBnC

00 A-BUA-C)UB-0)

Draw the Venn diagrams for each of these combinations
of the sets A, B, and C.
a) AnB-0)

©) (ANB)UMANC)
Draw the Venn diagrams for each of these combinations
of the sets A, B, C, and D.
a) AnB)u(CnD)
¢c)A-(BnNnCnND)

b) AnB)UMANC)

b) AUBUCUD

What can you say about the sets A and B if we know that
a) AUB=A? b) AnB=A?
¢c) A—-B=A? d) AnB=BnA?

e) A—-B=B-A?

Can you conclude that A = B if A, B, and C are sets such
that

a) AuUC=BuUC(C? b) AnC=BnC?

¢) AUC=BUCandANC=BnC?

Let A and B be subsets of a universal set U. Show that
A C Bifand only if B C A.

Let A, B, and C be sets. Use the the identity A — B =
AN E, which holds for any sets A and B, and the identities
from Table 1 to show that A —B)Nn(B-C)Nn(A—-C)
=0.

Let A, B, and C be sets. Use the identities in Table 1 to
show that AUB)N(BUC)N(AUC)=AnBnC.
Prove or disprove that for all sets A, B, and C, we have

a) AX(BUC)=(AXBUMAXO).

b) AX(BNC)=AXB)NAxCO).

Prove or disprove that for all sets A, B, and C, we have

a) AX(B-C)=(AXB) —(AxC().

b) AX(BUC)=AX(BUO).

The symmetric difference of A and B, denoted by A @ B, is
the set containing those elements in either A or B, but not in
both A and B.

38.
39.

40.

41.

42,
43.

Find the symmetric difference of {1, 3,5} and {1, 2, 3}.
Find the symmetric difference of the set of computer sci-
ence majors at a school and the set of mathematics majors
at this school.

Draw a Venn diagram for the symmetric difference of the
sets A and B.

Show that A@ B=(AUB) —(ANB).

Show that A@ B=(A—B)U (B —A).

Show that if A is a subset of a universal set U, then
a) AGA=40. b) A® @ =A.

) AQU=A. d AGA=U.

44.

45.
*46.

*47.

48.

49.

50.

S1.

*52.

53.

54.

55.

56.

57.

58.
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Show that if A and B are sets, then

a) AOGB=B®A. b) ADB)® B =A.
What can you say about the sets A and Bif A @ B = A?
Determine whether the symmetric difference is associa-
tive; that is, if A, B, and C are sets, does it follow that
ADBOCO)=ADB)BC?

Suppose that A, B, and C are sets such that A@ C =
B & C. Must it be the case that A = B?

If A, B, C, and D are sets, does it follow that (A & B) &
C®D)=ABOC)DB®D)?

If A, B, C, and D are sets, does it follow that (A & B) &
(Ce®D)=ADD)D®BGC)?

Show that if A and B are finite sets, then A U B is a finite
set.

Show that if A is an infinite set, then whenever B is a set,
A U B is also an infinite set.

Show that if A, B, and C are sets, then

[AUBUC| = |A|+|B|+|C| - |ANnB]
—lAnC|-|BnC|+|AnBnC|.

(This is a special case of the inclusion—exclusion princi-
ple, which will be studied in Chapter 8.)
LetA;, ={1,23,...,i}fori=1,23,.... Find

a) OAI-. b) ﬁA,..
i=1 i=1

LetA;={...,-2,-1,0,1,...,i}. Find

a) LnJ A;. b) ﬁ A,
i=1 i=1

Let A; be the set of all nonempty bit strings (that is, bit
strings of length at least one) of length not exceeding i.

Find
n n
a) A, b) (A,
i=1 i=1
Find (J72, A; and (2, A, if for every positive integer i,
a) A, ={ii+1i+2 ..}
b) A, ={0,i}.
¢) A; =(0,1), that is, the set of real numbers x with
O0<x<i
d) A; = (i, ), that is, the set of real numbers x with
x>0

Find |J, A; and (2, A; if for every positive integer i,
a) A= {—i—i+1,...,~1,0,1....i—1,i}.

b) A; = {-i i}.

c) A —i, i], that is, the set of real numbers x with

—-i<x<i

d) A [i,;oj, that is, the set of real numbers x with
X >1.
Suppose that the universal set is U ={1,234,

5,6,7,8,9,10}. Express each of these sets with bit
strings where the ith bit in the string is 1 if i is in the
set and O otherwise.

a) {3,4,5}

b) {1,3,6,10}

c¢) {2,3,4,7,8,9}
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59. Using the same universal set as in the last exercise, find
the set specified by each of these bit strings.

a) 111100 1111
b) 010111 1000
¢) 100000 0001

60. What subsets of a finite universal set do these bit strings
represent?

a) the string with all zeros
b) the string with all ones

61. What is the bit string corresponding to the difference of
two sets?

62. What is the bit string corresponding to the symmetric dif-
ference of two sets?

63. Show how bitwise operations on bit strings can be
used to find these combinations of A = {a, b, c, d, e},
B={bcdgptv}, C={ceiouxyz}, and
D={dehinotuxy}

a) AUB b) AnB
¢) AuD)N(BUCO) d) AUBUCUD

64. How can the union and intersection of n sets that all are
subsets of the universal set U be found using bit strings?

The successor of the set A is the set AU {A}.

65. Find the successors of the following sets.

a) {1,2,3} b) @
o {7} d) {0 {94}}

66. How many elements does the successor of a set with n
elements have?

67. Let A and B be the multisets {3-a,2-b,1-c} and
{2-a,3-b,4-d}, respectively. Find
a) AUB. b) AnB.

d) B-A. e) A+B.

68. Assume thata € A, where A is a set. Which of these state-
ments are true and which are false, where all sets shown
are ordinary sets, and not multisets. Explain each answer.

¢c) A-B.

a) {aq,a}U{a,aa} ={aa a a a}
b) {a,a}U{a a a} ={a}
¢) {ga}n{a aa} ={aa}
d) {a,a}n{a a a} ={a}
e) {a,aa}—{a a}={a}
69. Answer the same questions as posed in Exercise 68 where
all sets are multisets, and not ordinary sets.

70. Suppose that A is the multiset that has as its elements
the types of computer equipment needed by one depart-
ment of a university and the multiplicities are the num-
ber of pieces of each type needed, and B is the analogous
multiset for a second department of the university. For
instance, A could be the multiset { 107 - personal comput-
ers, 44 - routers, 6 - servers} and B could be the multiset
{14 . personal computers, 6 - routers, 2 - mainframes}.

a) What combination of A and B represents the equip-
ment the university should buy assuming both depart-
ments use the same equipment?

b) What combination of A and B represents the equip-
ment that will be used by both departments if both
departments use the same equipment?

¢) What combination of A and B represents the equip-
ment that the second department uses, but the first de-
partment does not, if both departments use the same
equipment?

d) What combination of A and B represents the equip-
ment that the university should purchase if the depart-
ments do not share equipment?

The Jaccard similarity J(A, B) of the finite sets A and
B is J(A,B) = |AnB|/|AUB|, with J(@, #) = 1. The Jac-
card distance d,;(A, B) between A and B equals d;(4, B) =
1 —J(A, B).
71. Find J(A, B) and d,(A, B) for these pairs of sets.
a) A={1,3,5},B={24,6}
b) A=1{1,2,3,4},B={3,4,5,6}
¢c) A={1,2,3,4506},B=1{1,2,3,4,5,6}
d) A={1},B={1,2,3,4,5,6}
72. Prove that each of the properties in parts (a)—(d) holds
whenever A and B are finite sets.
a) JA,A)=1andd;(A,A)=0
b) J(A,B) =J(B,A) and d;(A, B) = d;(B, A)
¢) JA B)=1andd;(A,B)=0ifandonlyif A =B
d) 0<JA,B)<land0<d;(A,B)<1
*%*e) Show that if A, B, and C are sets, then d;(A, C) <
d;(A, B) + d;(B, C). (This inequality is known as the
triangle inequality and together with parts (a), (b),
and (c) implies that d; is a metric.)

Fuzzy sets are used in artificial intelligence. Each element
in the universal set U has a degree of membership, which
is a real number between O and 1 (including 0 and 1), in a
fuzzy set S. The fuzzy set S is denoted by listing the elements

Links) with their degrees of membership (elements with O degree of

membership are not listed). For instance, we write {0.6 Alice,
0.9 Brian, 0.4 Fred, 0.1 Oscar, 0.5 Rita} for the set F (of fa-
mous people) to indicate that Alice has a 0.6 degree of mem-
bership in F, Brian has a 0.9 degree of membership in F, Fred
has a 0.4 degree of membership in F, Oscar has a 0.1 degree
of membership in F, and Rita has a 0.5 degree of membership
in F (so that Brian is the most famous and Oscar is the least
famous of these people). Also suppose that R is the set of rich
people with R = {0.4 Alice, 0.8 Brian, 0.2 Fred, 0.9 Oscar,
0.7 Rita}.

73. The complement of a fuzzy set S is the set S, with the
degree of the membership of an element in S equal to
1 minus the degree of membership of this element in S.
Find F (the fuzzy set of people who are not famous) and
R (the fuzzy set of people who are not rich).

74. The union of two fuzzy sets S and 7 is the fuzzy set SU 7,
where the degree of membership of an element in SU T
is the maximum of the degrees of membership of this el-
ement in S and in 7. Find the fuzzy set F' U R of rich or
famous people.

75. The intersection of two fuzzy sets S and T is the fuzzy
set S N T, where the degree of membership of an element
in SN T is the minimum of the degrees of membership
of this element in § and in 7. Find the fuzzy set F N R of
rich and famous people.
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Functions

Definition 1

Assessment )

Definition 2

2.3.1 Introduction

In many instances we assign to each element of a set a particular element of a second set (which
may be the same as the first). For example, suppose that each student in a discrete mathematics
class is assigned a letter grade from the set {A, B, C, D, F'}. And suppose that the grades are A
for Adams, C for Chou, B for Goodfriend, A for Rodriguez, and F for Stevens. This assignment
of grades is illustrated in Figure 1.

This assignment is an example of a function. The concept of a function is extremely im-
portant in mathematics and computer science. For example, in discrete mathematics functions
are used in the definition of such discrete structures as sequences and strings. Functions are
also used to represent how long it takes a computer to solve problems of a given size. Many
computer programs and subroutines are designed to calculate values of functions. Recursive
functions, which are functions defined in terms of themselves, are used throughout computer
science; they will be studied in Chapter 5. This section reviews the basic concepts involving
functions needed in discrete mathematics.

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one
element of B to each element of A. We write f(a) = b if b is the unique element of B assigned
by the function f to the element a of A. If f is a function from A to B, we write f : A — B.

Remark: Functions are sometimes also called mappings or transformations.

Functions are specified in many different ways. Sometimes we explicitly state the assign-
ments, as in Figure 1. Often we give a formula, such as f(x) = x + 1, to define a function. Other
times we use a computer program to specify a function.

A function f : A — B can also be defined in terms of a relation from A to B. Recall from
Section 2.1 that a relation from A to B is just a subset of A X B. A relation from A to B that
contains one, and only one, ordered pair (g, b) for every element a € A, defines a function f
from A to B. This function is defined by the assignment f(a) = b, where (a, b) is the unique
ordered pair in the relation that has a as its first element.

If f is a function from A to B, we say that A is the domain of f and B is the codomain of f.
If f(a) = b, we say that b is the image of a and a is a preimage of b. The range, or image, of
f is the set of all images of elements of A. Also, if f is a function from A to B, we say that f
maps A to B.

Adams ° >0 A
Chou ° e B
Goodfriend e o C
Rodriguez o oD
Stevens ° -0 I

FIGURE 1 Assignment of grades in a discrete mathematics class.
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EXAMPLE 1

EXAMPLE 2

EXAMPLE 3

Extra
Examples

f
FIGURE 2 The function f maps A to B.

Figure 2 represents a function f from A to B.

Remark: Note that the codomain of a function from A to B is the set of all possible values of
such a function (that is, all elements of B), and the range is the set of all values of f(a) for a € A,
and is always a subset of the codomain. That is, the codomain is the set of possible values of the
function and the range is the set of all elements of the codomain that are achieved as the value
of f for at least one element of the domain.

When we define a function we specify its domain, its codomain, and the mapping of el-
ements of the domain to elements in the codomain. Two functions are equal when they have
the same domain, have the same codomain, and map each element of their common domain
to the same element in their common codomain. Note that if we change either the domain or
the codomain of a function, then we obtain a different function. If we change the mapping of
elements, then we also obtain a different function.

Examples 1-5 provide examples of functions. In each case, we describe the domain, the
codomain, the range, and the assignment of values to elements of the domain.

What are the domain, codomain, and range of the function that assigns grades to students de-
scribed in the first paragraph of the introduction of this section?

Solution: Let G be the function that assigns a grade to a student in our discrete mathematics class.
Note that G(Adams) = A, for instance. The domain of G is the set { Adams, Chou, Goodfriend,
Rodriguez, Stevens}, and the codomain is the set {A, B, C, D, F'}. The range of G is the set
{A, B, C, F}, because each grade except D is assigned to some student. <

Let R be the relation with ordered pairs (Abdul, 22), (Brenda, 24), (Carla, 21), (Desire, 22),
(Eddie, 24), and (Felicia, 22). Here each pair consists of a graduate student and this student’s
age. Specify a function determined by this relation.

Solution: If f 1is a function specified by R, then f(Abdul) =22, f(Brenda) =24,
f(Carla) = 21, f(Desire) = 22, f(Eddie) = 24, and f(Felicia) = 22. [Here, f(x) is the age of x,
where x is a student.] For the domain, we take the set { Abdul, Brenda, Carla, Desire, Eddie,
Felicia}. We also need to specify a codomain, which needs to contain all possible ages of stu-
dents. Because it is highly likely that all students are less than 100 years old, we can take the
set of positive integers less than 100 as the codomain. (Note that we could choose a different
codomain, such as the set of all positive integers or the set of positive integers between 10 and
90, but that would change the function. Using this codomain will also allow us to extend the
function by adding the names and ages of more students later.) The range of the function we
have specified is the set of different ages of these students, which is the set {21, 22, 24}. |

Let f be the function that assigns the last two bits of a bit string of length 2 or greater to that
string. For example, f(11010) = 10. Then, the domain of f is the set of all bit strings of length
2 or greater, and both the codomain and range are the set {00, 01, 10, 11}. |
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Let f: Z — Z assign the square of an integer to this integer. Then, f(x) = x2, where the domain
of f is the set of all integers, the codomain of f is the set of all integers, and the range of f is the
set of all integers that are perfect squares, namely, {0, 1,4, 9, ... }. |

The domain and codomain of functions are often specified in programming languages. For in-
stance, the Java statement

int floor(float real){...}
and the C++ function statement
int function (float x){...}

both tell us that the domain of the floor function is the set of real numbers (represented by
floating point numbers) and its codomain is the set of integers. <

A function is called real-valued if its codomain is the set of real numbers, and it is called
integer-valued if its codomain is the set of integers. Two real-valued functions or two integer-
valued functions with the same domain can be added, as well as multiplied.

Let f; and f, be functions from A to R. Then f; +f, and f; f, are also functions from A to R
defined for all x € A by

(fi +/)@) = fi(x) + fo(x),
(Fi)(x) = f1(0)f, ().

Note that the functions f; + f, and f; f, have been defined by specifying their values at x in terms
of the values of f; and f, at x.

Let f; and f, be functions from R to R such that f;(x) = x? and f,(x) = x — x>. What are the
functions f; + f, and f; f,?

Solution: From the definition of the sum and product of functions, it follows that

(i +H)@) =) +HE) =3+ (x—x*) =x
and

(i@ = (x—x) =x —x*. <
When f is a function from A to B, the image of a subset of A can also be defined.

Let f be a function from A to B and let S be a subset of A. The image of S under the function
f is the subset of B that consists of the images of the elements of S. We denote the image of
S by £(5), so

J@) =A{r|3seS @ =f6)}

We also use the shorthand {f(s) | s € S} to denote this set.
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EXAMPLE 9

Remark: The notation f(S) for the image of the set S under the function f is potentially ambigu-
ous. Here, f(S) denotes a set, and not the value of the function f for the set S.

LetA={a,b,c,d e}and B={1,2, 3,4} withf(a) =2,f(b) = 1,f(c) =4,f(d) = 1,and f(e) =
1. The image of the subset S = {b, ¢, d} is the set f(S) = {1, 4}. |

2.3.2 One-to-One and Onto Functions

Some functions never assign the same value to two different domain elements. These functions
are said to be one-to-one.

A function f is said to be one-to-one, or an injection, if and only if f(a) = f(b) implies that
a = b for all a and b in the domain of f. A function is said to be injective if it is one-to-one.

Note that a function f is one-to-one if and only if f(a) # f(b) whenever a # b. This way of
expressing that f is one-to-one is obtained by taking the contrapositive of the implication in the
definition.

Remark: We can express that f is one-to-one using quantifiers as YaVb(f(a) = f(b) » a = b)
or equivalently YaVb(a # b — f(a) # f(b)), where the universe of discourse is the domain of
the function.

We illustrate this concept by giving examples of functions that are one-to-one and other
functions that are not one-to-one.

Determine whether the function f from {a, b, ¢, d} to {1,2,3,4,5} with f(a) =4, f(b) =5,
f(c) =1, and f(d) = 3 is one-to-one.

Solution: The function f is one-to-one because f takes on different values at the four elements
of its domain. This is illustrated in Figure 3. <
Determine whether the function f(x) = x*> from the set of integers to the set of integers is one-

to-one.

Solution: The function f(x) = x? is not one-to-one because, for instance, (1) =f(—1) = 1, but

1#-1. <
a® o]
be [ )
c e ®3
de e 4
®5

FIGURE 3 A one-to-one function.
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Remark: The function f(x) = x*> with domain Z™ is one-to-one. (See the explanation in Example
12 to see why.) This is a different function from the function in Example 9 because of the
difference in their domains.

Determine whether the function f(x) = x + 1 from the set of real numbers to itself is one-to-one.

Solution: Suppose that x and y are real numbers with f(x) = f(y), so that x + 1 =y + 1. This
means that x = y. Hence, f(x) = x + 1 is a one-to-one function from R to R. <

Suppose that each worker in a group of employees is assigned a job from a set of possible jobs,
each to be done by a single worker. In this situation, the function f that assigns a job to each
worker is one-to-one. To see this, note that if x and y are two different workers, then f(x) # f(y)
because the two workers x and y must be assigned different jobs. <

We now give some conditions that guarantee that a function is one-to-one.

A function f whose domain and codomain are subsets of the set of real numbers is called
increasing if f(x) < f(y), and strictly increasing if f(x) < f(y), whenever x <y and x and y
are in the domain of f. Similarly, f is called decreasing if f(x) > f(y), and strictly decreasing
if f(x) > f(y), whenever x < y and x and y are in the domain of f. (The word strictly in this
definition indicates a strict inequality.)

Remark: A function f is increasing if VxVy(x < y — f(x) < f(y)), strictly increasing if VxVy(x <
y = f(x) < f()), decreasing if VxVy(x <y — f(x) > f()), and strictly decreasing if VxVy(x <
y = f(x) > f(y)), where the universe of discourse is the domain of f.

The function f(x) = x> from R* to R* is strictly increasing. To see this, suppose that x and y
are positive real numbers with x < y. Multiplying both sides of this inequality by x gives x> <
xy. Similarly, multiplying both sides by y gives xy < y>. Hence, f(x) = x> < xy < y* = f(y).
However, the function f(x) = x> from R to the set of nonnegative real numbers is not strictly
increasing because —1 < 0, but f(—1) = (=1)? = 1 is not less than £(0) = 0*> = 0. |

From these definitions, it can be shown (see Exercises 26 and 27) that a function that is
either strictly increasing or strictly decreasing must be one-to-one. However, a function that
is increasing, but not strictly increasing, or decreasing, but not strictly decreasing, is not one-
to-one.

For some functions the range and the codomain are equal. That is, every member of the
codomain is the image of some element of the domain. Functions with this property are called
onto functions.

A function f from A to B is called onfo, or a surjection, if and only if for every element
b € B there is an element a € A with f(a) = b. A function f is called surjective if it is onto.

Remark: A function f is onto if Vy3x(f(x) = y), where the domain for x is the domain of the
function and the domain for y is the codomain of the function.
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FIGURE 4 An onto function.

We now give examples of onto functions and functions that are not onto.

Let f be the function from {a, b, ¢, d} to {1, 2,3} defined by f(a) =3, f(b) =2, f(c) =1, and
f(d) = 3. Is f an onto function?

Solution: Because all three elements of the codomain are images of elements in the domain, we
see that f is onto. This is illustrated in Figure 4. Note that if the codomain were {1, 2, 3, 4}, then
f would not be onto. <

Is the function f(x) = x? from the set of integers to the set of integers onto?

Solution: The function f is not onto because there is no integer x with x> = —1, for instance. <«

Is the function f(x) = x + 1 from the set of integers to the set of integers onto?

Solution: This function is onto, because for every integer y there is an integer x such that f(x) = y.
To see this, note that f(x) = yif and only if x + 1 = y, which holds if and only if x = y — 1. (Note
that y — 1 is also an integer, and so, is in the domain of f.) <

Consider the function f in Example 11 that assigns jobs to workers. The function f is onto if for
every job there is a worker assigned this job. The function f is not onto when there is at least
one job that has no worker assigned it. <

The function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and
onto. We also say that such a function is bijective.

Examples 16 and 17 illustrate the concept of a bijection.

Let f be the function from {a, b, ¢, d} to {1, 2, 3, 4} with f(a) = 4,f(b) = 2,f(c) = 1,and f(d) =
3. Is f a bijection?

Solution: The function f is one-to-one and onto. It is one-to-one because no two values in the do-
main are assigned the same function value. It is onto because all four elements of the codomain
are images of elements in the domain. Hence, f is a bijection. |

Figure 5 displays four functions where the first is one-to-one but not onto, the second is onto
but not one-to-one, the third is both one-to-one and onto, and the fourth is neither one-to-one
nor onto. The fifth correspondence in Figure 5 is not a function, because it sends an element to
two different elements.
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FIGURE 5 Examples of different types of correspondences.

EXAMPLE 18

Definition 9

Suppose that f is a function from a set A to itself. If A is finite, then f is one-to-one if and
only if it is onto. (This follows from the result in Exercise 74.) This is not necessarily the case
if A is infinite (as will be shown in Section 2.5).

Let A be a set. The identity function on A is the function i, : A — A, where

y(x)=x

for all x € A. In other words, the identity function #, is the function that assigns each element
to itself. The function 1, is one-to-one and onto, so it is a bijection. (Note that 7 is the Greek
letter iota.) <

For future reference, we summarize what needs be to shown to establish whether a function
is one-to-one and whether it is onto. It is instructive to review Examples 8—17 in light of this
summary.

Suppose that f : A — B.
To show that f is injective Show that if f(x) = f(y) for arbitrary x, y € A, then x = y.
To show that [ is not injective Find particular elements x, y € A such that x # y and f(x) =

S

To show that [ is surjective Consider an arbitrary element y € B and find an element x € A
such that f(x) = y.

To show that [ is not surjective Find a particular y € B such that f(x) # y for all x € A.

2.3.3 Inverse Functions and Compositions of Functions

Now consider a one-to-one correspondence f from the set A to the set B. Because f is an onto
function, every element of B is the image of some element in A. Furthermore, because f is also
a one-to-one function, every element of B is the image of a unique element of A. Consequently,
we can define a new function from B to A that reverses the correspondence given by f. This
leads to Definition 9.

Let f be a one-to-one correspondence from the set A to the set B. The inverse function of f is
the function that assigns to an element b belonging to B the unique element a in A such that
f(a) = b. The inverse function of f is denoted by f~!. Hence, f~!'(b) = a when f(a) = b.
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FIGURE 6 The function f~1 is the inverse of function f.

Remark: Be sure not to confuse the function f~! with the function 1 /f, which is the function
that assigns to each x in the domain the value 1/f(x). Notice that the latter makes sense only
when f(x) is a nonzero real number.

Figure 6 illustrates the concept of an inverse function.

If a function f is not a one-to-one correspondence, we cannot define an inverse function of
f- When f is not a one-to-one correspondence, either it is not one-to-one or it is not onto. If f is
not one-to-one, some element b in the codomain is the image of more than one element in the
domain. If f is not onto, for some element b in the codomain, no element a in the domain exists
for which f(a) = b. Consequently, if f is not a one-to-one correspondence, we cannot assign to
each element b in the codomain a unique element a in the domain such that f(a) = b (because
for some b there is either more than one such a or no such a).

A one-to-one correspondence is called invertible because we can define an inverse of this
function. A function is not invertible if it is not a one-to-one correspondence, because the
inverse of such a function does not exist.

Let f be the function from {a, b, ¢} to {1, 2, 3} such that f(a) =2, f(b) =3, and f(c) = 1. Is f
invertible, and if it is, what is its inverse?

Solution: The function f is invertible because it is a one-to-one correspondence. The in-
verse function f~! reverses the correspondence given by f, so f~'(1) = ¢, f~'(2) = a, and f~!
(3)=0b. <4

Let f : Z — Z be such that f(x) = x + 1. Is f invertible, and if it is, what is its inverse?

Solution: The function f has an inverse because it is a one-to-one correspondence, as follows
from Examples 10 and 15. To reverse the correspondence, suppose that y is the image of x, so
that y = x + 1. Then x = y — 1. This means that y — 1 is the unique element of Z that is sent to
y by f. Consequently, f~'(y) =y — 1. <

Let f be the function from R to R with f(x) = x%. Is f invertible?
Solution: Because f(—=2) = f(2) = 4, f is not one-to-one. If an inverse function were defined, it

would have to assign two elements to 4. Hence, f is not invertible. (Note we can also show that
[ is not invertible because it is not onto.) <

Sometimes we can restrict the domain or the codomain of a function, or both, to obtain an
invertible function, as Example 22 illustrates.
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Show that if we restrict the function f(x) = x* in Example 21 to a function from the set of all
nonnegative real numbers to the set of all nonnegative real numbers, then f is invertible.

Solution: The function f(x) = x> from the set of nonnegative real numbers to the set of non-
negative real numbers is one-to-one. To see this, note that if f(x) = f(y), then x> = y?, so
x> —y* = (x+y)(x —y) = 0. This means that x+y=0or x —y =0, so x = —y or x = y. Be-
cause both x and y are nonnegative, we must have x = y. So, this function is one-to-one.
Furthermore, f(x) = x2 is onto when the codomain is the set of all nonnegative real numbers, be-
cause each nonnegative real number has a square root. That is, if y is a nonnegative real number,
there exists a nonnegative real number x such that x = \/§ which means that x> = y. Because

the function f(x) = x> from the set of nonnegative real numbers to the set of nonnegative real
numbers is one-to-one and onto, it is invertible. Its inverse is given by the rule f~!(y) = \/§ <

Let g be a function from the set A to the set B and let f be a function from the set B to the
set C. The composition of the functions f and g, denoted for all @ € A by fog, is the function
from A to C defined by

(fog)(a) = f(g(a)).

In other words, fog is the function that assigns to the element a of A the element assigned by
f to g(a). The domain of fog is the domain of g. The range of fog is the image of the range
of g with respect to the function f. That is, to find (fog)(a) we first apply the function g to a
to obtain g(a) and then we apply the function f to the result g(a) to obtain (fog)(a) = f(g(a)).
Note that the composition fog cannot be defined unless the range of g is a subset of the domain
of f. In Figure 7 the composition of functions is shown.

Let g be the function from the set {a, b, c} to itself such that g(a) = b, g(b) = ¢, and g(c) = a.
Let f be the function from the set {a, b, c} to the set {1, 2, 3} such that f(a) = 3, f(b) = 2, and
f(c) = 1. What is the composition of f and g, and what is the composition of g and f?

Solution: The composition fog is defined by (fog)(a) =f(g(a)) =f(b) =2, (fog) (b) =
f(g)) =f(c) =1, and (fog)(c) = f(g(c)) = f(a) = 3.

Note that gof is not defined, because the range of f is not a subset of the domain
of g. <

(fog))

FIGURE 7 The composition of the functions f and g.
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Let f and g be the functions from the set of integers to the set of integers defined by
f(x) =2x+ 3 and g(x) = 3x + 2. What is the composition of f and g? What is the composition
of g and f?

Solution: Both the compositions fog and gof are defined. Moreover,
(fog)(x) =f(g(x) =fBx+2)=20Bx+2)+3=6x+7
and

o)) =g(f(x)) =g2x+3)=32x+3)+2=6x+11. <

Remark: Note that even though fog and gof are defined for the functions f and g in Example 24,
fogand gof are not equal. In other words, the commutative law does not hold for the composition
of functions.

Let f and g be the functions defined by f : R — R* U {0} withf(x) =x?>and g : R* U {0} - R
with g(x) = \/)_c (where \/} is the nonnegative square root of x). What is the function (fog)(x)?

Solution: The domain of (fog)(x) = f(g(x)) is the domain of g, whichis R* U {0}, the set of non-
negative real numbers. If x is a nonnegative real number, we have (fog)(x) = f(g(x)) = f( \/)_c) =

2
(ﬁ) = x. The range of fog is the image of the range of g with respect to the function f. This is

the set R* U {0}, the set of nonnegative real numbers. Summarizing, f : R* U {0} - R* U {0}
and f(g(x)) = x for all x. |

When the composition of a function and its inverse is formed, in either order, an identity
function is obtained. To see this, suppose that f is a one-to-one correspondence from the set A
to the set B. Then the inverse function f~! exists and is a one-to-one correspondence from B
to A. The inverse function reverses the correspondence of the original function, so f~!(b) = a
when f(a) = b, and f(a) = b when f~!(b) = a. Hence,

(fof)a) =f(f@)=f""b) =a,

and

(fof M) = f(f7' (b)) = f(a) = b,

Consequently f~'of =1, and fof ! = 1, where 1, and 1 are the identity functions on the sets
A and B, respectively. That is, (f~!)~! = f.

2.3.4 The Graphs of Functions

We can associate a set of pairs in A X B to each function from A to B. This set of pairs is called
the graph of the function and is often displayed pictorially to aid in understanding the behavior
of the function.

Let f be a function from the set A to the set B. The graph of the function f is the set of ordered
pairs {(a, b) | a € A and f(a) = b}.



EXAMPLE 26

EXAMPLE 27

Definition 12

2.3 Functions 157

From the definition, the graph of a function f from A to B is the subset of A X B containing the
ordered pairs with the second entry equal to the element of B assigned by f to the first entry.
Also, note that the graph of a function f from A to B is the same as the relation from A to B
determined by the function f, as described on Section 2.3.1.

Display the graph of the function f(n) = 2n + 1 from the set of integers to the set of integers.
Solution: The graph of f is the set of ordered pairs of the form (n, 2n + 1), where 7 is an integer.
This graph is displayed in Figure 8. <

Display the graph of the function f(x) = x* from the set of integers to the set of integers.

Solution: The graph of f is the set of ordered pairs of the form (x, f(x)) = (x, x*), where x is an
integer. This graph is displayed in Figure 9. <

2.3.5 Some Important Functions

Next, we introduce two important functions in discrete mathematics, namely, the floor and ceil-
ing functions. Let x be a real number. The floor function rounds x down to the closest integer
less than or equal to x, and the ceiling function rounds x up to the closest integer greater than
or equal to x. These functions are often used when objects are counted. They play an important
role in the analysis of the number of steps used by procedures to solve problems of a particular
size.

The floor function assigns to the real number x the largest integer that is less than or equal to
x. The value of the floor function at x is denoted by |x|. The ceiling function assigns to the
real number x the smallest integer that is greater than or equal to x. The value of the ceiling
function at x is denoted by [x].

Remark: The floor function is often also called the greatest integer function. It is often denoted
by [x].

o o o e o o o ®(-3,9) (3.9e
o o o o o o o
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o o o o o o o

o o o o o o o (=24 2.4)e

O o©O O o o o o -1, e e(1,1)
o o O o o o o (0,0)
FIGURE 8 The graph of FIGURE 9 The graph of f(x) = x?

f@) =2n+1fromZ to Z. from Z to Z.



158

2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

EXAMPLE 28

Links )

EXAMPLE 29

EXAMPLE 30

3+ 3+ o—e
2+ —o 2+ Oo—e
1+ e—o 1 4—o
| | | & | | | | & | | |
T T T i T T T T P T T T
-3 2 -1 1 2 3 -3 2 -1 1 2 3
¥ o—e_ T
—O0-2 + o—e -2+
—o -3 + -3 4

(@ y=|x] (b) y=x]

FIGURE 10 Graphs of the (a) floor and (b) ceiling functions.

These are some values of the floor and ceiling functions:

21=0 =114 =-1[-11=0[3.1) =3, (311 =4,[7| =7, [7] = 7. <

We display the graphs of the floor and ceiling functions in Figure 10. In Figure 10(a) we display
the graph of the floor function |x|. Note that this function has the same value throughout the
interval [n, n + 1), namely n, and then it jumps up to n + 1 when x = n + 1. In Figure 10(b)
we display the graph of the ceiling function [x]. Note that this function has the same value
throughout the interval (n, n + 1], namely n + 1, and then jumps to n + 2 when x is a little larger
than n + 1.

The floor and ceiling functions are useful in a wide variety of applications, including those
involving data storage and data transmission. Consider Examples 29 and 30, typical of basic
calculations done when database and data communications problems are studied.

Data stored on a computer disk or transmitted over a data network are usually represented as a
string of bytes. Each byte is made up of 8 bits. How many bytes are required to encode 100 bits
of data?

Solution: To determine the number of bytes needed, we determine the smallest integer that is at
least as large as the quotient when 100 is divided by 8, the number of bits in a byte. Consequently,
[100/8] = [12.5] = 13 bytes are required. <

In asynchronous transfer mode (ATM) (a communications protocol used on backbone net-
works), data are organized into cells of 53 bytes. How many ATM cells can be transmitted
in 1 minute over a connection that transmits data at the rate of 500 kilobits per second?

Solution: In 1 minute, this connection can transmit 500,000 - 60 = 30,000,000 bits. Each ATM
cell is 53 bytes long, which means that it is 53 - 8 = 424 bits long. To determine the number
of cells that can be transmitted in 1 minute, we determine the largest integer not exceeding the
quotient when 30,000,000 is divided by 424. Consequently, [30,000,000/424| = 70,754 ATM
cells can be transmitted in 1 minute over a 500 kilobit per second connection. <

Table 1, with x denoting a real number, displays some simple but important properties
of the floor and ceiling functions. Because these functions appear so frequently in discrete
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TABLE 1 Useful Properties of the
Floor and Ceiling Functions.
(n is an integer, x is a real number)

(la) |x] =nifandonlyifn <x<n+1
(Ib) [x] =nifandonlyifn—1<x<n
(le) |x|] =nifandonlyifx—1<n<x
(1d) [x] =nifandonlyifx <n<x+1

2) x—1<|x]<x<[x]<x+1

Ba) |-x] =—[x]
(Bb) [—x]=—|x]
(4a) |x+n|=|x]+n
(4b) [x+n]=[x]+n

mathematics, it is useful to look over these identities. Each property in this table can be es-
tablished using the definitions of the floor and ceiling functions. Properties (1a), (1b), (1c), and
(1d) follow directly from these definitions. For example, (1a) states that |x| = n if and only if
the integer n is less than or equal to x and n + 1 is larger than x. This is precisely what it means
for n to be the greatest integer not exceeding x, which is the definition of |x| = n. Properties
(1b), (1c), and (1d) can be established similarly. We will prove property (4a) using a direct proof.

Proof: Suppose that |x| = m, where m is a positive integer. By property (1a), it follows that
m < x <m+ 1. Adding n to all three quantities in this chain of two inequalities shows that
m+n <x+n<m+n+ 1. Using property (1a) again, we see that |[x+n| =m+n = |x]| +n.
This completes the proof. Proofs of the other properties are left as exercises.

The floor and ceiling functions enjoy many other useful properties besides those displayed
in Table 1. There are also many statements about these functions that may appear to be cor-
rect, but actually are not. We will consider statements about the floor and ceiling functions in
Examples 31 and 32.

A useful approach for considering statements about the floor function is to let x = n + ¢,
where n = | x| is an integer, and ¢, the fractional part of x, satisfies the inequality 0 < e < 1.
Similarly, when considering statements about the ceiling function, it is useful to write x = n — €,
where n = [x] is an integer and 0 < e < 1.

Prove that if x is a real number, then |2x| = [x] + [x + %J

Solution: To prove this statement we let x = n + ¢, where n is an integer and 0 < € < 1. There
are two cases to consider, depending on whether ¢ is less than, or greater than or equal to %
(The reason we choose these two cases will be made clear in the proof.)

We first consider the case when 0 < ¢ < % In this case, 2x = 2n + 2¢ and |2x]| = 2n be-
cause 0 < 2e¢ < 1. Similarly, x + % =n+ (% +¢),s0 |x+ %J = n, because 0 < % +¢e < 1. Con-
sequently, |2x| = 2n and |x| + |x + %J =n+n=2n.

Next, we consider the case when % <e<1. In this case, 2x=2n+2e=
2n+ 1)+ 2e—1). Because 0<2e¢—1<1, it follows that |2x] =2n+ 1. Because
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x+3l=ln+G+el=In+1+€-3] and 0<e—31<1, it follows that

lx + %J =n+1. Consequently, [2x] =2n+1 and |x]|+ [x+ %J =n+m+1)=2n+1.
This concludes the proof. <

EXAMPLE 32 Prove or disprove that [x + y| = [x] + [y] for all real numbers x and y.

Solution: Although this statement may appear reasonable, it is false. A counterexample is sup-
plied by x = % and y = % With these values we find that [x + y] = [% + %] =[1] =1, but

W+ =+r=1+1=2 <

There are certain types of functions that will be used throughout the text. These include
polynomial, logarithmic, and exponential functions. A brief review of the properties of these
functions needed in this text is given in Appendix 2. In this book the notation log x will be used
to denote the logarithm to the base 2 of x, because 2 is the base that we will usually use for
logarithms. We will denote logarithms to the base b, where b is any real number greater than 1,
by log, x, and the natural logarithm by In x.

Another function we will use throughout this text is the factorial function /: N — Z*,
denoted by f(n) = n!. The value of f(n) = n! is the product of the first n positive integers, so
fm=1-2---(n—1)-nland f(0) =0! =1].

EXAMPLE 33 We have f(1) =1l =1, f@) =21=1-2=2, f(6) =6!=1-2-3-4.5.6 = 720,
and f(20) = 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20 =
2,432,902,008,176,640,000. <

Example 33 illustrates that the factorial function grows extremely rapidly as n grows.
The rapid growth of the factorial function is made clearer by Stirling’s formula, a result

from higher mathematics that tells us that n! ~ \/2zn(n/e)". Here, we have used the notation
f(n) ~ g(n), which means that the ratio f(n)/g(n) approaches 1 as n grows without bound (that
is, lim,,_,  f(n)/g(n) = 1). The symbol ~ is read “is asymptotic to.” Stirling’s formula is named
after James Stirling, a Scottish mathematician of the eighteenth century.

JAMES STIRLING (1692-1770) James Stirling was born near the town of Stirling, Scotland. His family strongly supported the
Jacobite cause of the Stuarts as an alternative to the British crown. The first information known about James is that he entered Balliol
College, Oxford, on a scholarship in 1711. However, he later lost his scholarship when he refused to pledge his allegiance to the British
crown. The first Jacobean rebellion took place in 1715, and Stirling was accused of communicating with rebels. He was charged with
cursing King George, but he was acquitted of these charges. Even though he could not graduate from Oxford because of his politics, he
remained there for several years. Stirling published his first work, which extended Newton’s work on plane curves, in 1717. He traveled
to Venice, where a chair of mathematics had been promised to him, an appointment that unfortunately fell through. Nevertheless,
Stirling stayed in Venice, continuing his mathematical work. He attended the University of Padua in 1721, and in 1722 he returned to
Glasgow. Stirling apparently fled Italy after learning the secrets of the Italian glass industry, avoiding the efforts of Italian glass makers
to assassinate him to protect their secrets.

In late 1724 Stirling moved to London, staying there 10 years teaching mathematics and actively engaging in research. In 1730
he published Methodus Differentialis, his most important work, presenting results on infinite series, summations, interpolation, and
quadrature. It is in this book that his asymptotic formula for n! appears. Stirling also worked on gravitation and the shape of the earth;
he stated, but did not prove, that the earth is an oblate spheroid. Stirling returned to Scotland in 1735, when he was appointed manager
of a Scottish mining company. He was very successful in this role and even published a paper on the ventilation of mine shafts. He
continued his mathematical research, but at a reduced pace, during his years in the mining industry. Stirling is also noted for surveying
the River Clyde with the goal of creating a series of locks to make it navigable. In 1752 the citizens of Glasgow presented him with a
silver teakettle as a reward for this work.
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2.3.6 Partial Functions

A program designed to evaluate a function may not produce the correct value of the function for
all elements in the domain of this function. For example, a program may not produce a correct
value because evaluating the function may lead to an infinite loop or an overflow. Similarly, in
abstract mathematics, we often want to discuss functions that are defined only for a subset of
the real numbers, such as 1/x, \/)_c and arcsin (x). Also, we may want to use such notions as the
“youngest child” function, which is undefined for a couple having no children, or the “time of
sunrise,” which is undefined for some days above the Arctic Circle. To study such situations,
we use the concept of a partial function.

A partial function f from a set A to a set B is an assignment to each element a in a subset
of A, called the domain of definition of f, of a unique element b in B. The sets A and B are
called the domain and codomain of f, respectively. We say that f is undefined for elements
in A that are not in the domain of definition of f. When the domain of definition of f equals
A, we say that f is a total function.

Remark: We write f : A — B to denote that f is a partial function from A to B. Note that this is
the same notation as is used for functions. The context in which the notation is used determines
whether f is a partial function or a total function.

The function f : Z — R where f(n) = \/ﬁ is a partial function from Z to R where the domain of
definition is the set of nonnegative integers. Note that f is undefined for negative integers. <

1. Why is f not a function from R to R if

a) f(x)=1/x?
b) f(x) = /x?

c) f(x) =xV(2+1)?

2. Determine whether f is a function from Z to R if

a) f(n) = xn.
b) f(n) =

Vn?+1.
©) f(n)=1/(n*—4).

5. Find the domain and range of these functions. Note that
in each case, to find the domain, determine the set of el-
ements assigned values by the function.

a) the function that assigns to each bit string the number
of ones in the string minus the number of zeros in the
string

b) the function that assigns to each bit string twice the
number of zeros in that string

. Determine whether f is a function from the set of all bit

strings to the set of integers if

a) f(S) is the position of a 0 bit in S.

b) f(S) is the number of 1 bits in S.

¢) f(S)isthe smallest integer i such that the ith bit of S is
1 and f(S) = 0 when S is the empty string, the string
with no bits.

. Find the domain and range of these functions. Note that
in each case, to find the domain, determine the set of el-
ements assigned values by the function.

a) the function that assigns to each nonnegative integer
its last digit

b) the function that assigns the next largest integer to a
positive integer

¢) the function that assigns to a bit string the number of
one bits in the string

d) the function that assigns to a bit string the number of
bits in the string

¢) the function that assigns the number of bits left over
when a bit string is split into bytes (which are blocks
of 8 bits)

d) the function that assigns to each positive integer the
largest perfect square not exceeding this integer

. Find the domain and range of these functions.

a) the function that assigns to each pair of positive inte-
gers the first integer of the pair

b) the function that assigns to each positive integer its
largest decimal digit

¢) the function that assigns to a bit string the number of
ones minus the number of zeros in the string

d) the function that assigns to each positive integer the
largest integer not exceeding the square root of the in-
teger

e) the function that assigns to a bit string the longest
string of ones in the string
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7.

10.

11.
12.

13.
14.

15.

16.

Find the domain and range of these functions.

a) the function that assigns to each pair of positive inte-
gers the maximum of these two integers

b) the function that assigns to each positive integer the
number of the digits 0, 1, 2, 3,4, 5, 6,7, 8, 9 that do
not appear as decimal digits of the integer

¢) the function that assigns to a bit string the number of
times the block 11 appears

d) the function that assigns to a bit string the numerical
position of the first 1 in the string and that assigns the
value 0 to a bit string consisting of all Os

. Find these values.

a) [1.1] b) [1.1]
¢ [-0.1] d) [-0.1]

e) [2.99] f) [-2.99]

2 [3+I031] h [L5]+151+5]
. Find these values.

a) 2] b) 1]

¢ 3] d) |3

e [3] f) [-1]

9 [5+131] h [5-13]]

Determine whether each of these functions from
{a, b, c, d} to itself is one-to-one.

a) fla)=b,f(b)=a,f(c)=cf(d)=d

b) f(a) =b,f(b) =b,f(c) =d,f(d)=c

¢) flay=d,f(b)=D,f(c)=c,f(d) =d

Which functions in Exercise 10 are onto?

Determine whether each of these functions from Z to Z
is one-to-one.

a) fm)=n-1 b) f(n)=n>+1

o fo)=n d) fn) = [n/2]

Which functions in Exercise 12 are onto?

Determine whether f: Z X Z — Z is onto if

a) f(m,n)=2m—n.

b) f(m, n) = m* — n?.

¢) f(mn)y=m+n+1.

d) f(m n) = |m| - |n]|.

e) f(mn)= m? — 4.

Determine whether the function f: Z X Z — Z is onto if
a) fmn)=m+n.

b) f(m, n) = m*> + n.

c) f(m,n)=m.

d) f(m,n) = |n|.

e) f(mn)=m-—n.

Consider these functions from the set of students in a

discrete mathematics class. Under what conditions is the
function one-to-one if it assigns to a student his or her

a) mobile phone number.

b) student identification number.
¢) final grade in the class.

d) home town.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Consider these functions from the set of teachers in a

school. Under what conditions is the function one-to-one

if it assigns to a teacher his or her

a) office.

b) assigned bus to chaperone in a group of buses taking
students on a field trip.

c¢) salary.

d) social security number.

Specify a codomain for each of the functions in Exercise

16. Under what conditions is each of these functions with

the codomain you specified onto?

Specify a codomain for each of the functions in Exercise

17. Under what conditions is each of the functions with

the codomain you specified onto?

Give an example of a function from N to N that is

a) one-to-one but not onto.

b) onto but not one-to-one.

¢) both onto and one-to-one (but different from the iden-
tity function).

d) neither one-to-one nor onto.

Give an explicit formula for a function from the set of

integers to the set of positive integers that is

a) one-to-one, but not onto.

b) onto, but not one-to-one.

¢) one-to-one and onto.

d) neither one-to-one nor onto.

Determine whether each of these functions is a bijection

from R to R.

a) f(x) =-3x+4

b) f(x) = -3x*>+7

O f() = (x+1)/(x +2)

d fr)=x +1

Determine whether each of these functions is a bijection

from R to R.

a) f(x) =2x+1

b) f(x) =x*+1

0 f() =2

d) f(x) = +1)/(*+2)

Let f: R — R and let f(x) > O for all x € R. Show that

f(x) is strictly increasing if and only if the function g(x) =

1/f(x) is strictly decreasing.

Let f: R — R and let f(x) > 0 for all x € R. Show that

f(x)is strictly decreasing if and only if the function g(x) =

1/f(x) is strictly increasing.

a) Prove that a strictly increasing function from R to it-
self is one-to-one.

b) Give an example of an increasing function from R to
itself that is not one-to-one.

a) Prove that a strictly decreasing function from R to it-
self is one-to-one.

b) Give an example of a decreasing function from R to
itself that is not one-to-one.

Show that the function f(x) = e* from the set of real num-

bers to the set of real numbers is not invertible, but if the

codomain is restricted to the set of positive real numbers,

the resulting function is invertible.



29.

30.

31.

32.

33.

34.

35.

*36.

*37.

38.

39.

40.

41.

42,

43.

Show that the function f(x) = |x| from the set of real
numbers to the set of nonnegative real numbers is not in-
vertible, but if the domain is restricted to the set of non-
negative real numbers, the resulting function is invertible.
Let S ={-1,0,2,4,7}. Find f(S) if

a) f(x)=1. b) f(x) =2x+ 1.

¢ fx) = [x/5]. d) f) =02+ 1)/3].

Let f(x) = |x*/3]. Find f(S) if

a) S=1{-2,-1,0,1,2,3}.

b) S={0,1,23,4,5}.

¢) S={1,5711}.

d) S={2,610, 14}.

Let f(x) = 2x where the domain is the set of real numbers.
What is

a) f(1)? b) f(N)? o) f(R)?

Suppose that g is a function from A to B and f is a func-
tion from B to C.

a) Show that if both f and g are one-to-one functions,
then fog is also one-to-one.

b) Show that if both f and g are onto functions, then fog
is also onto.

Suppose that g is a function from A to B and f is a func-
tion from B to C. Prove each of these statements.

a) If fog is onto, then f must also be onto.

b) If fog is one-to-one, then g must also be one-to-one.

¢) If fog is a bijection, then g is onto if and only if f is
one-to-one.

Find an example of functions f and g such that fog is a

bijection, but g is not onto and f is not one-to-one.

If f and fog are one-to-one, does it follow that g is one-
to-one? Justify your answer.

If f and fog are onto, does it follow that g is onto? Justify
your answer.

Find fog and gof, where f(x) = x*> + 1 and g(x) = x + 2,
are functions from R to R.

Find f + g and fg for the functions f and g given in Exer-
cise 36.

Let f(x) = ax + b and g(x) = cx + d, where a, b, ¢, and d
are constants. Determine necessary and sufficient condi-
tions on the constants a, b, ¢, and d so that fog = gof.

Show that the function f(x) = ax + b from R to R, where
a and b are constants with a # 0 is invertible, and find the
inverse of f.

Let f be a function from the set A to the set B. Let S and
T be subsets of A. Show that

a) f(SUT) =f(S)Uf(D).
b) f(SNT) Cf(S)Nf(D).

a) Give an example to show that the inclusion in part (b)
in Exercise 42 may be proper.
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b) Show that if f is one-to-one, the inclusion in part (b)
in Exercise 42 is an equality.

Let f be a function from the set A to the set B. Let S be a
subset of B. We define the inverse image of S to be the sub-
set of A whose elements are precisely all preimages of all
elements of S. We denote the inverse image of S by f~1(S),
sof~1(S) = {a € A | f(a) € S}. [Beware: The notation f~! is
used in two different ways. Do not confuse the notation intro-
duced here with the notation f~!(y) for the value at y of the
inverse of the invertible function f. Notice also that f~1(S),
the inverse image of the set S, makes sense for all functions f,
not just invertible functions.]
44. Let f be the function from R to R defined by

f(x) = x*. Find

a) fI({1}). b) f1({x|0<x<1}).

o) f7({x x> 4.
45. Let g(x) = |x]. Find

a) g'({0)). b) ¢7'({=1,0,1}).

¢ g'({x]0<x<1}).
46. Let f be a function from A to B. Let S and T be subsets of

B. Show that

a) [FSuD) =S ufND.

b) 1SN =f S NfND).
47. Let f be a function from A to B. Let S be a subset of B.

Show that £~1(S) = £-1(S).

48. Show that |x + %J is the closest integer to the number x,
except when x is midway between two integers, when it
is the larger of these two integers.

49. Show that [x — %] is the closest integer to the number x,
except when x is midway between two integers, when it
is the smaller of these two integers.

50. Show that if x is a real number, then [x] — |x] = 1 ifxis
not an integer and [x]| — |x] = 0 if x is an integer.

51. Show that if x is a real number, then x — 1 < |x| <x <
[x] <x+1.

52. Show that if x is a real number and m is an integer, then
[x+m] = [x] +m.

53. Show that if x is a real number and 7 is an integer, then
a) x <nifandonlyif [x] <n.

b) n < xifand only if n < [x].

54. Show that if x is a real number and # is an integer, then
a) x <nifandonly if [x] < n.
b) n <xifandonlyifn < |x].

55. Prove that if n is an integer, then |n/2| = n/2 if nis even
and (n — 1)/2 if n is odd.

56. Prove that if x is a real number, then |—x| = —[x] and
[—x] = —[x].

57. The function INT is found on some calculators, where
INT(x) = [x| when x is a nonnegative real number and
INT(x) = [x] when x is a negative real number. Show
that this INT function satisfies the identity INT(—x) =
—INT(x).
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58.

59.

60.

61.

62.

63.

64.
65.

66.
67.

68.

69.

70.

71.
72.

73.

Let a and b be real numbers with a < b. Use the floor
and/or ceiling functions to express the number of inte-
gers n that satisfy the inequality a < n < b.

Let a and b be real numbers with a < b. Use the floor
and/or ceiling functions to express the number of inte-
gers n that satisfy the inequality a < n < b.

How many bytes are required to encode n bits of data
where n equals

a) 4?7 b) 10? ¢) 500? d) 3000?

How many bytes are required to encode n bits of data
where n equals

a)7? b) 17? ¢) 1001? d) 28,8007
How many ATM cells (described in Example 30) can be
transmitted in 10 seconds over a link operating at the fol-
lowing rates?

a) 128 kilobits per second (1 kilobit = 1000 bits)

b) 300 kilobits per second

¢) 1 megabit per second (1 megabit = 1,000,000 bits)
Data are transmitted over a particular Ethernet network
in blocks of 1500 octets (blocks of 8 bits). How many
blocks are required to transmit the following amounts of
data over this Ethernet network? (Note that a byte is a
synonym for an octet, a kilobyte is 1000 bytes, and a
megabyte is 1,000,000 bytes.)

a) 150 kilobytes of data

b) 384 kilobytes of data

¢) 1.544 megabytes of data

d) 45.3 megabytes of data

Draw the graph of the functionf(n) = 1 — n? from Z to Z.
Draw the graph of the function f(x) = [2x] from R
to R.

Draw the graph of the function f(x) = |x/2]| from Rto R.

Draw the graph of the function f(x) = |x| + [x/2] from
RtoR.

Draw the graph of the function f(x) = [x] + [x/2] from
RtoR.

Draw graphs of each of these functions.

a) f(x) = |x+ 1] b) f() = [2x+1]

c) f(x)=[x/3] d) f(x) =[1/x]

e) f(x)=[x-2]+|x+2] ) .

£ f0) = 2xI[x/2] 8 f0)=Tlx—1]+1]
Draw graphs of each of these functions.

a) f(x) = [3x—2] b) f(x) = fO 2x]

¢ fx)=|-1/x] d) f(x) =

e) f(x)=[x/2] [x/ZJ1 f) fx) = L /2] + [x/2]
g) 100 =2 x/2] +1]

Find the inverse function of f(x) = x> + 1.

Suppose that f is an invertible function from Y to Z and
g is an invertible function from X to Y. Show that the
inverse of the composition fog is given by (fog)™!' =
g of .

Let S be a subset of a universal set U. The character-
istic function f; of S is the function from U to the set
{0, 1} such that fg(x) = 1 if x belongs to S and f(x) =0
if x does not belong to S. Let A and B be sets. Show that
for all x € U,

L5774,

75.

76.

71.

78.

79.

80.

*82.

a) finp() =f,(0) - f(x)

b) faup(x) = f4(x) +fp(x) — f1(x) - f(x)

¢) 200 =1=1,()

D) fagp(®) =10 + fp(x) — 2f, ()f5(x)

Suppose that f is a function from A to B, where A and B

are finite sets with |A| = |B|. Show that f is one-to-one if

and only if it is onto.

Prove or disprove each of these statements about the floor

and ceiling functions.

a) [|x]] = [x] for all real numbers x.

b) |2x| = 2|x| whenever x is a real number.

¢) [x]+[y] —[x+y] =0 or 1 whenever x and y are
real numbers.

d) [xy] = [x] [y] for all real numbers x and y.
X X+
e) 3 = for all real numbers x.

Prove or disprove each of these statements about the floor

and ceiling functions.

a) | [x] | = [x] for all real numbers x.

b) |x+y| = x| + |y] for all real numbers x and y.

¢) [[x/2] /2] = [x/4] for all real numbers x.

d) [VIx]] = L\/)_CJ for all positive real numbers x.

e) |x|+ [y]+ [x+y] <[2x] + [2y] for all real num-
bers x and y.

Prove that if x is a positive real number, then

a) [VIx]]=[vx]
b) [VIx]1=Tvx1.

Let x be a real number.

L] + Lx+ 5]+ Lx+ 2]

For each of these partial functions, determine its domain,

codomain, domain of definition, and the set of values for

which it is undefined. Also, determine whether it is a total

function.

a) [:Z->R,f(n)=1/n

b) f:Z — Z, f(n) = [n/2]

¢©) [1ZXZ - Q,f(mn)=m/n

d) f:ZXZ — Z,f(mn)=mn

e) f1ZXZ->Z,fimn)=m—nifm>n

a) Show that a partial function from A to B can be viewed
as a function f* from A to BU {u}, where u is not an
element of B and

Show that

[3x] =

f(a) if a belongs to the domain
of definition of f
u  if f is undefined at a.

@)=

b) Using the construction in (a), find the function f* cor-
responding to each partial function in Exercise 79.

. a) Show that if a set S has cardinality m, where m is a

positive integer, then there is a one-to-one correspon-
dence between S and the set {1,2, ..., m}.

b) Show that if S and T are two sets each with m ele-
ments, where m is a positive integer, then there is a
one-to-one correspondence between S and 7.

Show that a set S is infinite if and only if there is a proper

subset A of S such that there is a one-to-one correspon-

dence between A and S.
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Sequences and Summations

Definition 1

EXAMPLE 1

2.4.1 Introduction

Sequences are ordered lists of elements, used in discrete mathematics in many ways. For ex-
ample, they can be used to represent solutions to certain counting problems, as we will see in
Chapter 8. They are also an important data structure in computer science. We will often need
to work with sums of terms of sequences in our study of discrete mathematics. This section
reviews the use of summation notation, basic properties of summations, and formulas for the
sums of terms of some particular types of sequences.

The terms of a sequence can be specified by providing a formula for each term of the se-
quence. In this section we describe another way to specify the terms of a sequence using a
recurrence relation, which expresses each term as a combination of the previous terms. We will
introduce one method, known as iteration, for finding a closed formula for the terms of a se-
quence specified via a recurrence relation. Identifying a sequence when the first few terms are
provided is a useful skill when solving problems in discrete mathematics. We will provide some
tips, including a useful tool on the Web, for doing so.

2.4.2 Sequences

A sequence is a discrete structure used to represent an ordered list. For example, 1, 2, 3, 5, 8 is
a sequence with five terms and 1, 3, 9, 27, 81, ..., 3", ... is an infinite sequence.

A sequence is a function from a subset of the set of integers (usually either the set {0, 1,2, ...}
orthe set {1,2,3,...}) toasetS. We use the notation a,, to denote the image of the integer n.
We call a,, a term of the sequence.

We use the notation {a,} to describe the sequence. (Note that a, represents an individual
term of the sequence {a,}. Be aware that the notation {a,} for a sequence conflicts with the
notation for a set. However, the context in which we use this notation will always make it clear
when we are dealing with sets and when we are dealing with sequences. Moreover, although we
have used the letter a in the notation for a sequence, other letters or expressions may be used
depending on the sequence under consideration. That is, the choice of the letter a is arbitrary.)

We describe sequences by listing the terms of the sequence in order of increasing subscripts.

Consider the sequence {a, }, where

The list of the terms of this sequence, beginning with a,, namely,
al, az, a3, a4, ceey
starts with

1, <

NP

1
13’

N =
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Definition 2

EXAMPLE 2

Definition 3

EXAMPLE 3

EXAMPLE 4

A geometric progression is a sequence of the form
2
a,ar,ar”, ...,ar", ...

where the initial term a and the common ratio r are real numbers.

Remark: A geometric progression is a discrete analogue of the exponential function f(x) = ar*.
The sequences {b,} with b, = (-1)", {c,} with ¢, =2 5", and {d,} withd, =6 - (1/3)" are

geometric progressions with initial term and common ratio equal to 1 and —1, 2 and 5, and 6
and 1/3, respectively, if we start at n = 0. The list of terms by, b, by, bs, by, ... begins with

L-1,1,-1,1,...;
the list of terms ¢, ¢, ¢,, €3, ¢y, ... begins with
2, 10, 50, 250, 1250, ... ;
and the list of terms d,,, d,, d,, ds, d,, ... begins with

2

6,25 % = ..
27 <

>

W
Nl )

An arithmetic progression is a sequence of the form
aa+da+2d ...,a+nd ...

where the initial term a and the common difference d are real numbers.

Remark: An arithmetic progression is a discrete analogue of the linear function f(x) = dx + a.

The sequences {s,} with s, = —1 +4n and {z,} with t, = 7 — 3n are both arithmetic progres-
sions with initial terms and common differences equal to —1 and 4, and 7 and —3, respectively,
if we start at n = 0. The list of terms s, 5, §,, 53, ... begins with

-1,3,7,11, ...,
and the list of terms 1, t,, t,, 3, ... begins with

7,41,-2,.... |

Sequences of the form a,, a,, ..., a, are often used in computer science. These finite se-
quences are also called strings. This string is also denoted by a,a, ... a,,. (Recall that bit strings,
which are finite sequences of bits, were introduced in Section 1.1.) The length of a string is the
number of terms in this string. The empty string, denoted by 4, is the string that has no terms.
The empty string has length zero.

The string abcd is a string of length four. <
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EXAMPLE 5

EXAMPLE 6

Hop along to Chapter 8
to learn how to find a
formula for the
Fibonacci numbers.

Links )

Definition 5
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2.4.3 Recurrence Relations

In Examples 1-3 we specified sequences by providing explicit formulas for their terms. There
are many other ways to specify a sequence. For example, another way to specify a sequence is
to provide one or more initial terms together with a rule for determining subsequent terms from
those that precede them.

A recurrence relation for the sequence {a,} is an equation that expresses a, in terms of
one or more of the previous terms of the sequence, namely, a,, a,, ..., a,_,, for all integers n
withn > n,, where n is a nonnegative integer. A sequence is called a solution of a recurrence
relation if its terms satisfy the recurrence relation. (A recurrence relation is said to recursively
define a sequence. We will explain this alternative terminology in Chapter 5.)

Let {a,} be a sequence that satisfies the recurrence relation a, = a,_; +3 forn=1,23, ...,
and suppose that a, = 2. What are a,, a,, and a;?

Solution: We see from the recurrence relation that a; = gy + 3 = 2 + 3 = 5. It then follows that
a,=5+3=8anda; =8+3=11. <

Let {a, } be a sequence that satisfies the recurrence relation a, = a
and suppose that a, = 3 and a; = 5. What are a, and a;?

n—1 _an_2 fOI‘I’l= 2, 3,4, vy

Solution: We see from the recurrence relation thata, =a, —ay=5-3=2anda; =a, —a, =
2 —5 = —3. We can find a4, a5, and each successive term in a similar way. |

The initial conditions for a recursively defined sequence specify the terms that precede the
first term where the recurrence relation takes effect. For instance, the initial condition in Ex-
ample 5 is a; = 2, and the initial conditions in Example 6 are a, = 3 and a; = 5. Using mathe-
matical induction, a proof technique introduced in Chapter 5, it can be shown that a recurrence
relation together with its initial conditions determines a unique solution.

Next, we define a particularly useful sequence defined by a recurrence relation, known as
the Fibonacci sequence, after the Italian mathematician Fibonacci who was born in the 12th
century (see Chapter 5 for his biography). We will study this sequence in depth in Chapters
5 and 8, where we will see why it is important for many applications, including modeling the
population growth of rabbits. Fibonacci numbers occur naturally in the structures of plants and
animals, such as in the arrangement of sunflower seeds in a seed head and in the shell of the
chambered nautilus.

The Fibonacci sequence, f, f}, f>, ..., is defined by the initial conditions f, = 0, f; = 1, and
the recurrence relation

fn =f;1—1 +fn—2

forn=2,34,....
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EXAMPLE 7

EXAMPLE 8

EXAMPLE 9

EXAMPLE 10

Find the Fibonacci numbers f,, f5, 14, fs, and fg.

Solution: The recurrence relation for the Fibonacci sequence tells us that we find successive
terms by adding the previous two terms. Because the initial conditions tell us that f;, = 0 and
f1 = 1, using the recurrence relation in the definition we find that

Lh=h+h=1+0=1
L=h+fi=14+1=2
fa=h+th=2+1=3
fs=h+tfi=3+2=5,
Jo=fs+fi=5+3=8. <

Suppose that {a,} is the sequence of integers defined by a, = n!, the value of the facto-

rial function at the integer n, where n =1,2,3,.... Because n! =n((n - 1)(n—-2)...2-1) =
n(n—1)! =na,_;, we see that the sequence of factorials satisfies the recurrence relation
a, = na,_,, together with the initial condition a; = 1. <

We say that we have solved the recurrence relation together with the initial conditions when
we find an explicit formula, called a closed formula, for the terms of the sequence.

Determine whether the sequence {