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Preface

Very large-scale integration (VLSI) is a level of integration wherein millions of
transistors and discrete components with their interconnections are integrated into
a semiconductor substrate. Since the invention of the integrated circuit in 1959, its
manufacturing process evolved several stages from small-scale integration (SSI) to
medium-scale integration (MSI), and finally came up with VLSI in the late 1980s.
Advancement in the VLSI technology has led to the development of high-speed com-
plex electronic circuits in the deep submicron and nanoscale regime. Nanotechnology
or nanoscience cannot be viewed as a discipline similar to electronics, semiconduc-
tor technology, chemical technology, biotechnology, etc., which represent conver-
gence of disciplines in some sense. It implies that the readers of this area should be
in a position to pass over the boundaries of all disciplines and come up with a new
area of emerging electronics.

Over the past decades, due to shrinking feature size and increasing clock fre-
quency, the interconnections in the VLSI chip have primarily played an important
role in determining the overall performance. In the recent research scenario, the
interconnect delay dominates over the gate delay. With ever-increasing lengths inside
a chip, global interconnects are prone to large interconnect delays, signal integrity
issues, and higher current densities. Therefore, most of the conventional materials
(such as Al or Cu) are susceptible to electromigration due to high current density that
substantially affects the reliability of high-speed VLSI circuits. To avoid such prob-
lems, several nonsilicon or emerging devices are currently advocated as prospec-
tive material solutions in current and future nanotechnologies. Therefore, this book
presents state-of-the art technology solutions for current-edge VLSI and nanoscale
technology. In this book, a complete demonstration of electronics designing has been
presented starting with the early-stage semiconductor devices and applications, and
then moving on to the problem of scaling and VLSI fabrication, MOSFET modelling
aspects, analog and digital VLSI designing, FPGA implementation using Verilog,
VLSI testing and reliability, recent on-chip interconnect problems, emerging tech-
nologies, and nonsilicon (nanoscale) transistors, etc.

The detailed rundown of the subject depicted in each chapter is as follows:

CHAPTER 1 SEMICONDUCTOR DEVICES AND APPLICATIONS

This chapter starts with the semiconductor device physics and covers basic electronic
devices and their evolution. Apart from this, in order to enhance the reader’s under-
standing, emerging device technologies like fin field-effect transistors (FinFETs),
Tunnel FETs (TFETs), and carbon nanotube field-effect transistors (CNTFETS) are
also introduced. The functionality of electronic devices requires a basic understand-
ing of electrons movement and physics involved in it. The movement of electrons
and the probability of finding them in solids led to the identification of the differ-
ence between conductors, semiconductors, and insulators. Electrons and holes as
the majority charge carriers decide whether the material is a P-type or an N-type

XXXVii
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semiconductor. A diode, as the first two-terminal device, works as a switch and
shows a wide range of applications by using PN-junction mechanism. Later, three-
terminal devices like bipolar junction transistor (BJT) and junction gate field-effect
transistor (JFET) are introduced and their characteristics are analyzed. Further,
metal oxide silicon field effect transistor (MOSFET) as a junctionless device is intro-
duced to overcome the limitations of BJT and JFET. Finally, the emerging device
technologies beyond MOSFET are discussed.

CHAPTER 2 VLSI SCALING AND FABRICATION

In recent years, the fabrication house has played a major role in the VLSI industry to
design next-generation high-speed, high-performance integrated circuits (ICs). For a
better understanding of fabrication aspects, this chapter briefly explains the history
and concept of VLSI scaling from the scratch. Based on Moore’s law, the journey of
ICs including analog and digital circuits has been explored. To understand the fabri-
cation process, it starts with a brief overview of the silicon wafer, and consequently
demonstrates the production of raw material with detailed major fabrication steps
involved in the VLSI industry. Furthermore, the basic idea of the complementary
metal oxide semiconductor (CMOS) technology is also incorporated in this chapter
to have the understanding of the N- and P-well CMOS process. In addition, twin-
tube process of the CMOS technology is explored in detail.

CHAPTER 3 MOSFET MODELING

The primary focus of this chapter is to provide a basic understanding of MOSFET
modeling. The MOSFET is the fundamental backbone of the CMOS digital inte-
grated circuits. Compared to BJT, the fabrication process is less complex and
requires less processing step and silicon area compared to BJT. In this chapter, a
detailed investigation of basic structure and electrical behavior of NMOS (n-channel
MOS) and PMOS (p-channel MOS) are examined to understand the advantages of
the MOS transistor that is widely used as a switching device in LSI and VLSI cir-
cuits. Subsequently, the MOSFET model is required to understand the circuit simu-
lation that is classified as the (i) DC model or a steady state model, wherein the
applied voltage remains constant and does not vary with time; (ii) dynamic or AC
model, wherein the applied voltage does not remain constant but varies with time.
In this chapter, the different regions of device operation of a DC MOS transistor and
dynamic models are discussed. In addition , this chapter also includes the implemen-
tation of the MOSFET model in Berkeley SPICE2G and a higher version. The four
different MOSFET models of Berkeley SPICE are investigated for varying complex-
ity and accuracy.

CHAPTER 4 COMBINATIONAL AND SEQUENTIAL DESIGN IN CMOS

This chapter primarily introduces the CMOS inverter design and analyses its per-
formance. Static and dynamic behavior of the CMOS inverter is studied. In static
behavior, the voltage transfer characteristic of CMOS is presented and is used to
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define the noise margins. Dynamic behavior of the inverter is elaborated with propa-
gation delay and power consumption metrics. By using both power and delay, the
energy metric of CMOS inverter is introduced. Later, CMOS-based combinational
and sequential circuits are introduced based on which the static CMOS gates are
designed. Moreover, the ratioed, pass transistor, and dynamic logic are introduced
that are alternative to static CMOS designs. Metrics for a sequential design like setup
time, hold time, and bistability principle are introduced. Later, CMOS-based SR
latch and flip-flop circuit designs are presented. These designs are further utilized to
develop D flip-flop.

CHAPTER 5 ANALOG CIRCUIT DESIGN

This chapter starts with the motivation behind the learning of CMOS analog design.
Later, MOSFET physics is described and device analog metrics are introduced.
MOSFET-based single- and multi-stage amplifiers are introduced and different ana-
log metrics like gain, input, and output resistances are analyzed. Different current
mirror circuits are considered and analyzed. Difference between single-ended and
differential circuits is studied. This concept further introduces basic differential
pair and analyzes its gain. Later, CMOS based op-amp and different stages of it are
introduced. The frequency response of op-amp is demonstrated to get basic ana-
log metrics. CMOS-based comparators are designed and analyzed. Finally, differ-
ent CMOS-based analog-to-digital converters and digital-to-analog converters are
presented.

CHAPTER 6 DIGITAL DESIGN THROUGH VERILOG HDL

This chapter focuses on Verilog hardware description language (HDL) and explains
the features of the hardware description language. First, basic concepts including
lexical tokens, data types, and operators are introduced. Then, the basic syntax of
the module and the test bench is presented with examples. Different modeling styles
of Verilog including structural, dataflow, and behavioral styles are reviewed with
examples. Initial and always blocks are presented and the difference between them
has been analyzed. Combinational and sequential circuits are exemplified to explain
the different modeling styles. Finally, exercises are provided to enhance the reader’s
understanding and problem-solving abilities.

CHAPTER 7 VLSI INTERCONNECT AND IMPLEMENTATION

This chapter critically presents in-depth analysis to understand the behavior of inter-
connects in the modern VLSI IC technology. It starts with the conventional inter-
connect technique and problem arises with the conventional material. Based on the
technology scaling, different types of electrical circuit modeling has been discussed
in detail for resistive and capacitive parasitics. These interconnect parasitics primar-
ily affects the signal integrity, power dissipation, and crosstalk performance of an IC.
Furthermore, a number of delay models present a comprehensive demonstration of
interconnect performance and propose the next generation interconnect technology.
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CHAPTER 8 VLSI DESIGN AND TESTABILITY

This chapter introduces the behavior of circuits that provides a proper diagnostic by
generating a test pattern and comparing it with a golden machine. As the testing of
circuit and devices in the VLSI industry is an essential step due to miniaturization
of devices that increase in complexity, predefined test models are used to observe
the faults and rectify them based on the appropriate models. In the current VLSI
industry, the designers add some extra circuitry to lower the cost of tests, which
increases the testing procedure, enhances the diagnostic process, and makes them
more efficient and accurate.

CHAPTER 9 NANOMATERIALS AND APPLICATIONS

This chapter is designed to make the readers aware about the technology advance-
ment to help them work in the area of nanomaterials. This chapter begins with the
basic knowledge of carbon nanotubes (CNTs) and graphene nanoribbons (GNRs)
that are carbon allotropes. These materials have hexagonal arrangements of carbon
atoms and possess unique electrical, mechanical, thermal, and optical properties.
For a better understanding, the use of CNTs and GNRs is demonstrated in different
fabrication approaches to produce high-quality nanomaterials. Afterward, equiva-
lent electrical modeling of CNT and GNR is presented based on the geometrical
structure. The performance in terms of propagation delay, crosstalk, and power
dissipation is analyzed using industry standard HSPICE to understand its impor-
tance as the next-generation interconnect application. In addition, active and passive
shielding for CNT and GNR are demonstrated to observe the impact of shielding to
enhance the performance in deep nanotechnology. Subsequently, other applications
of nanomaterials in nanosensors, nanofilter, bullet-proof combat jacket, fire extin-
guisher, medical technology, etc are discussed.

CHAPTER 10 NANOSCALE TRANSISTORS

This chapter presents different applications by exploring the characteristics of emerg-
ing device technologies that are alternative to the existing CMOS VLSI technology.
Recently, many beyond-CMOS devices such as Tunnel FETs (TFETs), Negative
Capacitance FETs (NCFETs), Carbon Nanotube FETs, Graphene FETs, and STT-
MRAMs have emerged with promising speed and ultra-low power consumption. The
structure and different fabrication aspects of these nonsilicon transistors are explored
in this chapter. Additionally, a comparative study is also presented to ensure several
benefits of the nonsilicon transistors with the existing CMOS technology.
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’I Semiconductor
Physics and Devices

1.1 INTRODUCTION

Semiconductors have revolutionized the field of electronics and play a prominent
role in our day-to-day life. The seed of development of these modern solid-state
semiconductors dates back to early 1930s. Each electronic device that we see around
is made up of semiconductors. We wouldn’t have been able to achieve these remark-
able results without them.

1.1.1 CoNDUCTION IN SoOLIDS

The form in which matter exists is called the state of matter. Matter exists in many
distinct states of which three states are well known and important. They are sol-
ids, liquids, and gases, and other states include plasma, Bose—Einstein condensates,
degenerate matter, photonic matter, etc. These other states occur only in extreme
conditions of pressure, temperature, and energy. The main difference in the structure
of each state lies in the densities of the particles. The density of particles is highest
in solids and lowest in gases. Figure 1.1 shows the alignment of particles in different
states of matter and the processes through which we can convert one state of matter
to another.

Solids are further classified into three types based upon the distance between
their valence band and conduction band. This distance is called the bandgap [1]. The
electrical conductivity of the substance depends upon the bandgap of the material.
We say that the substance is able to conduct if there are free electrons in the conduc-
tion band. When energy is supplied to the elements, the electrons in the valence band
get excited and jump up into the conduction band, allowing the passage of electricity
through the substance. In conductive materials, no bandgap exists, due to which elec-
trons can move easily between their valence band and the conduction band. Unlike
conductors, insulators have a huge bandgap between the conduction and the valence
band. The valence band remains full since no movement of electrons occurs, and as
a result, the conduction band remains empty as well. In semiconductor materials,
the bandgap between the conduction band and the valence band is smaller. At room
temperature, there is enough energy accessible to displace a few electrons from the
valence band into the conduction band. As temperature increases, the conductivity
of a semiconductor material increases. Figure 1.2 shows the bandgaps in conductors,
semiconductors, and insulators, respectively.
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FIGURE 1.1  Alignment of particles in different states of matter.

1.1.2 CoNDUCTORS, INSULATORS, AND SEMICONDUCTORS

This subsection provides a detailed description of different material properties.

1.1.2.1 Conductors

The substances that allow electricity to pass through them are called conductors.
Metals such as gold, silver, and copper are good examples of conductors. These sub-
stances have free electrons in their outermost orbit. There is no or very little distance
between the conduction band and the valence band.

Properties of Conductors

* Conductors have high electrical and thermal conductivities.

* In steady states, they obey Ohm’s law.

* They have a positive temperature coefficient, i.e., their resistance increases
with an increase in temperature.

* They obey Wiedemann—Franz law, according to which the ratio of thermal
and electrical conductivities at a given temperature is the same for all met-
als and is proportional to the absolute temperature 7, as shown below:

Kot (1)
o

where K is the thermal conductivity of the metal, ¢ is the electrical conductivity of
the metal, and T is the temperature.

Band Gap Band Gap

) e © o e o

FIGURE 1.2 Band diagrams of conductors, semiconductors, and insulators.
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1.1.2.2 Insulators

The substances that do not allow electricity to pass through them are called insula-
tors. They are also known as non-conducting substances. Glass, mica, and quartz are
good examples of insulators. The outermost orbits of these substances are saturated,
and hence no free electrons are present. The distance is extremely long between the
valence band and the conduction band of these substances.

Properties of Insulators

¢ Resistance is the ability to impede the electric current. Insulators have
extremely high resistance. The resistance is in the order of ohms in metals,
whereas in insulators, it varies from several kilo-ohms to mega ohms.

* The conductivity of the insulators does not change with temperature.

» Insulators, after a specific voltage, lose their insulating properties and start
conducting. This voltage is known as the breakdown voltage. This is also
called the dielectric strength of the material. Insulators have very high
breakdown voltages.

* Insulators have very high permeability.

1.1.2.3 Semiconductors

These substances have their conductivity between the conductors and the insulators.
Their resistivity is higher than that of a conductor but lesser as compared to an insu-
lator. The distance between the valence band and the conduction band is intermedi-
ate to that of conductors and insulators.

Properties of Semiconductors
¢ Semiconductors have negative temperature coefficient of resistance.
Therefore, the electrical resistance of a semiconductor reduces with an
increase in the temperature.

-B

R=AxeT 1.2)

where R represents the resistance of the semiconductor, T is the tempera-
ture, and A and B are the constants.

* The electrical conductivity of a semiconductor can be increased enormously
by adding a small amount of impurity. Germanium (Ge) and silicon (Si) are
the most commonly used semiconductors. Germanium is used extensively
in early solid-state devices such as transistors, but it is now being replaced
by silicon because of its abundance. The properties of conductors, semicon-
ductors, and insulators are summarized in Table 1.1.

1.1.3  P-Tyre AND N-TYPE SEMICONDUCTORS

Before moving further, we should be able to understand the basics of semiconduc-
tors. As explained earlier, the conductivity of the semiconductors lies between that of
the conductors and the insulators. On their own, silicon and germanium are classed
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TABLE 1.1

A Comparison of Conductor, Semiconductor, and Insulator
Material properties

Characteristics
Conductivity
Resistivity
Forbidden gap
Temperature
coefficient
Conduction

Conductivity value

Resistivity value

Current flow

Number of carriers at
normal temperature

Band overlap

Zero Kelvin behavior

Formation

Valence electrons

Examples

Conductor

High

Low

No forbidden gap
Positive

Large number of
electrons for
conduction

Very high 107 mho/m

Negligible; less than
1075 Q-m

Due to free electrons

Very high

Both conduction and
valence bands are
overlapped

Acts like a
superconductor

Formed by metallic
bonding

One valence electron
in outermost shell

Copper, mercury,
aluminum, silver

Semiconductor
Moderate

Moderate

Small forbidden gap
Negative

Very small number of
electrons for conduction

Between those of
conductors and insulators,
i.e., 107 mho/m to
1013 mho/m

Between those of
conductors and insulators,
i.e., 10° Q-mto 10° O-m

Due to holes and free
electrons

Low

Both bands are separated by
an energy gap of 1.1 eV

Acts like an insulator

Formed by covalent
bonding

Four valence electrons in
outermost shell

Germanium, silicon

Insulator

Low

Very high

Large forbidden gap
Negative

Moderate number of
electrons for
conduction

Negligible like
10-'* mho/m

Very high; more than
10° Q-m

Due to negligible free
electrons

Negligible

Both bands are separated
by an energy gap of
6-10eV

Acts like an insulator

Formed by ionic
bonding

Eight valence electrons
in outermost shell

‘Wood, rubber, mica,
paper

as intrinsic semiconductors that exhibit their purity. However, by controlling the
amount of impurities added to this intrinsic semiconductor material, it is possible to
control its conductivity. Various impurities called donors or acceptors can be added
to this intrinsic material to produce free electrons or holes, respectively. This pro-
cess of adding donor or acceptor atoms to semiconductor atoms is known as dop-
ing. The doped silicon is no longer pure, whereas these donor and acceptor atoms
are collectively referred to as “impurities,” and by doping these silicon materials
with a sufficient number of impurities, we can turn them into an N-type or P-type
semiconductor materials. The most commonly used semiconductor material is sili-
con. Figure 1.3 shows the structure and lattice of a “normal” pure crystal of silicon.
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FIGURE 1.3 Structure and lattice of a “normal” pure crystal of silicon.

Silicon has four valence electrons in its outermost shell that shares its neighbor-
ing silicon atoms to form full orbitals of eight electrons. The structure of the bond
between the two silicon atoms is such that each atom shares one electron with its
neighbor making the bond highly stable.

As there are few free electrons available to move around the silicon crystal, crys-
tals of pure silicon (or germanium) are therefore good insulators, i.e., they possesses
extremely low or high value of resistances. Silicon atoms are arranged in a definite
symmetrical pattern making them a crystalline solid structure. A crystal of pure
silica (silicon dioxide or glass) is generally said to be an intrinsic crystal (it has no
impurities) and therefore has no free electrons. But simply connecting a silicon crys-
tal to a battery supply is not enough to extract an electric current from it. In order to
do that, we need to create “positive” and “negative” poles within the silicon crystal
allowing the electrons and hence the electric current to flow out of silicon. These
poles are created by doping the silicon with certain impurities.

1.1.3.1 N-Type Semiconductors

In order to improve the conductivity, we need to introduce an impurity atom such
as arsenic, antimony, or phosphorus into the crystalline structure making it extrin-
sic (impurities are added). These atoms have five outer electrons in their outermost
orbital to share with neighboring atoms and are commonly called “pentavalent”
impurities. This allows four out of the five orbital electrons to bond with its neigh-
boring silicon atoms leaving one “free electron” to become mobile when an electri-
cal voltage is applied (electron flow). As each impurity atom “donates” one electron,
pentavalent atoms are generally known as “donors.”

Antimony (symbol Sb) and phosphorus (symbol P) are frequently used as pen-
tavalent additives to silicon. Figure 1.4 shows the structure and lattice of the donor
atom impurity. Antimony has 51 electrons arranged in five shells around its nucleus
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FIGURE 1.4 Structure and lattice of the donor atom impurity.

with the outermost orbital having five electrons. The resulting semiconductor basic
material has an excess of current-carrying electrons, each with a negative charge,
and is therefore referred to as an N-type material with the electrons called “Majority
Carriers,” while the resulting holes are called “Minority Carriers.” When stimulated
by an external power source, the electrons freed from the silicon atoms by this stimu-
lation are quickly replaced by the free electrons available from the doped Antimony
atoms. However, this action still leaves an extra electron (the freed electron) floating
around the doped crystal, making it negatively charged. Therefore, a semiconduc-
tor material is classed as N-type when its donor density is greater than its acceptor
density; in other words, it has more electrons than holes, thereby creating a negative
pole, as shown in Figure 1.4.

1.1.3.2 P-Type Semiconductors

If we go the other way, and introduce a “Trivalent” (3-electron) impurity into the
crystalline structure, such as aluminum, boron, or indium that have only three
valence electrons available in their outermost orbital, the fourth closed bond cannot
be formed. Therefore, a complete connection is not possible, giving the semicon-
ductor material an abundance of positively charged carriers known as holes in the
structure of the crystal wherein the electrons are effectively missing. As a result,
a hole exists in the silicon crystal, and a neighboring electron is attracted to it and
will try to move into the hole to fill it. However, the electron filling the hole leaves
another hole behind as it moves. This in turn attracts another electron that in turn
creates another hole behind it, and so forth by giving the appearance that the holes
are moving as a positive charge through the crystal structure (conventional current
flow). This movement of holes results in a shortage of electrons in the silicon turn-
ing the entire doped crystal into a positive pole. As each impurity atom generates
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FIGURE 1.5 Structure and lattice of the acceptor impurity atom boron.

hole, trivalent impurities are generally known as “Acceptors” as they are continu-
ally “accepting” extra or free electrons. Boron (symbol B) is commonly used as a
trivalent additive as it has only five electrons arranged in three shells around its
nucleus with the outermost orbital having only three electrons. Figure 1.5 presents
the structure and lattice of the acceptor impurity atom boron. The doping of boron
atoms causes conduction that consist mainly of positive charge carriers resulting in
a P-type material with the positive holes called “Majority Carriers,” while the free
electrons are called “Minority Carriers.” Therefore, a semiconductor basics material
is classified as P-type when its acceptor density is greater than its donor density.
Therefore, a P-type semiconductor has more holes than electrons.

1.1.4 SemicoNnpucTOR CONDUCTIVITY

In an intrinsic semiconductor, the concentration of electrons and holes is identical.
The electrons and holes move in opposite directions under an electric field “E.” The
total current density J within the intrinsic semiconductor is given by
J=J,+J,
=gn. W, E+pnpy, E

J=0E (1.3)
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where J, = current density due to free holes

= current density due to free electrons
= concentration of electrons

= concentration of holes

electric field

charge of electrons

QS oS

Here, o is the conductivity of semiconductor, which is equal to (n.p,, +pl p)q.
From the above equation (1.3),

For N-type of semiconductor, the conductivity, 6=n-qg-u, (p K n) 14
For P-type of semiconductor, the conductivity, 6= p- g W, (n < p) (1.5)
1.2 DIODE

Diodes are the simplest, yet most used electronic device in the semiconductor world.
They act as building blocks for several electronic devices. Diode was originally called
a rectifier because of its ability to convert alternating current (AC) to direct current
(DC). It was renamed as diode in 1919 by English physicist William Henry Eccles
who coined the term from the Greek root di, meaning “two,” and ode, a shortened
form of “electrode.” Earlier diodes were made from selenium (Se) and germanium
(Ge). However, they have been completely replaced by silicon (Si) in the recent years.

1.2.1 Diope STRUCTURE AND CHARACTERISTICS

A diode is a semiconductor device that allows the flow of current only in one direc-
tion. It consists of two electrodes called cathode (negative terminal) and anode (posi-
tive terminal), as shown in Figure 1.6. When voltage polarity on the anode side is
positive as compared to that on the cathode side, the diode conducts and is consid-
ered a low-value resistor. If voltage polarity at the anode side is more negative as
compared to that on the cathode side, the diode is said to be in reverse-biased mode
and it does not conduct. There are many types of diodes of which PN diode and
Zener diode are the most important due to their applications. Here, we will explicitly
explain about the PN diode.

1.2.2 PN DIODE STRUCTURE

The newly doped N-type and P-type semiconductor materials do very little on their
own, as they are electrically neutral. However, if we join (or fuse) these two semi-
conductor materials together, they behave in a very different way merging together
and producing what is generally known as a “PN Junction [2].” When the N-type

Anode |> | Cathode

FIGURE 1.6 Diode symbol.



Semiconductor Physics and Devices 9

Depletion layer

© Positive Donor ion
@ Negative Donor ion
— Free electrons

+ Holes

FIGURE 1.7 PN Diode internal structure at zero bias.

semiconductor and P-type semiconductor materials are first joined together, a large
density gradient exists between both sides of the PN junction. As a result, some of
the free electrons from the donor impurity atoms begin to migrate across this newly
formed junction to fill up the holes in the P-type material producing negative ions.
However, because the electrons have moved across the PN junction from the N-type
silicon to the P-type, they leave behind positively charged donor ions (N,) on the
negative side. Now the holes from the acceptor impurity migrate across the junc-
tion in the opposite direction into the region where there are large numbers of free
electrons.

As a result, the charge density of the P-type along the junction is filled with nega-
tively charged acceptor ions, and the charge density of the N-type along the junction
becomes positive, as shown in Figure 1.7. This charge transfer of electrons and holes
across the PN junction is known as diffusion. The width of these P and N layers
depends on how heavily each side is doped with acceptor density N, and donor den-
sity N, respectively. This process continues back and forth until the number of elec-
trons, which have crossed the junction, have a large enough electrical charge to repel
or prevent any more charge carriers from crossing over the junction. Eventually, a
state of equilibrium (electrically neutral situation) will occur producing a “potential
barrier” zone around the area of the junction as the donor atoms repel the holes and
the acceptor atoms repel the electrons. Since no free charge carriers can rest in a
position where there is a potential barrier, the regions on either side of the junction
now become completely depleted of any more free carriers in comparison to the
N- and P-type materials further away from the junction. This area around the PN
junction is now called the depletion layer. The total charge on each side of a PN junc-
tion must be equal and opposite to maintain a neutral charge condition around the
junction. If the depletion layer region penetrates into the silicon by a distance of D,
for the positive side, and a distance of D, for the negative side giving a relationship
between the two as equation (1.6):

D,N, = DyN,, (1.6)
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FIGURE 1.8 PN diode forward and reverse bias characteristics.

1.2.2.1 Forward and Reverse Bias Regions

When the diode P-type material is connected to a positive voltage and N-type mate-
rial is connected with a negative voltage, the diode operates in forward bias, and the
diode i—v relationship is approximated by equation (1.7).

i= 1 (e%% —1) 17

When the positive voltage is applied to N-type material and a negative voltage is
applied to P-type material, the diode operates in reverse bias, and in this region,
zero current flows through the diode. The characteristic of diode is shown in
Figure 1.8. In forward bias, the diode voltage should be more than the threshold
voltage to allow current; this voltage is called cut-in voltage (V) of the diode.
From these characteristics, it can be observed that the diode exhibits approxi-
mately zero current in reverse direction.

1.2.3  ZeNEr DIODE STRUCTURE

This is a PN junction device, wherein Zener breakdown mechanism dominates.
Zener diode is always used in reverse bias and its symbol is shown in Figure 1.9. A
Zener diode has the following features:

1. Doping concentration is heavy on P and N regions of the diode, compared
to a normal PN junction diode.

Anode |> | Cathode

FIGURE 1.9 Zener diode symbol.
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2. Due to heavy doping, depletion region width is narrow.
3. Due to narrow depletion region width, electric field intensity is high that
results in Zener Breakdown mechanism.

The Zener diode operates in the reverse breakdown region and exhibits almost a
constant voltage drop that can be used in voltage regulator circuits. These types
of diodes are designed to be operated in the breakdown region called breakdown
diodes or Zener diodes. Figure 1.10 presents the Zener diode characteristics showing
constant Zener voltage in the reverse breakdown region, whereas in forward region,
it shows normal PN diode characteristics only. Zener diode can be used in different
applications like voltage regulator circuits, clipping and clamping circuits, and wave-
shaping circuits.

1.2.4 DioDE APPLICATIONS

Apart from the switching characteristics, a diode can be explored in many important
applications like rectifiers, clippers, and clampers.

1.2.4.1 Rectifiers

Most of the electronic circuits require a DC source of power. The circuit that con-
verts AC to pulsating DC is called a rectifier. Generally, AC input is a sinusoidal
signal, as shown in Figure 1.11, and the rectifier circuit converts this sinusoidal

S
?

IF(mA)

I.(mA) zener Current || Forward Current

Zener voltage

V.

”~

Vi V

F
Forward voltage

&
€

FIGURE 1.10 Zener diode characteristics.
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FIGURE 1.11  Sinusoidal AC input signal.

_vm

signal into a pulsating DC signal. Different types of rectifier are available, and they
include:

* Half-wave rectifier

» Full-wave rectifier
i. Center-tapped rectifier
ii. Bridge rectifier

1.2.4.1.1 Half-Wave Rectifier

A half-wave rectifier is designed using a single diode and a resistor connected in
series and is shown in Figure 1.12. The output is measured across the resistor, dur-
ing the positive half cycle of input, diode switches ON. Due to this, input passes to
output. With the negative half cycle, input diode is switched OFF creating an open
circuit and resulting in zero output. The output voltage here is not exactly DC and it
varies between maximum sinusoidal amplitude and zero, as shown in Figure 1.12.

1.2.4.1.2  Full-Wave Center-Tapped Rectifier

This circuit consists of two diodes and a load resistor R,,. A center-tapped transformer
is used to get full rectified signal at the output [3]. During the positive half cycle
of input, diode D, switches ON and D, switches OFF, as shown in Figure 1.13(a).
During the negative half cycle, D, switches ON and D, switches OFF, and the direc-
tion of current through the load is not changed, as shown in Figure 1.13(b). As a result,

Half-Wave Rectifier Vin

N

+Vm
NI /\
17| ?_ kA3 27 37

-Vm
vin ’9 RL vout
Vog

+Vm '/\
AS 2 3o
L

-vm

FIGURE 1.12 Half-wave rectifier circuit design with output response.
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FIGURE 1.13 Full-wave rectifier circuit design (a) during positive half cycle (b) during
negative half cycle.

output produces another positive half cycle, as shown in Figure 1.14. In the full-wave
rectifier, identifying the center tap of transformer is a difficult task and hence a bridge
rectifier is introduced.

1.2.4.1.3  Bridge Rectifier

The bride rectifier consists of four diodes connected in a bridge fashion, as shown in
Figure 1.15. During the positive half cycle, D, and D, are forward biased at the same
time, whereas D, and D, are connected in reverse biased. In this condition, we can
observe the current direction through the load, as shown in Figure 1.15. During the
negative half cycle, D, and D, are forward biased, D; and D, are reverse biased. It
can be observed that in this condition, the current through this load resistance flows
in the same direction. As a result, output produces positive half cycle.

1.2.4.1.4  Comparison of Rectifier Circuits

The performance of rectifier is evaluated by using certain metrics such as efficiency,
ripple factor, and number of diodes used. These parameters for three different recti-
fier circuits are summarized in Table 1.2. It can be observed that bridge rectifier
with its simple circuit shows high accuracy and low ripple factor value.

v

FIGURE 1.14 Full-wave rectifier output.
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TABLE 1.2
Performance Comparison of Various Diode-Based Rectifiers

Full-Wave Rectifier

Performance parameters Half-Wave Rectifier Center Tap Bridge
Efficiency 40.6% 81.2% 81.2%
Ripple factor 1.21 0.482 0.482
No. of diodes 1 2 4
Center tap necessity No Yes No

1.2.4.2 Diode Logic Gates
Diode is used to construct digital logic gates that are shown in Figure 1.16. Here,
both AND and OR gates are constructed using diodes.

In the AND gate, when both the inputs are high, the diodes will be in reverse
bias and output will be connected to maximum voltage (V). In remaining cases of
inputs, one of the diodes will be forward biased that makes the output logic zero. The
Boolean notation for the circuit can be given by

Y=AB

o1 A #Vbs

FIGURE 1.15 Bridge rectifier circuit behavior (a) during positive half cycle (b) during nega-

tive half cycle.
+Vpp
R é A

AND OR

QW o>
AN
<

FIGURE 1.16 AND and OR logic gates using diodes.



Semiconductor Physics and Devices 15

In the case of OR gate, if one of the inputs is logic high, output shows logic high. In the
remaining cases, output will be zero. Therefore, the Boolean notation for the circuit is

Y=A+B

1.2.4.3 Clipping and Clamping Circuits

The diode can act as an open or closed switch depending on the biasing voltage
applied. Due to this, it has been explored for different applications. The clipping and
clamping function also explores the diode characteristics.

1.2.4.3.1  Clipper Circuits

A clipper circuit clips off or cuts the portion of the signal and produces the remain-
ing signal as output. There are two types of clipper circuits, the series and parallel
diode clipping circuits.

1.2.4.3.2  Series Diode Clipping Circuit

In these types of clipping circuits, the diode is connected between the input and the
output terminals, as shown in Figure 1.17.

1.2.4.3.3 Operation of Clipping Circuit

A series clipper is considered to explain the operation of a circuit, as shown in Figure 1.17.
Here, a sine wave is applied as input to the clipper circuits. In the positive half cycle of the
input, diode is switched ON, the input passes to the output and can be measured across
the output. In the negative half cycle of the input, diode is switched OFF, and the circuit
becomes an open circuit. As a result, the output will be zero. Thus, this clipper circuit clips
the negative half cycle of signal, as shown in Figure 1.17.

1.2.4.3.4  Parallel Diode Clipping Circuit

In this type of clippers, the diode is connected between the output terminals, as
shown in Figure 1.18. The on/off state of the diode directly affects the output volt-
age. These types of clippers may also have a non-zero threshold voltage by addition
of a voltage series with diode. The following figure illustrates the clipping process.

11

+O < Q

| < 7 Vin R Vout

FIGURE 1.17  Series clippers using diodes.
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|
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FIGURE 1.18 Parallel clippers using diodes.

1.2.4.3.5 Clamper Circuits

Clamper circuits are explored to change the DC level of a signal. In contrast to clip-
pers circuits, clamper uses a capacitor and a diode connection. Depending on the
clamping position, clampers can be classified into two types:

* Positive clamper
e Negative clamper

The behavior of the positive and negative clampers is shown in Figure 1.19; from
this, it can be concluded that positive and negative clampers add the positive and
negative voltages to the actual signals.

1.2.4.3.6  Operation

Generally, a clamper is an RC circuit that consists of a diode and a capacitor. The
diode changes its configuration, i.e., open or closed switch depending on the input
applied. In order to clearly understand the clamper operation, let us consider the
clamper shown in Figure 1.20. This clamper consists of a capacitor in series with
diode. The input to the clamper is applied to the capacitor and the output is measured

| 5 Positive
L4
Clamper

v

LN

7

9
v

v

Clamper

| Negative |

FIGURE 1.19 Block diagram of clamper design.
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FIGURE 1.20 Clamper circuit.

across the diode, as shown in Figure 1.20. Here, we are applying a square wave as an
input to the clamper. The operation can be explained in terms of the applied positive
and negative half cycles at the input.

During positive half cycle of input: With positive half cycle of input, the capaci-
tor charges to input voltage and the diode becomes forward biased. The forwarded
diode acts as short circuit and the voltage across the diode will be approximately
zero, as shown in Figure 1.21.

During negative half cycle of input: With negative half cycle of input, the diode
becomes revere biased and acts as open circuit, as shown in Figure 1.22. In this case,
output voltage is equal to the sum of the input voltage and the charge stored across
the capacitor. The resulting output of clamper circuit is shown in Figure 1.23. It can
be observed that by using this clamping circuit, the output of the circuit shifted with
negative DC value without change in the peak-to-peak amplitude and it is expressed
as equation (1.8)

1%

out

= _(VC +‘/in) (18)

where V. is the voltage stored with the capacitor in the positive half cycle of input.

C
+O_|+ |__ _Q
vin : vout
-0 o

FIGURE 1.21 Clamper circuit during positive cycle of input.

Ve
-O u - l Q
vin vout
+c ] 5

FIGURE 1.22 Clamper circuit during negative cycle of input.
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FIGURE 1.23 Clamper output showing negative shifting.

Similarly, positive clamper and its characteristics can be observed from Figure 1.24.
The other types of clamper circuits also exists where we can define the voltage level
of clamping by changing the direction of the diode, and the DC source of different
clamper circuits can be generated with distinct DC value shifting.

1.3 BIPOLAR JUNCTION TRANSISTOR

Bipolar junction transistor (BJT) is a first and important transistor invention before
the field-effect transistor (FET). It is a bipolar device, which means that device
exhibits current conduction using both electrons and holes. Here, we will describe
the structure and characteristics of the BJT.

1.3.1 SymBOL AND PHYSICAL STRUCTURE

BJT is available in two different types: NPN and PNP BJTs. The BIT is a three-
terminal device. The terminals are labelled as the base, the emitter, and the collector.
The symbols are shown in Figure 1.25.

The majority charge carriers for NPN and PNP transistor are electrons and holes,
respectively. Here, we are considering an NPN transistor to explain the detail about
the structure and characteristics. Figure 1.26 shows the NPN BJT having emitter,
base, and collector regions. Of these regions, the collector has a large area and the
base has a low area. In BJT, the emitter, base, and collector, are heavily doped, mod-
erately doped, and lightly doped regions, respectively [4]. The BJT has two junctions
known as emitter-base junction and base-collector junction. Based on the biasing

FIGURE 1.24 Clamper output showing positive shifting.
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E E
npn pnp
FIGURE 1.25 Symbols of BIT.
E n-type |p-type| n-type C

Emitter | Base |Collector
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Emitter-BaseI Collector-Base
junction junction

FIGURE 1.26 Physical structure of NPN BJT.

conditions (reverse and forward) of these junctions, BJT can be operated in different
regions, as summarized in Table 1.3.

1.3.1.1 Operation and Several Current Components

When both emitter-base and collector-base junctions are in reverse bias, the transis-
tor operates in the cut-off region wherein collector, emitter, and base current will be
zero. The operation of BJT in the active region is illustrated by using NPN transistor
structure, as shown in Figure 1.27. Two biasing voltages are applied to make emitter-
base junction forward biased and collector-base junction reverse biased.

Due to the forward biasing of the emitter-base junction, emitter current flows out
from the emitter. Base current will be low compared to that of the emitter because
of lower doping concentrations of the base. When electrons move from the emitter
to the base, the majority of charge carriers will be attracted by the collector due to
the high positive voltage applied to the collector. This contributes collector current

TABLE 1.3

Different Operating Modes of BJT

Operating regions Emitter-Base Junction Collector-Base Junction
Cutoff Reverse Reverse

Active Forward Reverse

Reverse active Reverse Forward

Saturation Forward Forward
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FIGURE 1.27 NPN BJT connecting in active mode.

in BJT. Since the current enters from transistor must leave, the emitter current (i)

can be related as equation (1.9).
ip=ic +ig

We can express collector current as

io=Ie ",
and base current

ip= %eVB%T
From both equations (1.10) and (1.11)

ic =Pig

where J3 is called common emitter current gain

B .
T +p)”
where constant o, (common base current gain) is related to B by
_ B
(1+B)

1.3.2 BJT CONFIGURATIONS

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

With three terminals, BJT can be connected in three different configurations
making one terminal common to input and output. Each configuration provides
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FIGURE 1.28 (a) Common base, (b) common emitter, and (c) common collector configura-
tions of BJT.

different characteristics and suits to distinct applications. The three configura-
tions include:

* Common base configuration
e Common emitter configuration
e Common collector configuration

1.3.2.1 Common Base (CB) Configuration

In this configuration, the base terminal is common to both the input and output. Input
signal is applied between the emitter and the base, and the output is measured from
the collector and the base, as shown in Figure 1.28(a). The input current through the
emitter is larger than the collector current; due to this, the output at the collector is
lesser compared to the emitter. As a result, the CB configuration attenuates the volt-
age signal. However, this topology shows a current gain of unity.

1.3.2.2 Common Emitter (CE) Configuration

In this configuration, the emitter terminal is common to both input and output. The
input signal is applied between base and emitter, and the output is measured from
the collector and the emitter, as shown in Figure 1.28(b). The input current through
the base is small and the output collector current is very high. Due to this, CE con-
figuration is used as an amplifier with high voltage gain.

1.3.2.3 Common Collector (CC) Configuration

In this configuration, collector terminal is common to both input and output. The
input signal is applied between the base and the collector; the output is measured
from the emitter and the collector, as shown in Figure 1.28(c). This type of configu-
ration is commonly used in voltage follower or buffer applications. The summary
of the characteristics of three configurations is given in Table 1.4. From this, it can
be observed that CC configuration of BJT provides low power gain and hence CE
configuration is not widely used to design a BJT-based amplifier.

1.3.2.4 BJT in CE Configuration: Operation and /-V Characteristic

With three terminals, BJT operates in different regions of operations. This can be
explained using /-V characteristics; here, we have considered CE configuration of
BJT. Most importantly, BJT operation can be explained by using two characteristics:

* Input characteristics (drawn between Vi, 1)
e Output characteristics (drawn between Vi, 1)
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TABLE 1.4
Comparison of BJT Circuit Configurations

Characteristics Common Base (CB) Common Emitter (CE) Common Emitter(CC)
Input impedance Low Medium High

Output impedance Very high High Low

Phase angle 0° 180° 0°

Voltage gain High Medium Low

Current gain Low Medium High

Power gain Low Very High Medium

1.3.2.4.1 Input Characteristics

Input characteristics can be drawn between the input current (/;) and the input volt-
age (Vg). By varying the Vg, the input current will be recorded at constant V.
Figure 1.29 shows the input characteristics that resemble as PN diode since the base-
emitter junction behaves as forward-biased PN diode.

1.3.2.4.2  Output Characteristics

Output characteristics can be drawn between the output current (/) and the output
voltage (V). By varying the V, the output current will be recorded at constant
Ve Figure 1.30 shows the output characteristic, which shows the different regions
of operations by varying the value of V.

1.3.3 SecoND-ORDER EFreCTS

Various unusual effects occur in BJT, which are not explained in the conventional
operation of transistor. These effects include the base-width modulation, high injec-
tion effects, temperature dependence, and breakdown mechanisms in BJTs.
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FIGURE 1.29 Input characteristics of CE configuration of BJT.
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FIGURE 1.30 Output characteristics of CE configuration of BJT.

1.3.3.1 Base-Width Modulation

When voltage is applied to base-emitter and base-collector junction changes, the
depletion layer of the transistor varies. Due to this, the collector current increases
which can be referred as the “Early Effect.”

1.3.3.2 Recombination in the Depletion Region
Collector current does not include the recombination current in the depletion region
which will increase the overall value of the current.

1.3.3.3 Breakdown Mechanism in BJT

When reverse collector base voltage increases, the collector current increases. Due
to this, avalanche multiplication happens that finally makes the device breakdown.

1.4 FIELD-EFFECT TRANSISTOR

The FET is a voltage-controlled device, which depends on the applied electric field.
There are mainly two important transistors available with respect to the structure;
they are junction field-effect transistor (JFET) and metal-oxide-semiconductor field-
effect transistor (MOSFET). Here, we mainly discuss

» Principle of operation of JFET and their characteristics
e MOSFET structure and characteristics

1.4.1  JuncmioN FieLD-ErrecT TrRANSISTOR (JFET)
JFET is a unipolar device and their operation depends on the flow of charge carriers.

There are two types of JFETs depending on the channel type. They are:

e N-channel JFET
e P-channel JFET
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FIGURE 1.31 JFET symbols.

1.4.1.1 Symbol and Physical Structure

JFET is a three-terminal device, with the terminals named as gate, drain, and
source, which are identical to base, emitter, and collector. The symbols of the both
N-channel and P-channel JFETs are shown in Figure 1.31. The arrow mark on the
gate terminal indicates the flow of current when gate and source are forward biased.
The physical structure of N-channel and P-channel JFET is shown in Figure 1.32.
An N-channel JFET consists of N-type silicon bar with P-type regions diffused on
both sides. The two edges of the bar are treated as source and drain, and the P-type
regions are connected together to form a gate terminal.

Source: It sources majority charge carriers into the channel.

Drain: Drain collects the charge carries from the channel.

Gate: Gate controls the flow of current by using the voltage applied to it.

Channel: It is the region between two gate regions and allows the flow of
charge carries from source to drain.

1.4.1.2 Operation of JFET

Considering the N-channel JFET for explaining the operation, it is assumed that
the two gate terminals are tied together. When gate-to-source voltage (V) is O,
the gate regions become forward bias and current flows from the drain to source
with positive drain to source voltage (V,), as shown in Figure 1.33(a). When V;
is becoming negative, the depletion region of gate channel increases that increase

LDrain(D)

Channel

Gate(G) I H Gate(G)
° P

TSource(G)

¢ Drain(D)

Source(G)

FIGURE 1.32 JFET physical configuration.
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FIGURE 1.33 Behavior of JFET (a) with V= 0 (b) with negative Vs and increasing V.

the channel resistances and hence the drain current reduces. When Vg is becoming
more negative, the depletion region occupies entire channel that makes the channel
fully depleted. This value of V,, where channel gets depleted, is called pinch-off
voltage (V).

Now, consider another case where V is fixed at the constant value, which is
lesser than V. When V,, increases, the resultant reverse bias voltage varies by mov-
ing from source to drain. Consequently, the reverse bias is high at the drain end and
the channel acquires a shape of tapered, as shown in Figure 1.33(b).

1.4.1.3 Current-Voltage Characteristics and Regions of Operation

The current-voltage characteristics for the above two explained conditions are shown
in Figure 1.34. JFET can work in three regions of operation. Those include:
Cut-off region:

Vg <V, ip =0 (1.15)

(a) (b) Triode region Saturation region

Vps1<Vps2<Vps3 Io(mA)]

Vis111=0

Ves2<Vas1

VGS3<VGSZ

o Ve 0 Voe(v)

FIGURE 1.34 N-channel JFET (a) transfer characteristics (b) output characteristics.
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Triode region:

Vp < Vs 0,Vpg <V =V, (1.16)
Vs Y (V. Vs )
i=1Ipgs 2(1—65) (”S )—(”SJ (1.17)
Ve )\ -V, V,
Saturation region:
Vp Vs 0,Vpg 2 Ve =V, (1.18)
v 2
i=1DSS(1—GSJ (1+AVys) (1.19)
Ve

where A is the inverse of early voltage, A = %/A.

1.4.2 METAL-OXIDE-SEMICONDUCTOR FIELD-EFFECT TRANSISTOR

MOSFETs are named due to their architecture and show high input impedance com-
pared to the JFET. Due to this reason, MOSFETs are widely used for IC design.
MOSFETs are of two types [5]:

Depletion-mode MOSFETSs: These are normally ON switches that require
gate-to-source voltage to switch OFF the device.

Enhancement-mode MOSFETs: These are normally OFF switches that
require gate-to-source voltage to switch ON the device.

Depletion-mode MOSFETs characteristics are almost similar to JFET, because of
which depletion-mode MOSFETs are not studied much. Enhancement MOSFET is
considered and its physical operation has been explained in detail.

1.4.2.1 Symbol and Device Structure

Enhancement MOSFETs are also classified as N-channel and P-channel MOSFETs.
MOSFETs consist of four terminals: drain (D), source (S), gate (G), body (B). The
symbols of both N-channel and P-channel enhancement MOSFETs are shown in
Figure 1.35.

n-channel MOSFET p-channel MOSFET

FIGURE 1.35 MOSFET symbols.
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FIGURE 1.36 N-channel MOSFET physical structure.

Here, we consider N-channel MOSFET (NMOS) for reviewing its structure, as
shown in Figure 1.36. The N-channel enhancement MOSFET fabricated on P-type
substrate and two heavily doped N-type regions are formed to serve as source/drain.
The P-type substrate also acts as the body of the MOSFET. A thin layer of silicon
dioxide (SiO,) is formed on the top of the substrate, between source and drain, which
acts as an insulator. Metal layer is formed on the top of source, gate, drain, and body
to have a contact with all the terminals.

1.4.2.2 Device Operation

With zero voltage applied to gate-to-source (V) terminal, the two back-to-back
connections of diodes exist between source body and drain body. As a result, no cur-
rent flows between source and drain with the application of positive drain to source
voltage (V,g). With this biasing, transistor will be in cut-off region and zero current
flows, as shown in Figure 1.37.

When V5 =0, i, =0 ; Cut-off region (1.20)

FIGURE 1.37 N-channel MOSFET with zero V.
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FIGURE 1.38 N-channel MOSFET with a small Vg value.

With positive Vg and V5 applied, gate pushes the positive charge carriers down the
body and the full of negative voltage will be formed between drain and source. The
induced N-region forms a channel with an application of positive V), as shown in
Figure 1.38 and charge carriers flow between source and drain. The minimum value
of V, that is required to form a channel is called threshold voltage (V).

With the small value of Vg, the current varies linearly and increases with increase
in drain voltage. This region is called triode region and in this region, the circuit
works as a resistor. The drain current of MOSFET in triode region is modeled as

When Vi 2V, Vi < Vg —V,; Triode region (1.21)
. w 1
ip =1, Cp (L)[(VGS _Vt)VDS _2‘/052} (1.22)

With an increased V/,, the channel obtains the tapered shape, as shown in Figure 1.39,
and the channel depth at drain side reduces to zero. This effect is called pinch-off, and
the current in this region becomes constant. The drain current thus saturates at this

FIGURE 1.39 N-channel MOSFET with a large value of V.
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FIGURE 1.40 An N-channel MOSFET (a) transfer characteristics (b) output characteristics.

value and therefore this region is named as saturation region of MOSFET. The drain
current of MOSFET in saturation region is modeled as
When Vg5 2V, V)¢ 2 Ve —V,, saturation region

. 1 w
Ip = Ep’ncox (TJ(VGS - ‘/t )2 (123)

The transfer characteristics and output characteristics of an NMOS transistor are
shown in Figure 1.40. Transfer characteristics are drawn between input voltage (V)
and the drain current; it shows that NMOS produces the drain current when Vi is
greater than the threshold voltage. The output characteristics are drawn between
output voltage (V) and drain current and the region of operations is indicated in
Figure 1.40(b). As discussed in the operation of MOSFET, at small value of V,,, the
MOSFET operates in the triode region; when V/,, increases, it enters into the satura-
tion region.

1.4.3 AbVANTAGES OF MOSFET Over JFET

MOSFET shows several advantages compared to the JFET, as a result, MOSFETs
have become popular in IC design.

* MOSFETs exhibit high input impedance compared to JFETSs.

* MOSFETs: provide high packaging density.

* MOSFET: exhibit ultra-low power consumption.

* MOSFETs can be explored for different applications due to their distinct
characteristics.

1.5 EMERGING DEVICES BEYOND CMOS

Energy efficiency is considered to be one of the most critical design parameters for
Internet of Things (IoT). In order to have an improved functionality and perfor-
mance without compromising on battery life, there is a need to explore emerging
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technologies that can overcome the limitations of CMOS technology scaling and
deliver greater energy efficiency. This discussion includes

* Issues with current CMOS technology scaling.
» Different emerging technologies with their characteristics.

1.5.1 Issues witH CMOS TECHNOLOGY SCALING

Progress in the field of semiconductors has followed an exponential behavior that has
come to be known as Moore’s law. But will these exponential projections come to
pass or will CMOS physical limits make them impossible? Several researchers have
written about the current state and future prospects for St MOSFETs and some of its
limitations at lower channel nodes are mentioned below.

1.5.1.1 Velocity Saturation and Mobility Degradation

With more device scaling, the resultant effect of electric field increases and charge
carriers in the channel exhibit high velocity. Consequently, there will be no linear
relation between electric field and charge carrier velocity. This effect is called veloc-
ity saturation causing a reduced saturation current. This causes the reduction in
switching speed of MOSFET.

1.5.1.2 Tunneling Current Through Gate Insulator

With excessive scaling, huge tunneling current flows through the gate insulator of
the MOSFET device. For conventional insulator SiO,, this tunneling limit has been
increased and is becoming a bottleneck for ultra-low power applications. To reduce
these, high dielectric materials are required as insulators.

1.5.1.3 High Field Effects

In scaling trends of CMOS, the supply voltages have not been scaled at the same rate
as the length. To increase the device speed and performance, the supply voltage has
not been scaled in proportion to the channel length. Due to this, there exists high
electric field at channel of MOSFETs. At such high fields, several undesirable effects
occur; one such effect is hot carrier effect.

1.5.1.4 Power Limitation

The supply voltage used for circuit has not been scaled as fast as the channel length
of MOSFET. As the power consumption of MOSFETs is directly proportional to the
square of the supply voltage used, the power consumption will dominate when the
channel length becomes lower.

1.5.1.5 Material Limitation

Materials like silicon (Si), silicon dioxide (SiO,), aluminum (Al), copper (Cu), and
salicide are reached to their physical limits and cannot show the expected perfor-
mance. For example, SiO, reliability degrades as it becomes thinner; in this regard,
researchers need to identify new materials to support physical scaling limitations.
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However, the new materials may add fabrication difficulties and reliability issues;
these parameters need to be considered while selecting the materials.

1.5.2 EMERGING NANOSCALE DEeviCE TECHNOLOGIES

Recent emerging device technologies have been introduced and principle of opera-
tion of these devices is also discussed. Device characteristics have also demonstrated
to show their benefits compared to existing CMOS.

1.5.2.1 Gate-All-Around (GAA) Nanowire (NW) MOSFET

To improve the resultant electric field, the multiple gate structures have been intro-
duced. Figure 1.41 shows the evolution of multiple-gate transistors to increase the
gate electrostatic control. Consequently, the GAA structure has become the most
resistant to short-channel effects among all the emerging device structures for a
given silicon body thickness [6].

1.5.2.2 Fin Field-Effect Transistor (FinFET)

A FinFET is a double-gate MOSFET where gate is wrapped around the channel,
and the drain and source are formed as fins, as shown in Figure 1.42. This structure
avoids the body in MOSFET, which reduces the leakage currents present in bulk
MOSFET [7].

1.5.2.3 Carbon Nanotube FETs (CNTFETSs)

Single-walled carbon nanotubes exhibit high conductivity and excellent carrier
mobility due to their small diameter [8]. It has been experimentally demonstrated
that these tubes can exhibit metallic or semiconducting characteristics depending on
their chirality factor. Using semiconducting carbon nanotubes as channel element,
CNTFETs have been demonstrated, as shown in Figure 1.43.

1.5.2.4 Tunnel FET (TFET)

Among several post-CMOS devices, TFETs have emerged as a promising device
candidate for future low-energy electronic circuit design. TFET works with the
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principle of band-to-band tunneling mechanism rather than thermionic emission of
CMOS devices [9]. Consequently, it achieves high 1,,,/1,z ratio and steep subthresh-
old swing (<60 mV/dec) at lower supply voltages, and TFET physical structure is
shown in Figure 1.44.

1.6 SUMMARY
This chapter can be summarized as follows:

* This chapter discussed the semiconductors, and the different semiconduct-
ing devices invented and used in this field.
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1.7

First, we discussed the semiconductor types and properties of semiconduc-
tor. A comprehensive comparison was made among conductor, semicon-
ductor, and insulators.

Next, diode operation and different diode applications like rectifiers, gates,
and clampers were discussed.

Later, three-terminal devices like BJT, JFET, and MOSFET were discussed
with their detailed structures and characteristics. Further, the benefits of
MOS transistor against the JFET were highlighted.

Finally, MOS transistor scaling issues were notified and emerging devices
were briefly introduced.

MULTIPLE-CHOICE QUESTIONS

. N-type silicon is obtained by doping silicon with impurity of

a. Boron

b. Aluminum
c. Germanium
d. Phosphorus

. Identify the correct one.

a. A silicon substrate doped heavily with boron is a P+ substrate.

b. A silicon substrate doped wafer lightly doped with boron is a P+
substrate.

c. A silicon substrate doped heavily with arsenic is a P* substrate.

d. A silicon substrate doped lightly with arsenic is a P+ substrate.

. A BJT operates in the saturation region if

a. Both the junctions are forward biased.

b. Both junctions are reverse biased.

c. Reverse-biased base—emitter junction and forward-biased base—
collector junction is

d. Forward-biased base—emitter junction and reverse-biased base—
collector junction

. The Early Effect in a bipolar junction transistor occurrs due to

a. Large collector—base forward bias.
b. Large emitter—base forward bias.
c. Large collector-base reverse bias.
d. Large emitter—base forward bias.

. If the base width of BJT is doubled, which one of the following is true?

®

Unity gain frequency will increase.

b. Current gain will increase.

c. Early voltage will increase.

d. Emitter—base junction capacitance will increase.

33
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. In a uniformly doped BJT, the order of doping concentrations of BJT is
a. Emitter = Base = Collector
b. Emitter > Base > Collector
¢. Emitter = Base < Collector
d. Collector > Base > Emitter

. The drain of an N-channel MOSFET is connected to the gate. The threshold
voltage of MOSFET is 1 V. If the drain current (/) is 1 mA for V;3=2V,
then for V=3V, I, =

a. 2mA
b. 3mA
c. 9mA
d. 4mA
. MOSFET means?
a. Metal oxide semiconductor field-effect transistor
b. Metal oxide source field-effect transistor
c. Metallic oxygen field-effect transistor
d. Mercury oxide field-effect transistor

. Which of the following statements is true?

Input impedance of MOSFET is higher compared to BJT and JFET.
Input impedance of BJT is higher compared to MOSFET and JFET.
Input impedance of JFET is higher compared to BJT and MOSFET.
Input impedances of MOSFET, BJT, and JFET are similar.

o op

. Which BJT configuration has a high voltage gain?
a. Common Emitter
b. Common Base
¢. Common Collector
d. None

SMALL ANSWER QUESTIONS

. What is doping?

. What are P-type and N-type semiconductors? Give example.

. Draw the symbol of PN diode.

. Design a series clipper.

. What are the properties of a BJT? Why is it named so?

. What are the benefits of MOSFETs over JFETs?

. Explain about CE configuration of BJT.

. What is pinch-off in JFET?

. Explain the different regions of operation of MOSFET.

. What are the different non-silicon emerging transistors available?
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9.
10.
11.
12.
13.
14.
15.

LONG ANSWER QUESTIONS

Explain the conductor, semiconductor, and insulator with band diagram.
Give examples.

. Explain about doping of N-type and P-type materials.
. Common emitter current gain [ is 100 and base current is 15 uA. Calculate

the emitter and collector current.

. In a transistor, the base current and collector current are 70 LA and 1.85 mA,

respectively. Calculate the value of o.

. Explain the principle of operation of a Zener diode with characteristics.
. A silicon substrate is uniformly doped with donor-type impurities with

a concentration of 10'7/cm?. Electron mobility is 1200 cm?/V-s and hole
mobility is 400 cm?/V-s, and charge of an electron is 1.6 x 107'° C. Calculate
electrical conductivity of semiconductor.

. A MOSFET in saturation with gate-to-source voltage (V) is 900 mV, has

threshold voltage of 300 mV, and the drain current is observed to be 1 mA.
What is the drain current for an applied Vg of 1400 mV? (Neglect the chan-
nel width modulation.)

. BJT common-base current gain o = 0.98 and reverse saturation current

1., =10.6 uA. BJT is connected in the common emitter mode and operated
in the active region with a base drive current /; = 20 pA. Calculate the col-
lector current for this mode of operation.

Explain about clippers and clampers with examples.

Explain about different rectifiers and compare.

Explain the operation of BJT and detail about different region of operations.
Explain about different configurations of BJT. Compare them.

Explain the concept of JFET with characteristics.

Explain about the benefits of MOSFET and principle operation of MOSFET.
Explain about PN diode and characteristics.
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VLSI Scaling and
Fabrication

2.1 INTRODUCTION TO VLSI SCALING

In the nascent stage of the MOS technology, electronic devices were complex and bulky,
exhibiting degraded performance, higher maintenance cost, and poor lifetime [1]. These
heavy and bulky electronic devices could not be moved easily from one place to another,
presenting a challenge for the very-large-scale integration (VLSI) designers. Therefore,
technology scaling using different photolithography processes was adopted by the
designers decade by decade to reduce the size of electronic devices and improve their
performance and reliability [2]. The progress in device scaling has proved to be a major
contribution in the field of VLSI technology. The detailed information of VLSI scaling
is explained later in Chapter 7.

2.1.1 History AND INTRODUCTION OF VLSI TECHNOLOGY

Twenty-first century has witnessed huge technical advancements. The application
of the principles of electronics has led to a world where we are surrounded by sev-
eral electronic devices and appliances. The history of the VLSI industry reveals the
importance of electronic devices since the invention of the first point-contact tran-
sistor in 1947 [1]. Scientists John Bardeen, Walter Brattain, and William Shockley
at Bell Labs succeeded in replacing the vacuum tube from their novel invention of
the point-contact transistor, as shown in Figure 2.1(a) [3]. Later, the bipolar junction
transistors (BJTs) were developed and they completely replaced the bulky, heavy,
unreliable vacuum tubes soon after the invention of the transistor at the same Bell
laboratory [4]. The adoption of BJTs completely transformed the electronics indus-
try due to several advantages over the vacuum tube, such as more reliability, less
noise, and reduced power consumption. Further, Jack Kilby succeeded in integrating
the few transistors on a single silicon chip and fabricated the first integrated circuit
(IC) at Texas Instruments just ten years after the invention of the first transistor, as
depicted in Figure 2.1(b) [5].

The functionality of BJT limits its utilization due to the large leakage current at
the base terminal. Therefore, the metal oxide semiconductor field-effect transistor
(MOSFET) primarily became the first priority for the VLSI industry and was used
for its advantages over the BJT by dissipating zero control current during the idle
scenario. In 1963, the first logic gate was built using MOSFET technology by Frank
Wanlass at Fairchild, and the logic gates consisted of p-channel metal oxide semi-
conductor (PMOS) and n-channel metal oxide semiconductor (NMOS) transistors
known as complementary metal oxide semiconductor (CMOS) [5]. Currently, the
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FIGURE 2.1  (a) First point-contact transistor at Bell Lab [3]. (b) Integration of a few transis-
tors into the first integrated circuit [4].

CMOS is widely adopted in the electronics industry by the VLSI designers due to its
ultra-low standby power consumption.

2.1.2 VLSI DesigN CoNcEPT

The concept of VLSI design is a complex process and designing an IC from the phys-
ical layout is carried out and processed with the hierarchal design process. Industry
standard design tools such as electronic design automation (EDA) and computer-
aided design (CAD) are widely used in order to design and test the circuit level, gate
level, and layout in a fully or semiautomated manner before the actual fabrication
[6-8]. VLSI designers implement their thoughts based on the required applications
in the form of IC chips using the VLSI design flow, as shown in Figure 2.2 [9].
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Physical Domain

FIGURE 2.2 Design concept of an IC using Y-chart.
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The designing of semiconductor devices is broadly followed by considering the
Gajski-Kuhn Y-chart in the VLSI industry. It is divided into three categories as
depicted in Figure 2.2: behavioral, structural, and physical domains. Moreover, the
methodology of a VLSI design is broadly categorized as front-end and back-end
designs. The front-end design primarily includes the design of digital circuits using
HDLs such as Verilog, Verilog hardware description language (VHDL), and System
Verilog. The back-end design comprises CMOS library design, physical design, fault
testing, fault identification, and its several characterizations.

2.1.3 MOooRrF’s Law

The journey of the VLSI industry started in parallel with the concept given by
Gorden Moore in 1965. After several observations for a number of transistors on
a single chip with the technology enhancement, Moore [10] found that the num-
ber of transistors double in every 18 to 24 months from the journey of Intel micro-
processor 4004 (Figure 2.3) [11]. With the evolution of technology, transistor count
has increased, and die area has reduced. Later, Robert Noyce and Gorden Moore
cofounded the well-known Intel Corporation, which went on to become, and still is,
the world’s largest chip manufacturer.
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FIGURE 2.3 The growth of transistors on a single chip (Moore’s law) [10, 11].
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TABLE 2.1
Integration of Transistor on a Single Chip [12]

Level of Integration Year Number of Transistors on a Single IC Chip
Small-scale integration (SSI) 1950 Less than 100

Medium-scale integration (MSI) 1960 Up to 1000

Large-scale integration (LSI) 1970 Up to 10000

Very-large-scale integration (VLSI) 1980 Up to 1000000

Ultra-large-scale integration (ULSI) 1990 Up to 10000000

Global-scale integration (GSI) 2000 Higher than 10000000

2.1.4  ScALE OF INTEGRATION

The ICs can be categorized based on the number of transistors on a single chip. It can
be categorized as small-scale integration (SSI), medium-scale integration (MSI), large-
scale integration (LSI), very-large-scale integration (VLSI), ultra-large-scale integra-
tion (ULSI), and global-scale integration (GSI), as summarized in Table 2.1.

2.1.5 Tvres ofF VLSI CHirs (ANALOG AND DIGITAL)

The VLSI chips are broadly categorized into analog- and digital-based circuit imple-
mentation. The functionality of a digital IC depends on the binary level of inputs, that
is, 0’s and 1’s. The analog ICs basically work by processing the continuous signal and
are used for amplification, filtering, modulation, etc. The design process of a digital
IC is mostly automated and transistor on a chip consumes less power and supply in
comparison to the analog IC. The hardware description language (HDL) is used to
describe the digital circuits, while analog cannot be described using HDL, and the
analog modules need to be separated from the entire design process due to separate
requirements of the ground terminals. In the case of analog VLSI, the impact of noise
is more severe due to direct injection into the real system while testing the circuits. In
a digital VLSI circuit, it is easy to identify the faults and has a lower impact on noise.

2.1.6 Lavourt, MicroN, AND LAMBDA RuULES

The design of the layout must follow some predefined set of rules before proceeding
for an actual fabrication that is required in several masking processes. This set of
rules is established to specify the geometrical structure of an object. The layout of an
object must follow the minimum width and spacing between it to maintain the geo-
metrical area. These design rules are the bridge between the circuit-level designer
and the IC fabrication engineer. The circuit designer always prefers to have a smaller
design with efficient power utilization and high performance along with more pack-
ing density. However, the IC fabrication engineer is concerned only about the high
yield of the process. The design rule can be specified in the following two forms:

Lambda (L) rules: The lambda design rules are used to define all the dimen-
sions of a geometrical feature size, as shown in Figure 2.4. The maximum
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FIGURE 2.4 Dimensions as per the A design rules.

distance of A units is acceptable to the feature size of the fabrication process
at a particular technology [13]. The feature size of a process is set to be 2A
that is widely used in the academic purpose.

Micron (u) rules: The micron is mainly used in the foundries in the standard
industry. The designer uses the absolute dimension by obeying the micron
rules. It exhibits a 50% reduction in the design rules as compared to the
lambda rules. This can differ from technology to technology, process by
process, and company to company.

2.2 VLSI FABRICATION PROCESS

In this section, the detailed aspects of the process and manufacturing involved in
the actual fabrication techniques are discussed. The importance of this section is
to understand the consequences and basic knowledge behind the actual fabrication
process.

2.2.1 PuriricaTION, CrYSTAL GROWTH, AND WAFER
PROCESSING (CZ AND FZ PROCESS)

The detailed process related to purification and wafer processing is described as
follows:

2.2.1.1 Introduction

The most naturally available semiconductor materials — such as silicon, chemical
name Si, atomic number 14, and relativ